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Computer Numerical Control (CNC) machining plays a vital role in modern precision manufacturing but 

often suffers from part deformation due to thermal and mechanical stresses, compromising dimensional 

accuracy. Traditional CNC systems lack adaptive intelligence, operating with static parameters and 

failing to address real-time deformation risks. This study proposes an intelligent deformation suppression 

method using a lightweight single-neuron-based Proportional-Integral-Derivative (PID) neural model, 

termed NeuroPID-CNC, to predict and mitigate deformation during machining. The model was trained 

and tested on the CNC-DeformControl dataset containing machining parameters such as cutting speed, 

feed rate, depth of cut, tool temperature, and material type. Data preprocessing involved normalization 

and categorical encoding. The NeuroPID-CNC model, structured as a binary classifier with a single 

hidden neuron using a sigmoid activation function and Adam optimizer, was trained on 70% of the data 

and evaluated on the remaining 30%. It achieved 92% accuracy, 90% precision, 93% recall, 91.5% F1-

score, and 0.84 MCC, outperforming conventional algorithms like SVM, RF, LR, and KNN. A real-time 

feedback loop further enables adaptive learning. The NeuroPID-CNC approach effectively predicts 

deformation risks and recommends real-time control actions, enhancing machining reliability and 

reducing material waste. This makes it a promising solution for smart, adaptive manufacturing 

environments. 

Povzetek: Za preprečevanje deformacij med CNC obdelavo je predlagana metoda NeuroPID-CNC, lahki 

nevronski model z enim nevronom, ki posnema PID regulator. Model je dosegel visoko točnost pri 

napovedovanju tveganja deformacije in priporoča prilagoditve v realnem času (npr. hitrost rezanja), s 

čimer izboljša zanesljivost in kakovost izdelkov. 

 

1 Introduction 

1.1 The background information of this 

scientific field 

Computer Numerical Control (CNC) machining is an 

essential component of modern industrial manufacturing, 

allowing for the automated, precise fabrication of complex 

components from a broad range of materials, including 

metals, plastics, and composites [1]. CNC machines use 

programmed instructions to control parameters like 

cutting speed, feed rate, tool path, and spindle load [2]. 

This high level of automation improves productivity, 

consistency, and precision in industries ranging from 

aerospace, automotive, and electronics. However, as 

manufacturing tolerances tighten and precision 

requirements rise, even minor distortions during 

machining can result in unacceptable defects, raised 

rework rates, and wasted resources. These distortions, 

often referred to as machining-induced deformations, are 

impacted by numerous factors such as tool temperature, 

material type, cutting forces, and vibration during the 

machining process. 

 

1.2 The current knowledge and advances in 

this field 

Sensor integration, adaptive control systems, and 

advanced simulation techniques have all contributed 

significantly to the advancement of CNC machining in 

recent years [3].  Researchers and engineers have used 

finite element modeling (FEM), real-time feedback 

systems, and machine learning techniques to track and 

improve machining processes [4].  Numerous studies have 

concentrated on predicting tool wear, improving cutting 

conditions, and enhancing the surface finish [5]. Adaptive 

control algorithms like fuzzy logic, conventional PID 

controllers, and deep learning-based methods have been 

proposed to tackle machining variability. Despite these 

improvements, numerous control systems still depend on 
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fixed or heuristic-based logic that cannot continuously 

learn or adapt to the machining setting. 

 

1.3 The current problem/issue that needs to 

be solved or addressed urgently 

One of the most persistent and pressing issues in CNC 

machining is the inability of current systems to forecast 

and avoid part deformation in real time [6]. Deformation 

causes dimensional inaccuracies, structural weaknesses, 

and higher manufacturing costs [7]. Existing PID 

controllers and other conventional control strategies are 

not well-suited to capture the nonlinear, dynamic nature of 

machining-induced deformation, particularly in high-

speed or multi-material machining settings [8]. 

Additionally, there is a lack of lightweight and 

interpretable models that can operate in real-time, 

continuously adapt to novel machining data, and offer 

actionable parameter adjustments to minimize 

deformation risks [9], [10]. The followings are the 

hypotheses: 

• Whether a single-neuron-inspired PID control 

model accurately forecast the risk of component 

deformation in CNC machining by utilizing real-

time machining parameters? 

• Does the application of a single-neuron-inspired 

PID control algorithm lead to a substantial 

decrease in part deformation when compared to 

conventional static or PID-based control 

methods? 

• Can the dynamic modification of cutting 

conditions, informed by the predictions of the 

single-neuron PID model, enhance component 

quality and machining reliability? 

• Whether a single-neuron neural model more 

effectively forecast deformation risks in real-

time CNC operations compared to conventional 

classifiers? 

 

1.4 The purpose(s) of doing this research 

The primary goal of this research is to create an intelligent 

deformation suppression control algorithm specifically 

designed for CNC machining environments. The study 

aims to design and execute a single-neuron-inspired PID 

model that can precisely forecast the risk of part 

deformation using real-time machining parameters. This 

study also aims to offer practical control suggestions for 

dynamically adjusting cutting conditions to prevent 

deformation, resulting in improved part quality and 

machining dependability. The study addresses the gap in 

lightweight, adaptive, and responsive control systems 

appropriate for contemporary smart manufacturing setups. 

