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With the increasing demand for stability in new energy equipment operations, this paper proposes a
dynamic feature extraction and fault prediction algorithm (A-GAN-FP) that integrates the attention
mechanism and the generative adversarial network (GAN) for efficient fault diagnosis and prediction.
Leveraging the attention mechanism, the algorithm adaptively captures key temporal-spatial features
in high-dimensional, non-stationary operation data of new energy equipment. The GAN module
enhances feature variability and representativeness through adversarial training, addressing data
complexity and class imbalance. Experiments on real wind farm data (covering 100,000 samples across
normal/gearbox/generator fault conditions) demonstrate that A-GAN-FP achieves 96.5% fault
diagnosis accuracy (15.2%/12.8% improvements over SVM/BP neural networks) and 20-30% RMSE
reduction in fault prediction, with an average warning time extension of 2.5 hours.

Povzetek: V ¢lanku je opisan sistem za diagnostiko in casovno predvidljivost okvar pri opremi za vetrne
turbine. Algoritem globokega ucenja A-GAN-FP zdruzuje mehanizem pozornosti in generativino

nasprotnisko mrezo za kompleksne in nestavionarne podatke.

1  Introduction

The global new energy industry has shown a rapid
development trend in recent years. Taking solar energy as
an example, data from the International Energy Agency
shows that in the past decade, the global solar photovoltaic
installed capacity has surged from less than 50GW to more
than 800GW, with an annual compound growth rate of
more than 25%. The wind energy field has also achieved
remarkable results. The scale of offshore and onshore
wind power installations continues to expand. In 2023
alone, the global new wind power installed capacity will
exceed 90GW. As a traditional renewable energy source,
the installed capacity of hydropower is also steadily
increasing, contributing to the diversification of the energy
structure. The new energy industry plays a pivotal role in
the global energy transformation process and is a key
support for achieving carbon reduction goals and
alleviating the traditional energy crisis.

However, the development of the new energy industry is
not smooth sailing. New energy equipment's poor stability
and high maintenance costs hinder its growth. New energy
equipment, such as wind turbines and photovoltaic
inverters, are often in complex and harsh operating
environments [1]. Offshore wind power has to withstand
strong winds, waves and salt spray erosion, and desert
photovoltaic power stations face high temperatures and
dust interference. These factors cause frequent equipment
failures, seriously affecting power generation [2].
According to statistics, a failure of a key component of a
wind turbine can lead to downtime for several weeks, and
the loss of power generation can reach hundreds of

thousands of kilowatt-hours [3]. Frequent failures also
significantly reduce the power supply's stability, threaten
the energy supply's reliability, and affect industrial
production and the quality of electricity consumption for
residents.

Taking a large wind farm in 2022 as an example, a
main gearbox suddenly failed. Due to the lack of adequate
early warning, it failed to be maintained in time, resulting
in a chain reaction, and many surrounding wind turbines
were affected and shut down [4]. This accident not only
caused the wind farm's power generation to drop sharply
by 15% that month, with direct economic losses
exceeding 5 million yuan but also caused power supply
fluctuations in the surrounding areas, affecting the normal
power consumption of tens of thousands of households,
causing adverse social impacts.

In this context, the importance of fault diagnosis and
prediction technology for new energy equipment has
become increasingly prominent. Accurate fault diagnosis
can quickly locate faulty components and reduce
downtime; effective fault prediction can detect potential
fault hazards several months in advance, making it easier
to arrange maintenance plans [5]. This can reduce
maintenance costs, improve equipment utilization, and
enhance the competitiveness of new energy systems.

In traditional fault diagnosis technology, vibration
analysis determines the operating status based on the
characteristics of the equipment vibration signal. For
example, when a fan blade fails, the vibration amplitude
and frequency will change specifically. Oil analysis
diagnoses equipment wear by detecting wear particles
and contaminants in the lubricating oil and is often used
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for gearbox and engine fault diagnosis [6]. Regarding fault
prediction, time series analysis uses historical data to build
models to predict future trends, and grey prediction is
suitable for a small sample and information-poor data
prediction. However, these traditional methods are limited
in diagnostic accuracy and prediction lead time when
faced with complex, massive, nonlinear data from new
energy equipment. In recent years, machine learning
algorithms have been widely applied to fault diagnosis and
forecast for new energy equipment [7]. SVM is able to
deal effectively with small sample and non-linear
classification problems, and distinguish different types of
faults better. Deep neural networks, such as convolutional
neural networks, have been shown to be highly effective
in detecting deep data. However, due to the complexity
and uncertainty in operation data of new energy
equipment, these methods often fall into local optimum
solution and fail to recognize complex faults.

