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Computer Numerical Control (CNC) machining plays a vital role in modern precision manufacturing but
often suffers from part deformation due to thermal and mechanical stresses, compromising dimensional
accuracy. Traditional CNC systems lack adaptive intelligence, operating with static parameters and
failing to address real-time deformation risks. This study proposes an intelligent deformation suppression
method using a lightweight single-neuron-based Proportional-Integral-Derivative (PID) neural model,
termed NeuroPID-CNC, to predict and mitigate deformation during machining. The model was trained
and tested on the CNC-DeformControl dataset containing machining parameters such as cutting speed,
feed rate, depth of cut, tool temperature, and material type. Data preprocessing involved normalization
and categorical encoding. The NeuroPID-CNC model, structured as a binary classifier with a single
hidden neuron using a sigmoid activation function and Adam optimizer, was trained on 70% of the data
and evaluated on the remaining 30%. It achieved 92% accuracy, 90% precision, 93% recall, 91.5% F1-
score, and 0.84 MCC, outperforming conventional algorithms like SVM, RF, LR, and KNN. A real-time
feedback loop further enables adaptive learning. The NeuroPID-CNC approach effectively predicts
deformation risks and recommends real-time control actions, enhancing machining reliability and
reducing material waste. This makes it a promising solution for smart, adaptive manufacturing
environments.

Povzetek: Za preprecevanje deformacij med CNC obdelavo je predlagana metoda NeuroPID-CNC, lahki
nevronski model z enim nevronom, ki posnema PID regulator. Model je dosegel visoko tocnost pri
napovedovanju tveganja deformacije in priporoca prilagoditve v realnem casu (npr. hitrost rezanja), s
¢imer izboljsa zanesljivost in kakovost izdelkov.

impacted by numerous factors such as tool temperature,
material type, cutting forces, and vibration during the
machining process.

1 Introduction

1.1 The background information of this

scientific field
1.2 The current knowledge and advances in

Computer Numerical Control (CNC) machining is an this field
essential component of modern industrial manufacturing,
allowing for the automated, precise fabrication of complex ~ Sensor integration, adaptive control systems, and

advanced simulation techniques have all contributed
significantly to the advancement of CNC machining in
recent years [3]. Researchers and engineers have used
finite element modeling (FEM), real-time feedback
systems, and machine learning techniques to track and
improve machining processes [4]. Numerous studies have
concentrated on predicting tool wear, improving cutting
conditions, and enhancing the surface finish [5]. Adaptive
control algorithms like fuzzy logic, conventional PID

components from a broad range of materials, including
metals, plastics, and composites [1]. CNC machines use
programmed instructions to control parameters like
cutting speed, feed rate, tool path, and spindle load [2].
This high level of automation improves productivity,
consistency, and precision in industries ranging from
aerospace, automotive, and electronics. However, as
manufacturing  tolerances  tighten and precision
requirements rise, even minor distortions during

machining can result in unacceptable defects, raised
rework rates, and wasted resources. These distortions,
often referred to as machining-induced deformations, are

controllers, and deep learning-based methods have been
proposed to tackle machining variability. Despite these
improvements, numerous control systems still depend on
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fixed or heuristic-based logic that cannot continuously
learn or adapt to the machining setting.

1.3 The current problem/issue that needs to
be solved or addressed urgently

One of the most persistent and pressing issues in CNC
machining is the inability of current systems to forecast
and avoid part deformation in real time [6]. Deformation
causes dimensional inaccuracies, structural weaknesses,
and higher manufacturing costs [7]. Existing PID
controllers and other conventional control strategies are
not well-suited to capture the nonlinear, dynamic nature of
machining-induced deformation, particularly in high-
speed or multi-material machining settings [8].
Additionally, there is a lack of lightweight and
interpretable models that can operate in real-time,
continuously adapt to novel machining data, and offer
actionable  parameter adjustments to  minimize
deformation risks [9], [10]. The followings are the
hypotheses:

e Whether a single-neuron-inspired PID control
model accurately forecast the risk of component
deformation in CNC machining by utilizing real-
time machining parameters?

e Does the application of a single-neuron-inspired
PID control algorithm lead to a substantial
decrease in part deformation when compared to
conventional static or PID-based control
methods?

e Can the dynamic modification of cutting
conditions, informed by the predictions of the
single-neuron PID model, enhance component
quality and machining reliability?

e Whether a single-neuron neural model more
effectively forecast deformation risks in real-
time CNC operations compared to conventional
classifiers?

