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To improve the efficiency of compressed sensing sparse signal reconstruction, a reconstruction algorithm
suitable for different scenarios is proposed. On the basis of greedy algorithm, a sparse reconstruction
algorithm for optimization is constructed. A multi-source sparse signal reconstruction algorithm with
improved support set estimation is proposed. Experimental data show that the mean square error of the
optimized sparse signal reconstruction algorithm is less than 10, which is 1-4 orders of magnitude
smaller than other comparative algorithms (suh as orthogonal matching pursuit). The support set
estimation accuracy of the joint sparse signal reconstruction algorithm is the highest. When the signal-
to-noise ratio is 10, the relative reconstruction error based on the orthogonal matching tracking algorithm
is 0.57. The minimum relative reconstruction error of the proposed joint sparse signal reconstruction
algorithm is 0.34. The analysis of experimental data shows that the decentralized joint sparse signal
reconstruction algorithm proposed in this paper not only ensures the efficiency of signal reconstruction,
but also reduces the computational complexity.

Povzetek: Prispevek se ukvarja s kompresijskim zaznavanjem (CS) in rekonstrukcija redkih signalov.
Novost je kombinacija OMP-backtrackinga, glasovanja skupne podpore in enkratne porazdeljene

izmenjave za skupno SSR; potrebuje teoreti¢no utrditev, realne podatke in reproducibilnost.

1 Introduction

Compressed Sensing (CS) signal processing technology is
a new type of signal processing method that can transform
traditional sampling theorems into more efficient signal
reconstruction methods and has become a current research
hotspot. Compared with traditional sampling theorems,
CS technology can greatly reduce the number of samples
and improve the efficiency of signal reconstruction. In
traditional communication and signal processing
frameworks, based on Shannon's theorem, the sampling
frequency needs to be twice higher than the highest
information frequency [1]. With the development of
technology, the amount of data that communication nodes
and devices need to process is very large. Traditional
signal sampling can generate signal redundancy, leading
to a great waste of resources [2]. Therefore, the
development of CS technology, with its high sampling rate
beyond Nyquist limits, addresses issues such as
oversampling, data compression, and data loss, while also
ensuring reliable data recovery [3]. CS technology can
represent signals using only a small number of non-zero
coefficients within an appropriate range, potentially
reducing the cost of sampling and computation. It is
widely used in various fields such as electronic technology
and computer science [4]. In Sparse Signal Reconstruction
(SSR), CS technology can achieve SSR through iterative
algorithms such as greedy algorithms. Meanwhile, in
distributed network scenarios, it is necessary to consider

the processing of multi-source signals and utilize the
correlation between data to complete joint SSR [5]. The
current signal reconstruction approach fails to adequately
leverage the inherent sparsity of the signal, leading to
suboptimal reconstruction outcomes when handling sparse
signals. Therefore, research has proposed joint SSR
algorithms for single-sources and multi-sources, aiming to
improve the reconstruction effect. The study includes four
sections. The first section is a summary of relevant
research, the second section is the design of SSR
algorithms, the third section is the performance analysis of
the proposed algorithm, and the fourth section is a
summary of this study. This study proposes a joint SSR
algorithm based on an improved public support set for the
multi-source joint SSR problem. In SSR problems,
oriented SSR algorithm (OSRA) employs global
optimization techniques, encompassing support set pre-
selection with backtracking and comprehensive global
optimization, thereby exhibiting robust global search
capabilities. Centralized joint SSR algorithm (CJSRA)
focuses on improving the estimation of the public support
set, by preliminarily estimating the public support set,
optimizing the public support set, and using edge
information-based orthogonal matching pursuit (OMP)
algorithm to more accurately estimate the support set of
sparse signals, thereby improving the accuracy and
stability of signal reconstruction. In the problem of multi-
source joint SSR, the combination of these two algorithms
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can achieve efficient signal reconstruction, reduce the
energy consumption of node transmission and reception of
signals, and avoid the problem of repeated reception and
transmission of signals.

The novelty of the proposed method in the public
support set estimation of joint SSR lies in that CISRA
improves the support set estimation process of the
traditional joint sparse algorithm through the voting
strategy and error screening mechanism. Most of the
existing methods rely on the direct intersection of single-
source estimation and fail to effectively filter out random
errors. However, CISRA improves the reliability of the
initial estimation through multi-source voting and further
optimizes the support set through edge information OMP,
solving the dependence problem of traditional methods on
high observation rates. DJSRA proposes a distributed
single information interaction mechanism, breaking
through the limitation that existing distributed algorithms
require multiple communications. The public support set
is estimated through the collaborative estimation of
neighborhood nodes without the coordination of a central
node, which ADAPTS to the dynamic network topology.
Moreover, the support set estimation process is
compatible with the correlation of partially overlapping
signals instead of forcing the assumption of complete
sharing. Compared with the existing methods, the method
proposed in this paper demonstrates better robustness in
low observation rates, noise interference and distributed
scenarios through hybrid support set modeling (public
support set + innovative support set) and adaptive
collaborative strategies, rather than merely continuing the
concept of public support sets. The contribution of this
study is mainly reflected in the following points. Firstly,
for the problem of single-source SSR, the key difference
between OSRA and traditional greedy algorithms (such as
OMP and generalized orthogonal matching pursuit
(gOMP)) lies in the introduction of a support set pre-
selection with backtracking mechanism and a global
optimization objective function. Traditional methods only
rely on local search to iteratively update the support set,
while OSRA verifies the reliability of the initial estimation
through backtracking and exits the local optimum through
the global objective function, significantly improving the
accuracy and robustness of SSR. Secondly, in the aspect
of multi-source joint SSR, the study proposes CJSRA and
DJSRA based on improved public support set estimation.
CJSRA can improve the accuracy of support set
estimation, while DJSRA can reduce the computational
complexity while ensuring the signal reconstruction
effect, and reduce the time consumption of nodes
repeatedly sending and receiving information. These
algorithms provide more efficient solutions for SSR in
different scenarios and enrich the knowledge system in
this field. The drawback of OSRA and CJSRA algorithms
themselves is that as sparsity increases, the computational
complexity of the algorithms also increases accordingly.

2 Related works

CS, also known as sparse sampling, is a technique used in
the field of electronic engineering signal processing to

S. Zhang

find sparse solutions for under-determined linear systems.
It can be used to obtain and reconstruct sparse or
compressible signals. Wang et al. proposed an energy-
efficient collection method using CS to construct a data
collection model for underwater acoustic sensor networks.
The results indicated that this method could reduce the
sensor energy consumption by 15% [6]. Wang et al
proposed a triple image encryption and hiding algorithm
that utilized a two-dimensional discrete wavelet transform
to sparsely represent three grayscale images, and
processed and compressed the measurement matrix [7].
The results showed that this method could improve
encryption efficiency by 23%. Bai et al. proposed a non-
convex CS method for detecting fan noise patterns in CS,
utilizing the L-1/2 minimization algorithm to optimize the
sensor array. Results showed that this method could
improve the dynamic range by 10dB [8]. Kato et al.
introduced compressive sensing into the human-order
analysis to address the limitation that traditional methods
are only applicable to steady-state vibrations, enabling the
measurement of operational vibrations with rotational
speed fluctuations (such as in automotive engines). The
aluminum plate vibration experiment and engine
application showed that this method could accurately
reconstruct the vibration (modal guarantee criterion 0.98,
mean square error less than 1%, etc.), was suitable for the
full-field measurement of high-speed vibration of rotating
machinery, and was expected to assist in signal recovery
and data compression [9]. Kadhim et al. aimed at the
image encryption requirements in remote working and
learning. In their work, a multi-chaotic encryption
algorithm based on block CS, Swin Transformer and
Mustang optimization was proposed. Encryption was
achieved through processes such as wavelet transform,
block compression, chaotic diffusion and optimized
scrambling. Experiments showed that the average
information entropy of the algorithm was 7.9749 and the
NPCR reached 99.5453%, etc., indicating that it was
efficient and robust and could resist various attacks [10].