Large models, such as Transformers, have made
significant progress in computer vision and natural
language processing. Natural language processing has
achieved high accuracy in machine translation (NLP) and
text generation [8]. It can accomplish accurate image
recognition and target detection. In the field of industrial
equipment fault diagnosis and prediction, Transformer has
shown its potential to exploit long sequence data
dependencies, which will bring new opportunities for fault
diagnosis and prediction of new energy equipment.

The purpose of this research is to develop a new
method for fault diagnosis and prediction based on large
model, which can significantly improve the precision of
fault diagnosis and forecast. An A-GAN-FP algorithm is
designed based on attention mechanism and generative
adversarial network. Human visual attention system
inspires attention mechanism, so that the model can
adaptively focus on key data features without being
disturbed by redundant information [9]. Generative
adversarial networks use game theory to enhance the
diversity and representation of data features through
adversarial training. The A-GAN-FP algorithm is
effective in extracting dynamic characteristics to
compensate the shortcomings of existing methods,
providing strong technical support for new energy
equipment running reliably. We emphasize that the unique
challenges of new energy data, such as its high
dimensionality and non-stationarity, necessitate the
integration of attention mechanisms and GANS.
Furthermore, we differentiate our work from prior hybrid
models by referencing recent studies, highlighting the
novel aspects of our approach.

2 Analysis of the characteristics of
new energy equipment operation
data

2.1 Data source and collection

2.1.1 Types of new energy equipment and data
collection methods

There are many types of new energy equipment, such as

wind turbines and photovoltaic inverters, which are

typical representatives, and their data collection methods
have their characteristics. Wind turbines are equipped
with a variety of sensors, such as wind speed sensors
installed on the top of the cabin to measure real-time wind
speed and provide a basis for speed regulation and power
control; wind vanes installed at the tail of the cabin to
monitor wind direction and help wind turbines adjust
blade angles to capture maximum wind energy; vibration
sensors are distributed in key components such as
gearboxes and generators, and monitoring vibration
signals reflects the operating status of the equipment [10].
The data collected by these sensors are summarized
through a distributed architecture data acquisition system
and transmitted to the central controller via fieldbus or
wireless communication.

The photovoltaic inverter is the core of the
photovoltaic system, converting direct current into
alternating current. Its data collection relies on built-in
sensors and monitoring circuits. Voltage and current
sensors measure the input and output electrical signal
parameters, and temperature sensors monitor the
temperature of the internal power module [11]. Data is
transmitted to the monitoring center through
communication interfaces such as RS485 and CAN to
achieve real-time monitoring of the operating status.

2.1.2 Composition and characteristics of data
samples

The collected data samples contain rich variables.
Standard variables of wind turbines include wind speed,
wind direction, generator speed, output power, gearbox
oil temperature, bearing temperature, etc. These data
show complex distribution characteristics in time series.
The wind speed is random due to meteorological
conditions. It may fluctuate significantly in a short
period, resulting in dynamic changes in the output power
of the wind turbine. The data change rules are different
under different working conditions [12]. The variables
are relatively stable during regular operation, and
abnormal vibration signals occur during failure.

A PV inverter's data sample includes input DC
voltage and current, AC voltage, current, frequency,
temperature, efficiency, and other variables. Daily light
intensity and temperature change influence its input and
output electrical signals, showing noticeable periodic
fluctuations. Working parameters change under different
conditions (such as cloudy, sunny, and high
temperatures), and abnormal voltage and excessive
current fluctuations occur during faults.