 

 

 

1.5 The main method(s) used in this research 

To achieve the research objectives, a novel algorithm 

called NeuroPID-CNC was created and trained on a 

curated dataset called CNC-DeformControl, which 

includes critical machining parameters like cutting speed, 

feed rate, depth of cut, tool temperature, material type, and 

others. The methodology included several key stages: data 

preprocessing by categorical encoding and normalization; 

building of a lightweight single-neuron neural network 

model that simulates PID control behavior; training and 

evaluation of the model utilizing binary classification 

metrics such as accuracy, precision, recall, and F1-score; 

and integration of a real-time feedback strategy to allow 

online learning and continual enhancement. To guarantee 

efficient convergence and computational effectiveness, 

the model makes use of a sigmoid activation function, 

binary cross-entropy loss, and the Adam optimizer. In 

addition, real-time control logic is integrated into the 

system, allowing it to automatically adjust crucial 

machining parameters, such as coolant flow, cutting speed, 

and feed rate, when a high deformation risk is predicted. 

 

1.6 The importance or impact of this 

research to the scientific community 

This study contributes to the improvement of intelligent 

CNC control systems by proposing an interpretable and 

adaptive control framework that combines conventional 

PID principles and neural learning capacities. By 

incorporating a single-neuron PID architecture, the 

algorithm guarantees low computational overhead while 

providing intelligent decision-making in real time. The 

NeuroPID-CNC method can be incorporated into 

industrial CNC machines to significantly decrease 

material waste, enhance product quality, and lower 

operating costs. For the scientific community, this 

research opens up new avenues for creating hybrid neuro-

control systems, expanding the scope of Industry 4.0, and 

supporting the evolution of automated manufacturing 

methods. 

Controlling deformation and guaranteeing dimensional 

accuracy of machined parts has proven to be a significant 

difficulty in CNC machining due to the dynamic and 

complex nature of the process. Fan et al. [11] proposed an 

energy-based principle for reducing machining distortion 

in monolithic aircraft parts, which provided insights into 

residual stress release and deformation prediction. 

However, their method lacked a real-time compensation 

mechanism. Ma et al. [12] proposed a single-neuron PID-

based model that showed success in deformation 

suppression during CNC machining, but it was tested 

under limited scenarios and did not take parameter 

adaptability into account in real time. Kasprowiak et al. 

[13] used input shaping control to decrease machining 

vibration, but they neglected to consider feedback 
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adaptation during continuous machining. Similarly, Guo 

et al. [14] concentrated on suppressing casing vibrations 

in aeroengine elements but did not integrate with tool-path 

compensation. 

Shi et al. [15] presented a compensation model for 

polishing tools in precision CNC polishing, which 

enhanced surface quality but was only applicable to 

aspheric surfaces.  Hasçelik et al. [16] optimized cutting 

parameters to reduce wall deformation in thin-wall micro-

milling. However, their approach was sensitive to tool 

wear and material variability. Zheng et al. [17] 

investigated vibration-assisted micro-milling, which 

provided useful insight into tool wear reduction but lacked 

general applicability. Gan et al. [18] presented an adaptive 

backlash compensation method for CNC machines, but its 

effectiveness in complex geometries remains unverified. 

Świć et al. [19] studied control methods for elastic-

deformable states in turning and grinding shafts. However, 

their focus was on low-stiffness shafts, which limits 

generalization. Lv et al. [20] created an automated shape 

correction mechanism for wood composites, emphasizing 

possibilities in non-metallic materials but having limited 

application to high-precision metal machining. Yi et al. 

[21] investigated mesoscale deformation in thin-walled 

micro-milling, but did not use intelligent adaptive 

feedback systems. Korpysa and Habrat [22] explored 

precision milling of magnesium alloys, comparing coated 

and uncoated tools, but lacking dynamic deformation 

control. Devi et al. [23] used ant lion optimization with 

TOPSIS analysis to optimize milling parameters, but their 

method did not include predictive modeling or feedback 

control.      Table 1 shows a summary of related works. 

 

Table 1: Summary of related works 

 
Ref Study Focus Results Limitations 

[11] Energy principle for 

distortion reduction in 

aircraft parts 

Enhanced prediction of residual 

stress-related deformation 

No real-time compensation 

mechanism 

[12] Single-neuron PID model 

for deformation 

suppression 

Efficient in simple deformation 

control 

Not tested under varied real-time 

conditions 

[13] Input shaping control for 

vibration suppression 

Decreased vibration efficiently Lacked adaptive feedback 

integration 

[14] Vibration suppression in 

aeroengine casing milling 

Improved structural stability Did not incorporate tool-path 

compensation 

[15] Tool displacement model 

for CNC polishing 

Enhanced surface finish in aspheric 

polishing 

Particular to aspheric surfaces 

only 

[16] Optimization in micro-

milling of thin-wall 

geometries 

Decreased deformation utilizing 

optimized parameters 

Sensitive to tool wear and material 

variability 

[17] Tool wear suppression in 

vibration-assisted micro-

milling 

Reduced wear through non-

resonant vibration 

Limited generalization across 

materials 

[18] Adaptive backlash 

compensation in CNC 

Decreased mechanical play in 

motion systems 

Unproven effectiveness for 

complex parts 

[19] Elastic-deformable state 

control in shaft machining 

Enhanced dimensional accuracy in 

low-stiffness components 

Applicable mostly to the turning 

and grinding of shafts 

[20] Shape correction in wood 

composites 

Automated geometric adjustment 

during continuous pressing 

Limited relevance to metal CNC 

applications 

[21] Deformation control in 

mesoscale micro-milling 

Superior precision in curved thin-

wall parts 

No intelligent feedback or real-

time control 

[22] Milling accuracy in 

magnesium alloys 

Enhanced accuracy utilizing coated 

tools 

No active deformation control 

included 

[23] End-milling parameter 

optimization using ant lion 

and TOPSIS 

Multi-objective optimization 

attained 

Static optimization lacks 

predictive adaptability 



234        Informatica 49 (2025) 231-244       T. Liu et al. 

 

The prior investigations combined offer valuable insights 

into machining vibrations, deformation mitigation, 

parameter optimization, and compensation methodologies. 

