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To improve the efficiency of compressed sensing sparse signal reconstruction, a reconstruction algorithm 

suitable for different scenarios is proposed. On the basis of greedy algorithm, a sparse reconstruction 

algorithm for optimization is constructed. A multi-source sparse signal reconstruction algorithm with 

improved support set estimation is proposed. Experimental data show that the mean square error of the 

optimized sparse signal reconstruction algorithm is less than 10-5, which is 1-4 orders of magnitude 

smaller than other comparative algorithms (suh as orthogonal matching pursuit). The support set 

estimation accuracy of the joint sparse signal reconstruction algorithm is the highest. When the signal-

to-noise ratio is 10, the relative reconstruction error based on the orthogonal matching tracking algorithm 

is 0.57. The minimum relative reconstruction error of the proposed joint sparse signal reconstruction 

algorithm is 0.34. The analysis of experimental data shows that the decentralized joint sparse signal 

reconstruction algorithm proposed in this paper not only ensures the efficiency of signal reconstruction, 

but also reduces the computational complexity. 

Povzetek: Prispevek se ukvarja s kompresijskim zaznavanjem (CS) in rekonstrukcija redkih signalov. 

Novost je kombinacija OMP-backtrackinga, glasovanja skupne podpore in enkratne porazdeljene 

izmenjave za skupno SSR; potrebuje teoretično utrditev, realne podatke in reproducibilnost. 

 

1 Introduction 
Compressed Sensing (CS) signal processing technology is 

a new type of signal processing method that can transform 

traditional sampling theorems into more efficient signal 

reconstruction methods and has become a current research 

hotspot. Compared with traditional sampling theorems, 

CS technology can greatly reduce the number of samples 

and improve the efficiency of signal reconstruction. In 

traditional communication and signal processing 

frameworks, based on Shannon's theorem, the sampling 

frequency needs to be twice higher than the highest 

information frequency [1]. With the development of 

technology, the amount of data that communication nodes 

and devices need to process is very large. Traditional 

signal sampling can generate signal redundancy, leading 

to a great waste of resources [2]. Therefore, the 

development of CS technology, with its high sampling rate 

beyond Nyquist limits, addresses issues such as 

oversampling, data compression, and data loss, while also 

ensuring reliable data recovery [3]. CS technology can 

represent signals using only a small number of non-zero 

coefficients within an appropriate range, potentially 

reducing the cost of sampling and computation. It is 

widely used in various fields such as electronic technology 

and computer science [4]. In Sparse Signal Reconstruction 

(SSR), CS technology can achieve SSR through iterative 

algorithms such as greedy algorithms. Meanwhile, in 

distributed network scenarios, it is necessary to consider  

 

the processing of multi-source signals and utilize the 

correlation between data to complete joint SSR [5]. The  

current signal reconstruction approach fails to adequately 

leverage the inherent sparsity of the signal, leading to 

suboptimal reconstruction outcomes when handling sparse 

signals. Therefore, research has proposed joint SSR 

algorithms for single-sources and multi-sources, aiming to 

improve the reconstruction effect. The study includes four 

sections. The first section is a summary of relevant 

research, the second section is the design of SSR 

algorithms, the third section is the performance analysis of 

the proposed algorithm, and the fourth section is a 

summary of this study. This study proposes a joint SSR 

algorithm based on an improved public support set for the 

multi-source joint SSR problem. In SSR problems, 

oriented SSR algorithm (OSRA) employs global 

optimization techniques, encompassing support set pre-

selection with backtracking and comprehensive global 

optimization, thereby exhibiting robust global search 

capabilities. Centralized joint SSR algorithm (CJSRA) 

focuses on improving the estimation of the public support 

set, by preliminarily estimating the public support set, 

optimizing the public support set, and using edge 

information-based orthogonal matching pursuit (OMP) 

algorithm to more accurately estimate the support set of 

sparse signals, thereby improving the accuracy and 

stability of signal reconstruction. In the problem of multi-

source joint SSR, the combination of these two algorithms 
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can achieve efficient signal reconstruction, reduce the 

energy consumption of node transmission and reception of 

signals, and avoid the problem of repeated reception and 

transmission of signals. 

The novelty of the proposed method in the public 

support set estimation of joint SSR lies in that CJSRA 

improves the support set estimation process of the 

traditional joint sparse algorithm through the voting 

strategy and error screening mechanism. Most of the 

existing methods rely on the direct intersection of single-

source estimation and fail to effectively filter out random 

errors. However, CJSRA improves the reliability of the 

initial estimation through multi-source voting and further 

optimizes the support set through edge information OMP, 

solving the dependence problem of traditional methods on 

high observation rates. DJSRA proposes a distributed 

single information interaction mechanism, breaking 

through the limitation that existing distributed algorithms 

require multiple communications. The public support set 

is estimated through the collaborative estimation of 

neighborhood nodes without the coordination of a central 

node, which ADAPTS to the dynamic network topology. 

Moreover, the support set estimation process is 

compatible with the correlation of partially overlapping 

signals instead of forcing the assumption of complete 

sharing. Compared with the existing methods, the method 

proposed in this paper demonstrates better robustness in 

low observation rates, noise interference and distributed 

scenarios through hybrid support set modeling (public 

support set + innovative support set) and adaptive 

collaborative strategies, rather than merely continuing the 

concept of public support sets. The contribution of this 

study is mainly reflected in the following points. Firstly, 

for the problem of single-source SSR, the key difference 

between OSRA and traditional greedy algorithms (such as 

OMP and generalized orthogonal matching pursuit 

(gOMP)) lies in the introduction of a support set pre-

selection with backtracking mechanism and a global 

optimization objective function. Traditional methods only 

rely on local search to iteratively update the support set, 

while OSRA verifies the reliability of the initial estimation 

through backtracking and exits the local optimum through 

the global objective function, significantly improving the 

accuracy and robustness of SSR. Secondly, in the aspect 

of multi-source joint SSR, the study proposes CJSRA and 

DJSRA based on improved public support set estimation. 

CJSRA can improve the accuracy of support set 

estimation, while DJSRA can reduce the computational 

complexity while ensuring the signal reconstruction 

effect, and reduce the time consumption of nodes 

repeatedly sending and receiving information. These 

algorithms provide more efficient solutions for SSR in 

different scenarios and enrich the knowledge system in 

this field. The drawback of OSRA and CJSRA algorithms 

themselves is that as sparsity increases, the computational 

complexity of the algorithms also increases accordingly. 

2 Related works 
CS, also known as sparse sampling, is a technique used in 

the field of electronic engineering signal processing to 

find sparse solutions for under-determined linear systems. 

It can be used to obtain and reconstruct sparse or 

compressible signals. Wang et al. proposed an energy-

efficient collection method using CS to construct a data 

collection model for underwater acoustic sensor networks. 

The results indicated that this method could reduce the 

sensor energy consumption by 15% [6]. Wang et al 

proposed a triple image encryption and hiding algorithm 

that utilized a two-dimensional discrete wavelet transform 

to sparsely represent three grayscale images, and 

processed and compressed the measurement matrix [7]. 

