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With the rapid advancement of Industry 4.0, the demand for precise fault diagnosis in automation
equipment has become critical to ensure manufacturing continuity. This paper introduces a dynamic
weight optimization-based system for real-time monitoring and fault diagnosis of automation
equipment, leveraging edge computing technologies. The proposed five-layer architecture (Sensor,
Production Line, Edge, Network, Cloud) integrates multi-threading and parallel computing at the edge
layer to enhance PLC data processing efficiency by 40%. The core fault diagnosis algorithm, driven by
dynamic weight optimization, completes weight updates within 300 milliseconds, achieving a 12%
higher diagnostic accuracy than traditional methods (e.g., BP neural network and SVM). Experimental
validation using 128,000 normal operation samples and 40,000 fault samples demonstrates a 98.3%
fault diagnosis accuracy under complex industrial conditions, statistically supported by paired t-tests
(p < 0.05). The system exhibits minimal latency degradation even at high data flows (2000
samples/second) and 4G network environments, outperforming cloud-based architectures in real-time
fault detection capabilities. Compatibility tests across six industrial device types further validate its
robust performance, making this framework a reliable solution for intelligent fault diagnosis in modern
manufacturing systems.

Povzetek: V okviru Industrije 4.0. je predstavljena nova arhitektura za industrijski nadzor in
diagnostiko napak v avtomatizirani proizvodnji z uporabo robmega racunalnistva. Petnivojska
arhitektura je uporabljena za sprotno spremljanje delovanja naprav z dinamicno optimizacijo utezi za
kvalitetno zaznavanje napak. Algoritem zdruzuje zgodovinske in tekoce podatke ter samodejno

posodablja uteZi glede na spremembe v stanju opreme.

1 Introduction

The proliferation of Industry 4.0 has positioned
automation equipment as the backbone of modern
manufacturing, yet unplanned downtime due to
equipment failures imposes annual losses of $420 billion
globally—30% of which can be attributed to delayed
fault diagnosis. Edge computing has emerged as a
transformative technology, reducing data processing
latency from 300-500 milliseconds to below 100
milliseconds, minimizing cloud data transmission by
40%, and enhancing data security—all critical for real-
time fault diagnosis in dynamic industrial settings.

Current industrial applications illustrate the potential
of edge-driven fault diagnosis: GE’s Predix platform
achieves 92% accuracy in power equipment fault
diagnosis by integrating edge and cloud computing,
while Siemens’ MindSphere platform improves CNC
machine tool processing accuracy by 15% through edge
deployments. However, these architectures often rely on
cloud-centric designs, limiting edge node autonomy and
hindering the integration of historical and real-time data

for comprehensive fault analysis. Traditional machine
learning models also struggle with adaptability in
complex scenarios, as seen in Huawei’s FusionPlant
platform, which achieves sub-200 millisecond response
times but lacks dynamic optimization for evolving fault
patterns.

This project intends to research the monitoring and
diagnosis system of automated equipment based on edge
computing. A hierarchical architecture has been
established to strengthen the capabilities of the edge layer;
a fault diagnosis algorithm based on dynamic weight
optimization is studied [3]. Combining equipment
historical data and real-time data, the weights are
dynamically updated using time attenuation coefficient
and similarity matching methods to improve fault
diagnosis accuracy and real-time performance [4].
Finally, an industrial field simulation test environment is
constructed to verify the system's performance. This study
addresses three key research questions:

(1) Can dynamic weight optimization enhance real-
time diagnosis accuracy?

(2) How does edge computing reduce latency relative
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to cloud architectures?
(3) What is the system’s generalizability across
industrial devices?

2 Architecture design of automation
equipment monitoring and

diagnosis system driven by edge

computing
2.1 Overall system architecture design

The system adopts a five-layer architecture: Sensor
Layer, Production Line Layer, Edge Layer, Network
Layer, and Cloud Layer (Figure 1). The Sensor Layer
deploys PCB 352C65 accelerometers and Pt100
temperature sensors, while the Production Line Layer
interfaces with PLCs and machinery.
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Figure 1: Overall system architecture.

