
https://doi.org/10.31449/inf.v49i6.9277 Informatica 49 (2025) 303–312 303

Dynamic Weight Optimization-Based Real-Time Monitoring and

Fault Diagnosis System for Automation Equipment Using Edge

Computing

Lili Pang

Engineering Training Center, School of Applied Technology, Nanjing Institute of Technology, Nanjing,

Jiangsu ,211167, China

E-mail: panglili_njit@163.com

Keywords: edge computing; automation equipment; real-time monitoring; fault diagnosis; system performance

Received: May 18, 2025

With the rapid advancement of Industry 4.0, the demand for precise fault diagnosis in automation

equipment has become critical to ensure manufacturing continuity. This paper introduces a dynamic

weight optimization-based system for real-time monitoring and fault diagnosis of automation

equipment, leveraging edge computing technologies. The proposed five-layer architecture (Sensor,

Production Line, Edge, Network, Cloud) integrates multi-threading and parallel computing at the edge

layer to enhance PLC data processing efficiency by 40%. The core fault diagnosis algorithm, driven by

dynamic weight optimization, completes weight updates within 300 milliseconds, achieving a 12%

higher diagnostic accuracy than traditional methods (e.g., BP neural network and SVM). Experimental

validation using 128,000 normal operation samples and 40,000 fault samples demonstrates a 98.3%

fault diagnosis accuracy under complex industrial conditions, statistically supported by paired t-tests

(p < 0.05). The system exhibits minimal latency degradation even at high data flows (2000

samples/second) and 4G network environments, outperforming cloud-based architectures in real-time

fault detection capabilities. Compatibility tests across six industrial device types further validate its

robust performance, making this framework a reliable solution for intelligent fault diagnosis in modern

manufacturing systems.

Povzetek: V okviru Industrije 4.0. je predstavljena nova arhitektura za industrijski nadzor in

diagnostiko napak v avtomatizirani proizvodnji z uporabo robnega računalništva. Petnivojska

arhitektura je uporabljena za sprotno spremljanje delovanja naprav z dinamično optimizacijo uteži za

kvalitetno zaznavanje napak. Algoritem združuje zgodovinske in tekoče podatke ter samodejno

posodablja uteži glede na spremembe v stanju opreme.

1 Introduction
The proliferation of Industry 4.0 has positioned

automation equipment as the backbone of modern

manufacturing, yet unplanned downtime due to

equipment failures imposes annual losses of $420 billion

globally—30% of which can be attributed to delayed

fault diagnosis. Edge computing has emerged as a

transformative technology, reducing data processing

latency from 300–500 milliseconds to below 100

milliseconds, minimizing cloud data transmission by

40%, and enhancing data security—all critical for real-

time fault diagnosis in dynamic industrial settings.

Current industrial applications illustrate the potential

of edge-driven fault diagnosis: GE’s Predix platform

achieves 92% accuracy in power equipment fault

diagnosis by integrating edge and cloud computing,

while Siemens’ MindSphere platform improves CNC

machine tool processing accuracy by 15% through edge

deployments. However, these architectures often rely on

cloud-centric designs, limiting edge node autonomy and

hindering the integration of historical and real-time data

for comprehensive fault analysis. Traditional machine

learning models also struggle with adaptability in

complex scenarios, as seen in Huawei’s FusionPlant

platform, which achieves sub-200 millisecond response

times but lacks dynamic optimization for evolving fault

patterns.

This project intends to research the monitoring and

diagnosis system of automated equipment based on edge

computing. A hierarchical architecture has been

established to strengthen the capabilities of the edge layer;

a fault diagnosis algorithm based on dynamic weight

optimization is studied [3]. Combining equipment

historical data and real-time data, the weights are

dynamically updated using time attenuation coefficient

and similarity matching methods to improve fault

diagnosis accuracy and real-time performance [4].

Finally, an industrial field simulation test environment is

constructed to verify the system's performance. This study

addresses three key research questions:

(1) Can dynamic weight optimization enhance real-

time diagnosis accuracy?

(2) How does edge computing reduce latency relative

304 Informatica 49 (2025) 303–312 X. Li

to cloud architectures?

(3) What is the system’s generalizability across

industrial devices?

2 Architecture design of automation

equipment monitoring and

diagnosis system driven by edge

computing
2.1 Overall system architecture design

The system adopts a five-layer architecture: Sensor

Layer, Production Line Layer, Edge Layer, Network

Layer, and Cloud Layer (Figure 1). The Sensor Layer

deploys PCB 352C65 accelerometers and Pt100

temperature sensors, while the Production Line Layer

interfaces with PLCs and machinery.

