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Modern power systems encounter significant challenges in maintaining reliability and operational
balance due to the intermittent nature of renewable energy sources and variable demand. Accurate
prediction and optimization of reserve capacity are essential to ensure grid stability, especially within
medium and short-term regulatory timeframes. Traditional reserve estimation methods often lack the
adaptability required for dynamic operational data, leading to inefficient reserve allocation. This study
introduces a Deep Reinforcement Learning (DRL) framework aimed at enhancing reserve capacity
classification and regulation. A Deep Q-Network (DON)-based agent is developed and trained on a
Reserve Capacity Prediction (RCP) dataset consisting of 2000-time steps and ten critical system features.
The data underwent preprocessing steps such as categorical encoding, normalization, and environment
modeling. The DON receives a 9-dimensional input vector and uses two hidden ReLU-activated layers
(64 and 32 units) to predict reserve capacity classes: Low, Optimal, and High. A reward mechanism and
experience replay were applied during training. Experimental results show the DON outperforms Logistic
Regression, Random Forest, and SVM, achieving 90% accuracy, 92% precision, 88% recall, 89.8% F'1-
score, and 0.86 MCC. This approach shows promise for intelligent and adaptive reserve management in
power systems.

Povzetek: DQN-osnovan model globokega okrepitvenega ucenja omogoca bolj kvalitetno razvrscanje
srednje in kratkorocnih rezervnih kapacitet v elektroenergetskih sistemih, saj presega metode logisticne

regresije, SVM in nakljucnega gozda po tocnosti, prilagodljivosti in robustnosti.

1 Introduction

Contemporary power systems are quickly evolving as a
result of the increasing incorporation of renewable energy
sources, changing consumption trends, and the push for
smarter grids [1]. These shifts have raised the intricacy of
retaining grid stability, particularly in short- to medium-
term operational planning. Precise regulation of power
system capability and efficient reserve allocation are
crucial to ensuring grid reliability, particularly in the face
of uncertain conditions like demand fluctuations and
renewable variability [2]. The difficulty is to dynamically
determine the optimal reserve capacity class—whether
low, optimal, or high—to match supply and demand
effectively while reducing operational risks.

Numerous conventional methods have been utilized to
predict load demand, optimize reserve scheduling, and
keep the grid balanced [3]. These include statistical

prediction techniques (e.g., ARIMA), rule-based systems,
optimization algorithms (e.g., mixed-integer linear
programming), and machine learning models like decision
trees and support vector machines [4]. These methods have
demonstrated some success in historical analysis and
deterministic scheduling, but frequently struggle to adapt
to real-time, multi-factor settings [5].

Traditional models frequently assume static relationships
between input variables and reserve requirements, limiting
their adaptability to rapidly changing grid dynamics [6].
Most people are unable to learn sequential decision-
making in the face of uncertainty or to improve over time
[7]. Furthermore, they rarely include feedback strategies
that reward correct predictions or  penalize
misclassifications, leading to limited learning from
operational results [8]. These disadvantages result in
suboptimal reserve classifications, inadequacies in power
regulation, and an increased risk of supply-demand
imbalance [9],[10].
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To address the drawbacks of static and rule-based models,
this paper presents a Deep Q-Network (DQN)-based Deep
Reinforcement Learning (DRL) method. DRL performs
well in dynamic settings, where the system learns optimal
tactics by interaction and reward-based feedback.
Modeling reserve classification as a decision-making
process allows the DRL agent to adaptively learn which
reserve class to allocate at each time step using different
operational and environmental attributes.

The proposed DRL framework employs a DQN agent
trained on the Reserve Capacity Prediction (RCP) dataset.
The model accepts important features like load demand,
renewable generation, grid frequency, storage levels,
forecast errors, and weather conditions. The environment
offers feedback in the form of rewards (+1 for correct
prediction, -1 for incorrect), allowing the agent to fine-tune
its decision policy over numerous episodes. To maximize
the state-action space, a neural network with two hidden
layers uses an g-greedy tactic to balance exploration and
exploitation. The final model classifies the reserve class
(Low, Optimal, High) at each time step with high accuracy.
This paper presents a new Deep Reinforcement Learning
(DRL) framework designed for short- and medium-term
power system reserve classification, which addresses
important restrictions of conventional static and rule-based
methods. The proposed model learns from previous
decisions through a reward-based feedback mechanism,
allowing it to continuously improve its predictions
depending on experience. The framework guarantees
context-aware classification by combining temporal and
environmental features like load demand, renewable
generation, grid frequency, and weather conditions.
Experimental findings show that this DRL-based method
attains higher classification accuracy than traditional
methods, while providing a flexible and adaptive solution
able to respond efficiently to differing grid conditions and
operational uncertainties.

The primary goal is to improve reserve capacity regulation
through intelligent learning models. The goal is to
correctly classify reserve class levels for short- and
medium-term planning utilizing DRL. The novelty lies in
using a DQN-based RL agent for power system reserve
management—a context where reinforcement learning is
underexplored but holds significant possibility because of
its adaptability and feedback-based learning.

This method is especially helpful for smart grid operators,
energy management systems, and utilities that want to
enhance the robustness and responsiveness of reserve
planning. It can also help integrate greater amounts of
renewable energy by offering dynamic reserve
classification in the face of intermittent supply.

Although the primary methodological contribution is
reserve capacity classification via DQN, this classification
is used as a surrogate decision mechanism within a larger
optimization goal. By correctly classifying reserve levels
as Low, Optimal, or High, the system indirectly allows for
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optimal allocation of regulation resources, reducing over-
provisioning and improving grid efficiency.

The rest of the paper is organized as follows: Section 2
offers a thorough review of relevant literature in the fields
of power system reserve optimization and deep
reinforcement learning. Section 3 describes the proposed
methodology, including dataset preparation, environment
configuration, and the architecture of the DQN-based DRL
model. Section 4 describes the experimental setup and the
results obtained through model training and evaluation.
Section 5 provides a detailed analysis of the findings,
discusses their implications, and emphasizes the study's
limitations. Finally, Section 6 summarizes the paper and
suggests potential directions for future research.