The system has a clear division of labor at each level,
and cooperates to jointly support the monitoring and
diagnosis of automation equipment. 1 will simplify the
text, retain the core functions and technologies, and
highlight the characteristics and advantages of each level.
As the system's data source, the perception layer
accurately selects and deploys sensors. For example,
CNC machine tools use PCB 352C65 three-axis
acceleration sensors (0.5Hz-50kHz frequency response),
while motor monitoring employs LEM LTS6-NP closed-
loop Hall current sensors (0-50A range) and Pt100
platinum resistance temperature sensors (£0.1°C
accuracy), and some sensors have self-diagnosis
functions and transmit the collected data to the edge layer
through interfaces such as RS485. The vibration signal
undergoes preprocessing via wavelet packet transform
and empirical mode decomposition (SNR improvement:
18.5 dB), with dynamic normalization to unify data
dimensions, outperforming traditional Min Max
normalization. A fault diagnosis method is proposed
based on dynamic weight optimization [6]. This method
completes the weight update within 300 milliseconds,
and the diagnostic accuracy is improved by 12%
compared with the traditional method. The time series
database InfluxDB can save 7 days of operational data,
meeting backtracking needs. The network layer plays the
role of a bridge for data transmission. The OPC UA

protocol ensures the real-time transmission of equipment
status information, with a stable delay of less than 50
milliseconds. Non-real-time data is transmitted through
the MQTT protocol, which can reduce bandwidth usage
by 30%. The industrial firewall with VPN VPN-encrypted
channel ensures the security of data transmission. The
cloud layer is the data center and decision-making center
[7]. It adopts a storage method combining HDFS and
Cassandra to achieve massive storage requirements and
high concurrency reading and writing. Using technologies
such as Spark Streaming and Scikit-learn, a compressor
bearing fault prediction model based on LSTM was
established, with a prediction accuracy of 91%, 72 hours
ahead of the prediction time. The visual remote
monitoring platform is based on the three-dimensional
model of the WebGL display device, and the hierarchical
authority management of multiple users ensures the safety
and standardization of operations.

2.2 Edge layer functions and deployment

The edge layer undertakes core functions such as data
collection, preprocessing and real-time diagnosis. It uses
various technologies and hardware configurations to
improve the system's performance. It supports multiple
protocols, such as Modbus, DNP3, etc., to achieve unified
data collection between heterogeneous devices [8]. When
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the data missing rate is less than 20%, the KNN data
filling algorithm based on time series similarity is
adopted to ensure that the repair error rate does not
exceed 5%. By combining multi-threading technology
and parallel computing technology, the data processing
efficiency of PLC has improved by more than 40%. Pre-
diagnosis integrates the dynamic weight optimization
algorithm with a rule engine that triggers alarms for
threshold violations (e.g., temperature > 80°C or current
surge > 150% rated), operating in parallel with the
primary algorithm to ensure rapid response.[9]. The local
storage adopts the "SSD+HDD" tiered strategy: high-
performance SSD stores core data, hard disk stores
auxiliary data, sets aging strategy, and automatically
stores data in cloud storage space.

The experimental setup uses the UP-Board Edge
industrial gateway (Intel Atom x7-E3950 processor,
quad-core, 1.6-2.0GHz), while the system design
supports both ARM (Rockchip RK3588) and x86
architectures for flexibility, with 8-core Cortex-A76 + 4-
core Cortex-A55, can complete 1000 sets of data
preprocessing and diagnosis within 100 ms; 8 GB
LPDDR4 memory and 128 GB eMMC meet the needs of
processing and storage [10]. The communication
interface has 2 gigabit ports, 2 RS-485 ports, and 1 CAN
bus. It supports Wi-Fi 6 and 5G and supports multiple
network access. The hardware is IP67 certified and can
work stably in harsh environments of -40°C to 70°C. At
the software level, the microservice architecture and
container technology are used to divide each functional
module into independent microservices, such as data
acquisition,  preprocessing and diagnosis, and
encapsulate them using Docker containers to achieve
automatic orchestration and fault recovery based on
Kubernetes, and select a customized Yocto Linux
operating system to optimize resource utilization.

Node layout follows the principle of "nearby
processing, centralized management" and divides large
enterprises into multiple monitoring ranges according to
equipment distribution. For example, a workshop with
100 devices can be divided into five areas, each of which
is equipped with 2-3 high-performance nodes to
complete the collection and preliminary processing of
regional data; small and distributed equipment are
deployed in clusters, and communication and sharing
between nodes are achieved through Mesh networks. To
ensure the stability of the network, the optical fiber
connection between the node and the core switch is not
less than 1 Gbps.