CS technology includes three key steps: signal sparse
representation, measurement matrix construction, and
reconstruction algorithm. Among them, the reconstruction
algorithm is the core of compressive sensing technology,
as it has a direct impact on the complexity and quality of
signal reconstruction. Zeynali et al. proposed a new
algorithm for reconstructing wireless sensor network
(WSNs) data with spatio-temporal correlation using CS. A
time-varying sliding window mechanism was adopted to
dynamically adjust the window size and the number of
measurements, so as to effectively utilize spatio-temporal
correlation, balance the sampling rate and reduce the
transmission cost. Simulation showed that this algorithm
maximized the utilization of prior signal information
through the distributed data window framework.
Compared with other CS reconstruction methods, it
achieved higher reconstruction accuracy with less
transmission volume and was suitable for various WSN
scenarios [11]. Zhao et al. proposed a smooth inertial
neural dynamics method to reconstruct sparse signals
through the processing of norm minimization problems.
The research results indicated that under certain
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conditions, this method could average sub-linear
convergence speed and improve the efficiency of SSR and
image restoration by 11.1% [12]. Lin et al. optimized the
regularization parameters and iteration times under
different sparsity ratios to address the issue of reduced
quality in sparse imaging reconstruction. Experimental
data showed that the quality of SSR using the best
parameters was improved by 16.7% [13]. Sun et al.
proposed an improved OMP method that combined a
forward search strategy to find residual errors. Results
showed that this method could improve the Signal-to-
Noise Ratio (SNR) of signal reconstruction and reduce the
computational complexity of measurement [14]. Li et al.
proposed a variable step-matching tracking CS algorithm
based on oblique projection, which estimated initial
sparsity using the constrained isometry property and
created a support set for the target signal. The results
showed that this method was superior to traditional
matching tracking algorithms and could reduce
computational complexity by 13% [15]. Bayesian
Compressive Sensing (BCS) is a signal acquisition and
processing technique based on Bayesian theory. It is a new
technology developed in the field of signal processing in
recent years, with the basic idea of compressing signals
before sampling and digitization. Liu et al. proposed a new
method based on Bayesian CS algorithm for spectrum
estimation of multiple frequency hopping signals with
randomly omitted observations. By designing a specific
bilinear time-frequency representation framework with a
time-frequency kernel, the artifacts caused by cross terms
and missed observations are effectively suppressed, while
preserving the self-terms of the frequency hopping signal.
By utilizing the redesigned structure aware Bayesian CS
algorithm to process the kernels in the time-frequency
domain, high-resolution frequency hopping signal
spectrum estimation was achieved even in the absence of
most data observations. The simulation results showed
that the method was effective [16].

To sum up, many researchers have conducted
extensive studies and designs on compressive sensing and
SSR. However, traditional greedy reconstruction
algorithms (such as OMP and segmented orthogonal
matching pursuit (StOMP)) only update the support set
through local iteration, which has the defects of overfitting
and short-sightedness, and does not introduce a global
optimization mechanism to escape the local optimum. The
OSRA proposed in this paper compensates for the
limitations of traditional algorithms in support set
estimation through the support set preselection
backtracking and global search strategies. The existing
joint SSR algorithms (such as inner-outer support set
pursuit algorithm (IOSSP) and edge information greedy
pursuit algorithm (SIPP)) do not estimate the public
support set of multi-source signals accurately enough and
fail to make full use of the correlation between signals for
support set optimization. In this paper, CISRA improves
the preliminary estimation and screening process of the
public support set through the voting strategy and the
OMP algorithm based on edge information, and enhances
the accuracy of multi-source signal support set estimation.
Distributed joint SSR algorithms (such as distributed
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parallel pursuit algorithm (DIPP)) rely on multiple round-
trip communications between nodes to complete signal
reconstruction, resulting in high energy consumption and
delay. In this paper, DJSRA eliminates the reliance on the
central node through a single information interaction and
an improved public support set estimation method, and
reduces the communication cost and computational
complexity between nodes. Furthermore, Model-Based
CS improves the reconstruction performance by explicitly
utilizing the structured sparse priors of the signal (such as
group sparsity and tree sparsity), but its dependence on the
preset structure limits its applicability in multiple
scenarios. BCS models sparsity through hierarchical
priors and performs well at low observation rates, but it
has high computational complexity and requires preset
signal distributions. Although structural sparsity methods
(such as the Joint Sparse Model (JSM)) can capture the
correlations of multi-source signals, most of them assume
that the support sets are completely shared and are difficult
to adapt to actual scenarios with partial overlap or
dynamic changes. The hybrid support set model and the
improved support set estimation method proposed in this
paper do not require strict prior assumptions. They can
model the correlation of multi-source signals more
flexibly and reduce the computational and communication
overhead through a distributed collaborative mechanism
at the same time.

3 Design of SSR Algorithm under CS

This chapter mainly proposes the design of an
optimization-oriented SSR algorithm and a CIJSRA and
decentralized joint SSR algorithm (DJSRA). The OSRA
improves the performance of the signal reconstruction
algorithm by improving the greedy algorithm support set
estimation. The CJSRA improves the estimation of the
public support set to solve the problem of correlation
between multi-sources. The DJSRA eliminates the
presence of central nodes through information
transmission and reconstruction between nodes, thereby
improving energy consumption and latency issues.

3.1 Design of SSR algorithm using
optimization orientation

The core issue of CS is SSR, which includes single-source
and multi-source joint SSR. The signal reconstruction
problem is described as equation (1).

min||x||; subject to |y — x| < & 1)

In equation (1), the original signal is denoted as x,
the measurement matrix as @ , and the signal observation
vector as y . The reconstruction threshold is setat &, with

the stipulation that the noisy energy value must be less
than this reconstruction threshold. The noise observation
model estimates signals based on observation data, where
the observation data is affected by noise interference. This
model attempts to restore certain features of the original
signal by considering the influence of noise, in order to
improve the accuracy and reliability of signal
reconstruction. The original signal is observed through a
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measurement matrix and is affected by noise. The
reconstruction goal is to recover the original signal based
on the observation vector, and the reconstruction threshold
is used to determine whether noise can be used for signal
reconstruction. The correlation between different
variables is shown in that the measurement matrix
converts the original signal into the observation vector,
and the noise affects the reconstruction effect. The
reconstruction threshold is used to judge whether the noise
can be ignored, so as to improve the accuracy of the signal
reconstruction. The main difference of sparse signal
recovery algorithms lies in their utilization of signal
sparsity during the solving process. Compared with other
algorithms such as greedy methods, they can better utilize
the sparse characteristics of signals, thereby achieving
faster convergence speed and higher recovery accuracy
under the same conditions.