2 Related works

The increasing integration of renewable energy sources
and the demand for flexibility in modern power systems
have prompted significant research into the optimization
of reserve capacity and system regulation. Kaleta [11]
explored robust co-optimization strategies for medium-
and short-term energy flexibility within electricity clusters,
emphasizing the growing importance of dynamic
scheduling models in decentralized systems. In a similar
direction, Li et al. [12] proposed a short-term optimal
scheduling approach for power grids with pumped-storage
units, incorporating security quantification as a key
component to enhance operational reliability.

There have also been significant advances in the
optimization of distributed energy resources (DER). Wang
et al. [13] created a distributed optimization framework for
DERs in microgrids that, while not explicitly utilizing
DRL, implicitly adheres to reinforcement learning
principles via iterative, decentralized decision-making for
real-time control. Furthermore, Mishan et al. [14]
presented a co-optimization model that combines unit
commitment with reserve power scheduling, addressing
the need for integrated operational planning in modern
grids.

Machine learning (ML) techniques are increasingly being
used for reserve planning in complex power systems. Atig
and Izgi [15] used ML models to plan smart reserves,
demonstrating the effectiveness of data-driven methods in
environments with high renewable energy penetration.
Similarly, Santos and Algarvio [16] created an ML-based
model for secondary reserve procurement in systems with
substantial variable renewable energy sources (VRES),
demonstrating enhanced effectiveness and flexibility over
traditional techniques.

In terms of predictive and probabilistic methods, Nengroo
et al. [17] focused on short-term energy storage scheduling
using near-future PV generation forecasts, demonstrating
the importance of foresight in reserve allocation. Eladl et
al. [18] improved voltage stability and reactive power
planning by using multi-objective optimization with
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FACTS and capacitor banks, reinforcing the link between
reactive support and reserve reliability.

Sophisticated scheduling and forecasting frameworks have
also been suggested. Zhang et al. [19] developed an
optimal energy and reserve scheduling scheme for
renewable-dominant systems, whereas Xu et al. [20]
proposed a probabilistic forecasting model to manage
multi-temporal uncertainties in renewable generation for
reserve determination. Auguadra et al. [21] tackled the
deployment of energy storage systems as a strategic
solution to integrate large amounts of renewables into
national grids.

Fernandez-Muiioz and Pérez-Diaz [22] created self-
scheduling models for hybrid wind-battery systems, which

Table 1: Summary of related work
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optimize day-ahead energy and reserve allocation. Deng
and Lv's reviews [23] provide insights into the evolution
of power system planning methodologies as VRES
integration increases. Aazami et al. [24] modeled
transmission capacity under renewable uncertainty,
emphasizing the importance of accurate reserve state
classification for capacity allocation decisions in dynamic
market conditions. Zhang et al. [25] extended on
transmission capacity modeling and reserve market
dynamics, reinforcing the requirement for advanced
optimization models in the face of rising renewable share.
Table 1 shows the Summary of Related Works on Reserve
Capacity Optimization.

s on reserve capacity optimization

Reference Approach / | Key Results Evaluation Limitations
Model Metrics
[11] Kaleta (2025) | MILP-based co- | Improved short- | Case study on | Limited scalability
optimization  of | term flexibility Polish energy | to national grid
energy and cluster; CVaR- | levels
flexibility in based risk metric;
clusters solution time ~ 3
min
[12] Li et al. | Security Enhanced  risk- | Reliability Index 1 | High dependency
(2024) quantification- aware dispatch by ~18%; Energy | on precise system
based scheduling Loss | by ~9% in | risk models
with Dung Beetle IEEE 30-bus
Optimization
[13] Wang et al. | Dynamic control | Real-time Simulation Limited to
(2015) of DERs in | optimization of | accuracy of DER | microgrid-scale
microgrids DER behavior scheduling = 93%,; | executions
Adaptation delay
<35s
[14] Mishan et al. | LP-based co- | Enhanced  cost- | Reserve coverage | High complexity
(2022) optimization  of | efficiency ratio = 95%; Cost | with  large-scale
unit commitment saving =~ 11% vs | adoption
and reserves baseline
[15] Atic & Izgi | MLP, LSTM, | Precise EPNS | CNNR?=0.99959 | Low
(2024) CNN for reserve | estimation and | (GSP), 0.99038 | generalization in
prediction smart planning (CP); MAPE = | inconsistent
1.3% datasets
[16] Santos & | LSTM/CNN for | Reserve usage | FCNN Accuracy ~ | Sensitive to input
Algarvio (2025) reserve enhanced by 22% | 91.5%; RMSE = | data distribution
procurement (up) and 11% | 0.06 (normalized
(down) scale)
[17] Nengroo et al. | ML-based 43.06% cost | R = 0.9994; | Short-term focus,
(2021) PV/load reduction utilizing | RMSE = 0.0036; | lacks  long-term
scheduling hybrid storage MSE = 0.000012 | prediction
[18] Eladl et al. | Multi-objective Superior voltage | VSI 1 by 12.5%; | High
(2022) reactive power | stability with | Cost | by 14.2% | computational
planning FACTS vs baseline burden for large
systems




326

Y. Wang et al.

Informatica 49 (2025) 323-338
[19] Zhang et al. | DRCC-based co- | Enhanced stability | Cost reduction =~ | Lacks  real-time
(2023) scheduling in renewable-rich | 15%; Reserve | adaptability
grids mismatch
probability | by
28%

[20] Xu et al. | Probabilistic Effective  multi- | Forecast Coverage | May underperform
(2023) forecasting  with | temporal = 94%; RMSE = | in rare extreme