2.3 Cloud function and collaboration
mechanism

Cloud data management adopts the strategy of cold and
hot separation and redundant storage; the active data of
the last month is stored in a high-performance hard disk
cluster to meet the needs of real-time query; at the same
time, multiple copies are used to make the probability of
data loss less than 10 times. Cloud data management
focuses on real-time analysis and storage, with future
work planned to explore predictive maintenance using
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DBSCAN and Transformer models [11]. For example,
monitoring of power transformers can warn of abnormal
gas in oil 14 days in advance. The training time is
shortened by 70% through migration, incremental
learning and other methods. The remote monitoring
platform supports equipment status visualization, early
warning push, equipment management, maintenance
plan, and preventive maintenance.

A layered approach is used for data transmission
between the boundary and cloud layers. Real-time
operation data is uploaded by seconds, event triggering
and priority processing, and historical data is uploaded in
batches. The Zstandard algorithm is used for data
compression with a compression ratio of 3:1-5:1. The
instructions in the cloud are divided into "control" and
"configuration”, including control instructions of the
verification and confirmation mechanism to ensure the
accuracy of execution; configuration instructions update
the edge diagnosis strategy, etc., to achieve seamless
switching of "pause-update-restart”. The model update
adopts two methods: version management and grayscale
release [12]. First, it is verified by a small number of edge
nodes, and then a comprehensive expansion is carried out
after it is stable. At the same time, the old version is saved
for easy rollback to ensure the system's stable operation.

3 Design of the real-time monitoring

function of automated equipment
3.1 Design of data acquisition module

The data acquisition module consists of a sensor array, a
data acquisition unit, and a communication interface, the
basis of real-time monitoring. In terms of sensor selection,
an inductively coupled accelerometer with a frequency
response of 50 kHz was selected to collect high-frequency
fault signals; a platinum resistance sensor with a
measurement accuracy of +0.1°C was used; in the range
of 0-500 amperes, a closed-loop Hall current sensor was
used to monitor current within 1p s. According to the
principle of "focusing on key parts and fully covering the
global status", a three-dimensional monitoring network is
formed through grid deployment.

The collected data covers 20 kHz vibration sampling,
1 Hz temperature sampling, and 1 Hz current sampling,
ensuring consistency with experimental measurements.
The communication protocol adopts a hierarchical
structure. The lower-level Modbus RTU communicates
with traditional instruments, the middle-level OPC UA
supports cross-platform interaction, and the upper-level
MQTT realizes lightweight transmission [13]. The
interface design is compatible with multiple signals, the
quantization error of the analog quantity does not exceed
0.01%, and numerous communication interfaces are built
in.

3.2 Data preprocessing method

The original data contains noise, outliers and missing
values. An improved LOF method was adopted for data
cleaning, and the dynamic threshold was combined to
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detect outliers, and the accuracy rate was 98.7%. For
missing data (up to 30% rate), Bi-LSTM interpolation
technology is used, achieving MSE 0.082, outperforming
KNN in both accuracy and handling capacity. In the
gearbox test, the noise reduction process combined
wavelet packet transforms and empirical mode
decomposition, which increased the signal-to-noise ratio
by 185 dB. The normalization operation was
dynamically adjusted based on the data distribution to
avoid the influence of extreme values, and the
convergence speed of the machine learning model was
increased by more than 30%.

3.3 Real-time status visualization interface
design

The visualization interface adopts a B/S architecture and
follows the "layered display, convenient and efficient"
principle. The equipment status diagram uses a three-
dimensional model and color coding to display the
operating status intuitively; it supports data curves for
synchronous comparison of multiple parameters, and
refreshes in one second,; it is based on rules and models,
and pushes through various channels, with a delay of no
more than 2 seconds; it supports historical data screening
and report output.

In terms of technical implementation, WebGL is
used to achieve high-precision drawing and interaction
of three-dimensional models; the interactive design
combines gestures and shortcut key operations,
introduces high-level forms such as heat maps to express
complex information, and improves the efficiency of data
insight. Through data collection, preprocessing and
visualization  design, accurate  perception and
visualization of equipment status are achieved to support
fault diagnosis and predictive maintenance.