Figure 1: Overall system architecture.

The system has a clear division of labor at each level,

and cooperates to jointly support the monitoring and

diagnosis of automation equipment. I will simplify the

text, retain the core functions and technologies, and

highlight the characteristics and advantages of each level.

As the system's data source, the perception layer

accurately selects and deploys sensors. For example,

CNC machine tools use PCB 352C65 three-axis

acceleration sensors (0.5Hz–50kHz frequency response),

while motor monitoring employs LEM LTS6-NP closed-

loop Hall current sensors (0–50A range) and Pt100

platinum resistance temperature sensors (±0.1°C

accuracy), and some sensors have self-diagnosis

functions and transmit the collected data to the edge layer

through interfaces such as RS485. The vibration signal

undergoes preprocessing via wavelet packet transform

and empirical mode decomposition (SNR improvement:

18.5 dB), with dynamic normalization to unify data

dimensions, outperforming traditional Min Max

normalization. A fault diagnosis method is proposed

based on dynamic weight optimization [6]. This method

completes the weight update within 300 milliseconds,

and the diagnostic accuracy is improved by 12%

compared with the traditional method. The time series

database InfluxDB can save 7 days of operational data,

meeting backtracking needs. The network layer plays the

role of a bridge for data transmission. The OPC UA

protocol ensures the real-time transmission of equipment

status information, with a stable delay of less than 50

milliseconds. Non-real-time data is transmitted through

the MQTT protocol, which can reduce bandwidth usage

by 30%. The industrial firewall with VPN VPN-encrypted

channel ensures the security of data transmission. The

cloud layer is the data center and decision-making center
[7]. It adopts a storage method combining HDFS and

Cassandra to achieve massive storage requirements and

high concurrency reading and writing. Using technologies

such as Spark Streaming and Scikit-learn, a compressor

bearing fault prediction model based on LSTM was

established, with a prediction accuracy of 91%, 72 hours

ahead of the prediction time. The visual remote

monitoring platform is based on the three-dimensional

model of the WebGL display device, and the hierarchical

authority management of multiple users ensures the safety

and standardization of operations.

2.2 Edge layer functions and deployment

The edge layer undertakes core functions such as data

collection, preprocessing and real-time diagnosis. It uses

various technologies and hardware configurations to

improve the system's performance. It supports multiple

protocols, such as Modbus, DNP3, etc., to achieve unified

data collection between heterogeneous devices [8]. When

Adaptive Weighting and Deep Neural Networks for Automated… Informatica 49 (2025) 303–312 305

the data missing rate is less than 20%, the KNN data

filling algorithm based on time series similarity is

adopted to ensure that the repair error rate does not

exceed 5%. By combining multi-threading technology

and parallel computing technology, the data processing

efficiency of PLC has improved by more than 40%. Pre-

diagnosis integrates the dynamic weight optimization

algorithm with a rule engine that triggers alarms for

threshold violations (e.g., temperature > 80°C or current

surge > 150% rated), operating in parallel with the

primary algorithm to ensure rapid response.[9]. The local

storage adopts the "SSD+HDD" tiered strategy: high-

performance SSD stores core data, hard disk stores

auxiliary data, sets aging strategy, and automatically

stores data in cloud storage space.

The experimental setup uses the UP-Board Edge

industrial gateway (Intel Atom x7-E3950 processor,

quad-core, 1.6–2.0GHz), while the system design

supports both ARM (Rockchip RK3588) and x86

architectures for flexibility, with 8-core Cortex-A76 + 4-

core Cortex-A55, can complete 1000 sets of data

preprocessing and diagnosis within 100 ms; 8 GB

LPDDR4 memory and 128 GB eMMC meet the needs of

processing and storage [10]. The communication

interface has 2 gigabit ports, 2 RS-485 ports, and 1 CAN

bus. It supports Wi-Fi 6 and 5G and supports multiple

network access. The hardware is IP67 certified and can

work stably in harsh environments of -40℃ to 70℃. At

the software level, the microservice architecture and

container technology are used to divide each functional

module into independent microservices, such as data

acquisition, preprocessing and diagnosis, and

encapsulate them using Docker containers to achieve

automatic orchestration and fault recovery based on

Kubernetes, and select a customized Yocto Linux

operating system to optimize resource utilization.

Node layout follows the principle of "nearby

processing, centralized management" and divides large

enterprises into multiple monitoring ranges according to

equipment distribution. For example, a workshop with

100 devices can be divided into five areas, each of which

is equipped with 2-3 high-performance nodes to

complete the collection and preliminary processing of

regional data; small and distributed equipment are

deployed in clusters, and communication and sharing

between nodes are achieved through Mesh networks. To

ensure the stability of the network, the optical fiber

connection between the node and the core switch is not

less than 1 Gbps.