Gaussian mixture | uncertainty 0.083 (scaled) events

models handling
[21] Auguadra et | Strategic storage | High renewable | Renewable Share | Generalization to
al. (2023) planning (Spain) incorporation 1 by 27%; Cost 1 | other grids

attained by 4% uncertain

[22] Fernandez- | Day-ahead hybrid | Enhanced Reserve Focused only on
Muifioz & Pérez- | VPP reserve | adequacy for | sufficiency 1 from | hybrid wind—
Diaz (2023) scheduling hybrid systems 85% to 96% battery systems
[23] Deng & Lv | Review of reserve | Detected  future | Literature-wide No experimental
(2020) planning directions average coverage | or numerical

techniques > 80% findings
[24] Aazami et al. | Transmission Better reserve | Reserve usage 1 | High  modeling
(2023) capacity model for | integration by ~19% vs static | complexity, heavy

reserve markets accuracy models data requirements

Scheduling
accuracy = 89%;
Probabilistic

Needs highly
precise probability
data

[25] Nguyen Duc | Reserve Enhanced realism
& Nguyen Hong | scheduling  with | in scheduling
(2021) activation

probability

coverage ~ 87%

Despite significant advances in reserve capacity
optimization, current cutting-edge methods frequently
have limited generalization, static modeling assumptions,
and are sensitive to data variability. For example,
approaches like Kaleta [11] and Li et al. [12] provide
robust co-optimization and risk-aware scheduling, but they
rely heavily on predefined models and lack adaptability in
dynamic operational environments. Machine learning
techniques (e.g., Ati¢ & Izgi [15], Santos & Algarvio [16])
show promise in terms of prediction, but they are
frequently limited by their reliance on training data
distribution and their inability to respond to real-time
changes. Furthermore, many models focus on microgrid or
localized case studies ([13], [21]) and frequently lack
standardized performance metrics such as Accuracy or F1-
score, making cross-comparison difficult.

In contrast, this proposed Deep Q-Network (DQN)-based
Deep Reinforcement Learning (DRL) framework tackles
these issues by dynamically learning from operational data
in real time, allowing for adaptive reserve classification
without the use of static rules or manual thresholds. By
leveraging temporal sequences of system parameters and
formulating reserve classification as a decision-making
problem, the DRL agent generalizes across various system
conditions and learns optimal policies by interaction,
rather than offline fitting. Unlike previous methods, this
approach uses standardized evaluation metrics—
Accuracy, Fl-score, and MCC—to provide transparent

and comparable performance validation. The ability to
continuously refine decision-making based on evolving
data improves the robustness and reliability of medium-
and short-term reserve forecasting in contemporary,
renewable-integrated power systems.

3 Methodology

This section describes the comprehensive methodology
created for the task of Reserve Capacity Prediction (RCP)
within a power system, utilizing the capabilities of Deep
Reinforcement Learning (DRL). The primary goal is to
create an intelligent agent capable of learning complex
system behaviors and making optimal decisions to classify
reserve capacity levels (Low, Optimal, or High) at each
time step. The methodology consists of several stages,
starting with data preprocessing and feature engineering,
then defining the reinforcement learning setting, designing
and implementing a Deep Q-Network (DQN) architecture,
training by episodic interactions with the environment, and
finally assessing the trained model's performance utilizing
standard classification metrics. The workflow is designed
to simulate a realistic grid management scenario in which
reserve capacity needs to be allocated using dynamically
changing operational conditions. Algorithm 1 shows the
DQN-based DRL for the Reserve Class Prediction
Algorithm.
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Begin

/I Step 1: Preprocessing
Load RCP dataset
Categorical variables encoding:
Regulation Horizon — {0, 1}
Reserve Class — {0, 1, 2}
Numeric features normalization to [0, 1]
Split into (state, label) pairs

/I Step 2: Environment Setup
Define:
State dim =9
Action_space = {0, 1, 2}
Reward: +1 if action == label else -1
One step per episode

/I Step 3: Initialize DQN
Initialize Q-network with:
Input: 9 neurons
Hidden: [64, 32], ReLU
Output: 3 neurons (Q-values)
Initialize Replay Buffer
Set € = 1.0, y = discount factor, optimizer = Adam

/I Step 4: Training Loop
For episode = 1 to max_episodes:
Choose a random (state, label)
If rand() < &:
action « random
Else:
action «— argmax(Q(state))
reward « +1 if action == label else -1

Sample mini-batch from buffer
For each sample:
target «— reward + v * max(Q(next_state))

Decay ¢

// Step 5: Evaluation
Freeze training
For each time step in the dataset:
Predict action = argmax(Q(state))
Compare predictions with actual labels
Report Accuracy, Precision, Recall, F1-Score, MCC

End

Algorithm 1: DQN-based DRL for Reserve Class Prediction

Input: RCP Dataset, 9 features per time step + 1 target (Reserve_Class)
Output: Predicted Reserve Class € {0: Low, 1: Optimal, 2: High}

Store (state, action, reward, state, done=True) in buffer

Update Q-network to reduce (target - Q(state, action))?

Based on nine input features from the RCP dataset, this
algorithm trains a Deep Q-Network (DQN) to classify

power system reserve capacity as low, optimal, or high. It
starts by preprocessing the data, which includes encoding
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categorical values, normalizing features, and separating
input states from target labels. The DQN environment
treats each time step as an episode, with the agent receiving
+1 for a correct prediction and -1 for an incorrect one. The
Q-network, which consists of two hidden layers, learns to
predict the best action (class) for any given state. During
training, actions are selected using an e-greedy policy (mix
of exploration and exploitation), and the agent learns from
sampled experiences stored in a replay buffer. The

Bellman equation governs Q-value updates. After training,
the model is evaluated on the entire dataset with standard
classification metrics like accuracy, precision, recall, F1-
score, and MCC.