4 Design of fault diagnosis algorithm
based on dynamic weight
optimization

4.1 Weight calculation model based on

equipment operation historical data
and real-time data

4.1.1 Historical data feature extraction

The equipment operation history data contains rich
information about the equipment during long-term
operation, but the original data often has high
dimensionality and noise [14]. Suppose the historical
data setis H = {hy, h,, -+, h,} , where h; represents the
i historical data sample, and each sample covers m
feature parameters, that is, h; = [hiy, hiz, =+, him]. The
principal component analysis (PCA) method is used to
reduce the dimensionality of the historical data to extract
key features. First, the covariance matrix C is calculated,
which is expressed as:

=23 (h-R)(k—h) @
Among them, h is the mean vector of historical data
samples. The covariance matrix C describes the
correlation between each feature parameter. By
performing eigenvalue decomposition on it, the
eigenvalues 1, > 4, = --- = 4, and the corresponding
eigenvectors vy, v,,-+,v,, can be obtained. These
eigenvalues reflect the contribution of different principal
components to the data variance. The first k principal
components (usually k « m) are selected as the key
features of historical data to construct the historical
feature matrix H,. In this way, while retaining the main
information of the data, the data dimension is effectively
reduced and the subsequent calculation efficiency is
improved.

4.1.2 Fusion of real-time data and historical data

The real-time data set is recorded as R =
{r1, 15, -+, 75}, 7; represents the j real-time data sample,
which also contains m feature parameters. An improved
similarity measurement function is introduced to achieve
the organic fusion of real-time data and historical data
[15]. Traditional cosine similarity only considers the
similarity of vector directions and ignores the distance
factor between vectors. The improved formula proposed
in this study is as follows:

ryH Irj=At”
A = J -
S(T): Hk) ||Tj||‘||Hk|| X exp ( > (2)

Among them, [I-|I represents the norm of the vector,
and o is the adjustment factor, which is used to control the
influence of the distance factor on the similarity.

4.1.3 Determination of initial weight

Determine the initial weight of each feature
parameter based on the degree of similarity after fusion.
Let the initial weight of the [ feature parameter be wy,,
and the calculation formula is:

=1 S(rjHi)-Tji
21 Xieg S(riHi) T ©)

Among them, 7;, is the [ characteristic parameter
value of the real-time data sample ;. On the one hand, the
numerator reflects the contribution of each characteristic
parameter in similar data [16]. Features with high
similarity and large parameter values will obtain higher
weights; conversely, the denominator is normalized to
ensure that the sum of all weights is 1. Taking motor fault
diagnosis as an example, the vibration characteristics
change significantly when a fault occurs. According to
this formula, the initial weight of the vibration
characteristics will be relatively high, thus occupying a
more important position in fault diagnosis.

Wio =

4.2 Dynamic weight update mechanism
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4.2.1 Weight update triggering conditions

The triggering of dynamic weight update is based on
the dual mechanism of equipment operation status
change and time interval. Define the equipment operation

status index I, and its calculation formula is:
AR B Af 4)
Among them, r is the real-time data vector, h is the
historical data mean vector, & is the historical data
standard deviation vector, Af is the change in the device
operating frequency, and a« and B are adjustment
coefficients. This indicator comprehensively evaluates
the device operating status based on the degree of data
fluctuation and the change in operating frequency. When
I > T(T is the set threshold), it indicates that the device
operating status has changed significantly, triggering the
weight update; at the same time, a fixed time interval At
is set, and a weight update is triggered every At time to
ensure that the algorithm can capture the gradual change
of the device operating status in time.