2.3 Cloud function and collaboration

mechanism

Cloud data management adopts the strategy of cold and

hot separation and redundant storage; the active data of

the last month is stored in a high-performance hard disk

cluster to meet the needs of real-time query; at the same

time, multiple copies are used to make the probability of

data loss less than 10 times. Cloud data management

focuses on real-time analysis and storage, with future

work planned to explore predictive maintenance using

DBSCAN and Transformer models [11]. For example,

monitoring of power transformers can warn of abnormal

gas in oil 14 days in advance. The training time is

shortened by 70% through migration, incremental

learning and other methods. The remote monitoring

platform supports equipment status visualization, early

warning push, equipment management, maintenance

plan, and preventive maintenance.

A layered approach is used for data transmission

between the boundary and cloud layers. Real-time

operation data is uploaded by seconds, event triggering

and priority processing, and historical data is uploaded in

batches. The Zstandard algorithm is used for data

compression with a compression ratio of 3:1-5:1. The

instructions in the cloud are divided into "control" and

"configuration", including control instructions of the

verification and confirmation mechanism to ensure the

accuracy of execution; configuration instructions update

the edge diagnosis strategy, etc., to achieve seamless

switching of "pause-update-restart". The model update

adopts two methods: version management and grayscale

release [12]. First, it is verified by a small number of edge

nodes, and then a comprehensive expansion is carried out

after it is stable. At the same time, the old version is saved

for easy rollback to ensure the system's stable operation.

3 Design of the real-time monitoring

function of automated equipment
3.1 Design of data acquisition module

The data acquisition module consists of a sensor array, a

data acquisition unit, and a communication interface, the

basis of real-time monitoring. In terms of sensor selection,

an inductively coupled accelerometer with a frequency

response of 50 kHz was selected to collect high-frequency

fault signals; a platinum resistance sensor with a

measurement accuracy of ±0.1℃ was used; in the range

of 0-500 amperes, a closed-loop Hall current sensor was

used to monitor current within 1μ s. According to the

principle of "focusing on key parts and fully covering the

global status", a three-dimensional monitoring network is

formed through grid deployment.

The collected data covers 20 kHz vibration sampling,

1 Hz temperature sampling, and 1 Hz current sampling,

ensuring consistency with experimental measurements.

The communication protocol adopts a hierarchical

structure. The lower-level Modbus RTU communicates

with traditional instruments, the middle-level OPC UA

supports cross-platform interaction, and the upper-level

MQTT realizes lightweight transmission [13]. The

interface design is compatible with multiple signals, the

quantization error of the analog quantity does not exceed

0.01%, and numerous communication interfaces are built

in.

3.2 Data preprocessing method

The original data contains noise, outliers and missing

values. An improved LOF method was adopted for data

cleaning, and the dynamic threshold was combined to

306 Informatica 49 (2025) 303–312 X. Li

detect outliers, and the accuracy rate was 98.7%. For

missing data (up to 30% rate), Bi-LSTM interpolation

technology is used, achieving MSE 0.082, outperforming

KNN in both accuracy and handling capacity. In the

gearbox test, the noise reduction process combined

wavelet packet transforms and empirical mode

decomposition, which increased the signal-to-noise ratio

by 18.5 dB. The normalization operation was

dynamically adjusted based on the data distribution to

avoid the influence of extreme values, and the

convergence speed of the machine learning model was

increased by more than 30%.

3.3 Real-time status visualization interface

design

The visualization interface adopts a B/S architecture and

follows the "layered display, convenient and efficient"

principle. The equipment status diagram uses a three-

dimensional model and color coding to display the

operating status intuitively; it supports data curves for

synchronous comparison of multiple parameters, and

refreshes in one second; it is based on rules and models,

and pushes through various channels, with a delay of no

more than 2 seconds; it supports historical data screening

and report output.

In terms of technical implementation, WebGL is

used to achieve high-precision drawing and interaction

of three-dimensional models; the interactive design

combines gestures and shortcut key operations,

introduces high-level forms such as heat maps to express

complex information, and improves the efficiency of data

insight. Through data collection, preprocessing and

visualization design, accurate perception and

visualization of equipment status are achieved to support

fault diagnosis and predictive maintenance.