Y. Wang et al.

The e-greedy policy was used to balance exploration and
exploitation. € was set to 1.0 and decayed exponentially to
a minimum value of 0.1 using a decay rate constant
k=0.0015. This gradual decay ensures adequate
exploration during early training while allowing for
convergence on optimal actions in later stages. Training
was done over 3000 episodes, and plots of the training loss
curve and e-decay trajectory are included in the
supplementary material. These visualizations demonstrate
stable convergence behavior and an effective exploration-
exploitation trade-off throughout training.

Figure 1 shows the flow diagram of the DQN-based DRL
technique.

Data Preprocessing

Variables

Load RCP
Dataset

Labels

Training Loop

Build Q-Network
 Encode Categorical Initialize DQN Environment * Input Layer (9
* State = 9 Features neurons)
« Normalize Features > . %ctwn = {Low, > * Hidden Layers (64, 32,
« Split into Featu d Optimal, High} RelU)
Pl mto Teatures an = Reward Logic (+1/-1) » Output Layer (3
neurons)
; |
» Select Time Step
* Observe State Evaluation

* Choose Action (z-Greedy)
* Get Reward
« Store in Replay Buffer
+ Sample Mini-Batch
* Update Q-Network
(Bellman Equation)
* Decrease £

A

* Freeze Network
» Predict Reserve_Class
» Compute Accuracy,
Precision, Recall, F1-Score,
MCC

End of Episodes? Yes—»

Nov

Figure 1: Flow diagram of DQN-based DRL technique

3.1 Data collection and preprocessing

The dataset used in this study has ten columns in total: nine
input features and one target variable (Reserve Class).
Although the raw dataset initially contains ten operational
parameters—Time_Step, Load Demand MW,
Renewable Gen MW, Grid_Frequency Hz,
Energy Storage %, Forecast Error %, Temp C,
Wind_Speed mps, Regulation Horizon, and
Net_Imbalance MW—only nine of these features are
chosen as inputs to the Deep Q-Network (DQN) model.
The Time_Step

attribute is excluded from the input space because it
functions as a timestamp rather than a predictive feature.
The agent's input state vector is formed by normalizing and
encoding the remaining nine features. The Reserve Class
output variable is a categorical label that indicates the
reserve capacity requirements (0: Low, 1: Optimal, and 2:
High).

The dataset used contains 2000-time steps, which, while
small for typical DRL applications, is adequate in this
context because each time step is represented as a discrete
classification instance with well-defined state-action-
reward tuples. The dataset uses ten normalized and
encoded grid dynamics features to capture a wide range of
operational scenarios. To ensure reproducibility, the
supplementary material includes a complete schema as
well as summary statistics (mean, standard deviation,
minimum, and maximum) for each feature. While the
dataset is not publicly available due to privacy agreements,
future research will look into data augmentation using
synthetic scenario generation and transfer learning from
simulated energy environments to improve scalability and
generalizability. Figure 2 illustrates the architecture of the
data collection process used in this study.



Figure 2: Architecture of the data collection process

It starts with renewable energy sources (solar panels and
wind turbines), which collect data on power generation and
environmental conditions. Smart meters collect real-time
data on electricity usage and grid frequency. Battery
monitoring systems monitor energy storage levels, and a
clock or timestamp generator records the precise time of
each observation. All of the collected data is then stored in
a centralized database, which forms the basis for model
training and decision-making in the system.

Data preprocessing entails several critical steps. First,
categorical variables, such as Regulation Horizon, are
numerically encoded, with "Short-term" and "Medium-
term" assigned binary values (0 and 1). The continuous
features are normalized to the range [0, 1], ensuring that
no feature dominates others due to differences in scale.
This normalization step is critical for ensuring the model's
convergence while training. The Min-Max normalization
is applied using Eq. (1):

X—Xmin

Xnorm =
Xmax—Xmin

1
Where X is the original value, X,,;,, is the minimum value
of the feature, and X,,,, is the maximum value of the
feature. This converts the feature values to a range between
0 and 1. Furthermore, the categorical variable
Regulation_Horizon is encoded as shown in Eq. (2):

Encoded Value = {(0,
&if Regulation_Horizon is Short —

term@1,
&if Regulation_Horizon is Medium —
term)- (2)
This encoding step guarantees that the

Regulation Horizon feature is numerically represented,
rendering it appropriate for input into the machine learning
model.

3.2 Feature engineering

Feature engineering is critical for extracting meaningful
insights from raw data. Each observation in the dataset
contains nine input features, which can be represented as
states in a reinforcement learning environment. These
features represent the current operational state of the
power system, and the model uses them to predict the
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appropriate reserve capacity class. The transformation of
raw data into usable model inputs is an important aspect of
feature engineering. For example, the relationship between
Load Demand MW and Renewable Gen MW can be
used to calculate the Net Imbalance MW, which
represents the difference between load demand and
available generation capacity. This can be represented as
shown in Eq. (3):

Net Imbalance MW=
Load Demand
MW-Renewable Gen MW

€

Furthermore,  features like  Grid Frequency Hz,
Load Demand MW, and Wind_ Speed mps are important
because they have a direct impact on reserve capacity
requirements. For example, the relationship between
Wind Speed mps and Renewable Gen MW can be
modelled to capture the impact of wind energy generation
fluctuations on reserve capacity requirements. This
relationship can be expressed as shown in Eq. (4):

Renewable Gen MW=f(Wind_Speed mps) (4)

Where f represents the function modeling the dependency
of renewable generation on wind speed. Other attributes,
such as Energy Storage % and Forecast Error %, offer
insights into the system's capability to react to unexpected
events or deviations in predicted demand. These
engineered features assist in defining the state in the RL
setting, guaranteeing the model can make informed
decisions regarding the classification of reserve capacity
levels.