1.4 The purpose(s) of doing this research

The primary goal of this research is to create an intelligent
deformation suppression control algorithm specifically
designed for CNC machining environments. The study
aims to design and execute a single-neuron-inspired PID
model that can precisely forecast the risk of part
deformation using real-time machining parameters. This
study also aims to offer practical control suggestions for
dynamically adjusting cutting conditions to prevent
deformation, resulting in improved part quality and
machining dependability. The study addresses the gap in
lightweight, adaptive, and responsive control systems
appropriate for contemporary smart manufacturing setups.
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1.5 The main method(s) used in this research

To achieve the research objectives, a novel algorithm
called NeuroPID-CNC was created and trained on a
curated dataset called CNC-DeformControl, which
includes critical machining parameters like cutting speed,
feed rate, depth of cut, tool temperature, material type, and
others. The methodology included several key stages: data
preprocessing by categorical encoding and normalization;
building of a lightweight single-neuron neural network
model that simulates PID control behavior; training and
evaluation of the model utilizing binary classification
metrics such as accuracy, precision, recall, and F1-score;
and integration of a real-time feedback strategy to allow
online learning and continual enhancement. To guarantee
efficient convergence and computational effectiveness,
the model makes use of a sigmoid activation function,
binary cross-entropy loss, and the Adam optimizer. In
addition, real-time control logic is integrated into the
system, allowing it to automatically adjust crucial
machining parameters, such as coolant flow, cutting speed,
and feed rate, when a high deformation risk is predicted.

1.6 The importance or impact of this
research to the scientific community

This study contributes to the improvement of intelligent
CNC control systems by proposing an interpretable and
adaptive control framework that combines conventional
PID principles and neural learning capacities. By
incorporating a single-neuron PID architecture, the
algorithm guarantees low computational overhead while
providing intelligent decision-making in real time. The
NeuroPID-CNC method can be incorporated into
industrial CNC machines to significantly decrease
material waste, enhance product quality, and lower
operating costs. For the scientific community, this
research opens up new avenues for creating hybrid neuro-
control systems, expanding the scope of Industry 4.0, and
supporting the evolution of automated manufacturing
methods.

Controlling deformation and guaranteeing dimensional
accuracy of machined parts has proven to be a significant
difficulty in CNC machining due to the dynamic and
complex nature of the process. Fan et al. [11] proposed an
energy-based principle for reducing machining distortion
in monolithic aircraft parts, which provided insights into
residual stress release and deformation prediction.
However, their method lacked a real-time compensation
mechanism. Ma et al. [12] proposed a single-neuron PID-
based model that showed success in deformation
suppression during CNC machining, but it was tested
under limited scenarios and did not take parameter
adaptability into account in real time. Kasprowiak et al.
[13] used input shaping control to decrease machining
vibration, but they neglected to consider feedback
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adaptation during continuous machining. Similarly, Guo
et al. [14] concentrated on suppressing casing vibrations
in aeroengine elements but did not integrate with tool-path
compensation.

Shi et al. [15] presented a compensation model for
polishing tools in precision CNC polishing, which
enhanced surface quality but was only applicable to
aspheric surfaces. Hasgelik et al. [16] optimized cutting
parameters to reduce wall deformation in thin-wall micro-
milling. However, their approach was sensitive to tool
wear and material variability. Zheng et al. [17]
investigated vibration-assisted micro-milling, which
provided useful insight into tool wear reduction but lacked
general applicability. Gan et al. [18] presented an adaptive
backlash compensation method for CNC machines, but its
effectiveness in complex geometries remains unverified.
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Swi¢ et al. [19] studied control methods for elastic-
deformable states in turning and grinding shafts. However,
their focus was on low-stiffness shafts, which limits
generalization. Lv et al. [20] created an automated shape
correction mechanism for wood composites, emphasizing
possibilities in non-metallic materials but having limited
application to high-precision metal machining. Yi et al.
[21] investigated mesoscale deformation in thin-walled
micro-milling, but did not use intelligent adaptive
feedback systems. Korpysa and Habrat [22] explored
precision milling of magnesium alloys, comparing coated
and uncoated tools, but lacking dynamic deformation
control. Devi et al. [23] used ant lion optimization with
TOPSIS analysis to optimize milling parameters, but their
method did not include predictive modeling or feedback
control.  Table 1 shows a summary of related works.

Table 1: Summary of related works

aircraft parts

Ref Study Focus Results Limitations
[11] Energy  principle  for | Enhanced prediction of residual | No  real-time  compensation
distortion reduction in | stress-related deformation mechanism

[12] Single-neuron PID model | Efficient in simple deformation | Not tested under varied real-time
for deformation | control conditions
suppression

[13] Input shaping control for | Decreased vibration efficiently Lacked adaptive feedback
vibration suppression integration

[14] Vibration suppression in
aeroengine casing milling

Improved structural stability

Did not incorporate tool-path
compensation

Tool displacement model

Enhanced surface finish in aspheric

Particular to aspheric surfaces

optimization using ant lion
and TOPSIS

attained

for CNC polishing polishing only

[16] Optimization in micro- | Decreased deformation utilizing | Sensitive to tool wear and material
milling of  thin-wall | optimized parameters variability
geometries