The results showed that this method could improve 

encryption efficiency by 23%. Bai et al. proposed a non-

convex CS method for detecting fan noise patterns in CS, 

utilizing the L-1/2 minimization algorithm to optimize the 

sensor array. Results showed that this method could 

improve the dynamic range by 10dB [8]. Kato et al. 

introduced compressive sensing into the human-order 

analysis to address the limitation that traditional methods 

are only applicable to steady-state vibrations, enabling the 

measurement of operational vibrations with rotational 

speed fluctuations (such as in automotive engines). The 

aluminum plate vibration experiment and engine 

application showed that this method could accurately 

reconstruct the vibration (modal guarantee criterion 0.98, 

mean square error less than 1%, etc.), was suitable for the 

full-field measurement of high-speed vibration of rotating 

machinery, and was expected to assist in signal recovery 

and data compression [9]. Kadhim et al. aimed at the 

image encryption requirements in remote working and 

learning. In their work, a multi-chaotic encryption 

algorithm based on block CS, Swin Transformer and 

Mustang optimization was proposed. Encryption was 

achieved through processes such as wavelet transform, 

block compression, chaotic diffusion and optimized 

scrambling. Experiments showed that the average 

information entropy of the algorithm was 7.9749 and the 

NPCR reached 99.5453%, etc., indicating that it was 

efficient and robust and could resist various attacks [10]. 

CS technology includes three key steps: signal sparse 

representation, measurement matrix construction, and 

reconstruction algorithm. Among them, the reconstruction 

algorithm is the core of compressive sensing technology, 

as it has a direct impact on the complexity and quality of 

signal reconstruction. Zeynali et al. proposed a new 

algorithm for reconstructing wireless sensor network 

(WSNs) data with spatio-temporal correlation using CS. A 

time-varying sliding window mechanism was adopted to 

dynamically adjust the window size and the number of 

measurements, so as to effectively utilize spatio-temporal 

correlation, balance the sampling rate and reduce the 

transmission cost. Simulation showed that this algorithm 

maximized the utilization of prior signal information 

through the distributed data window framework. 

Compared with other CS reconstruction methods, it 

achieved higher reconstruction accuracy with less 

transmission volume and was suitable for various WSN 

scenarios [11]. Zhao et al. proposed a smooth inertial 

neural dynamics method to reconstruct sparse signals 

through the processing of norm minimization problems. 

The research results indicated that under certain 
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conditions, this method could average sub-linear 

convergence speed and improve the efficiency of SSR and 

image restoration by 11.1% [12]. Lin et al. optimized the 

regularization parameters and iteration times under 

different sparsity ratios to address the issue of reduced 

quality in sparse imaging reconstruction. Experimental 

data showed that the quality of SSR using the best 

parameters was improved by 16.7% [13]. Sun et al. 

proposed an improved OMP method that combined a 

forward search strategy to find residual errors. Results 

showed that this method could improve the Signal-to-

Noise Ratio (SNR) of signal reconstruction and reduce the 

computational complexity of measurement [14]. Li et al. 

proposed a variable step-matching tracking CS algorithm 

based on oblique projection, which estimated initial 

sparsity using the constrained isometry property and 

created a support set for the target signal. The results 

showed that this method was superior to traditional 

matching tracking algorithms and could reduce 

computational complexity by 13% [15]. Bayesian 

Compressive Sensing (BCS) is a signal acquisition and 

processing technique based on Bayesian theory. It is a new 

technology developed in the field of signal processing in 

recent years, with the basic idea of compressing signals 

before sampling and digitization. Liu et al. proposed a new 

method based on Bayesian CS algorithm for spectrum 

estimation of multiple frequency hopping signals with 

randomly omitted observations. By designing a specific 

bilinear time-frequency representation framework with a 

time-frequency kernel, the artifacts caused by cross terms 

and missed observations are effectively suppressed, while 

preserving the self-terms of the frequency hopping signal. 

By utilizing the redesigned structure aware Bayesian CS 

algorithm to process the kernels in the time-frequency 

domain, high-resolution frequency hopping signal 

spectrum estimation was achieved even in the absence of 

most data observations. The simulation results showed 

that the method was effective [16]. 

To sum up, many researchers have conducted 

extensive studies and designs on compressive sensing and 

SSR. However, traditional greedy reconstruction 

algorithms (such as OMP and segmented orthogonal 

matching pursuit (StOMP)) only update the support set 

through local iteration, which has the defects of overfitting 

and short-sightedness, and does not introduce a global 

optimization mechanism to escape the local optimum. The 

OSRA proposed in this paper compensates for the 

limitations of traditional algorithms in support set 

estimation through the support set preselection 

backtracking and global search strategies. The existing 

joint SSR algorithms (such as inner-outer support set 

pursuit algorithm (IOSSP) and edge information greedy 

pursuit algorithm (SIPP)) do not estimate the public 

support set of multi-source signals accurately enough and 

fail to make full use of the correlation between signals for 

support set optimization. In this paper, CJSRA improves 

the preliminary estimation and screening process of the 

public support set through the voting strategy and the 

OMP algorithm based on edge information, and enhances 

the accuracy of multi-source signal support set estimation. 

Distributed joint SSR algorithms (such as distributed 

parallel pursuit algorithm (DIPP)) rely on multiple round-

trip communications between nodes to complete signal 

reconstruction, resulting in high energy consumption and 

delay. In this paper, DJSRA eliminates the reliance on the 

central node through a single information interaction and 

an improved public support set estimation method, and 

reduces the communication cost and computational 

complexity between nodes. Furthermore, Model-Based 

CS improves the reconstruction performance by explicitly 

utilizing the structured sparse priors of the signal (such as 

group sparsity and tree sparsity), but its dependence on the 

preset structure limits its applicability in multiple 

scenarios. BCS models sparsity through hierarchical 

priors and performs well at low observation rates, but it 

has high computational complexity and requires preset 

signal distributions. Although structural sparsity methods 

(such as the Joint Sparse Model (JSM)) can capture the 

correlations of multi-source signals, most of them assume 

that the support sets are completely shared and are difficult 

to adapt to actual scenarios with partial overlap or 

dynamic changes. The hybrid support set model and the 

improved support set estimation method proposed in this 

paper do not require strict prior assumptions. They can 

model the correlation of multi-source signals more 

flexibly and reduce the computational and communication 

overhead through a distributed collaborative mechanism 

at the same time. 

3 Design of SSR Algorithm under CS 
This chapter mainly proposes the design of an 

optimization-oriented SSR algorithm and a CJSRA and 

decentralized joint SSR algorithm (DJSRA). The OSRA 

improves the performance of the signal reconstruction 

algorithm by improving the greedy algorithm support set 

estimation. The CJSRA improves the estimation of the 

public support set to solve the problem of correlation 

between multi-sources. The DJSRA eliminates the 

presence of central nodes through information 

transmission and reconstruction between nodes, thereby 

improving energy consumption and latency issues. 

3.1 Design of SSR algorithm using 

optimization orientation 

The core issue of CS is SSR, which includes single-source 

and multi-source joint SSR. The signal reconstruction 

problem is described as equation (1). 

0
min x subject to y x −   (1) 

In equation (1), the original signal is denoted as x , 

the measurement matrix as  , and the signal observation 

vector as y . The reconstruction threshold is set at  , with 

the stipulation that the noisy energy value must be less 

than this reconstruction threshold. The noise observation 

model estimates signals based on observation data, where 

the observation data is affected by noise interference. This 

model attempts to restore certain features of the original 

signal by considering the influence of noise, in order to 

improve the accuracy and reliability of signal 

reconstruction. The original signal is observed through a 
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measurement matrix and is affected by noise. The 

reconstruction goal is to recover the original signal based 

on the observation vector, and the reconstruction threshold 

is used to determine whether noise can be used for signal 

reconstruction. The correlation between different 

variables is shown in that the measurement matrix 

converts the original signal into the observation vector, 

and the noise affects the reconstruction effect. The 

reconstruction threshold is used to judge whether the noise 

can be ignored, so as to improve the accuracy of the signal 

reconstruction. The main difference of sparse signal 

recovery algorithms lies in their utilization of signal 

sparsity during the solving process. Compared with other 

algorithms such as greedy methods, they can better utilize 

the sparse characteristics of signals, thereby achieving 

faster convergence speed and higher recovery accuracy 

under the same conditions. 