Nonetheless, several restrictions and substantial gaps 

persist in the integration of real-time intelligent control, 

including the absence of adaptive feedback, active 

deformation control, and model interpretability, among 

others. This research proposes a lightweight and effective 

framework, termed the NeuroPID-CNC model, to address 

the limitations and research gaps identified in prior studies. 

 

2 Materials And methods 

This section describes the creation of the NeuroPID-CNC 

Algorithm, which predicts and suppresses deformation in 

CNC machining.  The NeuroPID-CNC algorithm is a 

smart deformation suppression control algorithm designed 

to predict and reduce the risk of part deformation during 

CNC (Computer Numerical Control) machining processes.  

It draws on both machine learning and PID control 

principles, combining the intelligence of a lightweight 

neural network with real-time process control strategies.  

NeuroPID-CNC employs a single-neuron neural network 

that mimics a PID controller.  It accepts machining 

parameters as input (for example, cutting speed, feed rate, 

depth of cut, and temperature) and predicts whether 

deformation will occur ("Yes" or "No").  If there is a high 

risk of deformation, the algorithm automatically adjusts 

the machining settings to prevent it. Algorithm 1 shows 

theNeuroPID-CNC algorithm. 

 

 

Algorithm 1: NeuroPID-CNC 

 

Input: CNC-DeformControl Dataset (features + Deformation Risk) 

Output: Predicted Deformation Risk (Yes/No) and control recommendations 

 

Begin 

// Step 1: Data Preprocessing 

Load dataset D 

Encode categorical attributes in D 

Normalize numerical attributesin D 

Split D into training_set and test_set (70/30) 

 

// Step 2: Initialize Single-Neuron PID Model 

Initialize neural network: 

    - 1 input layer 

    - 1 hidden layer with 1 neuron (PID-like) 

    - 1 output neuron (binary classification) 

 

Set activation_function ← Sigmoid 

Set optimizer ← Adam 

Set loss_function ← Binary Crossentropy 

Set biases to zero 

Employ Glorot Uniform for weight initialization. 

Implement L2 regularization and configure the batch size to 32. 

Establish the epoch count at 100. 

// Step 3: Training Phase 

Train the model on the trainingset utilizing backpropagation 

For each period (1 to 100): 

     Randomize training dataset 

     Segment the data into mini-batches of size 32. 

For each mini-batch: 

     Calculate the output of the hidden layer utilizing the sigmoid function. 

     Calculate the output layer utilizing the sigmoid function. 

     Calculate the binary cross-entropy loss between the expected and actual outputs. 

    Calculate loss 

    Adjust weights and biases via the Adam optimizer 

    Implement L2 regularization during weight adjustments. 

Apply early stopping to prevent overfitting 

 

// Step 4: Evaluation Phase 

Assess the model on the test set 

Calculate Accuracy, Precision, Recall, F1-Score, and MCC 

Display the confusion matrix 

 

// Step 5: Real-Time Prediction & Control 

For each newinput: 

    Encode and normalize new_input 

    prediction ← model.predict(new_input) 

 



 

Deformation Suppression Method for the CNC Machining Process of...   Informatica 49 (2025) 231-244     235 

 

 
    If prediction == "Yes" then 

       Decrease Cutting Speed 

        Increase Coolant Flow 

        Adjust Feed Rate based on Material Type 

    Else 

        Continue with current parameters 

    End If 

 

// Step 6: Feedback Loop 

After machining: 

    Record actual deformation findings 

    Compare the prediction with the actual outcome 

    Update model weights via online learning 

 

End 

 

The NeuroPID-CNC algorithm is a smart deformation 

suppression control system specifically designed for CNC 

machining applications.  It employs a lightweight neural 

network model that simulates PID behavior using a single-

neuron architecture to predict whether a machined part is 

deformable based on a variety of machining parameters 

such as cutting speed, feed rate, depth of cut, tool 

temperature, material type, and others.  The process begins 

with preprocessing the CNC-DeformControl dataset by 

encoding categorical features and normalizing numerical 

ones, then splitting the data into training and testing  

sets. The neural model, which includes a sigmoid-activated 

hidden neuron, is trained with the Adam optimizer and 

binary cross-entropy loss.  After training, it uses standard 

classification metrics to evaluate previously unseen data 

and predicts deformation risk for new machining 

conditions in real time.  If a high deformation risk is 

detected, the algorithm adjusts machining parameters 

dynamically, such as reducing cutting speed, increasing 

coolant flow, or changing the feed rate based on material 

properties, to reduce deformation.  A feedback mechanism 

is integrated to continuously update the model through 

online learning, improving control accuracy over time. 

Figure 1 shows the flow diagram of the NeuroPID-CNC 

algorithm. 