A cornerstone of SSR algorithms lies in the greedy
tracking algorithm, which iteratively identifies the current
optimal solution. However, it falls short of ensuring a
globally optimal solution. In contrast, tree search
matching and tracking algorithms can find the optimal
branch through a large number of searches, but their
computational complexity and complexity are relatively
high. Therefore, based on greedy algorithms, this study
proposes an OSRA, whose core problem is the SSR
algorithm. Over-fitting refers to the phenomenon that the
model over-fits the training data during machine learning,
leading to poor performance on new unseen data. In the
signal reconstruction problem, over-fitting may lead to an
excessive dependence of the reconstruction results on the
training data, thus creating errors in processing new
signals. Compared with traditional greedy tracking
algorithms, OSRA proposes a new approach based on
global optimization, which solves the problem of over-
fitting that may occur in greedy algorithms through
support set pre-selection with backtracking and global
optimization methods, thereby improving the accuracy
and stability of signal reconstruction [17]. Before
designing the algorithm, some symbol definitions based
on the problem planning are first proposed, and the error
function is defined as shown in equation (2).

r(A) =[y-@,%,], @)
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reconstruction model is grounded in greedy algorithms
and endeavors to identify the optimal support set, which
comprises key elements, through the definition of error
functions. This approach is designed to achieve efficient
sparse reconstruction tailored to specific problems. In the
process of support set estimation, greedy algorithms may
over-fit, leading to support set estimation errors [18]. To
address this issue, improvements were made to the greedy
algorithm to enhance the performance of the signal
reconstruction algorithm. The optimized OSRA flow is
shown in Figure 1.

The optimized OSRA mainly includes two parts:
support set pre-selection with backtracking and global
optimization method. In the stage of pre-selection and
backtracking of the support set, the greedy algorithm is
first used to obtain the initial estimate of the support set.
To avoid over-fitting, it is necessary to backtrack the
initial estimated support set. If the error function after
backtracking is still below the preset threshold value, the
backtracking support set will be used as the final estimate.
On the contrary, it will enter the global optimization step.
Global optimization is mainly achieved through two
stages: local search and global search. Local search mainly
reduces the error function, which is the objective function,
by estimating the support set that satisfies the conditions.
If the conditions are met, then this support set estimate is
considered the final estimate. Should the local search fail
to locate an estimate of the supporting set that satisfies the
given conditions, it will transition to the global search
phase. During the global search, a global objective
function will be devised to enable the algorithm to escape
local optima and ultimately derive the final estimate of the
support set. After obtaining the support set estimation, the
least squares method is used to achieve signal estimation.
Overall, support set pre-selection with backtracking can
reduce computational complexity through greedy
algorithms, while backtracking can test the support set,
identify the best elements to form the support set, and
calculate the corresponding error function. The domain
definition of the support set is shown in equation (3).

N(A) =

{AAUL03 {4, }:1<i <K, 3)

1< j<N-K}
In equation (2), the error function is r(A), and the
optimal element composition support setis A . The sparse
Y
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Figure 1: Optimized OSRA flow.
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In equation (3), the domain of the support set is
defined as N(A), the number of optimal elements is K,
the number of elements in the original signal subscript
complete set is N, the complement of the support set in
the complete set is A° , and the element of the
complement set is 6, . The definition of the local optimal
error function is shown in equation (4).

r(A") <r(A°),VA° e N(A) 4)

In equation (4), the local optimal error function is
r(A"), the support set corresponding to the error threshold

is A°, and the support set estimated for the local search is
A". The global objective function is a function used to
balance the estimation error of the support set and the
difference of elements. The global objective function is
shown in equation (5).

g(A°,A) =

HIr(A)F =[[A° = AT +]A" =A%

In equation (5), the global objective function is
g(A°,A"), and the constant x is used to measure the

difference between A™ and A°. After optimizing OSRA,
the SSR is shown in equation (6).

®)

+
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In equation (6), the best estimate of the signal support
set is T , and the best-reconstructed signal is X.. In

summary, the optimization OSRA model achieves the
reconstruction of sparse signals by defining support set
domains, local optimal error functions, and global
objective functions, ultimately obtaining the best estimate
of the signal support set and the best reconstructed signal.
The OSRA pseudocode is shown in Figure 2.

The convergence of the OSRA is ensured by two key
mechanisms: the error-decreasing property inherent in the
support set pre-selection backtracking process and the
gradient descent mechanism employed during global
optimization. Assuming the objective function adheres to
Lipschitz continuity and the step size in the global search
phase complies with the Armijo condition, the algorithm
is guaranteed to converge to a local optimal solution
within a finite number of iterations. Furthermore, if the
measurement matrix fulfills the RIP condition, OSRA is
capable of accurately reconstructing the signal under a
sparsity level of K . The time complexity of OSRA is
O(K®™ +K?),where N isthesignal lengthand K isthe

sparsity. It is superior to the exponential complexity of the
tree search algorithm, but slightly higher than O(K*") of

R = (Dﬁ y (6) the traditional OMP.
Initialize:
support_set = empty set
residual =y

best_support = empty set
support_set.add(index)

residual =y - ® * x_support
if norm(residual) < epsilon:
break

residual = temp_residual

if no improvement:

return X

index = argmax(abs(®"T * residual))

X_support = least_squares(®[:, support_set], y)

temp_support = support_set - {j}

temp_x = least_squares(®[:, temp_support], y)

temp_residual =y - @ * temp_x

if norm(temp_residual) < norm(residual):
support_set = temp_support

for neighbor in support_set.neighbors():
candidate_support = support_set.update(neighbor)
candidate_x = least_squares(®[:, candidate_support], y)
if norm(y - ® * candidate_x) < norm(residual):
support_set = candidate_support
residual =y - ® * candidate_x

support_set = random_perturbation(support_set)
X = least_squares(®[:, support_set], y)

Figure 2: The OSRA pseudocode.
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Figure 3: A centralized joint SSR algorithm based on improved public support set estimation.

The error threshold in the OSRA is dynamically
adjusted based on the noise level, specifically set at 1.2
times the standard deviation of the noise. This
configuration ensures that, during the backtracking
process of the support set, only elements that effectively
contribute to reducing the signal reconstruction error are
retained, thereby preventing the inclusion of noise-
induced interference. When the signal residual (the
difference between the observed vector and the
reconstructed signal) is less than the preset threshold or
the number of iterations reaches 100 times, the algorithm
is stopped to balance the reconstruction accuracy and
computational efficiency and avoid meaningless excessive
iterations. In the global optimization stage, by adjusting
the difference weights of the elements in the support set
(the optimal weight parameters are determined through
cross-validation), it is ensured that the algorithm can not
only utilize the fast search ability of the greedy algorithm,
but also jump out of the local optimal solution through
global search, thereby improving the accuracy of
reconstruction.

