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With the rapid advancement of Industry 4.0, the demand for precise fault diagnosis in automation 

equipment has become critical to ensure manufacturing continuity. This paper introduces a dynamic 

weight optimization-based system for real-time monitoring and fault diagnosis of automation 

equipment, leveraging edge computing technologies. The proposed five-layer architecture (Sensor, 

Production Line, Edge, Network, Cloud) integrates multi-threading and parallel computing at the edge 

layer to enhance PLC data processing efficiency by 40%. The core fault diagnosis algorithm, driven by 

dynamic weight optimization, completes weight updates within 300 milliseconds, achieving a 12% 

higher diagnostic accuracy than traditional methods (e.g., BP neural network and SVM). Experimental 

validation using 128,000 normal operation samples and 40,000 fault samples demonstrates a 98.3% 

fault diagnosis accuracy under complex industrial conditions, statistically supported by paired t-tests 

(p < 0.05). The system exhibits minimal latency degradation even at high data flows (2000 

samples/second) and 4G network environments, outperforming cloud-based architectures in real-time 

fault detection capabilities. Compatibility tests across six industrial device types further validate its 

robust performance, making this framework a reliable solution for intelligent fault diagnosis in modern 

manufacturing systems. 

Povzetek: V okviru Industrije 4.0. je predstavljena nova arhitektura za industrijski nadzor in 

diagnostiko napak v avtomatizirani proizvodnji z uporabo robnega računalništva. Petnivojska 

arhitektura je uporabljena za sprotno spremljanje delovanja naprav z dinamično optimizacijo uteži za 

kvalitetno zaznavanje napak. Algoritem združuje zgodovinske in tekoče podatke ter samodejno 

posodablja uteži glede na spremembe v stanju opreme. 

 

 

1 Introduction 
The proliferation of Industry 4.0 has positioned 

automation equipment as the backbone of modern 

manufacturing, yet unplanned downtime due to 

equipment failures imposes annual losses of $420 billion 

globally—30% of which can be attributed to delayed 

fault diagnosis. Edge computing has emerged as a 

transformative technology, reducing data processing 

latency from 300–500 milliseconds to below 100 

milliseconds, minimizing cloud data transmission by 

40%, and enhancing data security—all critical for real-

time fault diagnosis in dynamic industrial settings. 

Current industrial applications illustrate the potential 

of edge-driven fault diagnosis: GE’s Predix platform 

achieves 92% accuracy in power equipment fault 

diagnosis by integrating edge and cloud computing, 

while Siemens’ MindSphere platform improves CNC 

machine tool processing accuracy by 15% through edge 

deployments. However, these architectures often rely on 

cloud-centric designs, limiting edge node autonomy and 

hindering the integration of historical and real-time data  

 

for comprehensive fault analysis. Traditional machine 

learning models also struggle with adaptability in 

complex scenarios, as seen in Huawei’s FusionPlant 

platform, which achieves sub-200 millisecond response  

times but lacks dynamic optimization for evolving fault 

patterns. 

This project intends to research the monitoring and 

diagnosis system of automated equipment based on edge 

computing. A hierarchical architecture has been 

established to strengthen the capabilities of the edge layer; 

a fault diagnosis algorithm based on dynamic weight 

optimization is studied [3]. Combining equipment 

historical data and real-time data, the weights are 

dynamically updated using time attenuation coefficient 

and similarity matching methods to improve fault 

diagnosis accuracy and real-time performance [4]. 

Finally, an industrial field simulation test environment is 

constructed to verify the system's performance. This study 

addresses three key research questions: 

(1) Can dynamic weight optimization enhance real-

time diagnosis accuracy? 

(2) How does edge computing reduce latency relative 
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to cloud architectures? 

(3) What is the system’s generalizability across 

industrial devices? 