 

 
 

Figure 1: Flow diagram of NeuroPID-CNC algorithm 
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The flow diagram shows the NeuroPID-CNC algorithm's 

operational pipeline for predicting and controlling 

deformation during CNC machining.  It starts with the 

CNC-DeformControl dataset, which goes through 

preprocessing steps such as categorical feature encoding 

and numerical feature normalization to ensure algorithm 

compatibility.  The data is then divided into training and 

testing sets to aid in model generalization.  A single-neuron 

PID-inspired neural network is set up with a sigmoid 

activation function, Adam optimizer, and binary cross-

entropy loss function.  The model is trained with 

backpropagation and evaluated on the test set to compute 

performance metrics. For real-time predictions, incoming 

data is encoded and normalized similarly, and the model 

predicts the deformation risk.  If the risk is identified as 

"Yes," corrective control actions are automatically 

triggered, including reducing cutting speed, increasing 

coolant flow, and adjusting the feed rate based on the 

material type, allowing adaptive, intelligent CNC 

machining. 

 

2.1 Dataset description 

The CNC-DeformControl dataset is a curated collection of 

machining data designed to help intelligently predict and 

suppress part deformation during Computer Numerical 

Control (CNC) operations.  It includes 11 key attributes, 

such as machining process parameters and observed 

outcomes, spread across several representative entries.  

The dataset's primary goal is to help machine learning 

applications, particularly the NeuroPID-CNC algorithm, 

understand how different machining conditions affect the 

likelihood of part deformation. 

This dataset contains a mixture of numerical and 

categorical features.  The numerical attributes—Cutting 

Speed (in RPM), Feed Rate (in mm/rev), Depth of Cut (in 

mm), Tool Temperature (in °C), and Spindle Load (as a 

percentage)—measure the operational intensity of 

machining.  These parameters have a direct impact on heat 

generation, mechanical stress, and material removal 

efficiency.  In contrast, categorical attributes such as 

material type (e.g., aluminum, steel, brass, plastic), tool 

wear, vibration, coolant flow, and surface finish provide 

qualitative information about the machining environment.  

These factors have an impact on part integrity through 

physical wear, thermal control, and vibration dampening.  

The Deformation Risk field, labeled as "Yes" or "No," 

serves as the target variable that indicates whether the 

machined part showed signs of deformation under the 

given conditions. 

The data was gathered in a controlled CNC machining lab 

environment outfitted with industrial-grade sensors and 

monitoring equipment.  Cutting speed, feed rate, and depth 

of cut were programmed and recorded directly from the 

CNC machine interface.  Thermal readings were obtained 

using infrared sensors mounted near the tool-workpiece 

interface, and spindle load values were derived from the 

spindle drive system's onboard diagnostics.  Categorical 

variables, such as tool wear and vibration levels, were 

evaluated using image-based inspection, vibration sensors, 

and operator feedback.  Surface finish was determined by 

post-process optical inspection and tactile comparison 

with standard roughness gauges. 

All collected data was logged in real time by a dedicated 

data acquisition system and then stored in a structured 

format in a relational SQL database hosted on a secure 

local server.  Data from this database was exported in CSV 

format for preprocessing and training.  The dataset is kept 

in a version-controlled environment to ensure data 

integrity and traceability during the algorithm 

development and testing stages. Figure 2 illustrates the 

data collection process in a controlled CNC machining lab 

environment. 

 
 

Figure 2: Data collection process 

 

The CNC machine performs operations while sensors and 

tools collect relevant data.  Machine diagnostics 

(speedometer icon) record cutting speed and feed rate, 

infrared sensors measure thermal data (thermometer icon), 

image-based analysis inspects tool wear (camera icon), 

vibrations are monitored by dedicated sensors (waveform 

icon), and surface finish is assessed by tactile comparison 

to roughness gauges (touch icon).  All sensor data is 

captured in real time and securely stored in a structured 

SQL database (database icon).  For model training and 

analysis, data is exported from SQL and converted to CSV 

format (CSV file icon).  This pipeline provides high-

quality, structured data for machine learning applications 

in deformation risk prediction. 

Overall, the CNC-DeformControl dataset provides a 

compact but meaningful representation of the machining 

landscape, capturing both measurable and observational 

variables required for training intelligent deformation 

prediction systems like NeuroPID-CNC. 

 

2.2 Data preprocessing 

To ensure that the CNC-DeformControl dataset is ready 

for machine learning, extensive preprocessing steps are 

used.  The dataset contains a mix of numerical and 

categorical features that must be represented consistently 

for the algorithm to correctly interpret the data.  

Categorical attributes like Material Type, Tool Wear, 

Vibration, Coolant Flow, and Surface Finish are 
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numerically encoded using one-hot encoding, which 

converts categorical values into a binary matrix format. 

The one-hot encoding process transforms a categorical 

variable into a binary vector representation as shown in Eq. 

(1): 

 

𝑂𝑛𝑒𝐻𝑜𝑡(𝑥𝑖) = [𝑥𝑖 = 𝑐1, 𝑥𝑖 = 𝑐2, … , 𝑥𝑖 = 𝑐𝑛 ] (1) 

 

Where: 

𝑥𝑖 is a categorical value, 

𝑐1, 𝑐2, … , 𝑐𝑛 are the unique categories, 

Each comparison 𝑥𝑖 = 𝑐𝑗yields 1 if true, else 0. 

This transformation is critical for allowing the single-

neuron model to interpret non-numeric data while 

preserving categorical relationships without imposing 

artificial ordering. 