I=a

4.2.2 Weight update algorithm

In the weight update process, the forgetting factor
Y (0 <y < 1) is introduced to reduce the impact of
early data and highlight the role of recent data. The
updated weight w; of the Ith feature parameter is
calculated as follows:
w =y -wi+1-y)-
e S(rjHi) T2
2y 2oy S(riHi) T ®)
Among them, w¢ is the weight before update, and
t is the number of real-time data samples before
triggering the weight update. This formula linearly
combines the historical weight with the weight calculated
based on recent data. The larger the y value, the greater
the impact of the historical weight; the smaller the y
value, the more significant the impact of recent data [17].
In practical applications, the y value can be dynamically
adjusted according to the stability of the equipment and
the frequency of operating condition changes.
In addition, if the fault diagnosis result deviates from
the actual situation, that is, the diagnostic error E
exceeds a certain range (E = |y — y|, y is the diagnostic
result, y is the actual fault state), the weight is corrected
according to the error size:
wi=w-(1+7-E) (6)
Where n is the correction coefficient. When the
diagnostic error is positive, the weight of the relevant
feature parameter is increased to enhance the algorithm's
sensitivity to the feature; when the diagnostic error is
negative, the weight is reduced to avoid the algorithm
from over-relying on the feature. This way, the algorithm
can continuously optimize itself in practical applications
and improve diagnostic accuracy.

5 Experimental simulation and
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result analysis
5.1 Experimental environment
construction

5.1.1 Hardware equipment selection

The experiment built a hardware environment close
to the actual industrial scene, and the core equipment
selection fully considered performance, stability and
compatibility. The edge computing node uses the
industrial-grade gateway UP Board Edge based on the
ARM architecture, which is equipped with an Intel Atom
X7-E3950 processor (quad-core, main frequency 1.6GHz-
2.0GHz), equipped with 8GB LPDDR4 memory and
128GB eMMC storage, supporting PCle, USB 3.0,
Gigabit Ethernet and other interfaces, which can meet the
needs of real-time data processing and local storage. In
terms of sensors, vibration monitoring uses PCB 352C65
three-axis acceleration sensor with a frequency response
range of 0.5Hz - 50kHz and a sensitivity of 100mV/g;
temperature measurement uses Pt100 platinum resistance
temperature sensor with a measurement accuracy of
+0.1°C; current monitoring uses LEM LTS6-NP closed-
loop Hall current sensor with a measurement range of 0-
S0A and a response time of <lus. The data acquisition
card uses Advantech USB-4711A, which has 16 single-
ended analog input channels, a sampling rate of up to
100kS/s, and supports multiple trigger modes. The cloud
server is configured with a dual-channel Intel Xeon Gold
6248R processor, 128GB DDR4 memory, and 2TB
NVMe SSD storage. It is built on Alibaba Cloud ECS
instances to ensure data storage and in-depth analysis
performance.

5.1.2 Software platform configuration

The software platform adopts a layered architecture
design. The edge computing node operating system uses
customized Yocto Linux, kernel version 5.10, and cuts out
non-essential services to reduce resource usage. The data
collection and preprocessing program is developed based
on Python 3.8, using PyModbus and paho-maqtt libraries
to implement Modbus RTU and MQTT protocol
communications; the fault diagnosis algorithm is
deployed on the TensorFlow 2.8 framework, and
OpenMP is used to achieve multi-threaded acceleration.
The cloud server uses the Ubuntu 20.04 LTS system,
deploys Hadoop 3.3.4 and Spark 3.2.1 for big data
processing, and uses InfluxDB 2.0 to store time series data
in the database, as well as Elasticsearch 7.16 for fast
retrieval. The front-end and back-end are developed
separately. The front-end is based on Vue 3 + ECharts 5
to implement the visual interface, and the back-end uses
Spring Boot 2.6 to build a RESTful API to ensure efficient
system operation.

5.2 Dataset preparation
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5.2.1 Normal operation data collection

A 30-day normal operation data collection was
conducted on a certain automotive parts production line,
covering the full operating status of the equipment. The
collection period includes scenarios such as continuous
production, equipment starts and stop, and parameter
adjustment to ensure data diversity. The sampling
frequency of vibration data is 20 kHz, and the sampling
frequency of temperature and current data is 1 Hz;
128,000 valid samples are obtained. To ensure data
accuracy, a triple verification mechanism is adopted: the
sensor self-diagnosis function detects the hardware status
in real time; the edge node performs integrity verification
on the collected data; and the cloud performs secondary
verification on the uploaded data. At the same time, the
timestamp synchronization technology is used to ensure
that the time consistency error of multi-source data is less
than 1ms.