A cornerstone of SSR algorithms lies in the greedy 

tracking algorithm, which iteratively identifies the current 

optimal solution. However, it falls short of ensuring a 

globally optimal solution. In contrast, tree search 

matching and tracking algorithms can find the optimal 

branch through a large number of searches, but their 

computational complexity and complexity are relatively 

high. Therefore, based on greedy algorithms, this study 

proposes an OSRA, whose core problem is the SSR 

algorithm. Over-fitting refers to the phenomenon that the 

model over-fits the training data during machine learning, 

leading to poor performance on new unseen data. In the 

signal reconstruction problem, over-fitting may lead to an 

excessive dependence of the reconstruction results on the 

training data, thus creating errors in processing new 

signals. Compared with traditional greedy tracking 

algorithms, OSRA proposes a new approach based on 

global optimization, which solves the problem of over-

fitting that may occur in greedy algorithms through 

support set pre-selection with backtracking and global 

optimization methods, thereby improving the accuracy 

and stability of signal reconstruction [17]. Before 

designing the algorithm, some symbol definitions based 

on the problem planning are first proposed, and the error 

function is defined as shown in equation (2). 

2
ˆ( )r y x  = −  (2) 

In equation (2), the error function is ( )r  , and the 

optimal element composition support set is  . The sparse 

reconstruction model is grounded in greedy algorithms 

and endeavors to identify the optimal support set, which 

comprises key elements, through the definition of error 

functions. This approach is designed to achieve efficient 

sparse reconstruction tailored to specific problems. In the 

process of support set estimation, greedy algorithms may 

over-fit, leading to support set estimation errors [18]. To 

address this issue, improvements were made to the greedy 

algorithm to enhance the performance of the signal 

reconstruction algorithm. The optimized OSRA flow is 

shown in Figure 1. 

The optimized OSRA mainly includes two parts: 

support set pre-selection with backtracking and global 

optimization method. In the stage of pre-selection and 

backtracking of the support set, the greedy algorithm is 

first used to obtain the initial estimate of the support set. 

To avoid over-fitting, it is necessary to backtrack the 

initial estimated support set. If the error function after 

backtracking is still below the preset threshold value, the 

backtracking support set will be used as the final estimate. 

On the contrary, it will enter the global optimization step. 

Global optimization is mainly achieved through two 

stages: local search and global search. Local search mainly 

reduces the error function, which is the objective function, 

by estimating the support set that satisfies the conditions. 

If the conditions are met, then this support set estimate is 

considered the final estimate. Should the local search fail 

to locate an estimate of the supporting set that satisfies the 

given conditions, it will transition to the global search 

phase. During the global search, a global objective 

function will be devised to enable the algorithm to escape 

local optima and ultimately derive the final estimate of the 

support set. After obtaining the support set estimation, the 

least squares method is used to achieve signal estimation. 

Overall, support set pre-selection with backtracking can 

reduce computational complexity through greedy 

algorithms, while backtracking can test the support set, 

identify the best elements to form the support set, and 

calculate the corresponding error function. The domain 

definition of the support set is shown in equation (3). 

( )

{ , { } { }:1 ,

1 }

j j

N

i K

j N K

 
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Figure 1: Optimized OSRA flow. 
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In equation (3), the domain of the support set is 

defined as ( )N  , the number of optimal elements is K , 

the number of elements in the original signal subscript 

complete set is N , the complement of the support set in 

the complete set is c , and the element of the 

complement set is 
j . The definition of the local optimal 

error function is shown in equation (4). 
* *( ) ( ), ( )o or r N       (4) 

In equation (4), the local optimal error function is 
*( )r  , the support set corresponding to the error threshold 

is o , and the support set estimated for the local search is 
* . The global objective function is a function used to 

balance the estimation error of the support set and the 

difference of elements. The global objective function is 

shown in equation (5). 
*

2 * * 2

( , )

[ ( )] [ ]

o

o o o

g

r

  =

 −  − +  −
 (5) 

In equation (5), the global objective function is 
*( , )og   , and the constant   is used to measure the 

difference between *  and o . After optimizing OSRA, 

the SSR is shown in equation (6). 

ˆˆ
ˆ

TT
x y+=    (6) 

In equation (6), the best estimate of the signal support 

set is T̂ , and the best-reconstructed signal is ˆ
ˆ

T
x . In 

summary, the optimization OSRA model achieves the 

reconstruction of sparse signals by defining support set 

domains, local optimal error functions, and global 

objective functions, ultimately obtaining the best estimate 

of the signal support set and the best reconstructed signal. 

The OSRA pseudocode is shown in Figure 2. 

The convergence of the OSRA is ensured by two key 

mechanisms: the error-decreasing property inherent in the 

support set pre-selection backtracking process and the 

gradient descent mechanism employed during global 

optimization. Assuming the objective function adheres to 

Lipschitz continuity and the step size in the global search 

phase complies with the Armijo condition, the algorithm 

is guaranteed to converge to a local optimal solution 

within a finite number of iterations. Furthermore, if the 

measurement matrix fulfills the RIP condition, OSRA is 

capable of accurately reconstructing the signal under a 

sparsity level of K . The time complexity of OSRA is 
2 3( )NO K K+ , where N  is the signal length and K  is the 

sparsity. It is superior to the exponential complexity of the 

tree search algorithm, but slightly higher than 2( )NO K  of 

the traditional OMP. 

Initialize:

    support_set = empty set

    residual = y

    best_support = empty set

    index = argmax(abs(Φ^T * residual))

    support_set.add(index)

    x_support = least_squares(Φ[:, support_set], y)

    residual = y - Φ * x_support

    if norm(residual) < epsilon:

        break

    temp_support = support_set - {j}

    temp_x = least_squares(Φ[:, temp_support], y)

    temp_residual = y - Φ * temp_x

    if norm(temp_residual) < norm(residual):

        support_set = temp_support

        residual = temp_residual

    for neighbor in support_set.neighbors():

        candidate_support = support_set.update(neighbor)

        candidate_x = least_squares(Φ[:, candidate_support], y)

        if norm(y - Φ * candidate_x) < norm(residual):

            support_set = candidate_support

            residual = y - Φ * candidate_x

    if no improvement:

        support_set = random_perturbation(support_set)

x = least_squares(Φ[:, support_set], y)

return x

 

Figure 2: The OSRA pseudocode. 
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Figure 3: A centralized joint SSR algorithm based on improved public support set estimation. 

The error threshold in the OSRA is dynamically 

adjusted based on the noise level, specifically set at 1.2 

times the standard deviation of the noise. This 

configuration ensures that, during the backtracking 

process of the support set, only elements that effectively 

contribute to reducing the signal reconstruction error are 

retained, thereby preventing the inclusion of noise-

induced interference. When the signal residual (the 

difference between the observed vector and the 

reconstructed signal) is less than the preset threshold or 

the number of iterations reaches 100 times, the algorithm 

is stopped to balance the reconstruction accuracy and 

computational efficiency and avoid meaningless excessive 

iterations. In the global optimization stage, by adjusting 

the difference weights of the elements in the support set 

(the optimal weight parameters are determined through 

cross-validation), it is ensured that the algorithm can not 

only utilize the fast search ability of the greedy algorithm, 

but also jump out of the local optimal solution through 

global search, thereby improving the accuracy of 

reconstruction. 

3.2 Design of centralized joint SSR 

algorithm 

In the problem of reconstructing sparse signals from 

multi-sources, it is necessary to consider the correlation 

between signals [19]. In the relevant signal source set, the 

support set between signals is jointly owned [20]. To 

address this issue, a CJSRA based on improved public 

support set estimation is proposed. Firstly, obtain a 

preliminary estimate of the public support set, then 

identify and remove erroneous elements from the 

preliminary estimate, retain correct elements, and improve 

the estimation of the public support set. The definition of 

a multi-source support set is shown in equation (7). 