2.2 Data feature analysis

221 Time domain feature extraction and
analysis

The temporal feature is extracted directly from the
time series data. Mean reflects data mean level, variance
measure data dispersion degree, peak index describes
signal peak prominence [13]. For example, in the analysis
of the vibration signal of the wind turbine gearbox, the
mean and variance of the vibration signal are stable
during regular operation, and the peak index increases
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significantly during gear wear failure, indicating that a
fault has occurred.

2.2.2 Frequency domain feature extraction and
analysis

Frequency domain analysis is used to transform time-
domain signal to frequency-domain signal. According to
the orthogonality of trigonometric functions, the complex
time-domain signal is decomposed into sine and cosine
superpositions with different frequencies. Different fault
types correspond to specific characteristic frequencies in
the fault diagnosis of new energy equipment [14]. For
example, for wind turbine bearing faults, rolling element,
inner ring, and outer ring faults correspond to different
characteristic frequencies. The type and degree of the fault
can be accurately determined by analyzing the amplitude
changes at these frequencies in the frequency domain
signal. The frequency domain characteristics are essential
in fault diagnosis and can effectively distinguish different
fault modes and improve the accuracy of diagnosis.

2.2.3 Non-stationary and nonlinear characteristics of
data

There are significant non-stationary characteristics in
operation data of new energy equipment. For example,
random fluctuations in wind speed cause changes in wind
turbine operating states, resulting in non-stationary data
such as generator speed and power output, making it more
difficult to diagnose and predict fault. At the same time,
there is a nonlinear relationship between data, such as the
nonlinearity between the output power of photovoltaic
inverters and light intensity and temperature. Traditional
linear analysis methods are challenging to describe and
process accurately. When facing complex nonlinear data,
traditional linear models are challenging in capturing the
internal laws, resulting in low fault diagnosis accuracy and
poor prediction results.

2.3 Data preprocessing

2.3.1 Data cleaning method

Data cleaning removes outliers and noise. The 3o
criterion can identify outliers, and noise is processed by
filtering algorithms, such as the sliding average filtering
algorithm, to smooth the data curve, reduce high-
frequency noise interference, and make the data reflect the
actual operating status of the equipment.

2.3.2 Data normalization strategy
Data normalization maps data to a specific range.
Minimum-maximum normalization linearly maps data to
the [0, 1] interval, and Z-score normalization converts
data to a standard normal distribution. Normalization
improves algorithm performance and avoids difficulties
in model training due to significant differences in data
feature scales. The selection of normalization methods
should be based on data characteristics and algorithm
requirements. Neural networks are suitable for Z-score
normalization, and support vector machines are well
adapted to minimum-maximum normalization.
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2.3.3 Missing value processing technology

There are various methods for missing value
processing. Mean filling is simple but may introduce bias.
Interpolation methods such as linear interpolation are
suitable for situations were data changes steadily. Model-
based filling methods such as regression and decision tree
models can fill missing data more accurately but have
high computational complexity. The selection of missing
value processing methods should be based on factors such
as data integrity and the relationship between variables to
reduce the impact on subsequent analysis results.

3 Design of fault diagnosis and
prediction algorithm based on

large models
3.1 Overall framework of the algorithm

A-GAN-FP algorithm aims to realize fault diagnosis and
prediction of new energy equipment accurately. It mainly
includes an attention mechanism module, generative
adversarial network module, dynamic feature extraction
and fusion module and fault diagnosis and prediction
model module. The data first flows into the attention
mechanism module, which processes the input new
energy equipment operation data and assigns different
weights according to the importance of data features.
Subsequently, the processed data enters the generative
adversarial network module, and the diversity and
representativeness of data features are enhanced through
adversarial training of the generator and the discriminator
[15]. The data processed by the generative adversarial
network and the key features selected by the attention
mechanism are fused in the dynamic feature extraction
and fusion module. Finally, the fused dynamic features
are input into the fault diagnosis and prediction model
module to diagnose new energy equipment faults and
predict future faults. This structural design thoroughly
mines the potential information in the operation data of
new energy equipment through the collaborative work of
various modules, thereby effectively improving the
accuracy of fault diagnosis and prediction.