Simultaneously, all numerical attributes—Cutting Speed, 

Feed Rate, Depth of Cut, Tool Temperature, and Spindle 

Load—are normalized utilizing Min-Max scaling, which 

rescales each feature to lie within the range [0, 1]. This is 

mathematically expressed by Eq. (2): 

 

𝑥𝑛𝑜𝑟𝑚 =
𝑥 − 𝑥𝑚𝑖𝑛

𝑥𝑚𝑎𝑥 − 𝑥𝑚𝑖𝑛

 (2) 

 

Where: 

𝑥 = original value of the feature 

𝑥𝑚𝑖𝑛= minimum value of the feature in the dataset 

𝑥𝑚𝑎𝑥= maximum value of the feature in the dataset 

𝑥𝑛𝑜𝑟𝑚= normalized value of the feature 

This normalization ensures that no feature dominates 

others due to varying scales, resulting in balanced 

contributions throughout training.  After normalization and 

encoding, the dataset is randomly divided into two subsets: 

70% for training and 30% for testing.  This split preserves 

model generalization and ensures that evaluation is 

performed on unseen data. The dataset 𝐷 is randomly split 

into training and testing subsets using the Eq. (3): 

 

𝐷 =  𝐷𝑡𝑟𝑎𝑖𝑛 ∪ 𝐷𝑡𝑒𝑠𝑡 ,

𝑤ℎ𝑒𝑟𝑒 |𝐷𝑡𝑟𝑎𝑖𝑛|= 0.7|𝐷|,
|𝐷𝑡𝑒𝑠𝑡|= 0.3|𝐷| 

(3) 

 

Where: 

D: The complete preprocessed dataset after normalization 

and encoding. 

𝐷𝑡𝑟𝑎𝑖𝑛: The training subset of the dataset utilized to train 

the model. 

𝐷𝑡𝑒𝑠𝑡: The testing subset of the dataset utilized to evaluate 

the model’s performance. 

∣D∣: The total number of data instances (rows) in the full 

dataset 𝐷. 

|𝐷𝑡𝑟𝑎𝑖𝑛 |: The number of instances in the training set, equal 

to 70% of the total dataset. 

|𝐷𝑡𝑒𝑠𝑡 |: The number of instances in the test set, equal to 

30% of the total dataset. 

 

2.3 Model initialization: Single-Neuron PID 

structure 

The proposed model is a simple neural structure inspired 

by the PID control principle that consists of only one 

hidden neuron. This neuron simulates the adaptive control 

behavior of a PID controller by receiving preprocessed 

machining inputs from the input layer and computing a 

nonlinear transformation for prediction. The final output is 

produced by a single output neuron equipped with a 

sigmoid activation function, which converts the weighted 

sum of inputs into a deformation probability expressed by 

Eq. (4): 

 

𝜎(𝑧) =
1

1 + 𝑒−𝑧
 

(4) 

 

Where: 

z = weighted sum of inputs 

σ(z) = output value in the range [0, 1] representing 

deformation risk 

The term 𝑒−𝑧represents the exponential function with a 

negative exponent, which is a fundamental mathematical 

expression describing exponential decay. It is the inverse 

of the natural exponential function 𝑒𝑧, where 𝑒 is Euler’s 

number (approximately 2.71828). This function plays a 

key role in the sigmoid activation function by controlling 

how sharply the output transitions between 0 and 1 based 

on the input 𝑧. 

Mathematically, 𝑒−𝑧can be expressed using its infinite 

series expansion in Eq. (5): 

 

𝑒−𝑧 = ∑
(−𝑧)𝑛

𝑛!

∞

𝑛=0

 (5) 

where: 

𝑧 is the weighted sum of inputs, 

𝑛! denotes the factorial of 𝑛, 

and the series sums over all non-negative integers 𝑛. 

This logistic function guarantees that the model’s output 

lies between 0 and 1, representing the probability of 

deformation risk under current machining conditions. The 

model is trained utilizing the binary cross-entropy loss 

function, defined in Eq. (6), which measures the 

discrepancy between predicted and actual outcomes: 

 

𝐿 = −[𝑦. log(𝑦̂) + (1 − 𝑦). log (1 − 𝑦̂)] (6) 

 

Where: 

y = actual class label (0 for no deformation, 1 for 

deformation) 

𝑦̂= predicted probability of deformation 

𝐿 = loss value that penalizes prediction errors 

Here, 𝑦 is the actual binary label (0 for “No Deformation” 

and 1 for “Yes”), while 𝑦̂ is the predicted probability. The 

model’s weights are optimized utilizing the Adam 
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optimizer, a robust gradient descent variant that adapts 

learning rates for quicker and more stable convergence. At 

each iteration 𝑡, the parameters 𝜃𝑡are updated as follows: 

 

𝑚𝑡 = 𝛽1𝑚𝑡−1 + (1 − 𝛽1)𝑔𝑡 (7) 

 

𝑣𝑡 = 𝛽2𝑣𝑡−1 + (1 − 𝛽2)𝑔𝑡
2 (8) 

 

𝑚̂𝑡 =
𝑚𝑡

1 − 𝛽1
𝑡 (9) 

 

𝑣̂𝑡 =
𝑣𝑡

1 − 𝛽2
𝑡 (10) 

 

𝜃𝑡 = 𝜃𝑡−1 − 𝛼
𝑚̂𝑡

√𝑣̂𝑡 + 𝜖
 (11) 

where 𝑔𝑡is the gradient at iteration t, 𝑚𝑡and 𝑣𝑡are the 

biased first and second moment estimates, 𝑚̂𝑡and 𝑣̂𝑡are 

their bias-corrected estimates, 𝛼 is the learning rate, 𝛽1and 

𝛽2are decay rates for these moments, and 𝜖 is a small 

constant to prevent division by zero. 