,1j jT C I j J=    (7) 

In equation (7), the support set for the multi-source 

signal 
jx  is 

jT , the set of related signal sources is 

1{ }N J

j jx R = , the public support set is C , and the 

innovation support set is 
jI . The sparse reconstruction 

model for multiple signal sources defines the signal 

support set, which is divided into related signal source set, 

public support set, and new information support set to 

achieve effective reconstruction and analysis of multiple 

signal sources. The CJSRA based on improved public 

support set estimation is aimed at the SSR problem of 

multi-sources. The main content of the study is to improve 

the accuracy and stability of signal reconstruction by 

introducing an improved public support set method. The 

improvement of the public support set is a process of 

eliminating incorrect elements and retaining correct 

elements from the initial support set estimation through 

voting strategies and error function screening. The CJSRA 

using improved public support set estimation is shown in 

Figure 3. 

The CJSRA using improved public support set 

estimation consists of three parts: preliminary estimation 

of public support set, improvement of public support set, 

and OMP algorithm based on edge information. The 

preliminary estimation of the public support set requires 

the use of OMP algorithm, and then a voting strategy is 

used to obtain the preliminary estimation of the public 

support set C . In the improvement of the public support 

set, it is necessary to delete the wrong elements, retain the 

correct elements, and finally obtain the improved public 

support set estimate Ĉ . The input of an OMP based on 

edge information is the improved public support set, in 

order to obtain the final overall support set estimate 

1
ˆ{ }J

j jT =
 and the reconstructed original signal 1

ˆ{ }J

j jx = . The 

strategy for enhancing the preliminary estimation of the 

public support set involves retaining the elements that 

have been accurately estimated and eliminating those that 

have been inaccurately estimated. The number of elements 

with higher credibility in the public support set is shown 

in equation (8). 

max( )
R

s
C C

J

 
=  
 

 (8) 

In equation (8), the number of elements with higher 

reliability is estimated as 
RC , and the addition function 

is s . The error function corresponding to the support set 

RC  is shown in equation (9). 

,
2

( )
R

j R j C
r C z=   (9) 
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In equation (9), the error function of the support set 

RC  is ( )j Rr C , and the error threshold value is , Rj C
z . The 

sum of the error functions corresponding to all signal 

observation vectors is shown in equation (10). 

,
2

1 1

( ) ( )
R

J J

R R j C
j j

f C r C z
= =

= =   (10) 

In equation (10), the total error function is ( )Rf C . 

To avoid over-fitting, the total error estimated by the 

public support set should be less than the total error 

function. The definition of the support set domain is 

shown in equation (11). 
* * *( ) { , \{ }, }o oN C C C C c c C= =    (11) 

In equation (11), the support set domain of the multi-

source support set is 
*C . When the sum of the minimum 

error functions exceeds the threshold during iteration, the 

best estimate Ĉ  of the public support set is set 
*C . When 

initializing the OMP algorithm, the support set is an empty 

set. Next, the edge information can be used to estimate the 

subsequent support set to ensure that elements can be 

correctly identified during the iteration process. At this 

time, the overall support set estimation is shown in 

equation (12). 

ˆˆ ( , ,2 , )j j jT mOMP y K C=   (12) 

In equation (12), the overall support set estimated by 

the OMP algorithm based on edge information is ˆ
jT , and 

its size is 2K . The non-zero term reconstruction result of 

the signal is shown in equation (13). 

ˆ,
ˆ,

ˆ
j Tj j

jj T
x y+=    (13) 

In equation (13), the reconstruction result of the non-

zero term signal is ˆ,
ˆ

jj T
x , which corresponds to the 

subscripts of the first K  maximum amplitude terms to 

obtain the final estimation. The complexity of CJSRA 

using an improved public support set includes preliminary 

set estimation, set improvement, and OMP algorithm 

based on edge information. The computational complexity 

of the improved algorithm of the public support set is 

shown in equation (14). 

( ( 1) ' )

( )

( 1) '

O JKMN J K MN JK MN

O JSMN

S K K K

+ − + +

=
 = + − + +

(14) 

In equation (14), the computational complexity of the 

initial estimation of the public support set and the OMP 

algorithm based on edge information is consistent, which 

can be represented by ( )O JKMN . The computational 

complexity is related to the number of iterations  , and 

the computational complexity of each iteration is 

( )O J MN . The evaluation indicators for algorithm 

reconstruction performance include relative 

reconstruction error and average error of support set 

estimation. The relative reconstruction error is shown in 

equation (15). 
2

2

2

2

ˆx x
RER E

x

 − 
=  

  

 (15) 

The relative reconstruction error in equation (15) is 

RER , and the average of all Monte Carlo experiments and 

all signals is calculated as { }E • . The average error of 

support set estimation is shown in equation (16). 

ˆ
ˆ{ ( , )} 1

T T
ASCE E d T T E

T

 
 

= = −  
  

 (16) 

In equation (16), the average error of support set 

estimation is ASCE , and the measure of support set 

estimation error is ˆ( , )d T T . The CJSRA pseudocode is 

shown in Figure 4. 

support_candidates = empty set

for each y_j in Y:

    _, single_support = omp(Φ_j, y_j, K)  

    support_candidates.add(single_support)

common_support = vote(support_candidates, threshold=τ)  

for c in common_support:

    temp_support = common_support - {c}

    total_error = sum(norm(y_j - Φ_j[:, temp_support] * 

least_squares(Φ_j[:, temp_support], y_j)) for y_j in Y)

    if total_error < current_total_error:

        common_support = temp_support

X = empty list

for each y_j in Y:

    Φ_j_support = Φ_j[:, common_support]

    x_j = least_squares(Φ_j_support, y_j)

    X.append(x_j)

return X

 

Figure 4: The CJSRA pseudocode. 
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Figure 5: A DJSRA using improved public support set. 

CJSRA converges through an iterative process that 

begins with an initial estimation by the public support set, 

followed by a refinement phase, and culminates in the 

OMP reconstruction of edge information. It is 

preliminarily estimated that the multi-source support set is 

aggregated by using the voting strategy. In the 

improvement stage, the support set is optimized by 

deleting the elements with large error contributions, so 

that the total error function monotonically decreases. 

Given that the elements within the support set are finite in 

number and the error possesses a lower bound, the 

algorithm converges to a local optimum within a finite 

sequence of steps. Assuming that the measurement 

matrices of each source satisfy the RIP conditions, the 

single-source OMP can accurately estimate the local 

support set. The voting strategy combined with the 

stability of RIP enables the estimation of the public 

support set to resist noise interference. Eventually, the 

precise reconstruction of multi-source signals is achieved 

through the edge information OMP. The computational 

complexity is linearly correlated with the number of 

sources, sparsity, observation length and signal length. It 

mainly comes from the preliminary estimation of multi-

source OMP, improvement of support sets and joint 

reconstruction. It is suitable for medium-scale multi-

source scenarios, and the computational amount increases 

linearly with the increase of the number of sources. 

When making the preliminary estimation of the multi-

source signal support set in the CJSRA algorithm, the 

"half-vote" rule (that is, an element is retained only when 

it appears in at least half of the single-source support set) 

is adopted to filter the random errors in the single-source 

estimation and improve the reliability of the public 

support set. By calculating the total change of the multi-

source signal reconstruction error after removing a certain 

element, if the total error increases, the element is retained. 

Otherwise, it is removed, ensuring that the error of the 

public support set monotonically decreases after each 

iteration. During the support set improvement stage, the 

parameter R controls the proportion of elements deleted in 

each iteration. 