4 Design of fault diagnosis algorithm

based on dynamic weight

optimization
4.1 Weight calculation model based on

equipment operation historical data

and real-time data

4.1.1 Historical data feature extraction

The equipment operation history data contains rich

information about the equipment during long-term

operation, but the original data often has high

dimensionality and noise [14]. Suppose the historical

data set is 𝐻 = {ℎ1, ℎ2, ⋯ , ℎ𝑛} , where ℎ𝑖 represents the

𝑖 historical data sample, and each sample covers m

feature parameters, that is, ℎ𝑖 = [ℎ𝑖1, ℎ𝑖2, ⋯ , ℎ𝑖𝑚]. The

principal component analysis (PCA) method is used to

reduce the dimensionality of the historical data to extract

key features. First, the covariance matrix 𝐂 is calculated,

which is expressed as:

𝐂 =
1

𝑛−1
∑  𝑛

𝑖=1 (ℎ𝑖 − ℎ‾)(ℎ𝑖 − ℎ‾)
𝑇

 (1)

Among them, ℎ‾ is the mean vector of historical data

samples. The covariance matrix 𝐂 describes the

correlation between each feature parameter. By

performing eigenvalue decomposition on it, the

eigenvalues 𝜆1 ≥ 𝜆2 ≥ ⋯ ≥ 𝜆𝑚 and the corresponding

eigenvectors 𝐯1, 𝐯2, ⋯ , 𝐯𝑚 can be obtained. These

eigenvalues reflect the contribution of different principal

components to the data variance. The first 𝑘 principal

components (usually 𝑘 ≪ 𝑚) are selected as the key

features of historical data to construct the historical

feature matrix 𝐇𝑘. In this way, while retaining the main

information of the data, the data dimension is effectively

reduced and the subsequent calculation efficiency is

improved.

4.1.2 Fusion of real-time data and historical data

The real-time data set is recorded as 𝑅 =
{𝑟1, 𝑟2, ⋯ , 𝑟𝑠}, 𝑟𝑗 represents the 𝑗 real-time data sample,

which also contains m feature parameters. An improved

similarity measurement function is introduced to achieve

the organic fusion of real-time data and historical data

[15]. Traditional cosine similarity only considers the

similarity of vector directions and ignores the distance

factor between vectors. The improved formula proposed

in this study is as follows:

𝑆(𝑟𝑗 , 𝐇𝑘) =
𝑟𝑗⋅𝐇𝑘

∥∥𝑟𝑗∥∥⋅∥∥𝐇𝑘∥∥
× exp (−

∥∥𝑟𝑗−ℎ‾∥∥
2

2𝜎2) (2)

Among them, ∥⋅∥ represents the norm of the vector,

and 𝜎 is the adjustment factor, which is used to control the

influence of the distance factor on the similarity.

4.1.3 Determination of initial weight

Determine the initial weight of each feature

parameter based on the degree of similarity after fusion.

Let the initial weight of the 𝑙 feature parameter be 𝑤𝑙0 ,

and the calculation formula is:

𝑤𝑙0 =
∑  𝑠

𝑗=1  𝑆(𝑟𝑗,𝐇𝑘)⋅𝑟𝑗𝑙

∑  𝑚
𝑙=1  ∑  𝑠

𝑗=1  𝑆(𝑟𝑗,𝐇𝑘)⋅𝑟𝑗𝑙
 (3)

Among them, 𝑟𝑗𝑙 is the 𝑙 characteristic parameter

value of the real-time data sample 𝑟𝑗. On the one hand, the

numerator reflects the contribution of each characteristic

parameter in similar data [16]. Features with high

similarity and large parameter values will obtain higher

weights; conversely, the denominator is normalized to

ensure that the sum of all weights is 1. Taking motor fault

diagnosis as an example, the vibration characteristics

change significantly when a fault occurs. According to

this formula, the initial weight of the vibration

characteristics will be relatively high, thus occupying a

more important position in fault diagnosis.

4.2 Dynamic weight update mechanism

Adaptive Weighting and Deep Neural Networks for Automated… Informatica 49 (2025) 303–312 307

4.2.1 Weight update triggering conditions

The triggering of dynamic weight update is based on

the dual mechanism of equipment operation status

change and time interval. Define the equipment operation

status index 𝐼, and its calculation formula is:

𝐼 = 𝛼 ⋅
∥𝑟−ℎ‾∥

𝜎‾
+ 𝛽 ⋅ Δ𝑓 (4)

Among them, 𝑟 is the real-time data vector, ℎ‾ is the

historical data mean vector, 𝜎‾ is the historical data

standard deviation vector, Δ𝑓 is the change in the device

operating frequency, and 𝛼 and 𝛽 are adjustment

coefficients. This indicator comprehensively evaluates

the device operating status based on the degree of data

fluctuation and the change in operating frequency. When

𝐼 > 𝑇(𝑇 is the set threshold), it indicates that the device

operating status has changed significantly, triggering the

weight update; at the same time, a fixed time interval Δ𝑡

is set, and a weight update is triggered every Δ𝑡 time to

ensure that the algorithm can capture the gradual change

of the device operating status in time.