3.2 Design of centralized joint SSR
algorithm

In the problem of reconstructing sparse signals from
multi-sources, it is necessary to consider the correlation
between signals [19]. In the relevant signal source set, the
support set between signals is jointly owned [20]. To
address this issue, a CIJSRA based on improved public
support set estimation is proposed. Firstly, obtain a
preliminary estimate of the public support set, then
identify and remove erroneous elements from the
preliminary estimate, retain correct elements, and improve
the estimation of the public support set. The definition of
a multi-source support set is shown in equation (7).

T,=CUIl;,1<j<] @

In equation (7), the support set for the multi-source
signal x; is T, , the set of related signal sources is

{x; eR"}, , the public support set is C , and the
innovation support set is I;. The sparse reconstruction

model for multiple signal sources defines the signal
support set, which is divided into related signal source set,

public support set, and new information support set to
achieve effective reconstruction and analysis of multiple
signal sources. The CIJSRA based on improved public
support set estimation is aimed at the SSR problem of
multi-sources. The main content of the study is to improve
the accuracy and stability of signal reconstruction by
introducing an improved public support set method. The
improvement of the public support set is a process of
eliminating incorrect elements and retaining correct
elements from the initial support set estimation through
voting strategies and error function screening. The CJISRA
using improved public support set estimation is shown in
Figure 3.

The CJSRA using improved public support set
estimation consists of three parts: preliminary estimation
of public support set, improvement of public support set,
and OMP algorithm based on edge information. The
preliminary estimation of the public support set requires
the use of OMP algorithm, and then a voting strategy is
used to obtain the preliminary estimation of the public
support set C . In the improvement of the public support
set, it is necessary to delete the wrong elements, retain the
correct elements, and finally obtain the improved public
support set estimate C . The input of an OMP based on
edge information is the improved public support set, in
order to obtain the final overall support set estimate
{‘Ii}jz1 and the reconstructed original signal {f(j}“}:l. The
strategy for enhancing the preliminary estimation of the
public support set involves retaining the elements that
have been accurately estimated and eliminating those that
have been inaccurately estimated. The number of elements
with higher credibility in the public support set is shown
in equation (8).

~ max(s) |z
In equation (8), the number of elements with higher
reliability is estimated as |CR|, and the addition function
is s. The error function corresponding to the support set
C. is shown in equation (9).

[Co=[z,e,], ©)
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In equation (9), the error function of the support set
C, is 1;(Cy) , and the error threshold value is Z;¢_ . The

sum of the error functions corresponding to all signal
observation vectors is shown in equation (10).

(G- 3D -Seq |

In equation (10), the total error function is f(CR).
To avoid over-fitting, the total error estimated by the
public support set should be less than the total error
function. The definition of the support set domain is
shown in equation (11).

N(C")={C° C°=C"\{c},vceC} (11)

In equation (11), the support set domain of the multi-
source support set is C”. When the sum of the minimum
error functions exceeds the threshold during iteration, the
best estimate C of the public support set is set C*. When
initializing the OMP algorithm, the support set is an empty
set. Next, the edge information can be used to estimate the
subsequent support set to ensure that elements can be
correctly identified during the iteration process. At this
time, the overall support set estimation is shown in
equation (12).

T, =mOMP(y;,®@,,2K,C) (12)

In equation (12), the overall support set estimated by
the OMP algorithm based on edge information is 'fj , and

its size is 2K . The non-zero term reconstruction result of
the signal is shown in equation (13).

R.=0"y
JvTj i yJ

(10)

(13)

In equation (13), the reconstruction result of the non-

zero term signal is )‘(J.f , which corresponds to the

subscripts of the first K maximum amplitude terms to
obtain the final estimation. The complexity of CJSRA
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using an improved public support set includes preliminary
set estimation, set improvement, and OMP algorithm
based on edge information. The computational complexity
of the improved algorithm of the public support set is
shown in equation (14).

O(JKMN + J(K =1)MN +--- + JK 'MN)

=0(JSMN)

S=K+(K-1)+---+K"'

In equation (14), the computational complexity of the
initial estimation of the public support set and the OMP
algorithm based on edge information is consistent, which
can be represented by O(JKMN) . The computational
complexity is related to the number of iterations « , and
the computational complexity of each iteration is
O(JaMN) . The evaluation indicators for algorithm
reconstruction performance include relative
reconstruction error and average error of support set
estimation. The relative reconstruction error is shown in
equation (15).

[x - % 2
RER=E{ 2
I,

The relative reconstruction error in equation (15) is
RER , and the average of all Monte Carlo experiments and

all signals is calculated as E{e}. The average error of
support set estimation is shown in equation (16).

(14)

(15)

) TNT|

ASCE =E{d(T,T)}=1-E W

In equation (16), the average error of support set

estimation is ASCE , and the measure of support set

estimation error is d(T,T) . The CJSRA pseudocode is
shown in Figure 4.

(16)

foreachy_jinY:

for ¢ in common_support:

X = empty list
foreachy jinY:

X.append(x_j)
return X

support_candidates = empty set

_, single_support =omp(®_j, y_j, K)
support_candidates.add(single_support)
common_support = vote(support_candidates, threshold=1)

temp_support = common_support - {c}
total_error = sum(norm(y_j - ®_j[:, temp_support] *
least_squares(®_j[:, temp_support], y_j)) fory_j inY)
if total_error < current_total_error:
common_support = temp_support

® _j _support = ®_j[:, common_support]
X_j = least_squares(®_j_support, y_j)

Figure 4: The CJSRA pseudocode.
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Figure 5: A DJSRA using improved public support set.

CJSRA converges through an iterative process that
begins with an initial estimation by the public support set,
followed by a refinement phase, and culminates in the
OMP reconstruction of edge information. It is
preliminarily estimated that the multi-source support set is
aggregated by using the voting strategy. In the
improvement stage, the support set is optimized by
deleting the elements with large error contributions, so
that the total error function monotonically decreases.
Given that the elements within the support set are finite in
number and the error possesses a lower bound, the
algorithm converges to a local optimum within a finite
sequence of steps. Assuming that the measurement
matrices of each source satisfy the RIP conditions, the
single-source OMP can accurately estimate the local
support set. The voting strategy combined with the
stability of RIP enables the estimation of the public
support set to resist noise interference. Eventually, the
precise reconstruction of multi-source signals is achieved
through the edge information OMP. The computational
complexity is linearly correlated with the number of
sources, sparsity, observation length and signal length. It
mainly comes from the preliminary estimation of multi-
source OMP, improvement of support sets and joint
reconstruction. It is suitable for medium-scale multi-
source scenarios, and the computational amount increases
linearly with the increase of the number of sources.

When making the preliminary estimation of the multi-
source signal support set in the CJSRA algorithm, the
"half-vote" rule (that is, an element is retained only when
it appears in at least half of the single-source support set)
is adopted to filter the random errors in the single-source
estimation and improve the reliability of the public
support set. By calculating the total change of the multi-
source signal reconstruction error after removing a certain
element, if the total error increases, the element is retained.
Otherwise, it is removed, ensuring that the error of the
public support set monotonically decreases after each
iteration. During the support set improvement stage, the
parameter R controls the proportion of elements deleted in
each iteration.