5.2.2 Fault data simulation and collection

The data set is obtained by simulating real fault
scenarios, covering eight typical mechanical faults
(bearing outer ring faults, gear tooth breakage), electrical
faults (motor winding short circuit, overload), etc. The
gradual degradation method is used to simulate the fault
development process, for example, by adjusting the
bearing preload to simulate the outer ring fault, and
setting the current overload multiple to simulate the
electrical fault. Five thousand data samples were
collected for each fault type, and the total number of fault
samples was 40,000. Data annotation adopted a three-
level review system: preliminary annotation by
engineers, expert review, and cross-validation, with an
annotation accuracy of 99.2%. The distribution of the
fault data set is shown in Table 1 below:

Table 1: Fault data set.

Fault type ssiiglple Proportion
B-earlng outer 5,000 12.50%
ring fault

Gear tooth 5,000 12.50%
breakage

Motor .wmc.llng 5,000 12.50%
short circuit

Motor overload 5,000 12.50%
Belt slippage 5,000 12.50%
Coupling 5,000 12.50%
misalignment

Abnormal

power supply 5,000 12.50%
voltage

Sensor fault 5,000 12.50%

5.3 Experimental design of system
performance test

5.3.1 Real-time test

Three groups of comparative experiments were
designed to verify the real-time performance of the
system: 1) low data flow (100 samples/second), LAN
environment; 2) high data flow (1000 samples/second),
LAN environment; 3) high data flow (1000
samples/second), 4G network environment. Each group
of experiments was repeated 20 times, and the time delay
from data acquisition to the output of fault diagnosis
results was recorded. The control group adopted the
traditional cloud processing architecture and was tested
under the same conditions.

5.3.2 Reliability test

A T72-hour continuous operation experiment was
conducted to simulate the equipment running in a high
temperature (50°C), high humidity (80% RH), and strong
electromagnetic interference environment. The system
fault diagnosis capability was tested by dynamically
injecting fault data (50 groups per hour). The accuracy
rate, false alarm rate (normal data was misjudged as fault),
and missed alarm rate (fault data was not detected)
indicators were statistically analyzed and compared with
the traditional diagnosis system based on BP neural
network.

5.3.3 Compatibility test

Six different brands and types of automation
equipment were selected for testing, including a
production line controlled by Siemens S7-1500 PLC, an
assembly machine controlled by Mitsubishi FX5U PLC,
and an ABB robot workstation. The test content covers
data acquisition success rate, protocol compatibility, and
diagnostic result accuracy, and verifies the system's
support for multiple industrial protocols such as Modbus
TCP, Profinet, and EtherCAT.

5.4 Experimental results analysis
5.4.1 Real-time results analysis

Figure 2 shows the latency comparison between this
system and the traditional cloud processing architecture
under different data flows. The data flow increases from
100 samples/second to 2000 samples/second, with 20 data
points. The latency of this system exhibits a gradual
increase from 85ms, while the latency of the traditional
system increases from 320ms. By adding random
fluctuations, the latency changes in actual scenarios are
simulated [18]. The results show that this system is
significantly better than the traditional system under all
data flows, and the latency increases slowly, indicating
that it can still maintain good real-time performance under
high data flows. The local processing power of edge
computing nodes is the key to reducing latency. By
lowering the round-trip data transmission to the cloud, the
system response speed is increased by more than 60%. At
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the same time, the lightweight design of the MQTT
protocol effectively reduces network transmission
overhead, and its advantages are particularly obvious in
the 4G network environment.

System Delay Comparison under Different Data Traffic
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Figure 2: Comparison of system delays under
different data flows.

5.4.2 Reliability results analysis

Figure 3 compares the fault diagnosis accuracy of
this system's dynamic weight optimization algorithm and
other traditional algorithms (BP neural network, support
vector machine, SVM, decision tree) under different data
flows. The data flow increases linearly from 100
samples/second to 2000 samples/second, with 20 data
points. The fault diagnosis accuracy of this system drops
slightly from 98.3%, while the accuracy of BP neural
network, SVM and decision tree decreases faster. By
adding random fluctuations, the accuracy changes in
actual scenarios are simulated. The results show that this
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system can still maintain a high diagnostic accuracy under
high data flow, which is better than traditional algorithms.

Fault Diagnosis Accuracy Comparison among Different Algorithms
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Figure 3: Comparison of fault diagnosis accuracy of
different algorithms.