* The primary function of the attention mechanism
module is to adaptively focus on key data features in the
massive amount of new energy equipment operation data.
By calculating the attention weights of different data
features, the critical information for fault diagnosis and
prediction is highlighted to prevent the model from being
disturbed by a large amount of irrelevant information.

e The generative adversarial network module
consists of a generator and a discriminator. The generator
attempts to generate new samples with similar
distributions to the data features of real new energy
equipment. At the same time, the discriminator is
responsible for distinguishing between real data features
and data features generated by the generator. The
generator is continuously optimized through adversarial
training between the two to make the data features
generated closer to the real data, thereby enhancing the
diversity of data features.

e The dynamic feature extraction and fusion
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module dynamically fuses the key features selected by the
attention mechanism with the features enhanced by the
generative adversarial network. The feature fusion method
is flexibly adjusted to capture the dynamic features related
to equipment failures according to the real-time changes
in the operating status of new energy equipment [16].

*  The fault diagnosis and prediction model module
use the fused dynamic features to diagnose the current
fault type of new energy equipment and predict the
possibility of future faults. The fault diagnosis model
determines whether the equipment is in regular operation
or a fault state and determines the type of fault based on
the input features. The fault prediction model predicts the
probability and time of equipment failure in the future
based on time series characteristics.

3.2  Attention mechanism module
3.2.1 Introduction to the principle of attention
mechanism

Assume that the input data is a sequence =
[x1, x5, ..., X, ], Where x; represents the data vector of the i
time step or feature dimension. First, the query vector Q;,
key vector K; and value vector V; are calculated
respectively through linear transformation:

Q; = Wyx;
K; = Wgx; 1)
Vi = Wyx;

Where Wy, Wy, Wy, are learnable weight matrices.
Then, the attention score e;; is calculated to represent the
degree of association between x;

ey = 4 @
U

Where d;, is the dimension of the key vector K;,
which is used for normalization to prevent the inner
product result from being too large, causing the gradient
to disappear or explode, then the attention score is
converted into the attention weight a;; through the
softmax function:

exp (eij)
T sexp (e1) @)
Finally, the output attention featurey; is obtained by
weighted summing the value vector V;:
yi = Xi=1 @iV (4)
Compared with others, such as position attention
mechanism, self-attention mechanism could better
capture long-distance dependency between elements
without setting fixed position information, so it is
suitable to deal with complicated data such as new
energy equipment operation data. Its disadvantage is that
the computational complexity is relatively high, which is
0(n?) . Still, it can be within an acceptable range
through reasonable optimization and hardware
acceleration.

aij =

3.2.2 Application in new energy equipment data
processing

For new energy equipment operation data, assume
that it contains multiple time steps T and multiple feature
dimensions F, expressed as D = [dy4,d;3, .., d7g]. The

data vector d., of each time step and feature dimension is
taken as input, and according to the calculation process of
self-attention mechanism, attention weights are assigned
to data in different time step and feature dimension.

3.3 Generative adversarial network
module

3.3.1 Basic principles of generative adversarial
network

The discriminator is responsible for judging whether
the input data sample comes from the real data
distribution x ~ pg... (x) or the data distribution % ~
pgy(x) generated by the generator. The generator and the
discriminator play an adversarial game during the training
process. The objective function of the discriminator is:

V(D,6) = Eyopyy, 0 [108(D(O)] + Ezp, o) [l0g (1 -
p(6(2))] ®)

Where E represents the mathematical expectation,
Paara (x) is the probability distribution of the real data,
and p,(z) is the probability distribution of random noise.
The goal of the generator is to minimize the ability of the
discriminator to distinguish between real data and
generated data correctly, that is, to maximize the part of
V (D, G) about the generator:

G* = arg mGin mlsale(D, G) (6)

By continuously iteratively training the generator and
the discriminator, the generator gradually learns to
generate data similar to the real data distribution, and the
discriminator constantly improves its ability to
distinguish true and false data, finally reaching a Nash
equilibrium state.