3.3 Design of DJSRA 

In the problem of joint SSR with multi-sources, two 

scenarios are mainly considered. The first scenario is 

CJSRA, in which each perception node transmits its 

observed signal values to the central node within the 

network, and then the central node reconstructs all signals. 

In DJSRA scenarios, there is no such central node. Instead, 

each perception node must collaborate directly with one 

another to reconstruct the signal [21-22]. Centralized 

reconstruction scenarios can address issues such as energy 

consumption, latency, security, interference, and network 

robustness [23-25]. Nodes send information to the 

connected nodes based on the network topology, and then 

each node reconstructs itself, eliminating the problem of a 

unique central node. The network connection topology 

can be a fixed structure or a random structure, with the 

number of input nodes and output nodes corresponding to 

their in degree and out degree, respectively [26-27]. This 

can improve energy efficiency, reduce latency, enhance 

security, reduce interference, and enhance network 

robustness. The network connection topology consists of 

fixed and random structures, in which the entry and exit 

degrees of nodes are equal [28-29]. Random structure 

refers to the Watts-Strogatz network model, which 

contains many nodes. In network topologies with degree 1 

and degree 2, nodes have one or two input connections and 

output connections, respectively. With 10 nodes and a 

degree of 9 for each node, the network topology exhibits 

a fully connected structure, resembling a centralized 

reconstruction model. However, in decentralized 

scenarios, when the degree of network connection 

topology is low, signals can only receive observation 

information from some nodes and cannot fully utilize the 

correlation between signals. In this case, it is necessary to 

consider the problem of estimating the public support set. 

To ensure reconstruction accuracy, each node needs to 

send signals through output connections and receive 

signals through input connections, receiving and sending 

information multiple times. But this method will lead to 

an increase in energy consumption. 

To reduce energy consumption and ensure the 

accuracy of local node reconstruction, the study adopts a 

public support set improvement method for node signal 

reconstruction. In this way, each node only needs to 

receive and send information once to complete signal 

reconstruction, avoiding the process of receiving and 

sending information multiple times. The algorithm 

complexity of this method is similar to that of the CJSRA 

based on improved public support set estimation. The 

DJSRA using improved public support set is shown in 

Figure 5. 

The DJSRA is an optimization algorithm used to solve 

large-scale sparse linear reconstruction problems. This 

algorithm gradually updates the support set through 

iteration to achieve efficient signal reconstruction. The 



Signal Reconstruction Algorithm Application Research… Informatica 49 (2025) 345–364 353 

process of the algorithm is as follows: The first step is to 

transmit an initial signal to each node and then receive 

feedback from them. Subsequently, preliminary estimates 

are used to obtain a public support set, and improved 

estimates are made to obtain more accurate support set 

estimates. By calculating the estimated values of the 

support set and the estimated values of the signal, the 

algorithm can achieve better reconstruction results. 

During the implementation process, the algorithm 

provides flexible solvers and regularization options to 

meet the needs of different situations. In addition, the 

algorithm can accelerate the solution through 

communication between nodes and parallelization of 

computation to achieve efficient reconstruction. 

The DJSRA is based on the single information 

interaction mechanism among distributed nodes. Each 

node collaboratively optimizes the local estimation by 

using the neighborhood support set information, and 

avoids duplicate transmission through the improved 

public support set method. Network topology ensures 

information diffusion, supports set estimation to tend to be 

consistent after limited interactions, and achieves global 

convergence. When the measurement matrices of each 

node satisfy RIP, the accuracy of local support set 

estimation is transferred through network connectivity. 

Even with low connectivity, the global support set can be 

inferred from neighborhood information to ensure the 

robustness of distributed reconstruction. The 

computational complexity is related to the number of 

nodes, connectivity and the computational cost of a single 

node. The distributed structure eliminates the bottleneck 

of the central node, and the reconfiguration can be 

completed with a single interaction. The computational 

cost is comparable to that of CJSRA but the 

communication cost is lower, making it suitable for large-

scale distributed networks. The DJSRA pseudocode is 

shown in Figure 6. 

In the DJSRA, the network connectivity adopts the 

"small-world" network model (Watt-Strogatz model), and 

the node connectivity is set to 5 by default (that is, each 

node is connected to 5 neighboring nodes), balancing the 

communication cost between nodes and the utilization 

efficiency of signal correlation. Experiments showed that 

when the connectivity degree was 9 (fully connected), the 

reconstruction accuracy was the highest, but the energy 

consumption increased significantly. Therefore, a medium 

connectivity degree is selected as the optimal scheme. 

After a single information interaction, each node takes a 

local reconstruction error of less than 0.0001 as the 

convergence condition to avoid the time-consuming 

problem of multiple round-trip communications in 

traditional distributed algorithms and improve real-time 

performance. By taking advantage of the public support 

set characteristics of multi-source signals, the sparse 

structure is estimated through the fusion of neighborhood 

node information, without the need to preset the global 

sparsity parameter, which is adapted to the dynamic signal 

characteristics in distributed scenarios. 

4 Performance analysis of SSR 

algorithm under CS 
This chapter analyzes the performance of the proposed 

SSR algorithm. The first section of this chapter is the 

performance analysis of the optimization-oriented SSR 

algorithm. The second section is the performance analysis 

of the CJSRA. The third section is the performance 

analysis of the DJSRA. 

4.1 Performance Analysis of SSR Algorithm 

Based on Optimization Orientation 

Among the types of data signals used for simulation, the 

single-source signal was a sparse signal of fixed length, 

and the non-zero elements followed a Gaussian 

distribution. The degree of sparsity was controlled by the 

number of non-zero elements. Multi-source signals were 

multiple related signals, including shared public support 

sets and unique innovative support sets for each signal. 

The signal length was uniformly set to 1024, that is, each 

signal contained 1024 elements. The measurement matrix 

was a randomly generated Gaussian matrix, with the 

matrix size being the product of the number of 

measurements and the signal length. The column vectors 

were normalized. Some experiments adjusted the ratio of 

the number of measurements to the signal length, ranging 

from 0.10 to 0.20. Additive white Gaussian noise was 

added to the observation data. The noise level was 

controlled by the SNR, and the value range of the SNR 

was from 10 dB to 40 dB, corresponding to the simulation 

scenarios of different noise intensities. 

for each node i in G:

       _, local_support = omp(Φ_i, y_i, K)

        send(local_support) to neighbors in G

    received_supports = receive from neighbors

global_support = union(received_supports + local_support)

global_support = prune(global_support, method="error-based")  

for each node i in G:

    Φ_i_support = Φ_i[:, global_support]

    x_i = least_squares(Φ_i_support, y_i)

return [x_i for all nodes]

 

Figure 6: The DJSRA pseudocode. 
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Figure 7: Comparison of successful reconstruction ratios of algorithms under different sparsity. 
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Figure 8: Comparison of mean square errors of various algorithms as signal-to-noise ratio increases. 

To verify the performance of the OSRA proposed in 

the study, the study compared it with other algorithms. 

Comparison algorithms were the OMP [30], StOMP [31], 

subspace pursuit (SP) [32], regularized orthogonal 

matching pursuit (ROMP) [33], compressed sampling 

matching pursuit (CoSaMP) [34], gOMP, basis pursuit 

(BP) and orthogonal least square of multi-quadric 

algorithm (MOLS) [35-36]. The proportion of successful 

reconstruction under varying levels of sparsity is 

illustrated in Figure 7. 

In Figure 7, the vertical axis represents the numerical 

range of successful reconstruction ratios, and the 

horizontal axis represents different signal sparsity values 

and 9 algorithms. As the sparsity of the signal increased, 

the proportion of successful reconstructions by each 

algorithm showed a decreasing trend. When the signal 

sparsity was 15, the success rate of each algorithm in 

reconstruction was close to 1.0, indicating that the 

algorithms performed well when the sparsity was low. 