[17] Tool wear suppression in | Reduced wear through non- | Limited generalization across
vibration-assisted micro- | resonant vibration materials
milling

[18] Adaptive backlash | Decreased mechanical play in | Unproven  effectiveness  for
compensation in CNC motion systems complex parts

[19] Elastic-deformable  state | Enhanced dimensional accuracy in | Applicable mostly to the turning
control in shaft machining | low-stiffness components and grinding of shafts

[20] Shape correction in wood | Automated geometric adjustment | Limited relevance to metal CNC
composites during continuous pressing applications

[21] Deformation control in | Superior precision in curved thin- | No intelligent feedback or real-
mesoscale micro-milling wall parts time control

[22] Milling accuracy in | Enhanced accuracy utilizing coated | No active deformation control
magnesium alloys tools included

[23] End-milling parameter | Multi-objective optimization | Static optimization lacks

predictive adaptability
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The prior investigations combined offer valuable insights
into machining vibrations, deformation mitigation,
parameter optimization, and compensation methodologies.
Nonetheless, several restrictions and substantial gaps
persist in the integration of real-time intelligent control,
including the absence of adaptive feedback, active
deformation control, and model interpretability, among
others. This research proposes a lightweight and effective
framework, termed the NeuroPID-CNC model, to address
the limitations and research gaps identified in prior studies.

2 Materials And methods

This section describes the creation of the NeuroPID-CNC
Algorithm, which predicts and suppresses deformation in
CNC machining. The NeuroPID-CNC algorithm is a
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smart deformation suppression control algorithm designed
to predict and reduce the risk of part deformation during
CNC (Computer Numerical Control) machining processes.
It draws on both machine learning and PID control
principles, combining the intelligence of a lightweight
neural network with real-time process control strategies.
NeuroPID-CNC employs a single-neuron neural network
that mimics a PID controller. It accepts machining
parameters as input (for example, cutting speed, feed rate,
depth of cut, and temperature) and predicts whether
deformation will occur ("Yes" or "No"). If there is a high
risk of deformation, the algorithm automatically adjusts
the machining settings to prevent it. Algorithm 1 shows
theNeuroPID-CNC algorithm.

Algorithm 1: NeuroPID-CNC

Begin

// Step 1: Data Preprocessing

Load dataset D

Encode categorical attributes in D
Normalize numerical attributesin D

Split D into training_set and test_set (70/30)

/I Step 2: Initialize Single-Neuron PID Model
Initialize neural network:

- 1 input layer

- 1 hidden layer with 1 neuron (PID-like)

- 1 output neuron (binary classification)

Set activation_function «— Sigmoid

Set optimizer «— Adam

Set loss_function «— Binary Crossentropy
Set biases to zero

Implement L2 regularization during weight adjustments.
Apply early stopping to prevent overfitting

// Step 4: Evaluation Phase

Assess the model on the test set

Calculate Accuracy, Precision, Recall, F1-Score, and MCC
Display the confusion matrix

// Step S: Real-Time Prediction & Control
For each newinput:
Encode and normalize new_input
prediction «— model.predict(new_input)

Input: CNC-DeformControl Dataset (features + Deformation Risk)
Output: Predicted Deformation Risk (Yes/No) and control recommendations

Employ Glorot Uniform for weight initialization.

Implement L2 regularization and configure the batch size to 32.

Establish the epoch count at 100.

// Step 3: Training Phase

Train the model on the trainingset utilizing backpropagation

For each period @ to 100):
Randomize training dataset
Segment the data into mini-batches of size 32.

For each mini-batch:
Calculate the output of the hidden layer utilizing the sigmoid function.
Calculate the output layer utilizing the sigmoid function.
Calculate the binary cross-entropy loss between the expected and actual outputs.
Calculate loss
Adjust weights and biases via the Adam optimizer
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If prediction == "Yes" then

Decrease Cutting Speed

Increase Coolant Flow

Adjust Feed Rate based on Material Type
Else

Continue with current parameters
End If

// Step 6: Feedback Loop

After machining:
Record actual deformation findings
Compare the prediction with the actual outcome
Update model weights via online learning

End

The NeuroPID-CNC algorithm is a smart deformation
suppression control system specifically designed for CNC
machining applications. It employs a lightweight neural
network model that simulates PID behavior using a single-
neuron architecture to predict whether a machined part is
deformable based on a variety of machining parameters
such as cutting speed, feed rate, depth of cut, tool
temperature, material type, and others. The process begins
with preprocessing the CNC-DeformControl dataset by
encoding categorical features and normalizing numerical
ones, then splitting the data into training and testing

sets. The neural model, which includes a sigmoid-activated
hidden neuron, is trained with the Adam optimizer and

binary cross-entropy loss. After training, it uses standard
classification metrics to evaluate previously unseen data
and predicts deformation risk for new machining
conditions in real time. If a high deformation risk is
detected, the algorithm adjusts machining parameters
dynamically, such as reducing cutting speed, increasing
coolant flow, or changing the feed rate based on material
properties, to reduce deformation. A feedback mechanism
is integrated to continuously update the model through
online learning, improving control accuracy over time.
Figure 1 shows the flow diagram of the NeuroPID-CNC
algorithm.