4.2.2 Weight update algorithm

In the weight update process, the forgetting factor

𝛾 (0 < 𝛾 < 1) is introduced to reduce the impact of

early data and highlight the role of recent data. The

updated weight 𝑤𝑙 of the lth feature parameter is

calculated as follows:

𝑤𝑙 = 𝛾 ⋅ 𝑤𝑙
𝑜𝑙𝑑 + (1 − 𝛾) ⋅

∑  𝑡
𝑗=1  𝑆(𝑟𝑗,𝐇𝑘)⋅𝑟𝑗𝑙

∑  𝑚
𝑙=1  ∑  𝑡

𝑗=1  𝑆(𝑟𝑗,𝐇𝑘)⋅𝑟𝑗𝑙
 (5)

Among them, 𝑤𝑙
old is the weight before update, and

𝑡 is the number of real-time data samples before

triggering the weight update. This formula linearly

combines the historical weight with the weight calculated

based on recent data. The larger the 𝛾 value, the greater

the impact of the historical weight; the smaller the 𝛾

value, the more significant the impact of recent data [17].
In practical applications, the 𝛾 value can be dynamically

adjusted according to the stability of the equipment and

the frequency of operating condition changes.

In addition, if the fault diagnosis result deviates from

the actual situation, that is, the diagnostic error 𝐸

exceeds a certain range (𝐸 = |𝑦̂ − 𝑦|, 𝑦̂ is the diagnostic

result, 𝑦 is the actual fault state), the weight is corrected

according to the error size:

𝑤𝑙
′ = 𝑤𝑙 ⋅ (1 + 𝜂 ⋅ 𝐸) (6)

Where 𝜂 is the correction coefficient. When the

diagnostic error is positive, the weight of the relevant

feature parameter is increased to enhance the algorithm's

sensitivity to the feature; when the diagnostic error is

negative, the weight is reduced to avoid the algorithm

from over-relying on the feature. This way, the algorithm

can continuously optimize itself in practical applications

and improve diagnostic accuracy.

5 Experimental simulation and

result analysis
5.1 Experimental environment

construction

5.1.1 Hardware equipment selection

The experiment built a hardware environment close

to the actual industrial scene, and the core equipment

selection fully considered performance, stability and

compatibility. The edge computing node uses the

industrial-grade gateway UP Board Edge based on the

ARM architecture, which is equipped with an Intel Atom

x7-E3950 processor (quad-core, main frequency 1.6GHz-

2.0GHz), equipped with 8GB LPDDR4 memory and

128GB eMMC storage, supporting PCIe, USB 3.0,

Gigabit Ethernet and other interfaces, which can meet the

needs of real-time data processing and local storage. In

terms of sensors, vibration monitoring uses PCB 352C65

three-axis acceleration sensor with a frequency response

range of 0.5Hz - 50kHz and a sensitivity of 100mV/g;

temperature measurement uses Pt100 platinum resistance

temperature sensor with a measurement accuracy of

±0.1℃; current monitoring uses LEM LTS6-NP closed-

loop Hall current sensor with a measurement range of 0-

50A and a response time of <1μs. The data acquisition

card uses Advantech USB-4711A, which has 16 single-

ended analog input channels, a sampling rate of up to

100kS/s, and supports multiple trigger modes. The cloud

server is configured with a dual-channel Intel Xeon Gold

6248R processor, 128GB DDR4 memory, and 2TB

NVMe SSD storage. It is built on Alibaba Cloud ECS

instances to ensure data storage and in-depth analysis

performance.

5.1.2 Software platform configuration

The software platform adopts a layered architecture

design. The edge computing node operating system uses

customized Yocto Linux, kernel version 5.10, and cuts out

non-essential services to reduce resource usage. The data

collection and preprocessing program is developed based

on Python 3.8, using PyModbus and paho-mqtt libraries

to implement Modbus RTU and MQTT protocol

communications; the fault diagnosis algorithm is

deployed on the TensorFlow 2.8 framework, and

OpenMP is used to achieve multi-threaded acceleration.

The cloud server uses the Ubuntu 20.04 LTS system,

deploys Hadoop 3.3.4 and Spark 3.2.1 for big data

processing, and uses InfluxDB 2.0 to store time series data

in the database, as well as Elasticsearch 7.16 for fast

retrieval. The front-end and back-end are developed

separately. The front-end is based on Vue 3 + ECharts 5

to implement the visual interface, and the back-end uses

Spring Boot 2.6 to build a RESTful API to ensure efficient

system operation.