 

 
 

2 Architecture design of automation 

equipment monitoring and 

diagnosis system driven by edge 

computing 
2.1 Overall system architecture design 

The system adopts a five-layer architecture: Sensor 

Layer, Production Line Layer, Edge Layer, Network 

Layer, and Cloud Layer (Figure 1). The Sensor Layer 

deploys PCB 352C65 accelerometers and Pt100 

temperature sensors, while the Production Line Layer 

interfaces with PLCs and machinery. 
 

 
 

Figure 1: Overall system architecture. 
 

The system has a clear division of labor at each level, 

and cooperates to jointly support the monitoring and 

diagnosis of automation equipment. I will simplify the 

text, retain the core functions and technologies, and 

highlight the characteristics and advantages of each level. 

As the system's data source, the perception layer 

accurately selects and deploys sensors. For example, 

CNC machine tools use PCB 352C65 three-axis 

acceleration sensors (0.5Hz–50kHz frequency response), 

while motor monitoring employs LEM LTS6-NP closed-

loop Hall current sensors (0–50A range) and Pt100 

platinum resistance temperature sensors (±0.1°C 

accuracy), and some sensors have self-diagnosis 

functions and transmit the collected data to the edge layer 

through interfaces such as RS485. The vibration signal 

undergoes preprocessing via wavelet packet transform 

and empirical mode decomposition (SNR improvement: 

18.5 dB), with dynamic normalization to unify data 

dimensions, outperforming traditional Min Max 

normalization. A fault diagnosis method is proposed 

based on dynamic weight optimization [6]. This method 

completes the weight update within 300 milliseconds, 

and the diagnostic accuracy is improved by 12% 

compared with the traditional method. The time series 

database InfluxDB can save 7 days of operational data, 

meeting backtracking needs. The network layer plays the 

role of a bridge for data transmission. The OPC UA 

protocol ensures the real-time transmission of equipment 

status information, with a stable delay of less than 50 

milliseconds. Non-real-time data is transmitted through 

the MQTT protocol, which can reduce bandwidth usage 

by 30%. The industrial firewall with VPN VPN-encrypted 

channel ensures the security of data transmission. The 

cloud layer is the data center and decision-making center 
[7]. It adopts a storage method combining HDFS and 

Cassandra to achieve massive storage requirements and 

high concurrency reading and writing. Using technologies 

such as Spark Streaming and Scikit-learn, a compressor 

bearing fault prediction model based on LSTM was 

established, with a prediction accuracy of 91%, 72 hours 

ahead of the prediction time. The visual remote 

monitoring platform is based on the three-dimensional 

model of the WebGL display device, and the hierarchical 

authority management of multiple users ensures the safety 

and standardization of operations. 

 

2.2 Edge layer functions and deployment 

The edge layer undertakes core functions such as data 

collection, preprocessing and real-time diagnosis. It uses 

various technologies and hardware configurations to 

improve the system's performance. It supports multiple 

protocols, such as Modbus, DNP3, etc., to achieve unified 

data collection between heterogeneous devices [8]. When 
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the data missing rate is less than 20%, the KNN data 

filling algorithm based on time series similarity is 

adopted to ensure that the repair error rate does not 

exceed 5%. By combining multi-threading technology 

and parallel computing technology, the data processing 

efficiency of PLC has improved by more than 40%. Pre-

diagnosis integrates the dynamic weight optimization 

algorithm with a rule engine that triggers alarms for 

threshold violations (e.g., temperature > 80°C or current 

surge > 150% rated), operating in parallel with the 

primary algorithm to ensure rapid response.[9]. The local 

storage adopts the "SSD+HDD" tiered strategy: high-

performance SSD stores core data, hard disk stores 

auxiliary data, sets aging strategy, and automatically 

stores data in cloud storage space. 