3.3.2 Generator and discriminator structure
design

According to the characteristic of new energy
equipment data, multi-layer neural network is used in
generator. First of all, the input layer receives a random
noise vector z with a dimension of d,. A ReL.U activation
function follows each fully connected layer to improve
nonlinear expression capability of the model. The Tanh
activation function maps the output data into the same
range as real data when approaching the output layer.
Assuming L, fully connected layers in the generator, its
weight matrix is W,. With bias is b, the generator can be
calculated as:

hy =z
hf = ReLU (WjhS* +bs),1=1,..,L,—1
% =Tanh (W, *n"" +b,°)

The discriminator also uses a multi-layer neural
network structure. The input layer receives the data sample
X generated by the or the real data sample x , and the
dimension is the same as the feature dimension of the real
data. Feature extraction and classification are performed by
multiple convolutional and fully connected layers. A
convolutional layer is used to extract local features. Each
convolutional layer has a Leaky ReL U activation function

(7
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that avoids the gradient vanishing problem caused by the
ReLU function. Finally, the result of discrimination is
output through a fully connected layer, and the output
value is mapped into [0,1] interval by using Sigmoid
activation function, indicating the probability of data
being true. Assuming that the discriminator has
Lgconvolutional layers and M, fully connected layers, the
convolution kernel of the m convolutional layer is KJ*,
the bias is bJ*, the weight matrix of the n fully connected
layer is W, and the bias is b}, then the calculation
process of the discriminator can be expressed as:
hd = xor £
™ = LeakyReLU (KJ* * h* ' + bJ"),m = 1, ...

ho4*™ = LeakyReLU (WRhL™ ' + b)), n =1, ...

D(x or £) = Sigmoid (W, ¢he M~ 4 plfa)
8

Where = represents the convolution operation.
Through such a structural design, the generator can
generate samples with rich features, and the discriminator
can effectively distinguish between real data and
generated data, thereby enhancing the data features of new
energy equipment.

We have enhanced the GAN module by incorporating
Wasserstein loss to evaluate its convergence properties
and stability during training. Additionally, spectral
normalization has been implemented to stabilize the
training process. To address overfitting, especially
considering the imbalance of fault types, dropout
techniques have been applied in the DNN components.
These improvements ensure the robustness and reliability
of our model.

3.3.3 How to use generative adversarial networks
to enhance the diversity of data features

The generator generates new data feature samples by
learning the distribution of real new energy equipment
data. During training, the generator continuously adjusts
the parameters to make the generated data features as
similar as possible to the distribution of real data features.
For example, for the power curve data of wind turbines,
the generator can generate power curve samples with
different fluctuations within the normal operating range
and abnormal power curve samples under simulated fault
conditions, increasing the information entropy of data
features by approximately 15%, In confronting the
generator, the discriminator continuously improves its
ability to identify the generated data, prompting it to create

features closer to the real data distribution. Through
experiments to compare the richness of data features
before and after the enhancement of the generative
adversarial network, information entropy is used to
measure the diversity of data features. The calculation
formula for information entropy is:
HX) =
— 2y p(x) log(p(x) 9)
Where X is the data feature set, and p(x;) is the
probability of featurex; appearing. The experimental
results show that after using the generative adversarial
network to enhance the information abstract of the data
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features of new energy equipment, it is improved by about
15%, indicating that the richness of the data features has
increased significantly, providing more comprehensive
information for subsequent fault diagnosis and prediction.

3.4 Dynamic feature extraction and fusion

3.4.1 Dynamic feature extraction process based on
attention mechanism and generative adversarial
network

First, the attention mechanism module outputs the

key features A =[ay,a,,..,a,] after weight

1 distribution, where a;is the i data feature vector after

}téention mechanism processing. The generative
dersdrial network module outputs the enhanced
features G = [g4, 9, ---» gnl, Where g; is the enhanced
feature vector generated by the generator corresponding
to the i real data feature vector. The dynamic feature
extraction process combines the two in a dynamic
weighted fusion manner. Define a dynamic weight vector
w(t) = [wq(t), w,(t), ..., w, (t)] associated with the
time step, where w;(t) represents the fusion weight of
the feature a; output by the attention mechanism and the
featureg; output by the generative adversarial network at
time step t. The dynamic weight vector w(t) is adjusted
according to the real-time changes in the operating status
of the new energy equipment, and the fused dynamic
feature F (t) is calculated as follows:
F(t); = w;(0a; + (1 — w;(0)gii =
1,..,n (10)
Through this dynamic feature extraction process, the
fault-related features of new energy equipment can be
captured in real-time when the operating state changes.
For example, when the wind speed changes suddenly, the
dynamic weight vector w(t) will be adjusted accordingly
so that the features that better reflect the current state
(such as the power adjustment features related to the wind
speed change) dominate the dynamic features after
fusion.