 

2.4 Training phase 

During training, the model aims to reduce the loss function 

via backpropagation, an algorithm that calculates the 

gradient of the loss concerning each model weight. The 

weight update rule is formalized as showed in Eq. (12): 

 

∆𝑤 = −𝑛.
𝜕𝐿

𝜕𝑤
 (12) 

 

Where: 

w = change in weight 

𝜂 = learning rate 
𝜕𝐿

𝜕𝑤
= gradient of the loss function concerning weight 𝑤

  

The training process iterates through numerous epochs, 

adjusting weights after each batch of training examples. To 

prevent overfitting, early stopping is executed: training 

halts if the validation loss fails to improve over a 

predefined number of epochs. This strategy improves 

model generalization on new, unseen CNC conditions. 

 

2.5 Evaluation phase 

After training, the model’s efficiency is assessed on the 

testing set utilizing standard classification metrics. These 

metrics assess the model’s capability to correctly predict 

deformation risk: 

Accuracy measures the ratio of correct predictions to total 

samples: 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 

(13) 

Where, 

TP = True Positives (correctly predicted deformations) 

TN = True Negatives (correctly predicted non-

deformations) 

FP = False Positives (incorrectly predicted deformations) 

FN = False Negatives (missed deformations) 

Precision quantifies the fraction of predicted "Yes" 

(deformation) true cases: 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

(14) 

 

Recall reflects the model’s ability to identify all actual 

"Yes" cases: 

 

𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

(15) 

 

F1-Score, the harmonic mean of precision and recall, 

offers a balanced view: 

 

𝐹1 − 𝑠𝑐𝑜𝑟𝑒 =  2 ∗  
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
 

(16) 

 

MCC computes the quality of binary and multiclass 

classifications by considering true and false positives and 

negatives, providing a balanced score even with 

imbalanced datasets. 

 

𝑀𝐶𝐶 =  
(𝑇𝑃∗𝑇𝑁)−(𝐹𝑃∗𝐹𝑁)

√(𝑇𝑃+𝐹𝑃)(𝑇𝑃+𝐹𝑁)(𝑇𝑁+𝐹𝑃)(𝑇𝑁+𝐹𝑁)
   

                 

(17) 

 

These metrics provide a comprehensive view of model 

performance in predicting deformation risks. 

 

2.6 Real-time prediction and control 

The trained model is deployed for real-time prediction 

during CNC operations. When a novel machining 

configuration is initiated, the input values are first 

processed (encoded and normalized) as per training 

routines. The model then generates an output probability𝑦̂. 

If 𝑦̂ > 0.5, the system flags a high deformation risk. In 

such cases, immediate corrective actions are triggered by 

predefined control logic. For instance, a high-risk flag 

prompts a 10% reduction in cutting speed, utilizing the 

formula: 

 

𝑁𝑒𝑤 𝐶𝑢𝑡𝑡𝑖𝑛𝑔 𝑆𝑝𝑒𝑒𝑑

= 𝑂𝑙𝑑 𝐶𝑢𝑡𝑡𝑖𝑛𝑔 𝑆𝑝𝑒𝑒𝑑 × 0.9 

(18) 

 

Where: 

"Old Cutting Speed" = initial programmed cutting speed 

"New Cutting Speed" = adjusted speed to reduce stress on 

the workpiece 
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This reduction reduces both mechanical and thermal stress 

on the workpiece.  Other adaptive responses, like 

increasing coolant flow or decreasing feed rate, are 

implemented concurrently based on the material type and 

observed vibration.  If the expected risk is low, the 

machining operation continues without intervention, 

ensuring efficiency while maintaining safety. 

 

2.7 Feedback loop and online learning 

Following each machining operation, the actual 

deformation outcome is recorded and compared to the 

model's prediction.  This creates a feedback loop, 

increasing the model's adaptability over time.  Using 

online learning, the model gradually updates its weights 

using recent prediction errors. The update rule is given by: 

𝑤𝑛𝑒𝑤 = 𝑤𝑜𝑙𝑑 + 𝛼. (𝑦 − 𝑦̂). 𝑥 (19) 

 

Where: 

𝑤𝑜𝑙𝑑= previous weight 

𝑤𝑛𝑒𝑤= updated weight 

𝛼 = online learning rate (a small constant) 

𝑦 = actual label (0 or 1) 

𝑦̂= predicted output 

𝑥 = input feature value. 

In a feedback-driven online learning system, predictions 

consistently impact control actions, which then change 

future input data. This feedback can exacerbate problems 

if not adequately stabilized. A diminutive learning rate (𝛼) 

guarantees more gradual weight adjustments and 

contributes to stability preservation. An elevated learning 

rate (𝛼) may induce oscillations or divergence, particularly 

in feedback systems. As updates rely on prediction error, 

significant spikes in error can disrupt learning until 

addressed. In practical CNC machining, complete 

convergence is uncommon. In online learning, weights are 

adjusted following each data point or small batch, resulting 

in continual retraining. Periodic full model resets or 

reinitializations may be conducted to prevent drift or 

overfitting. 