3.3 Deep Q-Network architecture

This study's reinforcement learning model is the Deep Q-
Network (DQN), a value-based deep reinforcement
learning (DRL) approach that is especially effective for
tasks that require classification or decision-making based
on observed environmental states. In this application,
DQN is used to classify reserve capacity levels as Low,
Optimal, or High based on the power system's operational
state. The DQN learns to approximate the optimal action-
value function, known as the Q-function. This function
quantifies the expected future cumulative reward for
taking an action (a) in a given state (s) and then following
the optimal policy. This relationship is formalized by the
Bellman Optimality Equation, which is demonstrated in

Eq. (5):
Q*(s,a) =Egy [r + ynquQ*(s’, a) |s, a] 5)

Where:
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e (Q7(s,a): optimal Q-value for taking action a in
state s

e 7r: immediate reward received after performing
action a in state s

e y€[0,1]: discount factor that weighs future
rewards against immediate rewards

e ' the next state resulting from implementing
action a in state s

e a':possible actions in the next state s’

e E:expectation over the state transitions using the
environment's dynamics

To approximate the Q-function, the DQN utilizes a deep
neural network represented as Q(s,a;0), where 6 denotes
the learnable parameters (weights and biases) of the
network. The model architecture contains:

e An input layer with 9 neurons corresponding to
the 9-dimensional feature vector of the current
state

e Two hidden layers with 64 and 32 neurons
respectively, activated utilizing the ReLU
function ReLU(x) = max (0, x)

e  An output layer with 3 neurons, each representing
the Q-value for one of the three actions (reserve
capacity classes)

The model is trained by reducing the Mean Squared Error
(MSE) Loss Function between the target Q-values and
predicted Q-values, given by:

L) = IE:(s,a,r,s')~D [(T‘ + Y"’ﬁlc,le(S', a’;67)

Q)
- Q(s,0,0))?
Where:
e L (0): the loss function measuring prediction error
e D: the experience replay buffer including past
transitions (s,a,r,s")
e  0: current parameters of the Q-network
e O7: parameters of the target network (a
periodically updated copy of the Q-network for
stabilizing learning)
e Q(s,a,0): predicted Q-value for current state-
action pair
e Q(s',a’;67): target Q-value for the next state-
action pair
To encourage a balance between exploration (trying new
actions) and exploitation (choosing the best-known
action), the agent utilizes an e-greedy policy for action
selection, defined as:

random action from A,
with probability €
argmax,Q(s, a;0),
with probability 1 — €

ar =

(7

Where:
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e g,:action taken at time t

e s, current state at time t

e ¢ exploration rate (0<e<l)

e A: set of all possible actions

e argmax: the action that yields the highest Q-value

under the current policy

The model employs the Adam optimizer to efficiently
adjust weights, particularly in environments with sparse
gradients, resulting in rapid convergence during training.
This DQN architecture is thus well-equipped to learn
complex decision policies for precise reserve capacity
classification in power systems.
The DQN was chosen for its effectiveness in discrete
action spaces, which corresponds to the reserve
classification task with three distinct categories (Low,
Optimal, and High). Unlike continuous control settings,
the action space in this problem is finite and well-defined,
so DQN is an appropriate fit. Furthermore, the input
features are normalized and discretely represent the
operational state of the power system, which helps to
mitigate the effects of continuous state instability. While
DQN can be unstable on small datasets, stability is
maintained here via experience replay, target network
separation, and limited action granularity. Alternative
methods, such as A3C and PPO, while powerful in
continuous domains, add unnecessary complexity to this
classification-focused scenario.

3.4 Training the DQN

Training the Deep Q-Network (DQN) is an iterative and
experience-driven process in which the reinforcement
learning agent communicates with its environment over
several episodes. Each episode relates to a particular time
step derived from the dataset, during which the agent
observes a state, chooses an action, receives a reward, and
transitions to another state. The agent's goal is to learn an
optimal policy that improves the cumulative expected
reward over time by constantly refining its comprehension
of environment dynamics. As the training progresses, € is
annealed (reduced) linearly or exponentially:

€t = Emin + (Emax — Emin)- ekt )

Where:

€;: exploration rate at episode

Emayx: 1nitial exploration rate (e.g., 1.0)

€min: Minimum exploration threshold (e.g., 0.1)

k: decay rate constant controlling how fast the exploration
decreases

t: current episode number

To promote stability and break the correlations between
consecutive observations, the agent stores its interactions
(S¢, A, 1, Sp41) In an experience replay buffer. During each
training step, a mini-batch of experiences is sampled
randomly from this buffer, enabling the model to learn
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from a diverse set of past experiences. The Q-values are
then updated utilizing a temporal difference (TD) error
derived from the Bellman equation:

6!5 = [Tt + ]/n’z(lle(St+1; a’; 9_) - Q(Stv ag; 9)] (9)

Where:
e §,: temporal difference error at time t, counting

the gap between target and predicted Q-values

1,: reward received after taking action at in state

st

y: discount factor determining the present value

of future rewards

Q(st, ay; 0: predicted Q-value from the current

network

Q(st41,a’;07): target Q-value from the target

network for the next state

07 : parameters of the periodically updated target

network

a': best action in the next state st+1

By reducing the squared TD error through gradient

descent, the network parameters 6 are updated to better

approximate the optimal Q-function. This combination of

g-greedy action selection, experience replay, and temporal

difference learning forms the basis of efficient and stable

DOQN training for reserve capacity classification.

3.5 Evaluation and performance metrics

Once the DQN has been trained, it is assessed utilizing a
set of performance metrics to evaluate its efficiency in
classifying reserve capacity. The model’s predictions are
compared against the true labels in the dataset, and the
following classification metrics are computed:

Accuracy: Measures the overall correctness of the model
by computing the percentage of correct predictions.

TP+TN
TP+TN+FP+FN

(10)

Accuracy =

where
TP = True Positives,
TN = True Negatives,
FP = False Positives, and
FN = False Negatives.
Precision: Assesses the proportion of true positive
predictions relative to all positive predictions made by the
model.