CNC-
DeformControl
Dataset
Encode Train Model with
Categorical > Back ¥
Features EESIEpas
L 4 v
Nor‘ma!me Evaluate on Test
Numerical o
Features £
4
Split Dataset New Input —
Trainine/Test Encode +
(Training/Test) e —
Initialize Single | If Risk == Yes:
TTerr PIIg) i Predict — Reduce Cutting Speed
Model Deformation Risk — Increase Coolant Flow
— Adjust Feed Rate
Set Activation,

Optimizer & Loss

Figure 1: Flow diagram of NeuroPID-CNC algorithm
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The flow diagram shows the NeuroPID-CNC algorithm's
operational pipeline for predicting and controlling
deformation during CNC machining. It starts with the
CNC-DeformControl dataset, which goes through
preprocessing steps such as categorical feature encoding
and numerical feature normalization to ensure algorithm
compatibility. The data is then divided into training and
testing sets to aid in model generalization. A single-neuron
PID-inspired neural network is set up with a sigmoid
activation function, Adam optimizer, and binary cross-
entropy loss function. The model is trained with
backpropagation and evaluated on the test set to compute
performance metrics. For real-time predictions, incoming
data is encoded and normalized similarly, and the model
predicts the deformation risk. If the risk is identified as
"Yes," corrective control actions are automatically
triggered, including reducing cutting speed, increasing
coolant flow, and adjusting the feed rate based on the
material type, allowing adaptive, intelligent CNC
machining.

2.1 Dataset description

The CNC-DeformControl dataset is a curated collection of
machining data designed to help intelligently predict and
suppress part deformation during Computer Numerical
Control (CNC) operations. It includes 11 key attributes,
such as machining process parameters and observed
outcomes, spread across several representative entries.
The dataset's primary goal is to help machine learning
applications, particularly the NeuroPID-CNC algorithm,
understand how different machining conditions affect the
likelihood of part deformation.

This dataset contains a mixture of numerical and
categorical features. The numerical attributes—Cutting
Speed (in RPM), Feed Rate (in mm/rev), Depth of Cut (in
mm), Tool Temperature (in °C), and Spindle Load (as a
percentage)—measure the operational intensity of
machining. These parameters have a direct impact on heat
generation, mechanical stress, and material removal
efficiency. In contrast, categorical attributes such as
material type (e.g., aluminum, steel, brass, plastic), tool
wear, vibration, coolant flow, and surface finish provide
qualitative information about the machining environment.
These factors have an impact on part integrity through
physical wear, thermal control, and vibration dampening.
The Deformation Risk field, labeled as "Yes" or "No,"
serves as the target variable that indicates whether the
machined part showed signs of deformation under the
given conditions.

The data was gathered in a controlled CNC machining lab
environment outfitted with industrial-grade sensors and
monitoring equipment. Cutting speed, feed rate, and depth
of cut were programmed and recorded directly from the
CNC machine interface. Thermal readings were obtained
using infrared sensors mounted near the tool-workpiece
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interface, and spindle load values were derived from the
spindle drive system's onboard diagnostics. Categorical
variables, such as tool wear and vibration levels, were
evaluated using image-based inspection, vibration sensors,
and operator feedback. Surface finish was determined by
post-process optical inspection and tactile comparison
with standard roughness gauges.

All collected data was logged in real time by a dedicated
data acquisition system and then stored in a structured
format in a relational SQL database hosted on a secure
local server. Data from this database was exported in CSV
format for preprocessing and training. The dataset is kept
in a version-controlled environment to ensure data
integrity and traceability during the algorithm
development and testing stages. Figure 2 illustrates the
data collection process in a controlled CNC machining lab
environment.

OFE+ g

Seasor

CNC Machine

Figure 2: Data collection process

The CNC machine performs operations while sensors and
tools collect relevant data. Machine diagnostics
(speedometer icon) record cutting speed and feed rate,
infrared sensors measure thermal data (thermometer icon),
image-based analysis inspects tool wear (camera icon),
vibrations are monitored by dedicated sensors (waveform
icon), and surface finish is assessed by tactile comparison
to roughness gauges (touch icon). All sensor data is
captured in real time and securely stored in a structured
SQL database (database icon). For model training and
analysis, data is exported from SQL and converted to CSV
format (CSV file icon). This pipeline provides high-
quality, structured data for machine learning applications
in deformation risk prediction.