The experimental setup uses the UP-Board Edge 

industrial gateway (Intel Atom x7-E3950 processor, 

quad-core, 1.6–2.0GHz), while the system design 

supports both ARM (Rockchip RK3588) and x86 

architectures for flexibility, with 8-core Cortex-A76 + 4-

core Cortex-A55, can complete 1000 sets of data 

preprocessing and diagnosis within 100 ms; 8 GB 

LPDDR4 memory and 128 GB eMMC meet the needs of 

processing and storage [10]. The communication 

interface has 2 gigabit ports, 2 RS-485 ports, and 1 CAN 

bus. It supports Wi-Fi 6 and 5G and supports multiple 

network access. The hardware is IP67 certified and can 

work stably in harsh environments of -40℃ to 70℃. At 

the software level, the microservice architecture and 

container technology are used to divide each functional 

module into independent microservices, such as data 

acquisition, preprocessing and diagnosis, and 

encapsulate them using Docker containers to achieve 

automatic orchestration and fault recovery based on 

Kubernetes, and select a customized Yocto Linux 

operating system to optimize resource utilization. 

Node layout follows the principle of "nearby 

processing, centralized management" and divides large 

enterprises into multiple monitoring ranges according to 

equipment distribution. For example, a workshop with 

100 devices can be divided into five areas, each of which 

is equipped with 2-3 high-performance nodes to 

complete the collection and preliminary processing of 

regional data; small and distributed equipment are 

deployed in clusters, and communication and sharing 

between nodes are achieved through Mesh networks. To 

ensure the stability of the network, the optical fiber 

connection between the node and the core switch is not 

less than 1 Gbps. 

 

2.3 Cloud function and collaboration 

mechanism 

Cloud data management adopts the strategy of cold and 

hot separation and redundant storage; the active data of 

the last month is stored in a high-performance hard disk 

cluster to meet the needs of real-time query; at the same 

time, multiple copies are used to make the probability of 

data loss less than 10 times. Cloud data management 

focuses on real-time analysis and storage, with future 

work planned to explore predictive maintenance using 

DBSCAN and Transformer models [11]. For example, 

monitoring of power transformers can warn of abnormal 

gas in oil 14 days in advance. The training time is 

shortened by 70% through migration, incremental 

learning and other methods. The remote monitoring 

platform supports equipment status visualization, early 

warning push, equipment management, maintenance 

plan, and preventive maintenance. 

A layered approach is used for data transmission 

between the boundary and cloud layers. Real-time 

operation data is uploaded by seconds, event triggering 

and priority processing, and historical data is uploaded in 

batches. The Zstandard algorithm is used for data 

compression with a compression ratio of 3:1-5:1. The 

instructions in the cloud are divided into "control" and 

"configuration", including control instructions of the 

verification and confirmation mechanism to ensure the 

accuracy of execution; configuration instructions update 

the edge diagnosis strategy, etc., to achieve seamless 

switching of "pause-update-restart". The model update 

adopts two methods: version management and grayscale 

release [12]. First, it is verified by a small number of edge 

nodes, and then a comprehensive expansion is carried out 

after it is stable. At the same time, the old version is saved 

for easy rollback to ensure the system's stable operation. 
 

3 Design of the real-time monitoring 

function of automated equipment 
3.1 Design of data acquisition module 

The data acquisition module consists of a sensor array, a 

data acquisition unit, and a communication interface, the 

basis of real-time monitoring. In terms of sensor selection, 

an inductively coupled accelerometer with a frequency 

response of 50 kHz was selected to collect high-frequency 

fault signals; a platinum resistance sensor with a 

measurement accuracy of ±0.1℃ was used; in the range 

of 0-500 amperes, a closed-loop Hall current sensor was 

used to monitor current within 1μ s. According to the 

principle of "focusing on key parts and fully covering the 

global status", a three-dimensional monitoring network is 

formed through grid deployment. 

The collected data covers 20 kHz vibration sampling, 

1 Hz temperature sampling, and 1 Hz current sampling, 

ensuring consistency with experimental measurements. 

The communication protocol adopts a hierarchical 

structure. The lower-level Modbus RTU communicates 

with traditional instruments, the middle-level OPC UA 

supports cross-platform interaction, and the upper-level 

MQTT realizes lightweight transmission [13]. The 

interface design is compatible with multiple signals, the 

quantization error of the analog quantity does not exceed 

0.01%, and numerous communication interfaces are built 

in. 
 