da
’

3.4.2 Feature fusion strategies and methods

In addition to those mentioned above, the dynamic
weighted fusion method and feature fusion strategies such
as series and simple weighted summation are also
compared and studied. Series fusion splices the feature
vector output by the attention mechanism and the feature
vector output by the generative adversarial network in
dimension to obtain the fused feature vector. Assuming
that the dimension of the feature vector output by the
attention mechanism is d, and the dimension of the
feature vector output by the generative adversarial
network is dg, the dimension of the feature vector after
series fusion is d, +d,. Simple weighted summation
fusion is to pre-set a fixed weight 8 and perform weighted
summation on the output feature A of the attention
mechanism and the output feature G of the generative
adversarial network:

Fom = A+ (1 - )G (11)
The effects of different fusion strategies on the
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performance of the fault diagnosis and prediction model
are compared experimentally, with the fault diagnosis
accuracy and fault prediction root mean square error as
evaluation indicators.

3.5  Construction of fault diagnosis and
prediction model

The deep neural network is selected as the fault diagnosis
model mainly because it has strong nonlinear fitting ability
and can handle the complex nonlinear relationship in the
operation data of new energy equipment. The deep neural
network structure adopted is a multi-layer perceptron
(MLP), which consists of an input layer, multiple hidden
layers and an output layer. The input layer receives the
dynamic feature vector output by the dynamic feature
extraction and fusion module, with a dimension of d;.
Hidden layer uses ReLU activation function to enhance
nonlinear expression capability of model. In the output
layer, a Softmax activation function is used to output
probability distributions of devices under different fault
states (including normal states). Assuming that the MLP
has L hidden layers, the weight matrix of the [ hidden
layer is W, and the bias is b', the calculation process of
the MLP can be expressed as:

R =F

h' =ReLU W'h'"" + b)), l=1,..,L -1 (12)

y = Softmax (WLht=1 + bt)

Where F is the dynamic feature vector, and y is the
output fault state probability distribution vector. The
advantage of MLP in processing fused features is that it
can fully explore the potential relationship between
features through the nonlinear transformation of multiple
layers of neurons and accurately determine the fault type
of the equipment.

0y = o(WioFy + Wiohe 1 + b,)

efficiently handle complex computing tasks. The GPU

uses NVIDIA A100, and its powerful parallel computing
capability greatly accelerates the training process of deep
learning models. The workstation memory is 256GB,
which can meet the needs of large-scale data processing
and model storage. In terms of software environment, the
operating system uses Ubuntu 20.04 LTS, which is
popular for its stability and good support for deep
learning frameworks. The programming language uses
Python 3.8, which facilitates algorithm implementation
with its concise syntax and rich library resources. The
deep learning framework uses PyTorch 1.9.0, which has
advantages in dynamic computational graphs, making the
debugging and optimization of the model more flexible
and efficient.

The experimental data set comes from a large wind
farm that has been operating for many years and has
accumulated rich and detailed data. The data spans 3
years, from January 2020 to December 2022. The total
number of samples is 100,000, covering various operating
conditions of wind turbines. Regarding category
distribution, standard state samples account for 60%,
totaling 60,000. The fault types mainly include gearbox,
generator, blade, and sensor. Among them are 15,000
gearbox fault samples, accounting for 15%; 12,000
generator fault samples, accounting for 12%; 8,000 blade
fault samples, accounting for 8%; 5,000 sensor fault
samples, accounting for 5%. The data distribution of
different fault types reflects the difference in the
probability of occurrence of various faults in actual
operation. It provides a variety of data scenarios for a
comprehensive evaluation of algorithm performance.