Overall, the CNC-DeformControl dataset provides a
compact but meaningful representation of the machining
landscape, capturing both measurable and observational
variables required for training intelligent deformation
prediction systems like NeuroPID-CNC.

2.2 Data preprocessing

To ensure that the CNC-DeformControl dataset is ready
for machine learning, extensive preprocessing steps are
used. The dataset contains a mix of numerical and
categorical features that must be represented consistently
for the algorithm to correctly interpret the data.
Categorical attributes like Material Type, Tool Wear,
Vibration, Coolant Flow, and Surface Finish are
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numerically encoded using one-hot encoding, which
converts categorical values into a binary matrix format.
The one-hot encoding process transforms a categorical
variable into a binary vector representation as shown in Eq.
(D):

OneHot(x;) = [x; = ¢1,X; = Cg, e, Xj = Cp | €))
Where:
x; 1s a categorical value,
1, Cy, -, Cy are the unique categories,
Each comparison x; = ¢;yields 1 if true, else 0.
This transformation is critical for allowing the single-
neuron model to interpret non-numeric data while
preserving categorical relationships without imposing
artificial ordering.
Simultaneously, all numerical attributes—Cutting Speed,
Feed Rate, Depth of Cut, Tool Temperature, and Spindle
Load—are normalized utilizing Min-Max scaling, which
rescales each feature to lie within the range [0, 1]. This is
mathematically expressed by Eq. (2):

Xnorm =~ _ . @)

Where:

x = original value of the feature

Xmin= Minimum value of the feature in the dataset

Xmax= Maximum value of the feature in the dataset
Xnorm= nNormalized value of the feature

This normalization ensures that no feature dominates
others due to varying scales, resulting in balanced
contributions throughout training. After normalization and
encoding, the dataset is randomly divided into two subsets:
70% for training and 30% for testing. This split preserves
model generalization and ensures that evaluation is
performed on unseen data. The dataset D is randomly split
into training and testing subsets using the Eq. (3):

D = Dirgin U Diests (3)
where |Dgpuin|l= 0.7|D],
|Dtest|= 0-3|D|
Where:

D: The complete preprocessed dataset after normalization
and encoding.

D¢rain: The training subset of the dataset utilized to train
the model.

D5t : The testing subset of the dataset utilized to evaluate
the model’s performance.

IDI: The total number of data instances (rows) in the full
dataset D.

|Dtrqinl: The number of instances in the training set, equal
to 70% of the total dataset.

|Diese|: The number of instances in the test set, equal to
30% of the total dataset.
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2.3 Model initialization: Single-Neuron PID
structure

The proposed model is a simple neural structure inspired
by the PID control principle that consists of only one
hidden neuron. This neuron simulates the adaptive control
behavior of a PID controller by receiving preprocessed
machining inputs from the input layer and computing a
nonlinear transformation for prediction. The final output is
produced by a single output neuron equipped with a
sigmoid activation function, which converts the weighted
sum of inputs into a deformation probability expressed by

Eq. (4):

1 “4)
e
Where:
z = weighted sum of inputs
o(z) = output value in the range [0, 1] representing
deformation risk
The term e “represents the exponential function with a
negative exponent, which is a fundamental mathematical
expression describing exponential decay. It is the inverse
of the natural exponential function eZ, where e is Euler’s
number (approximately 2.71828). This function plays a
key role in the sigmoid activation function by controlling
how sharply the output transitions between 0 and 1 based
on the input z.
Mathematically, e ?can be expressed using its infinite
series expansion in Eq. (5):

ot Z(—TZ)"

where:

z is the weighted sum of inputs,

n! denotes the factorial of n,

and the series sums over all non-negative integers n.

This logistic function guarantees that the model’s output
lies between 0 and 1, representing the probability of
deformation risk under current machining conditions. The
model is trained utilizing the binary cross-entropy loss
function, defined in Eq. (6), which measures the
discrepancy between predicted and actual outcomes:

)

L =—[y.log(®) + (1 = y).log (1 = 9] (6)

Where:

y = actual class label (0 for no deformation, 1 for
deformation)

y=predicted probability of deformation

L = loss value that penalizes prediction errors

Here, y is the actual binary label (0 for “No Deformation”
and 1 for “Yes”), while ¥ is the predicted probability. The
model’s weights are optimized utilizing the Adam
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optimizer, a robust gradient descent variant that adapts
learning rates for quicker and more stable convergence. At
each iteration t, the parameters 6,are updated as follows:

my = pime_y + (1= B1)ge @)
Ve = vy + (1= Br)ge” (®)
~ m

TR ®
N VUt

%= (10)

mg
0;=0;1—« (11)

\/ﬁ_t +€
where g,is the gradient at iteration t, m,and v.are the
biased first and second moment estimates, m,and U.are
their bias-corrected estimates, « is the learning rate, 8, and
B,are decay rates for these moments, and € is a small
constant to prevent division by zero.