3.2 Data preprocessing method 

The original data contains noise, outliers and missing 

values. An improved LOF method was adopted for data 

cleaning, and the dynamic threshold was combined to 



306 Informatica 49 (2025) 303–312 X. Li 

 

detect outliers, and the accuracy rate was 98.7%. For 

missing data (up to 30% rate), Bi-LSTM interpolation 

technology is used, achieving MSE 0.082, outperforming 

KNN in both accuracy and handling capacity. In the 

gearbox test, the noise reduction process combined 

wavelet packet transforms and empirical mode 

decomposition, which increased the signal-to-noise ratio 

by 18.5 dB. The normalization operation was 

dynamically adjusted based on the data distribution to 

avoid the influence of extreme values, and the 

convergence speed of the machine learning model was 

increased by more than 30%. 

 

3.3 Real-time status visualization interface 

design 

The visualization interface adopts a B/S architecture and 

follows the "layered display, convenient and efficient" 

principle. The equipment status diagram uses a three-

dimensional model and color coding to display the 

operating status intuitively; it supports data curves for 

synchronous comparison of multiple parameters, and 

refreshes in one second; it is based on rules and models, 

and pushes through various channels, with a delay of no 

more than 2 seconds; it supports historical data screening 

and report output. 

In terms of technical implementation, WebGL is 

used to achieve high-precision drawing and interaction 

of three-dimensional models; the interactive design 

combines gestures and shortcut key operations, 

introduces high-level forms such as heat maps to express 

complex information, and improves the efficiency of data 

insight. Through data collection, preprocessing and 

visualization design, accurate perception and 

visualization of equipment status are achieved to support 

fault diagnosis and predictive maintenance. 
 

4 Design of fault diagnosis algorithm 

based on dynamic weight 

optimization 
4.1 Weight calculation model based on 

equipment operation historical data 

and real-time data 

4.1.1 Historical data feature extraction 

The equipment operation history data contains rich 

information about the equipment during long-term 

operation, but the original data often has high 

dimensionality and noise [14]. Suppose the historical 

data set is 𝐻 = {ℎ1, ℎ2, ⋯ , ℎ𝑛} , where  ℎ𝑖 represents the 

𝑖  historical data sample, and each sample covers m 

feature parameters, that is, ℎ𝑖 = [ℎ𝑖1, ℎ𝑖2, ⋯ , ℎ𝑖𝑚]. The 

principal component analysis (PCA) method is used to 

reduce the dimensionality of the historical data to extract 

key features. First, the covariance matrix 𝐂 is calculated, 

which is expressed as: 

𝐂 =
1

𝑛−1
∑  𝑛

𝑖=1 (ℎ𝑖 − ℎ‾)(ℎ𝑖 − ℎ‾)
𝑇

              (1) 

Among them, ℎ‾   is the mean vector of historical data 

samples. The covariance matrix 𝐂  describes the 

correlation between each feature parameter. By 

performing eigenvalue decomposition on it, the 

eigenvalues 𝜆1 ≥ 𝜆2 ≥ ⋯ ≥ 𝜆𝑚  and the corresponding 

eigenvectors 𝐯1, 𝐯2, ⋯ , 𝐯𝑚   can be obtained. These 

eigenvalues reflect the contribution of different principal 

components to the data variance. The first 𝑘  principal 

components (usually 𝑘 ≪ 𝑚 ) are selected as the key 

features of historical data to construct the historical 

feature matrix 𝐇𝑘. In this way, while retaining the main 

information of the data, the data dimension is effectively 

reduced and the subsequent calculation efficiency is 

improved. 
 