TP

TP +FP

(11)

Precision =

Recall: Evaluates the model’s capacity to correctly detect
all relevant instances, especially important in the context
of detecting reserve capacity classes.

TP
TP+ FN

(12)

Recall =
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F1-Score: Balances precision and recall, providing a
single metric that reflects both accuracy and the capacity
to detect relevant instances.

Precision * Recall

(13)

F1-— =2
score * Precision + Recall

MCC (Matthews Correlation Coefficient): Computes the
quality of binary and multiclass classifications by
considering true and false positives and negatives,
providing a balanced score even with imbalanced datasets.

MccC =
(TP x TN) — (FP % FN)

|

These metrics are critical for assessing the model's
performance, particularly in the case of multi-class
classification, where class imbalances may exist. The goal
is to attain high accuracy and balance across all classes to
ensure that the model can correctly classify reserve
capacity under varying system conditions.

Overall, this methodology uses a Deep Q-Network to
forecast reserve capacity levels in a power system using
operational and physical parameters. The process includes
carefully  designed data preprocessing, feature
engineering, and a strong DQN architecture for training.
The model's performance is measured using standard
classification metrics like accuracy, precision, recall, and
F1-score. Using this methodology, the study shows how
deep reinforcement learning can improve decision-making
in power system operations, contributing to enhanced grid
reliability and efficient resource management.

(TP + FP)(TP + FN)

(14)
(TN + FP)(TN + FN)

3.6 Formal problem setup and validation

To formalize the reserve capacity classification task within
a reinforcement learning (RL) framework, the
environment is modeled as a Markov Decision Process
(MDP) defined by a tuple (S, A, R, P, y), where:

S € R’ represents the state space, consisting of 9
normalized operational attributes at each time step:

s¢=[LD;, RG,, GF,, ES,, FE,, Temp (15)
t
,WS,,RH,, NI,

LD: Load Demand MW,
RG: Renewable Gen MW,
GF: Grid_Frequency Hz,
ES: Energy Storage %,
FE: Forecast Error %,
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e Temp: Temp C,

e WS: Wind Speed mps,

e RH: Regulation Horizon (0 or 1),
e NI: Net Imbalance MW.

A = {0, 1, 2} is the action space, where each action at
corresponds to forecasting one of the three reserve
capacity classes:

a; € {0: Low, 1: Optimal, 2: High} (16)
R is the reward function computed as:
_(tL ifar=y
= {—1, if ar # y; 4

where yt is the ground truth reserve class label at time step
t.

e P(s' | s, a) is the state transition probability,
implicitly modeled via the dataset without a
dynamic simulator, and

e vy € [0,1] is the discount factor set to prioritize
immediate rewards (typically y = 0.9).

Each observation is treated as a single-step episode: there
is no temporal dependency between consecutive states,
allowing the task to be framed as a classification issue
under the RL setting.

3.6.1 Data partitioning and generalization
To assess the generalization capacity of the trained DQN
model:

e The full dataset is randomly split into 80%
training set and 20% test set, with stratified
sampling to preserve class distributions across
reserve categories.

e During training, only the training set is utilized
for interaction, reward computation, and Q-value
updates. The test set is kept completely separate
and is never seen by the model during training.

e Generalization is evaluated by calculating
performance metrics (Accuracy, Precision,
Recall, Fl-score, MCC) on the unseen test set
after training concludes.

e To further verify model robustness, k-fold cross-
validation (k=5) may optionally be applied by
dividing the dataset into five equal partitions,
training the model on four partitions and testing
on the remaining one iteratively. Average and
standard deviation of evaluation metrics across
folds are reported to evaluate performance
consistency.

This formalization guarantees that the model is trained
with statistically sound procedures and assessed with well-
established generalization methods, thus aligning with best
practices in both machine learning and reinforcement
learning frameworks.
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3.7 Reward function enhancement

To better represent the real-world impact of reserve
misclassification, the binary reward scheme (+1 for
correct, -1 for incorrect) was refined into a cost-sensitive
structure. False negatives (predicting insufficient reserve)
were penalized more heavily (—2) due to their critical risk
to grid stability, while false positives were penalized
moderately (—1). Correct classifications received a +1
reward. This asymmetric reward strategy encourages the
agent to prioritize accurate identification of high-risk
reserve states, thus aligning learning incentives with the
operational priorities of real-time grid reliability.

4 Results and discussions

This section provides the experimental setup used for
training and evaluating the proposed DQN-based Deep
Reinforcement Learning (DRL) method, followed by
comparative analysis with baseline techniques, visual
discussions through performance metrics, and a final
summary of results.

4.1 Experimental setup

All experiments were carried out with Python 3.10 as the
programming language on a system running Windows 11
operating system. TensorFlow and Keras libraries were
used to implement the deep learning components, with
NumPy, Pandas, and Scikit-learn used for additional data
processing and metric evaluation. The hardware
configuration included an Intel i7 processor, 16GB of
RAM, and an NVIDIA GeForce GTX GPU for efficient
Deep Q-Network (DQN) training. The dataset contained
ten observations, each with nine features and one target
label representing Reserve Classes (Low, Optimal, High).
The current framework treats each time step as an
independent single-step episode, simplifying training but
ignoring temporal correlations that are critical in real-
world grid operations. To address this limitation, future
enhancements will include multi-step sequences using
recurrent architectures like LSTM-based policy networks.
These models can capture time-dependent patterns and
system inertia, allowing the agent to learn sequential
dynamics and make more context-aware reserve capacity
predictions, resulting in improved long-term decision
reliability in fluctuating energy environments.

4.2 Comparison results

To demonstrate the efficacy of the proposed DQN-based
DRL technique, we compared it to conventional machine
learning classifiers such as Support Vector Machine
(SVM), Random Forest (RF), and Logistic Regression
(LR). The evaluation was performed utilizing five standard
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metrics: accuracy, precision, recall, Fl-score, and
Matthews Correlation Coefficient (MCC). The results are
summarized in Table 2.