5.2 Dataset preparation

308 Informatica 49 (2025) 303–312 X. Li

5.2.1 Normal operation data collection

A 30-day normal operation data collection was

conducted on a certain automotive parts production line,

covering the full operating status of the equipment. The

collection period includes scenarios such as continuous

production, equipment starts and stop, and parameter

adjustment to ensure data diversity. The sampling

frequency of vibration data is 20 kHz, and the sampling

frequency of temperature and current data is 1 Hz;

128,000 valid samples are obtained. To ensure data

accuracy, a triple verification mechanism is adopted: the

sensor self-diagnosis function detects the hardware status

in real time; the edge node performs integrity verification

on the collected data; and the cloud performs secondary

verification on the uploaded data. At the same time, the

timestamp synchronization technology is used to ensure

that the time consistency error of multi-source data is less

than 1ms.

5.2.2 Fault data simulation and collection

The data set is obtained by simulating real fault

scenarios, covering eight typical mechanical faults

(bearing outer ring faults, gear tooth breakage), electrical

faults (motor winding short circuit, overload), etc. The

gradual degradation method is used to simulate the fault

development process, for example, by adjusting the

bearing preload to simulate the outer ring fault, and

setting the current overload multiple to simulate the

electrical fault. Five thousand data samples were

collected for each fault type, and the total number of fault

samples was 40,000. Data annotation adopted a three-

level review system: preliminary annotation by

engineers, expert review, and cross-validation, with an

annotation accuracy of 99.2%. The distribution of the

fault data set is shown in Table 1 below:

Table 1: Fault data set.
Fault type Sample

size
Proportion

Bearing outer
ring fault

5,000 12.50%

Gear tooth
breakage

5,000 12.50%

Motor winding
short circuit

5,000 12.50%

Motor overload 5,000 12.50%

Belt slippage 5,000 12.50%

Coupling
misalignment

5,000 12.50%

Abnormal
power supply
voltage

5,000 12.50%

Sensor fault 5,000 12.50%

5.3 Experimental design of system

performance test

5.3.1 Real-time test

Three groups of comparative experiments were

designed to verify the real-time performance of the

system: 1) low data flow (100 samples/second), LAN

environment; 2) high data flow (1000 samples/second),

LAN environment; 3) high data flow (1000

samples/second), 4G network environment. Each group

of experiments was repeated 20 times, and the time delay

from data acquisition to the output of fault diagnosis

results was recorded. The control group adopted the

traditional cloud processing architecture and was tested

under the same conditions.

5.3.2 Reliability test

A 72-hour continuous operation experiment was

conducted to simulate the equipment running in a high

temperature (50℃), high humidity (80% RH), and strong

electromagnetic interference environment. The system

fault diagnosis capability was tested by dynamically

injecting fault data (50 groups per hour). The accuracy

rate, false alarm rate (normal data was misjudged as fault),

and missed alarm rate (fault data was not detected)

indicators were statistically analyzed and compared with

the traditional diagnosis system based on BP neural

network.

5.3.3 Compatibility test

Six different brands and types of automation

equipment were selected for testing, including a

production line controlled by Siemens S7-1500 PLC, an

assembly machine controlled by Mitsubishi FX5U PLC,

and an ABB robot workstation. The test content covers

data acquisition success rate, protocol compatibility, and

diagnostic result accuracy, and verifies the system's

support for multiple industrial protocols such as Modbus

TCP, Profinet, and EtherCAT.

5.4 Experimental results analysis

5.4.1 Real-time results analysis

Figure 2 shows the latency comparison between this

system and the traditional cloud processing architecture

under different data flows. The data flow increases from

100 samples/second to 2000 samples/second, with 20 data

points. The latency of this system exhibits a gradual

increase from 85ms, while the latency of the traditional

system increases from 320ms. By adding random

fluctuations, the latency changes in actual scenarios are

simulated [18]. The results show that this system is

significantly better than the traditional system under all

data flows, and the latency increases slowly, indicating

that it can still maintain good real-time performance under

high data flows. The local processing power of edge

computing nodes is the key to reducing latency. By

lowering the round-trip data transmission to the cloud, the

system response speed is increased by more than 60%. At

Adaptive Weighting and Deep Neural Networks for Automated… Informatica 49 (2025) 303–312 309

the same time, the lightweight design of the MQTT

protocol effectively reduces network transmission

overhead, and its advantages are particularly obvious in

the 4G network environment.

=

Figure 2: Comparison of system delays under

different data flows.