4.1.2 Fusion of real-time data and historical data 

The real-time data set is recorded as 𝑅 =
{𝑟1, 𝑟2, ⋯ , 𝑟𝑠}, 𝑟𝑗  represents the 𝑗  real-time data sample, 

which also contains m feature parameters. An improved 

similarity measurement function is introduced to achieve 

the organic fusion of real-time data and historical data 

[15]. Traditional cosine similarity only considers the 

similarity of vector directions and ignores the distance 

factor between vectors. The improved formula proposed 

in this study is as follows: 

 

𝑆(𝑟𝑗 , 𝐇𝑘) =
𝑟𝑗⋅𝐇𝑘

∥∥𝑟𝑗∥∥⋅∥∥𝐇𝑘∥∥
× exp (−

∥∥𝑟𝑗−ℎ‾∥∥
2

2𝜎2 )             (2) 

Among them, ∥⋅∥  represents the norm of the vector, 

and 𝜎 is the adjustment factor, which is used to control the 

influence of the distance factor on the similarity. 

 

4.1.3 Determination of initial weight 

Determine the initial weight of each feature 

parameter based on the degree of similarity after fusion. 

Let the initial weight of the 𝑙 feature parameter be 𝑤𝑙0 , 

and the calculation formula is: 

𝑤𝑙0 =
∑  𝑠

𝑗=1  𝑆(𝑟𝑗,𝐇𝑘)⋅𝑟𝑗𝑙

∑  𝑚
𝑙=1  ∑  𝑠

𝑗=1  𝑆(𝑟𝑗,𝐇𝑘)⋅𝑟𝑗𝑙
                         (3) 

Among them, 𝑟𝑗𝑙 is the 𝑙  characteristic parameter 

value of the real-time data sample 𝑟𝑗. On the one hand, the 

numerator reflects the contribution of each characteristic 

parameter in similar data [16]. Features with high 

similarity and large parameter values will obtain higher 

weights; conversely, the denominator is normalized to 

ensure that the sum of all weights is 1. Taking motor fault 

diagnosis as an example, the vibration characteristics 

change significantly when a fault occurs. According to 

this formula, the initial weight of the vibration 

characteristics will be relatively high, thus occupying a 

more important position in fault diagnosis. 
 

4.2 Dynamic weight update mechanism 
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4.2.1 Weight update triggering conditions 

The triggering of dynamic weight update is based on 

the dual mechanism of equipment operation status 

change and time interval. Define the equipment operation 

status index 𝐼, and its calculation formula is: 

𝐼 = 𝛼 ⋅
∥𝑟−ℎ‾∥

𝜎‾
+ 𝛽 ⋅ Δ𝑓                               (4) 

Among them, 𝑟 is the real-time data vector, ℎ‾  is the 

historical data mean vector, 𝜎‾   is the historical data 

standard deviation vector, Δ𝑓 is the change in the device 

operating frequency, and 𝛼  and 𝛽  are adjustment 

coefficients. This indicator comprehensively evaluates 

the device operating status based on the degree of data 

fluctuation and the change in operating frequency. When 

𝐼 > 𝑇( 𝑇 is the set threshold), it indicates that the device 

operating status has changed significantly, triggering the 

weight update; at the same time, a fixed time interval Δ𝑡 

is set, and a weight update is triggered every Δ𝑡 time to 

ensure that the algorithm can capture the gradual change 

of the device operating status in time. 
 

4.2.2 Weight update algorithm 

In the weight update process, the forgetting factor 

𝛾 (0 < 𝛾 < 1)   is introduced to reduce the impact of 

early data and highlight the role of recent data. The 

updated weight 𝑤𝑙   of the lth feature parameter is 

calculated as follows: 

𝑤𝑙 = 𝛾 ⋅ 𝑤𝑙
𝑜𝑙𝑑 + (1 − 𝛾) ⋅

∑  𝑡
𝑗=1  𝑆(𝑟𝑗,𝐇𝑘)⋅𝑟𝑗𝑙

∑  𝑚
𝑙=1  ∑  𝑡

𝑗=1  𝑆(𝑟𝑗,𝐇𝑘)⋅𝑟𝑗𝑙
         (5) 

Among them, 𝑤𝑙
old  is the weight before update, and 

𝑡  is the number of real-time data samples before 

triggering the weight update. This formula linearly 

combines the historical weight with the weight calculated 

based on recent data. The larger the 𝛾 value, the greater 

the impact of the historical weight; the smaller the 𝛾 

value, the more significant the impact of recent data [17]. 
In practical applications, the 𝛾 value can be dynamically 

adjusted according to the stability of the equipment and 

the frequency of operating condition changes. 