2.4 Training phase

During training, the model aims to reduce the loss function
via backpropagation, an algorithm that calculates the
gradient of the loss concerning each model weight. The
weight update rule is formalized as showed in Eq. (12):

P
w = Tl.aw

(12)
Where:

w = change in weight

n = learning rate

d . . . .
ﬁ= gradient of the loss function concerning weight w

The training process iterates through numerous epochs,
adjusting weights after each batch of training examples. To
prevent overfitting, early stopping is executed: training
halts if the wvalidation loss fails to improve over a
predefined number of epochs. This strategy improves
model generalization on new, unseen CNC conditions.

2.5 Evaluation phase

After training, the model’s efficiency is assessed on the
testing set utilizing standard classification metrics. These
metrics assess the model’s capability to correctly predict
deformation risk:

Accuracy measures the ratio of correct predictions to total
samples:

TP+TN
TP+TN+FP+FN

(13)

Accuracy =

Where,
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TP = True Positives (correctly predicted deformations)
TN = True Negatives (correctly predicted non-
deformations)

FP = False Positives (incorrectly predicted deformations)
FN = False Negatives (missed deformations)

Precision quantifies the fraction of predicted "Yes"
(deformation) true cases:

TP
TP + FP

14
Precision = (14)

Recall reflects the model’s ability to identify all actual
"Yes" cases:

TP
TP+ FN

(15)

Recall =

F1-Score, the harmonic mean of precision and recall,
offers a balanced view:

Precision * Recall

(16)

F1 - =2
score * Precision + Recall

MCC computes the quality of binary and multiclass
classifications by considering true and false positives and
negatives, providing a balanced score even with
imbalanced datasets.

(TP*TN)—(FP+FN)
J(TP+FP)(TP+FN)(TN+FP)(TN+FN)

MCC =

(17

These metrics provide a comprehensive view of model
performance in predicting deformation risks.

2.6 Real-time prediction and control

The trained model is deployed for real-time prediction
during CNC operations. When a novel machining
configuration is initiated, the input values are first
processed (encoded and normalized) as per training
routines. The model then generates an output probabilityy.
If ¥ > 0.5, the system flags a high deformation risk. In
such cases, immediate corrective actions are triggered by
predefined control logic. For instance, a high-risk flag
prompts a 10% reduction in cutting speed, utilizing the
formula:

New Cutting Speed (18)
= 0ld Cutting Speed X 0.9

Where:

"Old Cutting Speed" = initial programmed cutting speed
"New Cutting Speed" = adjusted speed to reduce stress on
the workpiece
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This reduction reduces both mechanical and thermal stress
on the workpiece. Other adaptive responses, like
increasing coolant flow or decreasing feed rate, are
implemented concurrently based on the material type and
observed vibration. If the expected risk is low, the
machining operation continues without intervention,
ensuring efficiency while maintaining safety.

2.7 Feedback loop and online learning

Following each machining operation, the actual
deformation outcome is recorded and compared to the
model's prediction. This creates a feedback loop,
increasing the model's adaptability over time. Using
online learning, the model gradually updates its weights
using recent prediction errors. The update rule is given by:
Whnew = Woig + Q. (y - }A’)X (19)

Where:

W, 4= previous weight

Wyew= updated weight

a = online learning rate (a small constant)

y = actual label (0 or 1)

y= predicted output

x = input feature value.

In a feedback-driven online learning system, predictions
consistently impact control actions, which then change
future input data. This feedback can exacerbate problems
if not adequately stabilized. A diminutive learning rate (a)
guarantees more gradual weight adjustments and
contributes to stability preservation. An elevated learning
rate (a) may induce oscillations or divergence, particularly
in feedback systems. As updates rely on prediction error,
significant spikes in error can disrupt learning until
addressed. In practical CNC machining, complete
convergence is uncommon. In online learning, weights are
adjusted following each data point or small batch, resulting
in continual retraining. Periodic full model resets or
reinitializations may be conducted to prevent drift or
overfitting.

This type of incremental learning ensures that the model
evolves with real-world data, adapting to unknown
materials, dynamic wear conditions, or unexpected
operational disruptions. By combining real-time prediction
with continuous learning, the system grows more robust
and context-aware over time, eventually achieving a self-
improving CNC control mechanism that maximizes
machining precision while reducing the risk of costly
defects.

The NeuroPID-CNC algorithm represents an intelligent,
lightweight, and adaptable solution for predicting and
suppressing deformation during CNC machining. It
tightly integrates machine learning principles with control
engineering strategies using a single-neuron PID-inspired
structure, strong preprocessing, accurate prediction, and
dynamic feedback adaptation. With ten foundational
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equations, this system creates a rigorous yet practical
framework for real-time decision-making and long-term
improvement. The result is a smarter, more efficient, and
resilient manufacturing environment.