 This type of incremental learning ensures that the model 

evolves with real-world data, adapting to unknown 

materials, dynamic wear conditions, or unexpected 

operational disruptions. By combining real-time prediction 

with continuous learning, the system grows more robust 

and context-aware over time, eventually achieving a self-

improving CNC control mechanism that maximizes 

machining precision while reducing the risk of costly 

defects. 

The NeuroPID-CNC algorithm represents an intelligent, 

lightweight, and adaptable solution for predicting and 

suppressing deformation during CNC machining.  It 

tightly integrates machine learning principles with control 

engineering strategies using a single-neuron PID-inspired 

structure, strong preprocessing, accurate prediction, and 

dynamic feedback adaptation.  With ten foundational 

equations, this system creates a rigorous yet practical 

framework for real-time decision-making and long-term 

improvement.  The result is a smarter, more efficient, and 

resilient manufacturing environment. 

 

3 Results 

3.1 Experimental setup 

All experiments were carried out on a Windows 11 system 

running Python 3.10.  The machine was equipped with an 

Intel Core i7 processor and 16 GB of RAM.  TensorFlow, 

Scikit-learn, Pandas, NumPy, and Matplotlib were used to 

train, evaluate, and visualize models.  The dataset was 

divided into two sets: training (70%) and testing (30%).  

Early stopping and adaptive learning rate scheduling were 

used to prevent overfitting and speed up convergence. 

 

3.2 Comparison results 

Table 2 compares the classification models used on the 

CNC-DeformControl dataset, including SVM, Random 

Forest (RF), KNN, Logistic Regression (LR), and the 

proposed NeuroPID-CNC model. 

 

Table 2: Performance comparison of classification 

models 

Model Accura

cy (%) 

Precisi

on (%) 

Reca

ll 

(%) 

F1-

Scor

e 

(%) 

MC

C 

SVM 88.43 86.22 85.13 85.6

7 

0.76 

Random 

Forest 

90.12 89.05 87.60 88.3

2 

0.79 

KNN 87.30 84.95 84.00 84.4

7 

0.74 

Logistic 

Regressi

on 

86.75 83.90 83.10 83.5

0 

0.72 

NeuroPI

D-CNC 

92.00 90.00 93.00 91.5

0 

0.84 

 

The proposed NeuroPID-CNC algorithm had the best 

performance across all metrics tested.  It enables real-time 

feedback adaptation and improved learning of 

deformation-prone patterns. This architecture is extremely 

responsive to subtle patterns in deformation-prone 

conditions, resulting in higher prediction accuracy and 

robustness.  Furthermore, its streamlined structure 

minimizes overfitting, whereas more complex models may 

require deeper tuning. Figure 3 shows the confusion matrix 

for proposed approach. 
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Figure 3: Confusion Matrix for proposed approach 

 
Figure 4 demonstrates that the proposed NeuroPID-CNC 

model attains the highest accuracy among all evaluated 

classifiers, reaching 92%. 

 
 

Figure 4: Accuracy comparison 

 

From figure 4, the accuracy of proposed NeuroPID-CNC 

approach outperforms SVM, RF, KNN and LR by 4.03%, 

2.09%, 5.38% and 6.05% respectively. 

This high accuracy demonstrates the model's overall 

predictive power in correctly identifying deformation risk 

("Yes") and non-risk ("No") instances.   

 

 

 

The superior performance is due to the unique integration 

of a PID-inspired control mechanism within the neuron, 

which allows the model to adjust its internal weights with 

greater precision during training.  This reduces 

classification errors and improves robustness when dealing 

with complex interactions between CNC parameters like 

cutting speed, tool wear, and thermal readings.  The 

model's ability to learn consistently across diverse inputs 

supports its use in real-time industrial settings.  In Figure 

5, NeuroPID-CNC leads with a precision of 90%, 

indicating that it correctly predicts a deformation risk 90% 

of the time. 

 
 

Figure 5: Precision comparison 

 
From figure 5, the precision of proposed NeuroPID-CNC 

approach outperforms SVM, RF, KNN and LR by 4.38%, 

1.07%, 5.94% and 7.27% respectively. 

High precision is required in CNC machining 

environments to avoid unnecessary operational 

adjustments caused by false positives.  The model's low 

false alarm rate leads to increased operational efficiency 

by ensuring that control recommendations (such as 

reducing cutting speed or increasing coolant flow) are only 

implemented when there is a genuine risk.  This precision 

advantage stems primarily from the model's ability to learn 

subtle patterns associated with actual deformation-

inducing conditions while filtering out noise from non-

critical anomalies.  Figure 6 shows that NeuroPID-CNC 

has the highest recall value of 93%, indicating an excellent 

sensitivity to actual deformation occurrences. 
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Figure 6: Recall comparison 

 
From figure 6, the recall of proposed NeuroPID-CNC 

approach outperforms SVM, RF, KNN and LR by 9.24%, 

6.16%, 10.71% and 11.91% respectively. 

A high recall ensures that the model rarely overlooks true 

positive cases—an important feature in critical 

manufacturing scenarios where undetected deformations 

could jeopardize product quality, damage tools, or cause 

production downtime.  This exceptional recall is due to the 

model's continuous feedback adjustment loop, inspired by 

the integral component of PID control, which improves 

detection sensitivity over time as more real-world 

machining data is processed.  Figure 7 shows that 

NeuroPID-CNC has the best trade-off between precision 

and recall among all tested models, with an F1-score of 

91.5%. 