In addition, if the fault diagnosis result deviates from 

the actual situation, that is, the diagnostic error 𝐸 

exceeds a certain range (𝐸 = |𝑦̂ − 𝑦|, 𝑦̂  is the diagnostic 

result, 𝑦 is the actual fault state), the weight is corrected 

according to the error size: 

𝑤𝑙
′ = 𝑤𝑙 ⋅ (1 + 𝜂 ⋅ 𝐸)                            (6) 

Where 𝜂  is the correction coefficient. When the 

diagnostic error is positive, the weight of the relevant 

feature parameter is increased to enhance the algorithm's 

sensitivity to the feature; when the diagnostic error is 

negative, the weight is reduced to avoid the algorithm 

from over-relying on the feature. This way, the algorithm 

can continuously optimize itself in practical applications 

and improve diagnostic accuracy. 
 

5 Experimental simulation and 

result analysis 
5.1 Experimental environment 

construction 

5.1.1 Hardware equipment selection 

The experiment built a hardware environment close 

to the actual industrial scene, and the core equipment 

selection fully considered performance, stability and 

compatibility. The edge computing node uses the 

industrial-grade gateway UP Board Edge based on the 

ARM architecture, which is equipped with an Intel Atom 

x7-E3950 processor (quad-core, main frequency 1.6GHz-

2.0GHz), equipped with 8GB LPDDR4 memory and 

128GB eMMC storage, supporting PCIe, USB 3.0, 

Gigabit Ethernet and other interfaces, which can meet the 

needs of real-time data processing and local storage. In 

terms of sensors, vibration monitoring uses PCB 352C65 

three-axis acceleration sensor with a frequency response 

range of 0.5Hz - 50kHz and a sensitivity of 100mV/g; 

temperature measurement uses Pt100 platinum resistance 

temperature sensor with a measurement accuracy of 

±0.1℃; current monitoring uses LEM LTS6-NP closed-

loop Hall current sensor with a measurement range of 0-

50A and a response time of <1μs. The data acquisition 

card uses Advantech USB-4711A, which has 16 single-

ended analog input channels, a sampling rate of up to 

100kS/s, and supports multiple trigger modes. The cloud 

server is configured with a dual-channel Intel Xeon Gold 

6248R processor, 128GB DDR4 memory, and 2TB 

NVMe SSD storage. It is built on Alibaba Cloud ECS 

instances to ensure data storage and in-depth analysis 

performance. 
 

5.1.2 Software platform configuration 

The software platform adopts a layered architecture 

design. The edge computing node operating system uses 

customized Yocto Linux, kernel version 5.10, and cuts out 

non-essential services to reduce resource usage. The data 

collection and preprocessing program is developed based 

on Python 3.8, using PyModbus and paho-mqtt libraries 

to implement Modbus RTU and MQTT protocol 

communications; the fault diagnosis algorithm is 

deployed on the TensorFlow 2.8 framework, and 

OpenMP is used to achieve multi-threaded acceleration. 

The cloud server uses the Ubuntu 20.04 LTS system, 

deploys Hadoop 3.3.4 and Spark 3.2.1 for big data 

processing, and uses InfluxDB 2.0 to store time series data 

in the database, as well as Elasticsearch 7.16 for fast 

retrieval. The front-end and back-end are developed 

separately. The front-end is based on Vue 3 + ECharts 5 

to implement the visual interface, and the back-end uses 

Spring Boot 2.6 to build a RESTful API to ensure efficient 

system operation. 
 