3 Results

3.1 Experimental setup

All experiments were carried out on a Windows 11 system
running Python 3.10. The machine was equipped with an
Intel Core i7 processor and 16 GB of RAM. TensorFlow,
Scikit-learn, Pandas, NumPy, and Matplotlib were used to
train, evaluate, and visualize models. The dataset was
divided into two sets: training (70%) and testing (30%).
Early stopping and adaptive learning rate scheduling were
used to prevent overfitting and speed up convergence.

3.2 Comparison results

Table 2 compares the classification models used on the
CNC-DeformControl dataset, including SVM, Random
Forest (RF), KNN, Logistic Regression (LR), and the
proposed NeuroPID-CNC model.

Table 2: Performance comparison of classification

models
Model Accura | Precisi | Reca | F1- | MC
cy (%) | on(%) |1l Scor | C
(%) |e
(%)
SVM 88.43 86.22 85.13 | 85.6 | 0.76
7
Random | 90.12 89.05 87.60 | 88.3 | 0.79
Forest 2
KNN 87.30 84.95 84.00 | 844 | 0.74
7
Logistic | 86.75 83.90 83.10 | 83.5 | 0.72
Regressi 0
on
NeuroPI | 92.00 90.00 93.00 | 91.5 | 0.84
D-CNC 0

The proposed NeuroPID-CNC algorithm had the best
performance across all metrics tested. It enables real-time
feedback adaptation and improved learning of
deformation-prone patterns. This architecture is extremely
responsive to subtle patterns in deformation-prone
conditions, resulting in higher prediction accuracy and
robustness. Furthermore, its streamlined structure
minimizes overfitting, whereas more complex models may
require deeper tuning. Figure 3 shows the confusion matrix
for proposed approach.



240 Informatica 49 (2025) 231-244

NeuroPID-CNC Confusion Matrix
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Figure 3: Confusion Matrix for proposed approach

Figure 4 demonstrates that the proposed NeuroPID-CNC
model attains the highest accuracy among all evaluated
classifiers, reaching 92%.
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Figure 4: Accuracy comparison

From figure 4, the accuracy of proposed NeuroPID-CNC
approach outperforms SVM, RF, KNN and LR by 4.03%,
2.09%, 5.38% and 6.05% respectively.
This high accuracy demonstrates the model's overall
predictive power in correctly identifying deformation risk
("Yes") and non-risk ("No") instances.

The superior performance is due to the unique integration
of a PID-inspired control mechanism within the neuron,
which allows the model to adjust its internal weights with
greater precision during training. This reduces
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classification errors and improves robustness when dealing
with complex interactions between CNC parameters like
cutting speed, tool wear, and thermal readings. The
model's ability to learn consistently across diverse inputs
supports its use in real-time industrial settings. In Figure
5, NeuroPID-CNC leads with a precision of 90%,
indicating that it correctly predicts a deformation risk 90%
of the time.

90

89

Precision (%)
= =1 =3

=1
(=)

84

Figure 5: Precision comparison

From figure 5, the precision of proposed NeuroPID-CNC
approach outperforms SVM, RF, KNN and LR by 4.38%,
1.07%, 5.94% and 7.27% respectively.

High precision is required in CNC machining
environments to avoid unnecessary operational
adjustments caused by false positives. The model's low
false alarm rate leads to increased operational efficiency
by ensuring that control recommendations (such as
reducing cutting speed or increasing coolant flow) are only
implemented when there is a genuine risk. This precision
advantage stems primarily from the model's ability to learn
subtle patterns associated with actual deformation-
inducing conditions while filtering out noise from non-
critical anomalies. Figure 6 shows that NeuroPID-CNC
has the highest recall value of 93%, indicating an excellent
sensitivity to actual deformation occurrences.
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Figure 6: Recall comparison

From figure 6, the recall of proposed NeuroPID-CNC
approach outperforms SVM, RF, KNN and LR by 9.24%,
6.16%, 10.71% and 11.91% respectively.

A high recall ensures that the model rarely overlooks true
positive cases—an important feature in critical
manufacturing scenarios where undetected deformations
could jeopardize product quality, damage tools, or cause
production downtime. This exceptional recall is due to the
model's continuous feedback adjustment loop, inspired by
the integral component of PID control, which improves
detection sensitivity over time as more real-world
machining data is processed. Figure 7 shows that
NeuroPID-CNC has the best trade-off between precision
and recall among all tested models, with an F1-score of
91.5%.

NeuraPID-CNC

Logistic Regression

Random Forest
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Figure 7: F1-Score comparison

From figure 7, the F1-Score of proposed NeuroPID-CNC
approach outperforms SVM, RF, KNN and LR by 6.81%,
3.60%, 8.32% and 9.58% respectively.