3.3 Design of DJSRA

In the problem of joint SSR with multi-sources, two
scenarios are mainly considered. The first scenario is
CJSRA, in which each perception node transmits its
observed signal values to the central node within the
network, and then the central node reconstructs all signals.

In DJSRA scenarios, there is no such central node. Instead,
each perception node must collaborate directly with one
another to reconstruct the signal [21-22]. Centralized
reconstruction scenarios can address issues such as energy
consumption, latency, security, interference, and network
robustness [23-25]. Nodes send information to the
connected nodes based on the network topology, and then
each node reconstructs itself, eliminating the problem of a
unique central node. The network connection topology
can be a fixed structure or a random structure, with the
number of input nodes and output nodes corresponding to
their in degree and out degree, respectively [26-27]. This
can improve energy efficiency, reduce latency, enhance
security, reduce interference, and enhance network
robustness. The network connection topology consists of
fixed and random structures, in which the entry and exit
degrees of nodes are equal [28-29]. Random structure
refers to the Watts-Strogatz network model, which
contains many nodes. In network topologies with degree 1
and degree 2, nodes have one or two input connections and
output connections, respectively. With 10 nodes and a
degree of 9 for each node, the network topology exhibits
a fully connected structure, resembling a centralized
reconstruction model. However, in decentralized
scenarios, when the degree of network connection
topology is low, signals can only receive observation
information from some nodes and cannot fully utilize the
correlation between signals. In this case, it is necessary to
consider the problem of estimating the public support set.
To ensure reconstruction accuracy, each node needs to
send signals through output connections and receive
signals through input connections, receiving and sending
information multiple times. But this method will lead to
an increase in energy consumption.

To reduce energy consumption and ensure the
accuracy of local node reconstruction, the study adopts a
public support set improvement method for node signal
reconstruction. In this way, each node only needs to
receive and send information once to complete signal
reconstruction, avoiding the process of receiving and
sending information multiple times. The algorithm
complexity of this method is similar to that of the CISRA
based on improved public support set estimation. The
DJSRA using improved public support set is shown in
Figure 5.

The DJSRA is an optimization algorithm used to solve
large-scale sparse linear reconstruction problems. This
algorithm gradually updates the support set through
iteration to achieve efficient signal reconstruction. The
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process of the algorithm is as follows: The first step is to
transmit an initial signal to each node and then receive
feedback from them. Subsequently, preliminary estimates
are used to obtain a public support set, and improved
estimates are made to obtain more accurate support set
estimates. By calculating the estimated values of the
support set and the estimated values of the signal, the
algorithm can achieve better reconstruction results.
During the implementation process, the algorithm
provides flexible solvers and regularization options to
meet the needs of different situations. In addition, the
algorithm can accelerate the solution through
communication between nodes and parallelization of
computation to achieve efficient reconstruction.

The DJSRA is based on the single information
interaction mechanism among distributed nodes. Each
node collaboratively optimizes the local estimation by
using the neighborhood support set information, and
avoids duplicate transmission through the improved
public support set method. Network topology ensures
information diffusion, supports set estimation to tend to be
consistent after limited interactions, and achieves global
convergence. When the measurement matrices of each
node satisfy RIP, the accuracy of local support set
estimation is transferred through network connectivity.
Even with low connectivity, the global support set can be
inferred from neighborhood information to ensure the
robustness  of  distributed  reconstruction.  The
computational complexity is related to the number of
nodes, connectivity and the computational cost of a single
node. The distributed structure eliminates the bottleneck
of the central node, and the reconfiguration can be
completed with a single interaction. The computational
cost is comparable to that of CJSRA but the
communication cost is lower, making it suitable for large-
scale distributed networks. The DJSRA pseudocode is
shown in Figure 6.

In the DJSRA, the network connectivity adopts the
"small-world" network model (Watt-Strogatz model), and
the node connectivity is set to 5 by default (that is, each
node is connected to 5 neighboring nodes), balancing the
communication cost between nodes and the utilization
efficiency of signal correlation. Experiments showed that
when the connectivity degree was 9 (fully connected), the
reconstruction accuracy was the highest, but the energy
consumption increased significantly. Therefore, a medium
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connectivity degree is selected as the optimal scheme.
After a single information interaction, each node takes a
local reconstruction error of less than 0.0001 as the
convergence condition to avoid the time-consuming
problem of multiple round-trip communications in
traditional distributed algorithms and improve real-time
performance. By taking advantage of the public support
set characteristics of multi-source signals, the sparse
structure is estimated through the fusion of neighborhood
node information, without the need to preset the global
sparsity parameter, which is adapted to the dynamic signal
characteristics in distributed scenarios.

4 Performance analysis of SSR

algorithm under CS

This chapter analyzes the performance of the proposed
SSR algorithm. The first section of this chapter is the
performance analysis of the optimization-oriented SSR
algorithm. The second section is the performance analysis
of the CJSRA. The third section is the performance
analysis of the DJSRA.

4.1 Performance Analysis of SSR Algorithm
Based on Optimization Orientation

Among the types of data signals used for simulation, the
single-source signal was a sparse signal of fixed length,
and the non-zero elements followed a Gaussian
distribution. The degree of sparsity was controlled by the
number of non-zero elements. Multi-source signals were
multiple related signals, including shared public support
sets and unique innovative support sets for each signal.
The signal length was uniformly set to 1024, that is, each
signal contained 1024 elements. The measurement matrix
was a randomly generated Gaussian matrix, with the
matrix size being the product of the number of
measurements and the signal length. The column vectors
were normalized. Some experiments adjusted the ratio of
the number of measurements to the signal length, ranging
from 0.10 to 0.20. Additive white Gaussian noise was
added to the observation data. The noise level was
controlled by the SNR, and the value range of the SNR
was from 10 dB to 40 dB, corresponding to the simulation
scenarios of different noise intensities.

for each node i in G:

for each node i in G:

return [x_i for all nodes]

_, local_support = omp(®_i, y_i, K)
send(local_support) to neighbors in G
received_supports = receive from neighbors
global_support = union(received_supports + local_support)
global_support = prune(global_support, method="error-based")

@ _i_support = @_i[:, global_support]
X_i = least_squares(®_i_support, y_i)

Figure 6: The DJSRA pseudocode.
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Figure 8: Comparison of mean square errors of various algorithms as signal-to-noise ratio increases.

To verify the performance of the OSRA proposed in
the study, the study compared it with other algorithms.
Comparison algorithms were the OMP [30], StOMP [31],
subspace pursuit (SP) [32], regularized orthogonal
matching pursuit (ROMP) [33], compressed sampling
matching pursuit (CoSaMP) [34], gOMP, basis pursuit
(BP) and orthogonal least square of multi-quadric
algorithm (MOLS) [35-36]. The proportion of successful
reconstruction under varying levels of sparsity is
illustrated in Figure 7.