However, when the sparsity increased to 40, the success 

rate of the optimization OSRA proposed in the study was 

greater than 0.7, while the success rate of other algorithms 

ranged from 0 to 0.6. By comparison, with the continuous 

increase of sparsity, the performance advantages of 

optimization-oriented SSR algorithms became 

increasingly apparent. As the SNR increased, the mean 

square error comparison of each algorithm is shown in 

Figure 8. 

Figure 8 shows the comparison of mean square error 

between different algorithms without SNR. The smaller 

the mean square error value, the smaller the difference 

between the reconstructed signal and the original signal, 

indicating that the algorithm's reconstruction performance 

is better. From the graph, as the SNR gradually increased 

from 10dB to 40dB, the mean square error of the algorithm 

showed a decreasing trend. Among these algorithms, the 

OSRA showed significant advantages. At lower SNRs, the 

mean square error of OSRA was relatively small, and its 

advantages became more prominent as the SNR increased. 

When the noise ratio was 40dB, the mean square error of 

OSRA was less than 10-5, which was 1-4 orders of 

magnitude smaller than other comparison algorithms. 

Compared with other algorithms, OSRA could more 

effectively reduce the mean square error of signals, 

providing more accurate and reliable results for signal 

processing. The comparison of running times of different 

algorithms in noisy scenarios is shown in Figure 9. 

In Figure 9, the OSRA proposed in the study had a 

longer average running time due to its high computational 

complexity. As the SNR increased, its time consumption 
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first increased and then decreased. When the SNR was 

high, the loss of correct elements estimated by the pre-

selected support set was reduced, and using global 

optimization to find missing elements was also faster. To 

quantify the complexity of the algorithm calculation, the 

experiment used statistical average iterations E(P) for 

analysis. To measure the computational complexity and 

iterative efficiency of the algorithm in a noisy 

environment more accurately, Table 1 details the total 

number of iterations of local search and global search 

under different SNR conditions. 

In Table 1, the average number of iterations E(P) was 

relatively small, indicating that the OSRA had less 

additional computational complexity. When the signal 

sparsity was 25 and the SNR was 40, the average number 

of iterations E(P) was 0.11. At this time, the computational 

complexity of the OSRA was about 35 times that of the 

orthogonal matching tracking algorithm. Using a 

comprehensive analysis of algorithm performance and 

complexity, the proposed OSRA could adjust the 

computational complexity to improve the effectiveness of 

signal reconstruction. However, OSRA still had some 

drawbacks. Firstly, this algorithm required a longer 

computation time, especially in Gaussian noise scenarios. 

Secondly, the algorithm was sensitive to noise, and its 

reconstruction performance might be affected when the 

noise was large. In addition, the computational complexity 

of this algorithm increased with the increase of sparsity, 

which might limit its application in sparse signal 

processing scenarios. 

The MSE comparison of OSRA and OMP in 50 

Monte Carlo experiments is shown in Table 2. The mean 

MSE of OSRA was 3 to 4 orders of magnitude lower than 

that of OMP, and its standard deviation was smaller, 

indicating that it had higher reconstruction accuracy and 

stronger stability. All p values were less than 0.001, 

indicating that the differences between OSRA and OMP 

were of extremely significant statistical significance 

(rejecting the null hypothesis, the differences were not 

random). 

4.2 Performance analysis of CJSRA 

To verify the effectiveness of the CJSRA using the public 

support set, the experiments compared the performance of 

the OMP, SIPP, IOSSP, and the algorithm without adding 

the public support set improvement. The comparison of 

the performance of each algorithm in noise-free conditions 

is shown in Figure 10. 
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Figure 9: Comparison of runtime of different algorithms in noisy scenarios. 

Table 1: The total number of iterations for local and global search under noisy conditions. 

SNR 
E(P) 

K=21 K=23 K=25 K=27 K=29 

SNR=32 0.17 0.20 0.22 0.25 0.28 

SNR=34 0.15 0.17 0.19 0.23 0.27 

SNR=36 0.13 0.14 0.15 0.21 0.26 

SNR=38 0.11 0.12 0.13 0.18 0.25 

SNR=40 0.08 0.10 0.11 0.17 0.24 

Table 2: The comparison of MSE between OSRA and OMP. 

Algorithm SNR=20dB SNR=30dB 

OSRA 2.5×10-5±3.7×10-6 9.8×10-6±1.1×10-6 

OMP 1.2×10-2±2.1×10-2 8.3×10-3±1.5×10-3 

p <0.001 <0.001 
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Figure 10: Comparison of performance of various algorithms in noise absence. 

Figure 10 (a) shows the comparison of relative 

reconstruction errors among various algorithms. As the 

ratio of limited observation data to actual signal length 

M/N increased, the relative reconstruction error of the 

algorithm gradually decreased. When the public support 

set improvement method was not added, the performance 

of the algorithm was poor. When the M/N was 0.12, the 

relative reconstruction error was 1.91, and after adding the 

public support set improvement, the relative 

reconstruction error was about 1.0. After introducing the 

parameter R that reduced the number of iterations, the 

correct elements in the initial estimation were removed in 

the improvement of the public support set. The 

reconstruction performance of the algorithm at R=3/4 was 

worse than that of the algorithms at R=0 and R=1/2. 

Compared to other algorithms, the proposed CJSRA had 

the highest support set estimation accuracy. Figure 10 (b) 

shows the average error of support set estimation, which 

was similar to the comparison of relative reconstruction 

errors. Figure 10 (c) shows the calculation of the average 

running time. As the R-value increased, the algorithm 

running time gradually decreased, and when R=0, the 

algorithm running time was longer. As the M/N ratio 

increased, the computational complexity of the algorithm 

gradually decreased. Comprehensive analysis showed that 

the CJSRA based on the public support set had obvious 

advantages, and a value of R of 1/2 could balance the 

computational complexity and reconstruction 

performance. In noisy scenarios, it was necessary to fix 

the M/N ratio and compare the impact of different SNRs 

on algorithm reconstruction performance. The M/N ratio 

was set to 0.18, and the performance comparison of each 

algorithm in noisy situations is shown in Figure 11. 

In Figure 11 (a), after adding the public support set 

improvement, when the iteration parameters R were 0 and 

1/2, and the SNR was 40dB, the relative reconstruction 

error of CJSRA was the smallest, about 0.08. As shown in 

Figure 11 (b), as the SNR increased, the average error of 

the algorithm's support set estimation gradually decreased. 

Compared to other algorithms, the proposed CJSRA had a 

minimum support set estimation average error of 0.04. 

Figure 11 (c) shows the comparison of the average running 

time of the algorithm. It can be seen that when the iteration 

parameters R were 1/2 and 3/4, the computational 

complexity of the algorithm was significantly lower than 

when R was 0. During the algorithm iteration process, 

more elements were deleted each time, reducing the 

number of iterations. Comprehensive analysis showed that 

improving the public support set could enhance the 

effectiveness of joint SSR. The introduction of parameter 

R was to reduce iterations. The larger its value, the more 

elements were deleted in the iteration, and the fewer the 

iterations, which could reduce the computational 

complexity. However, CJSRA performed poorly in noisy 

scenarios and required a fixed signal-to-noise ratio. In 

addition, the algorithm had a high computational 
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complexity and introduced the parameter R to reduce the 

number of iterations. However, when the value of R was 

large, the reconstruction performance of the algorithm was 

actually poor. 

The comparison of ASCE between CJSRA and 

IOSSP in 30 Monte Carlo experiments is shown in Table 

3. CJSRA verified the effectiveness of the voting strategy 

and error screening by improving the estimation of the 

public support set, with ASCE being more than 50% lower 

than IOSSP. When M/N≥0.15, all p was less than 0.01, 

indicating that the support set estimation accuracy of 

CJSRA was significantly better than that of the 

comparison algorithm. 