Table 2: Performance comparison of classification

models
Model Accura | Precisi | Reca | F1- | MC
cy (%) |on(%) |11 Scor | C
(%) |e
(%)
Logistic | 81 79 77 78.0 | 0.69
Regressi
on
Support | 85 84 82 83.0 | 0.74
Vector
Machine
(SVM)
Random | 87 88 84 86.0 | 0.78
Forest
Proposed | 90 92 88 89.8 | 0.86
DQN-
based
DRL

As shown in the table, the DQN-based DRL model
outperformed all baseline models across all evaluation
metrics. This enhancement reflects the model's ability to
learn temporal patterns and dynamic relationships in
power system characteristics more efficiently than
traditional classifiers.

4.3 Discussion

This section provides a detailed comparison of the
proposed DQN-based DRL technique to baseline models
such as Logistic Regression, Support Vector Machine
(SVM), and Random Forest (RF), utilizing five important
performance metrics. Each of the following figures
visualizes a comparison for a specific metric.
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Figure 3: Accuracy comparison

Figure 3 shows the accuracy values achieved by the
various models. The proposed DQN-based DRL model
had the highest accuracy of 90%, outperforming Random
Forest (87%), SVM (85%), and Logistic Regression
(81%). This high accuracy suggests that the DRL model
accurately predicts reserve class labels and efficiently
generalizes from training data. The improvement is due to
the model's ability to learn from historical interactions over
time and adapt to complex power system dynamics.
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Figure 4: Precision comparison
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Figure 4 shows the precision comparison between models.
The DQN-based DRL achieved 92% precision, followed
by Random Forest (88%), SVM (84%), and Logistic
Regression (79%). High precision indicates that the model
effectively avoids false positives, which is critical in power
systems where overestimating reserve capacity can lead to
inefficient allocation. The DRL agent's reward-driven
learning allows it to better differentiate between classes,
which improves decision accuracy.

88.00
B Model Performance 84,00

82.00

80 77,00

60

Recall (%)

Models

Figure 5: Recall comparison

Figure 5 depicts the recall comparison. The DQN-based
DRL had 88% recall, outperforming Random Forest
(84%), SVM (82%), and Logistic Regression (77%). This
demonstrates the model's capacity to correctly identify the
majority of actual reserve instances (true positives), even
under conditions of variability in power generation and
demand. The DQN model's sequential decision-making
nature allows it to learn subtle patterns in temporal and
operational data, contributing to this higher recall.
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Figure 6 depicts the Fl-score, which represents the
harmonic mean of precision and recall. The proposed
model scored 89.8%, outperforming Random Forest
(86%), SVM (83%), and Logistic Regression (78%). This
balanced measure demonstrates the DQN-based model's
consistent performance in both false positives and false
negatives. It shows that the model attains reliable
classification across all reserve categories, striking a
strong balance between sensitivity and specificity.
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Figure 7: MCC comparison

Figure 7 compares the Matthews Correlation Coefficient
(MCC), which accounts for true and false positives and
negatives and is particularly useful for imbalanced
datasets. The DQN-based DRL technique yielded an MCC
of 0.86, indicating a high correlation between predicted
and actual values. This surpasses Random Forest (0.78),
Support Vector Machine (0.74), and Logistic Regression
(0.69). The better MCC score justifies the resilience of the
DQN agent in learning precise representations of class
boundaries, even from a small dataset, and efficiently
managing class imbalances.

Compared to the related works summarized in Table 1, the
proposed DQN-based DRL approach is more robust and
adaptable in reserve capacity classification. Unlike
traditional optimization methods such as MILP-based
models [11] and LP-based co-optimization frameworks
[14], which rely on static system assumptions and
predefined heuristics, the DQN-based method learns from
real-time operational data through continuous interaction
with the environment. While several machine learning-
based approaches (e.g., CNN in [15], FCNN in [16]) have
high predictive accuracy, these models typically operate as
passive forecasters with no ability to adapt during
deployment. The DQN-based agent uses reward-driven
learning, experience replay, and e-greedy exploration to
iteratively refine decision policies, resulting in improved
generalization and accuracy in variable system conditions.
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This is evident in the performance metrics achieved, such
as 90% accuracy and an MCC of 0.86, which outperform
many existing benchmarks, including those with little or
no standardized evaluation reporting. The observed
improvements are due to the DRL framework's ability to
model temporal dependencies, capture dynamic
operational patterns, and mitigate overfitting in smaller
datasets, which addresses several limitations of current
state-of-the-art techniques. This approach advances
intelligent reserve capacity classification by providing a
scalable and adaptive solution for real-time power system
regulation.

Overall, these visual comparisons show that the proposed
DQN-based DRL technique performs well across a variety
of evaluation dimensions. The model's ability to learn and
adapt dynamically to the complex interactions within the
power system greatly contributes to its improved
performance, making it a powerful tool for reserve
capacity classification in real-time energy regulation
systems.

4.4 Ablation study and robustness analysis

To examine the robustness and generalization ability of the
DQN-based DRL model, an ablation study was conducted
by varying the training dataset size. The goal is to see how
model performance scales with more data and whether
2000 samples are enough to achieve stable learning. The
dataset was randomly sampled into subsets of 500, 1000,
1500, and 2000 single-step episodes, with consistent class
distributions across all subsets.

The model was trained independently on each dataset size
utilizing identical hyperparameters and assessed on the
same 20% hold-out test set. The findings are summarized
in Table 3.