Figure 4 compares this system's diagnosis time and
the other three algorithms (BP neural network, SVM,
decision tree) under eight fault types. The fault types
include bearing outer ring fault, gear tooth breakage,
motor winding short circuit, motor overload, belt
slippage, coupling misalignment, power supply voltage
abnormality and sensor fault. The diagnosis time is
simulated by randomly generated data, ranging from
80ms to 350ms. The results show that the diagnosis time
of this system under all fault types is significantly lower
than that of other algorithms, indicating that it has obvious
advantages in real-time performance. Especially in
complex scenarios such as motor overload and sensor
failure, the diagnosis time of this system can still be
maintained at a low level, further verifying the efficiency
and reliability of the system.

Diagnosis Time Comparison for Different Fault Types
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Figure 4: Comparison of diagnostic time of different algorithms under different fault types.

5.4.3 Compatibility result analysis

Figure 5 shows this system's data processing success
rate on 6 different industrial devices. The device types
include Siemens S7-1500, Mitsubishi FX5U, ABB robot,

Rockwell device, Device E and Device F. The success
rate is simulated by randomly generated data, ranging

from 90% to 100%. By sorting the success rate, it is more
intuitive to see which devices have a higher success rate.
The results show that this system can achieve a high data
processing success rate on most devices, indicating that it
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has wide compatibility and stability. In particular, for
devices such as Siemens S7-1500 and ABB robots, the
success rate is close to 100%, further verifying the
efficiency and reliability of the system.

Data Processing Success Rate for Different Devices
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el bl 0 (=3 (=3
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Siemens Mitsubishi ABB
S$7-1500 FX5U Robot
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Figure 5: Data processing success rate of different
devices.
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6 Conclusion

The edge computing-based fault diagnosis system
proposed in this study demonstrates remarkable
performance in real-time monitoring, diagnostic
accuracy, and industrial compatibility. By integrating a
five-layer architecture and dynamic weight optimization,
the system achieves 98.3% fault diagnosis accuracy at
low data flow (100 samples/s) and maintains 97.5%
accuracy under high load (2000 samples/s),
outperforming BP neural network (89.5%) and SVM
(87.2%). Edge nodes reduce latency by 64% compared
to cloud architectures, with round-trip times dropping
from 500 ms to 180 ms in 4G environments, while
compatibility tests on six devices (e.g., Siemens S7-
1500, ABB robots) show >95% success rates. The
dynamic weight update mechanism, validated via
ablation studies, adapts to real-time data fluctuations, and
statistical tests (paired t-tests, p < 0.01) confirm its
superiority. Future work will explore predictive
maintenance with Transformer models, extreme
environment validation, and blockchain-integrated
tamper-proof records to further enhance industrial
applicability.

References

[1] Lu, S, Lu, J., An, K., Wang, X., & He, Q. (2023).
Edge computing on loT for machine signal
processing and fault diagnosis: A review. IEEE
Internet of Things Journal, 10(13), 11093-11116.
https://doi.org/10.1109/J10T.2023.3239944

[2] Debroy, P., Smarandache, F., Majumder, P.,
Majumdar, P., & Seban, L. (2025). OPA-IF-
Neutrosophic-TOPSIS ~ Strategy under SVNS
Environment Approach and Its Application to Select
the Most Effective Control Strategy for Aquaponic
System. Informatica, 36(1), 1-32.
https://doi.org/10.15388/24-INFOR583

[3] Filatovas, E., Stripinis, L., Orts, F., & Paulavicius,
R. (2024). Advancing Research Reproducibility in

Machine Learning through Blockchain Technology.
Informatica, 35(2), 227-253.
https://doi.org/10.15388/24-INFOR553

[4] Yu, W, Liu, Y., Dillon, T., & Rahayu, W. (2022).
Edge computing-assisted 10T framework with an
autoencoder for fault detection in manufacturing
predictive maintenance. IEEE Transactions on
Industrial Informatics, 19(4), 5701-5710.
https://doi.org/10.1109/T11.2022.3178732

[5] Li,J., Deng, Y., Sun, W., Li, W, Li, R, Li, Q., &
Liu, Z. (2022). Resource orchestration of cloud-
edge-based smart grid fault detection. ACM
Transactions on Sensor Networks (TOSN), 18(3), 1-
26. https://doi.org/10.1145/3529509