In Figure 7, the vertical axis represents the numerical
range of successful reconstruction ratios, and the
horizontal axis represents different signal sparsity values
and 9 algorithms. As the sparsity of the signal increased,
the proportion of successful reconstructions by each
algorithm showed a decreasing trend. When the signal
sparsity was 15, the success rate of each algorithm in
reconstruction was close to 1.0, indicating that the
algorithms performed well when the sparsity was low.
However, when the sparsity increased to 40, the success
rate of the optimization OSRA proposed in the study was
greater than 0.7, while the success rate of other algorithms
ranged from 0 to 0.6. By comparison, with the continuous
increase of sparsity, the performance advantages of
optimization-oriented ~ SSR  algorithms  became

increasingly apparent. As the SNR increased, the mean
square error comparison of each algorithm is shown in
Figure 8.

Figure 8 shows the comparison of mean square error
between different algorithms without SNR. The smaller
the mean square error value, the smaller the difference
between the reconstructed signal and the original signal,
indicating that the algorithm's reconstruction performance
is better. From the graph, as the SNR gradually increased
from 10dB to 40dB, the mean square error of the algorithm
showed a decreasing trend. Among these algorithms, the
OSRA showed significant advantages. At lower SNRs, the
mean square error of OSRA was relatively small, and its
advantages became more prominent as the SNR increased.
When the noise ratio was 40dB, the mean square error of
OSRA was less than 10°, which was 1-4 orders of
magnitude smaller than other comparison algorithms.
Compared with other algorithms, OSRA could more
effectively reduce the mean square error of signals,
providing more accurate and reliable results for signal
processing. The comparison of running times of different
algorithms in noisy scenarios is shown in Figure 9.

In Figure 9, the OSRA proposed in the study had a
longer average running time due to its high computational
complexity. As the SNR increased, its time consumption
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first increased and then decreased. When the SNR was
high, the loss of correct elements estimated by the pre-
selected support set was reduced, and using global
optimization to find missing elements was also faster. To
quantify the complexity of the algorithm calculation, the
experiment used statistical average iterations E(P) for
analysis. To measure the computational complexity and
iterative efficiency of the algorithm in a noisy
environment more accurately, Table 1 details the total
number of iterations of local search and global search
under different SNR conditions.

In Table 1, the average number of iterations E(P) was
relatively small, indicating that the OSRA had less
additional computational complexity. When the signal
sparsity was 25 and the SNR was 40, the average number
of iterations E(P) was 0.11. At this time, the computational
complexity of the OSRA was about 35 times that of the
orthogonal matching tracking algorithm. Using a
comprehensive analysis of algorithm performance and
complexity, the proposed OSRA could adjust the
computational complexity to improve the effectiveness of
signal reconstruction. However, OSRA still had some
drawbacks. Firstly, this algorithm required a longer
computation time, especially in Gaussian noise scenarios.
Secondly, the algorithm was sensitive to noise, and its
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reconstruction performance might be affected when the
noise was large. In addition, the computational complexity
of this algorithm increased with the increase of sparsity,
which might limit its application in sparse signal
processing scenarios.

The MSE comparison of OSRA and OMP in 50
Monte Carlo experiments is shown in Table 2. The mean
MSE of OSRA was 3 to 4 orders of magnitude lower than
that of OMP, and its standard deviation was smaller,
indicating that it had higher reconstruction accuracy and
stronger stability. All p values were less than 0.001,
indicating that the differences between OSRA and OMP
were of extremely significant statistical significance
(rejecting the null hypothesis, the differences were not
random).

4.2 Performance analysis of CJSRA

To verify the effectiveness of the CISRA using the public
support set, the experiments compared the performance of
the OMP, SIPP, IOSSP, and the algorithm without adding
the public support set improvement. The comparison of
the performance of each algorithm in noise-free conditions
is shown in Figure 10.
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Figure 9: Comparison of runtime of different algorithms in noisy scenarios.

Table 1: The total number of iterations for local and global search under noisy conditions.

E(P)
SNR K=21 K=23 K=25 K=27 K=29
SNR=32 0.17 0.20 0.22 0.25 0.28
SNR=34 0.15 0.17 0.19 0.23 0.27
SNR=36 0.13 0.14 0.15 0.21 0.26
SNR=38 0.11 0.12 0.13 0.18 0.25
SNR=40 0.08 0.10 0.11 0.17 0.24

Table 2: The comparison of MSE between OSRA and OMP.

Algorithm SNR=20dB SNR=30dB
OSRA 2.5x10°+3.7x10° 9.8x10°+1.1x10°
OMP 1.2x10%+2.1x1072 8.3x10°+1.5x1073
p <0.001 <0.001
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Figure 10: Comparison of performance of various algorithms in noise absence.

Figure 10 (a) shows the comparison of relative
reconstruction errors among various algorithms. As the
ratio of limited observation data to actual signal length
M/N increased, the relative reconstruction error of the
algorithm gradually decreased. When the public support
set improvement method was not added, the performance
of the algorithm was poor. When the M/N was 0.12, the
relative reconstruction error was 1.91, and after adding the
public support set improvement, the relative
reconstruction error was about 1.0. After introducing the
parameter R that reduced the number of iterations, the
correct elements in the initial estimation were removed in
the improvement of the public support set. The
reconstruction performance of the algorithm at R=3/4 was
worse than that of the algorithms at R=0 and R=1/2.
Compared to other algorithms, the proposed CISRA had
the highest support set estimation accuracy. Figure 10 (b)
shows the average error of support set estimation, which
was similar to the comparison of relative reconstruction
errors. Figure 10 (c) shows the calculation of the average
running time. As the R-value increased, the algorithm
running time gradually decreased, and when R=0, the
algorithm running time was longer. As the M/N ratio
increased, the computational complexity of the algorithm
gradually decreased. Comprehensive analysis showed that
the CJSRA based on the public support set had obvious
advantages, and a value of R of 1/2 could balance the
computational complexity and reconstruction

performance. In noisy scenarios, it was necessary to fix
the M/N ratio and compare the impact of different SNRs
on algorithm reconstruction performance. The M/N ratio
was set to 0.18, and the performance comparison of each
algorithm in noisy situations is shown in Figure 11.

In Figure 11 (a), after adding the public support set
improvement, when the iteration parameters R were 0 and
1/2, and the SNR was 40dB, the relative reconstruction
error of CJSRA was the smallest, about 0.08. As shown in
Figure 11 (b), as the SNR increased, the average error of
the algorithm's support set estimation gradually decreased.
Compared to other algorithms, the proposed CJSRA had a
minimum support set estimation average error of 0.04.
Figure 11 (c) shows the comparison of the average running
time of the algorithm. It can be seen that when the iteration
parameters R were 1/2 and 3/4, the computational
complexity of the algorithm was significantly lower than
when R was 0. During the algorithm iteration process,
more elements were deleted each time, reducing the
number of iterations. Comprehensive analysis showed that
improving the public support set could enhance the
effectiveness of joint SSR. The introduction of parameter
R was to reduce iterations. The larger its value, the more
elements were deleted in the iteration, and the fewer the
iterations, which could reduce the computational
complexity. However, CISRA performed poorly in noisy
scenarios and required a fixed signal-to-noise ratio. In
addition, the algorithm had a high computational
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complexity and introduced the parameter R to reduce the
number of iterations. However, when the value of R was
large, the reconstruction performance of the algorithm was
actually poor.