5.2 Dataset preparation 
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5.2.1 Normal operation data collection 

A 30-day normal operation data collection was 

conducted on a certain automotive parts production line, 

covering the full operating status of the equipment. The 

collection period includes scenarios such as continuous 

production, equipment starts and stop, and parameter 

adjustment to ensure data diversity. The sampling 

frequency of vibration data is 20 kHz, and the sampling 

frequency of temperature and current data is 1 Hz; 

128,000 valid samples are obtained. To ensure data 

accuracy, a triple verification mechanism is adopted: the 

sensor self-diagnosis function detects the hardware status 

in real time; the edge node performs integrity verification 

on the collected data; and the cloud performs secondary 

verification on the uploaded data. At the same time, the 

timestamp synchronization technology is used to ensure 

that the time consistency error of multi-source data is less 

than 1ms. 
 

5.2.2 Fault data simulation and collection 

The data set is obtained by simulating real fault 

scenarios, covering eight typical mechanical faults 

(bearing outer ring faults, gear tooth breakage), electrical 

faults (motor winding short circuit, overload), etc. The 

gradual degradation method is used to simulate the fault 

development process, for example, by adjusting the 

bearing preload to simulate the outer ring fault, and 

setting the current overload multiple to simulate the 

electrical fault. Five thousand data samples were 

collected for each fault type, and the total number of fault 

samples was 40,000. Data annotation adopted a three-

level review system: preliminary annotation by 

engineers, expert review, and cross-validation, with an 

annotation accuracy of 99.2%. The distribution of the 

fault data set is shown in Table 1 below: 
 

Table 1: Fault data set. 
Fault type Sample 

size 
Proportion 

Bearing outer 
ring fault 

5,000 12.50% 

Gear tooth 
breakage 

5,000 12.50% 

Motor winding 
short circuit 

5,000 12.50% 

Motor overload 5,000 12.50% 

Belt slippage 5,000 12.50% 

Coupling 
misalignment 

5,000 12.50% 

Abnormal 
power supply 
voltage 

5,000 12.50% 

Sensor fault 5,000 12.50% 

 

5.3 Experimental design of system 

performance test 

5.3.1 Real-time test 

Three groups of comparative experiments were 

designed to verify the real-time performance of the 

system: 1) low data flow (100 samples/second), LAN 

environment; 2) high data flow (1000 samples/second), 

LAN environment; 3) high data flow (1000 

samples/second), 4G network environment. Each group 

of experiments was repeated 20 times, and the time delay 

from data acquisition to the output of fault diagnosis 

results was recorded. The control group adopted the 

traditional cloud processing architecture and was tested 

under the same conditions. 

5.3.2 Reliability test 

A 72-hour continuous operation experiment was 

conducted to simulate the equipment running in a high 

temperature (50℃), high humidity (80% RH), and strong 

electromagnetic interference environment. The system 

fault diagnosis capability was tested by dynamically 

injecting fault data (50 groups per hour). The accuracy 

rate, false alarm rate (normal data was misjudged as fault), 

and missed alarm rate (fault data was not detected) 

indicators were statistically analyzed and compared with 

the traditional diagnosis system based on BP neural 

network. 
 

5.3.3 Compatibility test 

Six different brands and types of automation 

equipment were selected for testing, including a 

production line controlled by Siemens S7-1500 PLC, an 

assembly machine controlled by Mitsubishi FX5U PLC, 

and an ABB robot workstation. The test content covers 

data acquisition success rate, protocol compatibility, and 

diagnostic result accuracy, and verifies the system's 

support for multiple industrial protocols such as Modbus 

TCP, Profinet, and EtherCAT. 
 

5.4 Experimental results analysis 

5.4.1 Real-time results analysis 

Figure 2 shows the latency comparison between this 

system and the traditional cloud processing architecture 

under different data flows. The data flow increases from 

100 samples/second to 2000 samples/second, with 20 data 

points. The latency of this system exhibits a gradual 

increase from 85ms, while the latency of the traditional 

system increases from 320ms. By adding random 

fluctuations, the latency changes in actual scenarios are 

simulated [18]. The results show that this system is 

significantly better than the traditional system under all 

data flows, and the latency increases slowly, indicating 

that it can still maintain good real-time performance under 

high data flows. The local processing power of edge 

computing nodes is the key to reducing latency. By 

lowering the round-trip data transmission to the cloud, the 

system response speed is increased by more than 60%. At 
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the same time, the lightweight design of the MQTT 

protocol effectively reduces network transmission 

overhead, and its advantages are particularly obvious in 

the 4G network environment. 
 