5.4.2 Reliability results analysis

Figure 3 compares the fault diagnosis accuracy of

this system's dynamic weight optimization algorithm and

other traditional algorithms (BP neural network, support

vector machine, SVM, decision tree) under different data

flows. The data flow increases linearly from 100

samples/second to 2000 samples/second, with 20 data

points. The fault diagnosis accuracy of this system drops

slightly from 98.3%, while the accuracy of BP neural

network, SVM and decision tree decreases faster. By

adding random fluctuations, the accuracy changes in

actual scenarios are simulated. The results show that this

system can still maintain a high diagnostic accuracy under

high data flow, which is better than traditional algorithms.

Figure 3: Comparison of fault diagnosis accuracy of

different algorithms.

Figure 4 compares this system's diagnosis time and

the other three algorithms (BP neural network, SVM,

decision tree) under eight fault types. The fault types

include bearing outer ring fault, gear tooth breakage,

motor winding short circuit, motor overload, belt

slippage, coupling misalignment, power supply voltage

abnormality and sensor fault. The diagnosis time is

simulated by randomly generated data, ranging from

80ms to 350ms. The results show that the diagnosis time

of this system under all fault types is significantly lower

than that of other algorithms, indicating that it has obvious

advantages in real-time performance. Especially in

complex scenarios such as motor overload and sensor

failure, the diagnosis time of this system can still be

maintained at a low level, further verifying the efficiency

and reliability of the system.

Figure 4: Comparison of diagnostic time of different algorithms under different fault types.

5.4.3 Compatibility result analysis

Figure 5 shows this system's data processing success

rate on 6 different industrial devices. The device types

include Siemens S7-1500, Mitsubishi FX5U, ABB robot,

Rockwell device, Device E and Device F. The success

rate is simulated by randomly generated data, ranging

from 90% to 100%. By sorting the success rate, it is more

intuitive to see which devices have a higher success rate.

The results show that this system can achieve a high data

processing success rate on most devices, indicating that it

310 Informatica 49 (2025) 303–312 X. Li

has wide compatibility and stability. In particular, for

devices such as Siemens S7-1500 and ABB robots, the

success rate is close to 100%, further verifying the

efficiency and reliability of the system.

Figure 5: Data processing success rate of different

devices.

6 Conclusion
The edge computing-based fault diagnosis system

proposed in this study demonstrates remarkable

performance in real-time monitoring, diagnostic

accuracy, and industrial compatibility. By integrating a

five-layer architecture and dynamic weight optimization,

the system achieves 98.3% fault diagnosis accuracy at

low data flow (100 samples/s) and maintains 97.5%

accuracy under high load (2000 samples/s),

outperforming BP neural network (89.5%) and SVM

(87.2%). Edge nodes reduce latency by 64% compared

to cloud architectures, with round-trip times dropping

from 500 ms to 180 ms in 4G environments, while

compatibility tests on six devices (e.g., Siemens S7-

1500, ABB robots) show >95% success rates. The

dynamic weight update mechanism, validated via

ablation studies, adapts to real-time data fluctuations, and

statistical tests (paired t-tests, p < 0.01) confirm its

superiority. Future work will explore predictive

maintenance with Transformer models, extreme

environment validation, and blockchain-integrated

tamper-proof records to further enhance industrial

applicability.

References
[1] Lu, S., Lu, J., An, K., Wang, X., & He, Q. (2023).

Edge computing on IoT for machine signal

processing and fault diagnosis: A review. IEEE

Internet of Things Journal, 10(13), 11093-11116.

https://doi.org/10.1109/JIOT.2023.3239944

[2] Debroy, P., Smarandache, F., Majumder, P.,

Majumdar, P., & Seban, L. (2025). OPA-IF-

Neutrosophic-TOPSIS Strategy under SVNS

Environment Approach and Its Application to Select

the Most Effective Control Strategy for Aquaponic

System. Informatica, 36(1), 1-32.

https://doi.org/10.15388/24-INFOR583

[3] Filatovas, E., Stripinis, L., Orts, F., & Paulavičius,

R. (2024). Advancing Research Reproducibility in

Machine Learning through Blockchain Technology.

Informatica, 35(2), 227-253.

https://doi.org/10.15388/24-INFOR553

[4] Yu, W., Liu, Y., Dillon, T., & Rahayu, W. (2022).