4.3 Performance analysis of DJSRA 

To verify the performance of the DJSRA proposed in the 

study, the experiment compared OMP and DIPP, with 

different values set for the degree of network connectivity. 

Table 4 displays the average frequency at which DIPP 

network nodes receive and transmit information within a 

noise-free environment. 
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Figure 11: Performance comparison of various algorithms under noisy conditions. 

Table 3: The comparison of ASCE between CJSRA and IOSSP. 

Algorithm M/N=0.15 M/N=0.20 

CJSRA 0.13±0.02 0.08±0.01 

IOSSP 0.27±0.05 0.19±0.03 

p 0.003 0.001 

Table 4: The average number of times DIPP network nodes receive and transmit information in a noise free 

environment. 

M/N 
Average number of messages received and transmitted 

C3 C4 C5 C6 C7 C8 C9 

M/N=0.10 7.41 36.25 120.21 198.19 136.23 100.06 62.46 

M/N=0.12 7.55 20.36 65.12 13.53 80.15 80.25 141.45 

M/N=0.14 3.67 15.45 15.12 7.12 56.12 32.54 5.63 

M/N=0.16 2.57 8.36 8.36 5.86 15.36 7.68 4.68 

M/N=0.18 2.42 3.72 5.21 4.62 8.45 6.54 4.88 

M/N=0.20 2.43 3.69 4.63 4.95 8.23 6.32 4.53 
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As shown in Table 4, under different parameters, 

there was a large difference in the average number of times 

each node in the distributed parallel tracking algorithm 

receives and transmits information. Nodes may experience 

multiple repetitions of receiving and transmitting 

information, especially when the M/N ratio was less than 

0.12. However, the DJSRA proposed in this study could 

reconstruct information after a single transmission at each 

node, saving time wasted on repeated transmissions. The 

performance comparison of each algorithm in a noiseless 

environment is shown in Figure 12. 

In Figures 12 (a) and (b), as the M/N ratio increased, 

the error of the algorithm gradually decreased. As the 

network connectivity increased, compared to the other two 

algorithms, the DJSRA proposed in the study had a 

smaller initial error value and faster convergence speed. 

When the network connectivity was C9 and the M/N ratio 

was 0.10, the relative reconstruction error and average 

support set estimation error of the DJSRA were 0.49 and 

0.46, respectively. Figure 12 (c) shows the average 

running time of different algorithms reconstructing a 

single signal. The DIPP algorithm was greatly affected by 

the M/N ratio. When the M/N ratio was small, its running 

time could reach up to 1.1 seconds, which was 

proportional to the number of times the node received and 

sent information. In contrast, the average running time of 

the DJSRA proposed in the study did not change 

significantly. When the network connectivity was C9, the 

average running time remained within the range of less 

than 0.5 seconds. To further compare the communication 

efficiency of each algorithm in a noisy environment, Table 

5 presents in detail the average number of times each node 

received and sent information in the DIPP algorithm and 

the DJSRA. 
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Figure 12: Comparison of performance of various algorithms in noiseless environments. 

Table 5. The average number of times DIPP received and sent messages per node in noisy environments. 

SNR(dB) 
Average number of messages sent and received 

C3 C4 C5 C6 C7 C8 C9 

SNR=10 6.86 52.35 102.35 196.62 183.25 173.24 169.00 

SNR=15 7.69 60.12 85.14 101.38 123.54 162.45 199.56 

SNR=20 5.95 9.65 12.36 28.66 85.34 125.46 173.36 

SNR=25 4.16 5.63 10.46 14.27 22.36 45.37 56.34 

SNR=30 3.52 5.24 6.25 8.26 18.36 25.36 28.54 

SNR=35 3.16 5.21 6.03 9.48 10.23 12.35 15.36 

SNR=40 2.85 5.01 6.01 4.94 8.36 10.14 13.16 
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Table 5 shows that there was a significant difference 

in the average number of times DIPP nodes received and 

sent messages in noisy environments, especially when the 

SNR was less than 20, the number of times DIPP nodes 

received and sent messages in the network varied 

significantly. The DJSRA proposed in the study could 

complete signal reconstruction by receiving and sending 

information once per section, avoiding the time 

consumption of nodes repeatedly sending information 

multiple times. The performance comparison of each 

algorithm in noisy environments is shown in Figure 13. 

As shown in Figure 13 (a), as the network 

connectivity increased, the relative reconstruction error of 

the DJSRA proposed in the study gradually decreased, and 

the error value was smaller than that of other algorithms. 

When the SNR was 10, the relative reconstruction error 

using the orthogonal matching tracking algorithm was 

0.57. The minimum relative reconstruction error of the 

DJSRA proposed in the study was 0.34. Figure 13 (b) 

shows the average error of the algorithm's support set 

estimation, which was similar to the result of relative 

reconstruction error. As the SNR increased, the average 

error of support set estimation for DIPP and the proposed 

algorithm gradually approached, with an error value of 

less than 0.1 when the SNR was 40. Figure 13 (c) shows 

the comparison of the average running time of the 

algorithm. When the network connectivity was low, the 

average running time of DIPP changed significantly, 

which was positively correlated with the number of times 

nodes received and sent information. The average running 

time of the DJSRA proposed in the study was relatively 

stable. Comprehensive analysis showed that the DJSRA 

proposed in the study could reduce computational 

complexity while ensuring the effectiveness of signal 

reconstruction. 

The RER comparison between DJSRA and DIPP in 

40 Monte Carlo experiments with network connectivity 

C5 is shown in Table 6. DJSRA achieved reconfiguration 

through a single interaction, with an RER that was over 

40% lower than DIPP, and a smaller standard deviation 

(higher stability). In the low SNR scenario (SNR=10dB), 

p < 0.05, indicating that the distributed collaborative 

mechanism significantly improved the anti-noise 

performance. 
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Figure 13: Comparison of performance of various algorithms in noiseless environments. 

Table 6: The comparison of RER between DJSRA and DIPP. 

Algorithm SNR=20dB SNR=30dB 

DJSRA 0.34±0.06 0.18±0.03 

DIPP 0.57±0.12 0.31±0.08 

p 0.012 0.008 
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Table 7: Comparison experimental results between sparse signal recovery algorithm and other methods. 

Algorithm Relative reconstruction error Successful refactoring rate Reference 

OSRA 0.763 0.793 This study 

CJSRA 1.026 0.818 This study 

DJSRA 0.332 0.856 This study 

ISTA 1.687 0.787 Lv et al. [37] 

FISTA 1.986 0.716 Guo et al. [38] 

AMP 1.674 0.806 Gerbelot et al. [39] 

 

The experimental results comparing the SSR 

algorithm with other methods are shown in Table 7. 