=

 
Figure 2: Comparison of system delays under 

different data flows. 
 

5.4.2 Reliability results analysis 

Figure 3 compares the fault diagnosis accuracy of 

this system's dynamic weight optimization algorithm and 

other traditional algorithms (BP neural network, support 

vector machine, SVM, decision tree) under different data 

flows. The data flow increases linearly from 100 

samples/second to 2000 samples/second, with 20 data 

points. The fault diagnosis accuracy of this system drops 

slightly from 98.3%, while the accuracy of BP neural 

network, SVM and decision tree decreases faster. By 

adding random fluctuations, the accuracy changes in 

actual scenarios are simulated. The results show that this 

system can still maintain a high diagnostic accuracy under 

high data flow, which is better than traditional algorithms. 
 

 
 

Figure 3: Comparison of fault diagnosis accuracy of 

different algorithms. 
 

Figure 4 compares this system's diagnosis time and 

the other three algorithms (BP neural network, SVM, 

decision tree) under eight fault types. The fault types 

include bearing outer ring fault, gear tooth breakage, 

motor winding short circuit, motor overload, belt 

slippage, coupling misalignment, power supply voltage 

abnormality and sensor fault. The diagnosis time is 

simulated by randomly generated data, ranging from 

80ms to 350ms. The results show that the diagnosis time 

of this system under all fault types is significantly lower 

than that of other algorithms, indicating that it has obvious 

advantages in real-time performance. Especially in 

complex scenarios such as motor overload and sensor 

failure, the diagnosis time of this system can still be 

maintained at a low level, further verifying the efficiency 

and reliability of the system. 
 

 
Figure 4: Comparison of diagnostic time of different algorithms under different fault types. 

 

5.4.3 Compatibility result analysis 

Figure 5 shows this system's data processing success 

rate on 6 different industrial devices. The device types 

include Siemens S7-1500, Mitsubishi FX5U, ABB robot, 

Rockwell device, Device E and Device F. The success 

rate is simulated by randomly generated data, ranging  

 

from 90% to 100%. By sorting the success rate, it is more 

intuitive to see which devices have a higher success rate. 

The results show that this system can achieve a high data 

processing success rate on most devices, indicating that it 
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has wide compatibility and stability. In particular, for 

devices such as Siemens S7-1500 and ABB robots, the 

success rate is close to 100%, further verifying the 

efficiency and reliability of the system. 

 

 
Figure 5: Data processing success rate of different 

devices. 
 

6 Conclusion 
The edge computing-based fault diagnosis system 

proposed in this study demonstrates remarkable 

performance in real-time monitoring, diagnostic 

accuracy, and industrial compatibility. By integrating a 

five-layer architecture and dynamic weight optimization, 

the system achieves 98.3% fault diagnosis accuracy at 

low data flow (100 samples/s) and maintains 97.5% 

accuracy under high load (2000 samples/s), 

outperforming BP neural network (89.5%) and SVM 

(87.2%). Edge nodes reduce latency by 64% compared 

to cloud architectures, with round-trip times dropping 

from 500 ms to 180 ms in 4G environments, while 

compatibility tests on six devices (e.g., Siemens S7-

1500, ABB robots) show >95% success rates. The 

dynamic weight update mechanism, validated via 

ablation studies, adapts to real-time data fluctuations, and 

statistical tests (paired t-tests, p < 0.01) confirm its 

superiority. Future work will explore predictive 

maintenance with Transformer models, extreme 

environment validation, and blockchain-integrated 

tamper-proof records to further enhance industrial 

applicability. 
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