The comparison of ASCE between CJSRA and
IOSSP in 30 Monte Carlo experiments is shown in Table
3. CJSRA verified the effectiveness of the voting strategy
and error screening by improving the estimation of the
public support set, with ASCE being more than 50% lower
than IOSSP. When M/N>0.15, all p was less than 0.01,
indicating that the support set estimation accuracy of
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CJSRA was significantly better than that of the
comparison algorithm.

4.3 Performance analysis of DJSRA

To verify the performance of the DJSRA proposed in the
study, the experiment compared OMP and DIPP, with
different values set for the degree of network connectivity.
Table 4 displays the average frequency at which DIPP
network nodes receive and transmit information within a
noise-free environment.

0.8 ——OMP — —CJSRA(R=0)
...... SIPP - - - - CISRA(R=1/2)
0.7 - 10SSP ----CJSRA(R=3/4)
0.6F-. — NR
NG
w 0.5t \\.\\:\.;;"*\ _____
i NN T,
2 0.4 \.\\\.}\\. N
0.3r '\_\ NN ~.
02f N S
N =
0.1f S——
00 1 1 1 1 R
10 15 20 25 30 35 40
SNR(dB)

(b) Comparison of algorithm ASCE
performance under noisy conditions

15
\
D AN
Eiol
EWOr __owp————___ .
> | e SIPP
= — - -10SSP
S — -NR
= 0.5+ — —CISRA(R=0)
S - .- CJSRA(R=1/2)
S ----CIJSRA(R=3/4)
0.0 B
10 15 20 25 30 35 40
SNR(dB)

(c) Comparison of algorithm mean running
time performance under noisy conditions

Figure 11: Performance comparison of various algorithms under noisy conditions.

Table 3: The comparison of ASCE between CIJSRA and IOSSP.

Algorithm M/N=0.15 M/N=0.20
CJSRA 0.13+0.02 0.08+0.01
I0SSP 0.27+0.05 0.19+0.03
p 0.003 0.001

Table 4: The average number of times DIPP network nodes receive and transmit information in a noise free

environment.

Average number of messages received and transmitted

M/N C3 C4 C5 C6 C7 C8 C9
M/N=0.10 741 36.25 120.21 198.19 136.23 100.06 62.46
M/N=0.12 7.55 20.36 65.12 13.53 80.15 80.25 141.45
M/N=0.14 3.67 15.45 15.12 7.12 56.12 32.54 5.63
M/N=0.16 2.57 8.36 8.36 5.86 15.36 7.68 4.68
M/N=0.18 2.42 3.72 5.21 4.62 8.45 6.54 4.88
M/N=0.20 2.43 3.69 4.63 4.95 8.23 6.32 4.53
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As shown in Table 4, under different parameters,
there was a large difference in the average number of times
each node in the distributed parallel tracking algorithm
receives and transmits information. Nodes may experience
multiple repetitions of receiving and transmitting
information, especially when the M/N ratio was less than
0.12. However, the DJSRA proposed in this study could
reconstruct information after a single transmission at each
node, saving time wasted on repeated transmissions. The
performance comparison of each algorithm in a noiseless
environment is shown in Figure 12.

In Figures 12 (a) and (b), as the M/N ratio increased,
the error of the algorithm gradually decreased. As the
network connectivity increased, compared to the other two
algorithms, the DJSRA proposed in the study had a
smaller initial error value and faster convergence speed.
When the network connectivity was C9 and the M/N ratio
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was 0.10, the relative reconstruction error and average
support set estimation error of the DJSRA were 0.49 and
0.46, respectively. Figure 12 (c) shows the average
running time of different algorithms reconstructing a
single signal. The DIPP algorithm was greatly affected by
the M/N ratio. When the M/N ratio was small, its running
time could reach up to 1.1 seconds, which was
proportional to the number of times the node received and
sent information. In contrast, the average running time of
the DJSRA proposed in the study did not change
significantly. When the network connectivity was C9, the
average running time remained within the range of less
than 0.5 seconds. To further compare the communication
efficiency of each algorithm in a noisy environment, Table
5 presents in detail the average number of times each node
received and sent information in the DIPP algorithm and
the DJSRA.
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Figure 12: Comparison of performance of various algorithms in noiseless environments.

Table 5. The average number of times DIPP received and sent messages per node in noisy environments.

Average number of messages sent and received

SNR(dB) c3 c4 cs Co c7 c8 Co
SNR=10 6.86 52.35 102.35 196.62 183.25 173.24 169.00
SNR=15 7.69 60.12 85.14 101.38 123.54 162.45 199.56
SNR=20 5.95 9.65 12.36 28.66 85.34 125.46 173.36
SNR=25 4.16 5.63 10.46 14.27 22.36 45.37 56.34
SNR=30 3.52 5.24 6.25 8.26 18.36 25.36 28.54
SNR=35 3.16 5.21 6.03 9.48 10.23 12.35 15.36
SNR=40 2.85 5.01 6.01 4.94 8.36 10.14 13.16
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Table 5 shows that there was a significant difference
in the average number of times DIPP nodes received and
sent messages in noisy environments, especially when the
SNR was less than 20, the number of times DIPP nodes
received and sent messages in the network varied
significantly. The DJSRA proposed in the study could
complete signal reconstruction by receiving and sending
information once per section, avoiding the time
consumption of nodes repeatedly sending information
multiple times. The performance comparison of each
algorithm in noisy environments is shown in Figure 13.

As shown in Figure 13 (a), as the network
connectivity increased, the relative reconstruction error of
the DJSRA proposed in the study gradually decreased, and
the error value was smaller than that of other algorithms.
When the SNR was 10, the relative reconstruction error
using the orthogonal matching tracking algorithm was
0.57. The minimum relative reconstruction error of the
DJSRA proposed in the study was 0.34. Figure 13 (b)
shows the average error of the algorithm's support set
estimation, which was similar to the result of relative
reconstruction error. As the SNR increased, the average
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error of support set estimation for DIPP and the proposed
algorithm gradually approached, with an error value of
less than 0.1 when the SNR was 40. Figure 13 (c) shows
the comparison of the average running time of the
algorithm. When the network connectivity was low, the
average running time of DIPP changed significantly,
which was positively correlated with the number of times
nodes received and sent information. The average running
time of the DJSRA proposed in the study was relatively
stable. Comprehensive analysis showed that the DJSRA
proposed in the study could reduce computational
complexity while ensuring the effectiveness of signal
reconstruction.

The RER comparison between DJSRA and DIPP in
40 Monte Carlo experiments with network connectivity
C5 is shown in Table 6. DJSRA achieved reconfiguration
through a single interaction, with an RER that was over
40% lower than DIPP, and a smaller standard deviation
(higher stability). In the low SNR scenario (SNR=10dB),
p < 0.05, indicating that the distributed collaborative

mechanism  significantly improved the anti-noise
performance.
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Figure 13: Comparison of performance of various algorithms in noiseless environments.

Table 6: The comparison of RER between DJSRA and DIPP.