Iterative Shrinkage-Thresholding Algorithm (ISTA) 

adopted the default configuration in the literature. The step 

size was set to 0.9 times the inverse of the Lipschitz 

constant, the maximum number of iterations was 200 

times, and the termination condition was that the change 

in reconstruction error in five consecutive iterations was 

less than 10-5. Fast Iterative Shrinkage-Thresholding 

Algorithm (FISTA) was an accelerated version based on 

literature optimization, introducing a momentum term to 

enhance the convergence speed. The step size was 

dynamically adjusted, and the maximum number of 

iterations was set at 150 times. The termination condition 

was consistent with that of ISTA. The Approximate 

Message Passing (AMP) was implemented with reference 

to the original literature, including an adaptive denoising 

module. The number of iterations was set at 50 times, and 

the measurement matrix adopted the same column-

normalized random Gaussian matrix preprocessing 

method as the algorithm in this paper. All baseline 

methods used the same signal model (Gaussian sparse 

signal), measurement matrix (column-normalized random 

Gaussian matrix), and noise model (additive Gaussian 

white noise) as the algorithm in this paper, and the 

parameter adjustments strictly referred to the optimal 

practices in the original literature to ensure consistent 

comparison conditions. As shown in Table 7 the SSR 

algorithm proposed in the study had a relatively low 

reconstruction error and a high reconstruction success 

rate. Among them, DJSRA performed the best and FISTA 

performed the worst. This was mainly due to the 

introduction of an iterative threshold selection strategy in 

the DJSRA, which enabled it to achieve high 

reconstruction accuracy with fewer iterations. FISTA used 

an acceleration strategy, which could accelerate 

convergence but sacrificed reconstruction accuracy to 

some extent. 

Performance data revealed the inherent trade-off 

among accuracy, efficiency and robustness in algorithm 

design. By introducing the backtracking verification of 

support sets and the global optimization mechanism, 

OSRA significantly outperformed the traditional greedy 

algorithm in terms of reconstruction accuracy. However, 

the computational complexity increased due to the 

increase in the number of iterations and the number of 

least squares solution times, reflecting the design logic of 

"accuracy for efficiency". As a centralized algorithm, 

CJSRA improved the estimation accuracy of the support 

set through the multi-source voting strategy and edge 

information OMP. However, all source data needed to be 

transmitted to the central node, and the communication 

cost increased linearly with the number of sources. While 

DJSRA reduced the communication overhead through 

distributed single information interaction (only the 

summary of the support set was transmitted between 

adjacent nodes). However, due to the reliance on local 

information, the reconstruction error was slightly higher 

(RER was about 10%-15% higher), demonstrating the 

"trade-off between the accuracy of multi-source 

collaboration and communication cost". Furthermore, in 

scenarios with low SNR or low observation rate, complex 

algorithms (such as OSRA, CJSRA) were more sensitive 

to noise, while traditional algorithms (such as OMP) 

exhibited stronger robustness due to their simple logic, 

reflecting the "trade-off between noise robustness and 

observation rate". Distributed topology analysis showed 

that DJSRA had the best accuracy in fully connected 

networks, but the error increased significantly in low-

connectivity topologies, reflecting the "dependency 

relationship between network structure and reconstruction 

performance". These trade-offs provided clear guidance 

for practical applications: OSRA was preferred in high-

precision scenarios, DJSRA was applicable in distributed 

scenarios with limited communication, and lightweight 

algorithms such as OMP could be adopted in scenarios 

with high real-time requirements. 

5 Conclusion 
CS is widely used in applied mathematics, remote sensing 

imaging, and computer science, with its core problem 

being SSR. The research proposed SSR algorithms 

suitable for different scenarios for single-source and 

multi-source joint SSR. For SSR from a single-source, 

research was conducted to improve the greedy algorithm 

support set estimation and propose an OSRA. For the 

reconstruction of sparse signals from multi-sources, a 

CJSRA based on improved public support set estimation 

was proposed by studying and utilizing the improved 

public support set. Through node signal reconstruction, a 

DJSRA using an improved public support set was 

proposed. Experimental data showed that the mean square 

error of the OSRA was less than 10-5, which was 1-4 

orders of magnitude smaller than OMP and other 

comparative algorithms. When the signal sparsity was 25 

and the SNR was 40, the average number of iterations was 

0.11. At this time, the computational complexity of the 

OSRA was about 35 times that of the OMP algorithm. 

Based on comprehensive analysis, it can be concluded that 

the OSRA proposed in the study could adjust the 

computational complexity to improve the effectiveness of 

signal reconstruction. For the joint SSR algorithm with 

multi-sources, the performance of the algorithm was poor 

https://www.baidu.com/s?sa=re_dqa_generate&wd=%E8%BF%91%E4%BC%BC%E6%B6%88%E6%81%AF%E4%BC%A0%E9%80%92%EF%BC%88Approximate%20Message%20Passing%EF%BC%89&rsv_pq=caa52d4800005d02&oq=AMP%20%E9%87%8D%E6%9E%84%E7%AE%97%E6%B3%95%E7%9A%84%E5%85%A8%E7%A7%B0%E6%98%AF%E4%BB%80%E4%B9%88&rsv_t=e54el8+lsjpOW5vqK88+x1JcUfsUFFXNVpRHiJMJ7bpL0VDtFx1rUdlHy8/qtyBdqLPd8w&tn=15007414_1_dg&ie=utf-8
https://www.baidu.com/s?sa=re_dqa_generate&wd=%E8%BF%91%E4%BC%BC%E6%B6%88%E6%81%AF%E4%BC%A0%E9%80%92%EF%BC%88Approximate%20Message%20Passing%EF%BC%89&rsv_pq=caa52d4800005d02&oq=AMP%20%E9%87%8D%E6%9E%84%E7%AE%97%E6%B3%95%E7%9A%84%E5%85%A8%E7%A7%B0%E6%98%AF%E4%BB%80%E4%B9%88&rsv_t=e54el8+lsjpOW5vqK88+x1JcUfsUFFXNVpRHiJMJ7bpL0VDtFx1rUdlHy8/qtyBdqLPd8w&tn=15007414_1_dg&ie=utf-8


Signal Reconstruction Algorithm Application Research… Informatica 49 (2025) 345–364 361 

without the addition of the public support set improvement 

method. When the M/N was 0.12, the relative 

reconstruction error was 1.91, and the relative 

reconstruction error after the addition of the public support 

set improvement was about 1.0. After introducing the 

parameter R that affected the number of iterations, the 

correct elements in the initial estimation were removed in 

the improvement of the public support set. The 

reconstruction performance of the algorithm was worse 

when R=3/4 than when R=0 and R=1/2. Compared to 

other algorithms such as OMP, the proposed CJSRA had 

the highest support set estimation accuracy. When the 

SNR was 10, the relative reconstruction error using OMP 

was 0.57. The minimum relative reconstruction error of 

the DJSRA proposed in the study was 0.34. Based on the 

above content, the superiority and contribution value of 

this study can be concluded. Firstly, a greedy algorithm-

based SSR algorithm was proposed for the problem of 

single-source SSR. This algorithm could achieve high 

signal reconstruction performance gains at low 

complexity. Secondly, for the problem of joint SSR from 

multi-sources, a joint SSR algorithm based on an 

improved public support set was proposed, which could 

achieve good signal reconstruction performance at low 

complexity. Finally, the study focused on decentralized 

reconstruction scenarios and hybrid support set models, 

analyzed the impact of network connection topology on 

the estimation of public support sets and the energy 

consumption of nodes receiving and transmitting 

information, and proposed corresponding improvement 

strategies. Through the above research, better 

reconstruction results can be achieved in the field of SSR, 

and better performance can be achieved in different 

scenarios. However, OSRA and CJSRA algorithms 

performed poorly in noisy scenarios and require a fixed 

SNR. In addition, when introducing the parameter R to 

reduce the number of iterations, if the value of R was 

large, the reconstruction performance of the algorithm was 

actually poor. Therefore, these algorithms were sensitive 

to noise, and their computational complexity increased 

with increasing sparsity, limiting their application in 

sparse signal processing scenarios. The limitation of this 

study was that the computational complexity of the single-

source SSR algorithm was about 35 times that of the 

orthogonal matching tracking algorithm, and the 

algorithm ran relatively long. In response to the above 

issues, future research directions can focus on improving 

the performance of algorithms in noisy scenarios and 

reducing computational complexity to adapt to a wider 

range of sparse signal processing applications, and start 

with the finite equidistant property to further improve the 

performance of SSR. 
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