[6] Maurya, M., Panigrahi, I., Dash, D., & Malla, C.
(2024). Intelligent fault diagnostic system for
rotating machinery based on loT with cloud
computing and artificial intelligence techniques: a
review. Soft Computing, 28(1), 477-494.
https://doi.org/10.1007/s00500-023-08255-0

[7] Liu, X., Yang, J., Zou, C., Chen, Q., Yan, X., Chen,
Y., & Cai, C. (2021). Collaborative edge computing
with FPGA-based CNN accelerators for an energy-
efficient and time-aware face tracking system. |IEEE
Transactions on Computational Social Systems, 9(1),
252-266.
https://doi.org/10.1109/TCSS.2021.3059318

[8] Cao, K., Hu, S., Shi, Y., Colombo, A. W,
Karnouskos, S., & Li, X. (2021). A survey on edge
and edge-cloud computing assisted cyber-physical
systems. IEEE  Transactions on Industrial
Informatics, 17(11), 7806-78109.
https://doi.org/10.1109/T11.2021.3073066

[9] Rajavel, R., Ravichandran, S. K., Harimoorthy, K.,
Nagappan, P., & Gobichettipalayam, K. R. (2022).
loT-based smart healthcare video surveillance
system using edge computing. Journal of ambient
intelligence and humanized computing, 13(6), 3195-
3207. https://doi.org/10.1007/s12652-021-03157-1

[10]Lin, S. C., Chen, K. C., & Karimoddini, A. (2022).

SDVEC:  Software-defined  vehicular  edge
computing  with  ultra-low latency. IEEE
Communications  Magazine, 59(12), 66-72.

https://doi.org/10.1109/MCOM.004.2001124

[11] Chang, Z., Liu, S., Xiong, X., Cai, Z., & Tu, G.
(2021). A survey of recent advances in edge-
computing-powered artificial intelligence of things.
IEEE Internet of Things Journal, 8(18), 13849-
13875. https://doi.org/10.1109/J10T.2021.3088875

[12] Syu, J. H., Lin, J. C. W, Srivastava, G., & Yu, K.
(2023). A comprehensive survey on artificial

intelligence empowered edge computing on
consumer electronics. IEEE Transactions on
Consumer  Electronics,  69(4),  1023-1034.

https://doi.org/10.1109/TCE.2023.3318150

[13] Zhu, T., Kuang, L., Daniels, J., Herrero, P., Li, K., &
Georgiou, P. (2022). IoMT-enabled real-time blood
glucose prediction with deep learning and edge
computing. IEEE Internet of Things Journal, 10(5),
3706-3719.
https://doi.org/10.1109/J10T.2022.3143375



Adaptive Weighting and Deep Neural Networks for Automated. ..

[14] Patrikar, D. R., & Parate, M. R. (2022). Anomaly
detection using edge computing in video
surveillance system. International Journal of
Multimedia Information Retrieval, 11(2), 85-110.
https://doi.org/10.1007/s13735-022-00227-8

[15]Li, H., Hu, G., Li, J., & Zhou, M. (2021). Intelligent
fault diagnosis for large-scale rotating machines
using binarized deep neural networks and random
forests. IEEE Transactions on Automation Science
and Engineering, 19(2), 1109-1119.
https://doi.org/10.1109/TASE.2020.3048056

[16] Zhang, X., Rane, K. P., Kakaravada, I., & Shabaz,
M. (2021). Research on vibration monitoring and
fault diagnosis of rotating machinery based on
internet  of things technology. Nonlinear
Engineering, 10(1), 245-254.
https://doi.org/10.1515/nleng-2021-0019

[17]Dai, Y., & Zhang, Y. (2022). Adaptive digital twin
for vehicular edge computing and networks. Journal
of Communications and Information Networks,
7(1), 48-59.
https://doi.org/10.23919/JCIN.2022.9745481

[18] Ofili, B. T., Obasuyi, O. T., & Akano, T. D. (2023).
Edge Computing, 5G, and Cloud Security
Convergence:  Strengthening USA’s  Critical
Infrastructure Resilience. Int J Comput Appl
Technol Res, 12(9), 17-31.
https://doi.org/10.7753/IJCATR1209.1003

Informatica 49 (2025) 303-312 311


https://doi.org/10.7753/IJCATR1209.1003

312

Informatica 49 (2025) 303-312