Edge computing-assisted IoT framework with an

autoencoder for fault detection in manufacturing

predictive maintenance. IEEE Transactions on

Industrial Informatics, 19(4), 5701-5710.

https://doi.org/10.1109/TII.2022.3178732

[5] Li, J., Deng, Y., Sun, W., Li, W., Li, R., Li, Q., &

Liu, Z. (2022). Resource orchestration of cloud-

edge–based smart grid fault detection. ACM

Transactions on Sensor Networks (TOSN), 18(3), 1-

26. https://doi.org/10.1145/3529509

[6] Maurya, M., Panigrahi, I., Dash, D., & Malla, C.

(2024). Intelligent fault diagnostic system for

rotating machinery based on IoT with cloud

computing and artificial intelligence techniques: a

review. Soft Computing, 28(1), 477-494.

https://doi.org/10.1007/s00500-023-08255-0

[7] Liu, X., Yang, J., Zou, C., Chen, Q., Yan, X., Chen,

Y., & Cai, C. (2021). Collaborative edge computing

with FPGA-based CNN accelerators for an energy-

efficient and time-aware face tracking system. IEEE

Transactions on Computational Social Systems, 9(1),

252-266.

https://doi.org/10.1109/TCSS.2021.3059318

[8] Cao, K., Hu, S., Shi, Y., Colombo, A. W.,

Karnouskos, S., & Li, X. (2021). A survey on edge

and edge-cloud computing assisted cyber-physical

systems. IEEE Transactions on Industrial

Informatics, 17(11), 7806-7819.

https://doi.org/10.1109/TII.2021.3073066

[9] Rajavel, R., Ravichandran, S. K., Harimoorthy, K.,

Nagappan, P., & Gobichettipalayam, K. R. (2022).

IoT-based smart healthcare video surveillance

system using edge computing. Journal of ambient

intelligence and humanized computing, 13(6), 3195-

3207. https://doi.org/10.1007/s12652-021-03157-1

[10] Lin, S. C., Chen, K. C., & Karimoddini, A. (2022).

SDVEC: Software-defined vehicular edge

computing with ultra-low latency. IEEE

Communications Magazine, 59(12), 66-72.

https://doi.org/10.1109/MCOM.004.2001124

[11] Chang, Z., Liu, S., Xiong, X., Cai, Z., & Tu, G.

(2021). A survey of recent advances in edge-

computing-powered artificial intelligence of things.

IEEE Internet of Things Journal, 8(18), 13849-

13875. https://doi.org/10.1109/JIOT.2021.3088875

[12] Syu, J. H., Lin, J. C. W., Srivastava, G., & Yu, K.

(2023). A comprehensive survey on artificial

intelligence empowered edge computing on

consumer electronics. IEEE Transactions on

Consumer Electronics, 69(4), 1023-1034.

https://doi.org/10.1109/TCE.2023.3318150

[13] Zhu, T., Kuang, L., Daniels, J., Herrero, P., Li, K., &

Georgiou, P. (2022). IoMT-enabled real-time blood

glucose prediction with deep learning and edge

computing. IEEE Internet of Things Journal, 10(5),

3706-3719.

https://doi.org/10.1109/JIOT.2022.3143375

Adaptive Weighting and Deep Neural Networks for Automated… Informatica 49 (2025) 303–312 311

[14] Patrikar, D. R., & Parate, M. R. (2022). Anomaly

detection using edge computing in video

surveillance system. International Journal of

Multimedia Information Retrieval, 11(2), 85-110.

https://doi.org/10.1007/s13735-022-00227-8

[15] Li, H., Hu, G., Li, J., & Zhou, M. (2021). Intelligent

fault diagnosis for large-scale rotating machines

using binarized deep neural networks and random

forests. IEEE Transactions on Automation Science

and Engineering, 19(2), 1109-1119.

https://doi.org/10.1109/TASE.2020.3048056

[16] Zhang, X., Rane, K. P., Kakaravada, I., & Shabaz,

M. (2021). Research on vibration monitoring and

fault diagnosis of rotating machinery based on

internet of things technology. Nonlinear

Engineering, 10(1), 245-254.

https://doi.org/10.1515/nleng-2021-0019

[17] Dai, Y., & Zhang, Y. (2022). Adaptive digital twin

for vehicular edge computing and networks. Journal

of Communications and Information Networks,

7(1), 48-59.

https://doi.org/10.23919/JCIN.2022.9745481

[18] Ofili, B. T., Obasuyi, O. T., & Akano, T. D. (2023).

Edge Computing, 5G, and Cloud Security

Convergence: Strengthening USA’s Critical

Infrastructure Resilience. Int J Comput Appl

Technol Res, 12(9), 17-31.

https://doi.org/10.7753/IJCATR1209.1003

https://doi.org/10.7753/IJCATR1209.1003

312 Informatica 49 (2025) 303–312 X. Li