Algorithm SNR=20dB SNR=30dB
DJSRA 0.34+0.06 0.18+0.03
DIPP 0.57+0.12 0.31+0.08
p 0.012 0.008
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Table 7: Comparison experimental results between sparse signal recovery algorithm and other methods.

Algorithm Relative reconstruction error Successful refactoring rate Reference

OSRA 0.763 0.793 This study

CJSRA 1.026 0.818 This study

DJSRA 0.332 0.856 This study

ISTA 1.687 0.787 Lv etal. [37]
FISTA 1.986 0.716 Guo et al. [38]
AMP 1.674 0.806 Gerbelot et al. [39]

The experimental results comparing the SSR
algorithm with other methods are shown in Table 7.
Iterative  Shrinkage-Thresholding Algorithm (ISTA)
adopted the default configuration in the literature. The step
size was set to 0.9 times the inverse of the Lipschitz
constant, the maximum number of iterations was 200
times, and the termination condition was that the change
in reconstruction error in five consecutive iterations was
less than 10°. Fast Iterative Shrinkage-Thresholding
Algorithm (FISTA) was an accelerated version based on
literature optimization, introducing a momentum term to
enhance the convergence speed. The step size was
dynamically adjusted, and the maximum number of
iterations was set at 150 times. The termination condition
was consistent with that of ISTA. The Approximate
Message Passing (AMP) was implemented with reference
to the original literature, including an adaptive denoising
module. The number of iterations was set at 50 times, and
the measurement matrix adopted the same column-
normalized random Gaussian matrix preprocessing
method as the algorithm in this paper. All baseline
methods used the same signal model (Gaussian sparse
signal), measurement matrix (column-normalized random
Gaussian matrix), and noise model (additive Gaussian
white noise) as the algorithm in this paper, and the
parameter adjustments strictly referred to the optimal
practices in the original literature to ensure consistent
comparison conditions. As shown in Table 7 the SSR
algorithm proposed in the study had a relatively low
reconstruction error and a high reconstruction success
rate. Among them, DJSRA performed the best and FISTA
performed the worst. This was mainly due to the
introduction of an iterative threshold selection strategy in
the DJSRA, which enabled it to achieve high
reconstruction accuracy with fewer iterations. FISTA used
an acceleration strategy, which could accelerate
convergence but sacrificed reconstruction accuracy to
some extent.

Performance data revealed the inherent trade-off
among accuracy, efficiency and robustness in algorithm
design. By introducing the backtracking verification of
support sets and the global optimization mechanism,
OSRA significantly outperformed the traditional greedy
algorithm in terms of reconstruction accuracy. However,
the computational complexity increased due to the
increase in the number of iterations and the number of
least squares solution times, reflecting the design logic of
"accuracy for efficiency”. As a centralized algorithm,
CJSRA improved the estimation accuracy of the support
set through the multi-source voting strategy and edge
information OMP. However, all source data needed to be
transmitted to the central node, and the communication

cost increased linearly with the number of sources. While
DJSRA reduced the communication overhead through
distributed single information interaction (only the
summary of the support set was transmitted between
adjacent nodes). However, due to the reliance on local
information, the reconstruction error was slightly higher
(RER was about 10%-15% higher), demonstrating the
"trade-off between the accuracy of multi-source
collaboration and communication cost”. Furthermore, in
scenarios with low SNR or low observation rate, complex
algorithms (such as OSRA, CJSRA) were more sensitive
to noise, while traditional algorithms (such as OMP)
exhibited stronger robustness due to their simple logic,
reflecting the "trade-off between noise robustness and
observation rate". Distributed topology analysis showed
that DJSRA had the best accuracy in fully connected
networks, but the error increased significantly in low-
connectivity topologies, reflecting the "dependency
relationship between network structure and reconstruction
performance”. These trade-offs provided clear guidance
for practical applications: OSRA was preferred in high-
precision scenarios, DJSRA was applicable in distributed
scenarios with limited communication, and lightweight
algorithms such as OMP could be adopted in scenarios
with high real-time requirements.

5 Conclusion

CS is widely used in applied mathematics, remote sensing
imaging, and computer science, with its core problem
being SSR. The research proposed SSR algorithms
suitable for different scenarios for single-source and
multi-source joint SSR. For SSR from a single-source,
research was conducted to improve the greedy algorithm
support set estimation and propose an OSRA. For the
reconstruction of sparse signals from multi-sources, a
CJSRA based on improved public support set estimation
was proposed by studying and utilizing the improved
public support set. Through node signal reconstruction, a
DJSRA using an improved public support set was
proposed. Experimental data showed that the mean square
error of the OSRA was less than 10, which was 1-4
orders of magnitude smaller than OMP and other
comparative algorithms. When the signal sparsity was 25
and the SNR was 40, the average number of iterations was
0.11. At this time, the computational complexity of the
OSRA was about 35 times that of the OMP algorithm.
Based on comprehensive analysis, it can be concluded that
the OSRA proposed in the study could adjust the
computational complexity to improve the effectiveness of
signal reconstruction. For the joint SSR algorithm with
multi-sources, the performance of the algorithm was poor
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without the addition of the public support set improvement
method. When the M/N was 0.12, the relative
reconstruction error was 191, and the relative
reconstruction error after the addition of the public support
set improvement was about 1.0. After introducing the
parameter R that affected the number of iterations, the
correct elements in the initial estimation were removed in
the improvement of the public support set. The
reconstruction performance of the algorithm was worse
when R=3/4 than when R=0 and R=1/2. Compared to
other algorithms such as OMP, the proposed CJSRA had
the highest support set estimation accuracy. When the
SNR was 10, the relative reconstruction error using OMP
was 0.57. The minimum relative reconstruction error of
the DJSRA proposed in the study was 0.34. Based on the
above content, the superiority and contribution value of
this study can be concluded. Firstly, a greedy algorithm-
based SSR algorithm was proposed for the problem of
single-source SSR. This algorithm could achieve high
signal reconstruction performance gains at low
complexity. Secondly, for the problem of joint SSR from
multi-sources, a joint SSR algorithm based on an
improved public support set was proposed, which could
achieve good signal reconstruction performance at low
complexity. Finally, the study focused on decentralized
reconstruction scenarios and hybrid support set models,
analyzed the impact of network connection topology on
the estimation of public support sets and the energy
consumption of nodes receiving and transmitting
information, and proposed corresponding improvement
strategies. Through the above research, better
reconstruction results can be achieved in the field of SSR,
and better performance can be achieved in different
scenarios. However, OSRA and CJSRA algorithms
performed poorly in noisy scenarios and require a fixed
SNR. In addition, when introducing the parameter R to
reduce the number of iterations, if the value of R was
large, the reconstruction performance of the algorithm was
actually poor. Therefore, these algorithms were sensitive
to noise, and their computational complexity increased
with increasing sparsity, limiting their application in
sparse signal processing scenarios. The limitation of this
study was that the computational complexity of the single-
source SSR algorithm was about 35 times that of the
orthogonal matching tracking algorithm, and the
algorithm ran relatively long. In response to the above
issues, future research directions can focus on improving
the performance of algorithms in noisy scenarios and
reducing computational complexity to adapt to a wider
range of sparse signal processing applications, and start
with the finite equidistant property to further improve the
performance of SSR.
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