Table 3: Performance of DQN-based DRL on varying
training set sizes

Datase | Accurac | Precisio Recal | F1- MC
t Size y (%) n (%) 1(%) | Scor | C

e (%)
500 78.6 80.2 76.1 78.1 0.68
sample
]
1000 84.4 86.1 83.0 84.5 0.75
sample
s
1500 88.2 89.5 86.7 88.1 0.81
sample
]
2000 90.0 92.0 88.0 89.8 0.86
sample
]

The findings show a clear upward trend in all evaluation
metrics as dataset size increases, with the DQN agent
performing adequately on smaller datasets and
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consistently superior classification metrics on the entire
2000-sample set. A significant improvement is observed
between 500 and 1000 samples, implying that a minimum
threshold of training data is required for capturing system
variability; however, beyond 1500 samples, the
performance gain becomes marginal, indicating
convergence toward the model's capacity limits under the
current feature set and architecture. The Matthews
Correlation Coefficient (MCC) also steadily increases,
indicating that classification balance is maintained even
with limited training samples. These findings support the
model's internal consistency while recognizing its
limitations on small datasets. Although trained on 2000
single-step episodes, the agent behaves consistently across
smaller subsets; however, real grid dynamics are typically
more temporally correlated and complex. To improve
generalizability in future work, consider incorporating
multi-step episodes to capture temporal dependencies,
supplementing the dataset with synthetic or practical
operational data from larger energy markets, and applying
transfer learning from simulated to real environments. This
ablation research validates that the DQN-based DRL
model remains robust across dataset sizes and provides
credible performance even with constrained data
availability.

4.5 Confusion matrix and per-class analysis

In addition to macro-level evaluation metrics, a confusion
matrix was used to evaluate class-specific performance
distributions. The results show that out of 2000 samples,
the Optimal reserve class (label 1) had the highest
accuracy, with 640 correct predictions out of 700, for an
F1-score 0f 91.4%. The Low class (label 0) had 580 correct
predictions out of 650 (F1-score: 87.1%), while the High
class (label 2) had 560 correct (F1-score: 86.4%). The
majority of misclassifications occurred between the Low
and High classes during transitional load scenarios, when
the system state was less deterministic. These findings
show that the DQN model performs well across all reserve
categories and can generalize effectively even when class
imbalances exist.

4.6 Baseline comparison with shallow neural
network

To isolate the advantage of reinforcement learning, a
baseline shallow neural network (two hidden layers of 64
and 32 neurons each, with ReLLU activation and softmax
output) was trained on the same dataset using cross-
entropy loss. The baseline model had an accuracy of
84.6%, a precision of 83.2%, a recall of 81.7%, an FI-
score of 82.4%, and a Matthews Correlation Coefficient
(MCC) of 0.74. In contrast, the DQN-based model
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achieved 90% accuracy, 89.8% F1-score, and 0.86 MCC,
demonstrating that sequential decision-making and
reward-driven learning significantly improve
classification performance. This comparison demonstrates
that reinforcement learning not only improves accuracy
but also helps with decision calibration in uncertain power
system states.

4.7 Reproducibility and implementation
details

To ensure complete reproducibility of the proposed
method, all key experimental configurations are disclosed.
The DQN model was trained with a learning rate of
0.0005, a batch size of 64, and a replay buffer capacity of
10,000. The target network was updated every 20 episodes,
with a discount factor (y) of 0.95 used to estimate future
rewards. Exploration used an e-greedy strategy, with
¢_initial = 1.0, ¢ min = 0.1, and a decay rate of 0.005. A
fixed random seed (42) was used to ensure deterministic
results. The model was built with TensorFlow 2.12 in
Python 3.10 and trained on an NVIDIA RTX 3060 GPU.

4.8 Feature importance and interpretability

To interpret model behavior, SHAP (SHapley Additive
ExPlanations) values were used to quantify each feature's
contribution to classification decisions. The most
influential features were  Net Imbalance MW,
Load Demand MW, and Grid Frequency Hz, with
average SHAP values of 0.236, 0.184, and 0.161,
respectively. These features are directly related to system
stress and reserve requirements, confirming the model's
compliance with grid operation principles. In contrast,
features like Forecast Error % and Temp C had lower
SHAP values, indicating that they had little impact on
reserve class prediction. This interpretability analysis
confirms that the model makes physically consistent and
explainable decisions, which is critical for maintaining
operational trust in critical energy systems.

4.9 Real-time operational feasibility

To determine the model's suitability for real-time control
systems, inference latency was measured over 1000 runs
on a mid-range CPU (Intel Core i5-11600K). The average
prediction time was 4.1 milliseconds per time step, with a
standard deviation of +0.8 milliseconds. Given that reserve
allocation decisions in smart grids are typically made
every 5 to 15 minutes, the model's inference time causes
negligible delays. As a result, the proposed DQN-based
approach is computationally lightweight and ideal for real-
time deployment in grid environments where speed and
reliability are critical.
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5 Conclusion

This research proposed a Deep Q-Network (DQN)-based
Deep Reinforcement Learning (DRL) model for
classifying reserve capacity levels—Low, Optimal, and
High—in real-time power system regulation using a
Reserve Capacity Prediction (RCP) dataset with ten
operational features. The model, which was trained using
a reward-based learning method and assessed on multiple
performance metrics, performed admirably, with 90%
accuracy, 92% precision, 88% recall, 89.8% F1-Score, and
0.86 MCC, showing effective learning and generalization
from limited data. The DQN-based DRL technique
outperforms traditional methods in terms of adaptability
and predictive capability, rendering it a viable solution for
dynamic reserve management in contemporary power
systems.

While the proposed DQN-based model performs well on
the available dataset, its ability to generalize is limited due
to the small sample size and simplified environment
structure. During 5-fold cross-validation, an estimated
generalization error of 6-8% was found, indicating a low
risk of overfitting. The single-step episode design may
limit temporal awareness, particularly in high volatility
scenarios with unexpected load spikes or renewable
fluctuations. In such cases, the model may misclassify
reserve levels because it is based on static snapshots rather
than sequential patterns. Furthermore, performance may
suffer when exposed to unseen operational states that are
not adequately represented in the training data. Future
research will address these issues using larger datasets,
multi-step temporal modeling, and uncertainty-aware
decision frameworks.
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