The F1-score, which is the harmonic mean of precision and
recall, measures the model's overall effectiveness in
handling the binary classification task. This balanced
performance indicates that the NeuroPID-CNC model
optimizes both false positives and false negatives, rather
than favoring one over the other. Such a balance is critical
in industrial settings where both unnecessary interventions
and missed deformation risks have financial and
operational implications. Finally, Figure 8 demonstrates
that NeuroPID-CNC obtained the highest Matthews
Correlation Coefficient (MCC) score of 0.84, which is
widely considered one of the most reliable metrics for
evaluating binary classifiers, especially on imbalanced
datasets.

00 01 02 03

04 05 06 07 08
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Figure 8: MCC comparison
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From figure 8, the MCC of proposed NeuroPID-CNC
approach outperforms SVM, RF, KNN and LR by 10.53%,
6.33%, 13.51% and 16.67% respectively.

MCC accounts for all four confusion matrix components
(true positives, true negatives, false positives, and false
negatives), providing a more complete picture of model
performance. The high MCC score confirms that the
model consistently and strongly correlates predicted and
actual outcomes, regardless of class imbalance. This
robust performance ensures reliability and fairness in
prediction decisions over varying dataset distributions and
machining conditions.

McNemar’s test was employed to statistically validate the
performance differences across classifiers based on the
paired predictions of all models. Table 3 presents the
results of the statistical significance test conducted with
McNemar’s test. The suggested method demonstrated
statistically significant superiority over RF (p < 0.001),
SVM (p < 0.003), KNN (p=0.004), and LR (p<0.005).

Table 3: Statistical Test - McNemar's Test

Algorithm McNemar’s p-value
statistic

SVM 42.13 0.002

RF 45.24 0.0001

KNN 39.18 0.004

LR 37.89 0.0045

4 Discussion

The single-neuron PID-inspired predictive control
technique can surpass machine learning models such as
RF, SVM, KNN, and LR. Single-neuron PID-inspired
controllers are designed for dynamic system regulation,
combining the advantages of PID control with adaptive
features. It can adjust weights in real-time utilizing
straightforward learning algorithms, rendering it suitable
for dynamic, non-linear systems with fluctuating
conditions. It provides a temporal viewpoint by evaluating
past errors, the current state, and anticipated future
behavior, which is consistent with control system needs.
The methodology is interpretable, and its performance can
be adjusted using domain expertise (e.g., calibrating
proportional, integral, and derivative influences).

Machine learning algorithms are models trained in
batches. They do not readily adapt in real time without
expensive retraining. These are computationally intensive,
perhaps rendering them unsuitable for real-time embedded
control systems. It does not inherently manage temporal
dynamics until augmented by time-lagged features, which
may still lack responsiveness or interpretability.

T. Liu et al.

The Single-Neuron PID-Inspired Control is proficient in
real-time management of dynamic, nonlinear systems,
adaptive error learning, feedback-based decision-making,
and resource-constrained applications. The machine
learning models exhibit challenges due to inadequate
temporal feedback management, rigidity in online
learning, elevated computational expenses (particularly in
random forests and k-nearest neighbors), and limited
adaptability in non-stationary control contexts.

The results demonstrate the superiority of the proposed
NeuroPID-CNC model in predicting deformation risk
during CNC machining. The model's PID-inspired single-
neuron architecture not only provides superior
performance across all standard classification metrics but
it also ensures operational interpretability and real-time
adaptability. These benefits make it an ideal candidate for
smart manufacturing environments where precision,
dependability, and responsiveness are crucial. Future
research will concentrate on implementing the model on
industrial edge devices for real-time inference, utilizing
multi-modal sensor data including audio and thermal
images, applying transfer learning for enhanced
generalization, incorporating explainable Al
methodologies to augment interpretability, and embedding
the model within closed-loop control systems for
autonomous CNC parameter modification based on
predictive feedback.

5 Conclusion

This study described the NeuroPID-CNC algorithm, which
is a lightweight single-neuron PID-inspired classifier for
predicting deformation risk in CNC machining. The
model outperformed traditional classifiers, achieving the
highest accuracy, precision, recall, F1-score, and MCC,
proving its suitability for real-time deformation risk
detection and adaptive control in manufacturing. The
current model was trained using data from a controlled lab
environment, which may limit its applicability to different
machine types and unstructured production scenarios. It
also focuses solely on binary classification and requires
manual feature selection, with no support for multi-output
or continuous prediction tasks. Future research will focus
on deploying the model on industrial edge devices for real-
time inference, incorporating multi-modal sensor data
such as audio and thermal images, using transfer learning
for broader generalization, integrating explainable Al
techniques to improve interpretability, and embedding the
model into closed-loop control systems for autonomous
CNC parameter adjustment based on predictive feedback.
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