 
Figure 7: F1-Score comparison 

 

From figure 7, the F1-Score of proposed NeuroPID-CNC 

approach outperforms SVM, RF, KNN and LR by 6.81%, 

3.60%, 8.32% and 9.58% respectively. 

The F1-score, which is the harmonic mean of precision and 

recall, measures the model's overall effectiveness in 

handling the binary classification task.  This balanced 

performance indicates that the NeuroPID-CNC model 

optimizes both false positives and false negatives, rather 

than favoring one over the other.  Such a balance is critical 

in industrial settings where both unnecessary interventions 

and missed deformation risks have financial and 

operational implications.  Finally, Figure 8 demonstrates 

that NeuroPID-CNC obtained the highest Matthews 

Correlation Coefficient (MCC) score of 0.84, which is 

widely considered one of the most reliable metrics for 

evaluating binary classifiers, especially on imbalanced 

datasets.

 

 
Figure 8: MCC comparison 
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From figure 8, the MCC of proposed NeuroPID-CNC 

approach outperforms SVM, RF, KNN and LR by 10.53%, 

6.33%, 13.51% and 16.67% respectively. 

MCC accounts for all four confusion matrix components 

(true positives, true negatives, false positives, and false 

negatives), providing a more complete picture of model 

performance.  The high MCC score confirms that the 

model consistently and strongly correlates predicted and 

actual outcomes, regardless of class imbalance.  This 

robust performance ensures reliability and fairness in 

prediction decisions over varying dataset distributions and 

machining conditions. 

McNemar’s test was employed to statistically validate the 

performance differences across classifiers based on the 

paired predictions of all models. Table 3 presents the 

results of the statistical significance test conducted with 

McNemar’s test. The suggested method demonstrated 

statistically significant superiority over RF (p < 0.001), 

SVM (p < 0.003), KNN (p=0.004), and LR (p<0.005). 

 

Table 3: Statistical Test - McNemar's Test 

 
Algorithm McNemar’s 

statistic 

p-value 

SVM 42.13 0.002 

RF 45.24 0.0001 

KNN 39.18 0.004 

LR 37.89 0.0045 

 

4 Discussion 

The single-neuron PID-inspired predictive control 

technique can surpass machine learning models such as 

RF, SVM, KNN, and LR. Single-neuron PID-inspired 

controllers are designed for dynamic system regulation, 

combining the advantages of PID control with adaptive 

features. It can adjust weights in real-time utilizing 

straightforward learning algorithms, rendering it suitable 

for dynamic, non-linear systems with fluctuating 

conditions. It provides a temporal viewpoint by evaluating 

past errors, the current state, and anticipated future 

behavior, which is consistent with control system needs. 

The methodology is interpretable, and its performance can 

be adjusted using domain expertise (e.g., calibrating 

proportional, integral, and derivative influences). 

Machine learning algorithms are models trained in 

batches. They do not readily adapt in real time without 

expensive retraining. These are computationally intensive, 

perhaps rendering them unsuitable for real-time embedded 

control systems. It does not inherently manage temporal 

dynamics until augmented by time-lagged features, which 

may still lack responsiveness or interpretability.   

The Single-Neuron PID-Inspired Control is proficient in 

real-time management of dynamic, nonlinear systems, 

adaptive error learning, feedback-based decision-making, 

and resource-constrained applications. The machine 

learning models exhibit challenges due to inadequate 

temporal feedback management, rigidity in online 

learning, elevated computational expenses (particularly in 

random forests and k-nearest neighbors), and limited 

adaptability in non-stationary control contexts. 

The results demonstrate the superiority of the proposed 

NeuroPID-CNC model in predicting deformation risk 

during CNC machining.  The model's PID-inspired single-

neuron architecture not only provides superior 

performance across all standard classification metrics but 

it also ensures operational interpretability and real-time 

adaptability.  These benefits make it an ideal candidate for 

smart manufacturing environments where precision, 

dependability, and responsiveness are crucial. Future 

research will concentrate on implementing the model on 

industrial edge devices for real-time inference, utilizing 

multi-modal sensor data including audio and thermal 

images, applying transfer learning for enhanced 

generalization, incorporating explainable AI 

methodologies to augment interpretability, and embedding 

the model within closed-loop control systems for 

autonomous CNC parameter modification based on 

predictive feedback. 

 

5 Conclusion 

This study described the NeuroPID-CNC algorithm, which 

is a lightweight single-neuron PID-inspired classifier for 

predicting deformation risk in CNC machining.  The 

model outperformed traditional classifiers, achieving the 

highest accuracy, precision, recall, F1-score, and MCC, 

proving its suitability for real-time deformation risk 

detection and adaptive control in manufacturing.  The 

current model was trained using data from a controlled lab 

environment, which may limit its applicability to different 

machine types and unstructured production scenarios.  It 

also focuses solely on binary classification and requires 

manual feature selection, with no support for multi-output 

or continuous prediction tasks.  Future research will focus 

on deploying the model on industrial edge devices for real-

time inference, incorporating multi-modal sensor data 

such as audio and thermal images, using transfer learning 

for broader generalization, integrating explainable AI 

techniques to improve interpretability, and embedding the 

model into closed-loop control systems for autonomous 

CNC parameter adjustment based on predictive feedback. 
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