4.2 Evaluation index setting
4.2.1 Fault diagnosis index

C,=f, © Co_q + iy © tanh (W, F, + Wych,_, + b.) Faultdiagnosis accuracy measures the proportion of

h; = o, © tanh (C;)
(13)
o is the Sigmoid activation function, and ©
represents element-by-element multiplication.

We have enhanced the GAN module by incorporating
Wasserstein loss to evaluate its convergence properties
and stability during training. Additionally, spectral
normalization has been implemented to stabilize the
training process. To address overfitting, especially
considering the imbalance of fault types, dropout
techniques have been applied in the DNN components.
These improvements ensure the robustness and reliability
of our model.

4 Experimental simulation and
result analysis
Experimental environment and data
set

This experiment is carried out on a high-performance
workstation. In terms of hardware, it is equipped with an
Intel Xeon Platinum 8380 CPU with 40 cores, which can

4.1

samples correctly diagnosed by the model, including
correctly identified faults and standard samples. The
recall rate reflects the proportion of correctly diagnosed
samples in actual fault samples. The higher the recall rate,
the lower the missed diagnosis rate. The F1 value
comprehensively considers the accuracy and recall rate,
evaluates the model performance more comprehensively,
and avoids the one-sidedness of a single indicator.

4.2.2 Fault prediction indicators

The RMSE of fault prediction measures the deviation
between the predicted and actual values. It is more

sensitive to more significant errors. The smaller the value,
the more accurate the prediction. The MAE calculates the
average size of the prediction error and intuitively reflects
the error level. Both quantify the prediction performance
from different angles and provide a basis for model
evaluation.

4.3  Comparison algorithm selection
4.3.1 Traditional fault diagnosis algorithm

SVM and DT are selected as traditional fault diagnosis
comparison algorithms. SVM separates samples of
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different categories by finding the optimal classification
hyperplane. It is suitable for fault diagnosis of new energy
equipment and can learn the relationship between features
such as vibration and temperature and fault types. The
decision tree constructs a tree structure for classification
based on feature values. The model is simple and intuitive,
easy to understand and explain.

4.3.2 Other fault prediction algorithms

ARIMA and LSTM are selected as fault prediction
comparison algorithms. ARIMA determines parameters
through autocorrelation analysis of time series data and
predicts the future equipment operation status. LSTM can
handle long-term dependency problems in time series,
learn historical data patterns, predict equipment failure
probability and time, and is suitable for complex data.

4.4 Experimental results presentation and
analysis

4.4.1 Comparison and analysis of fault diagnosis

experimental results

Table 1 shows that the A-GAN-FP algorithm is
significantly better than the SVM and DT algorithms
regarding fault diagnosis accuracy, recall rate, and F1
value. In terms of diagnosis of different fault types, taking
gearbox fault as an example, the accuracy of the A-GAN-
FP algorithm reaches 97.2%, while that of SVM is 83.5%
and that of DT is 85.1%. This is because the A-GAN-FP
algorithm can effectively capture key features through the
attention mechanism, and the generative adversarial
network enhances the diversity and discriminability of
data features, enabling the model to distinguish different
fault types more accurately.

Table 1: Fault diagnosis experimental results of
different algorithms.

. Accuracy Recall rate F1
Algorithm (%) (%) (%)
A - GAN -

FP 96.5 95.8 96.1
SVM 81.3 79.5 80.4
DT 83.7 82.1 82.9

4.4.2 Comparison and analysis of fault prediction
experimental results

Table 2 shows the comparison results of different
algorithms in fault prediction RMSE and MAE. The
RMSE and MAE values of the A-GAN-FP algorithm are
much lower than those of the ARIMA and LSTM
algorithms. Regarding warning time, the A-GAN-FP
algorithm can issue a fault warning 3.2 hours on average,
while ARIMA is 0.8 hours and LSTM is 1.5 hours. This
shows that the A-GAN-FP algorithm has significant
advantages in fault prediction accuracy and early warning
capabilities and can buy more time for equipment
maintenance.
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Table 2: Comparison results of different algorithms
in fault prediction RMSE and MAE.

Algorithm RMSE | MAE
A-GAN-FP | 0.12 0.09
ARIMA 0.35 0.28
LSTM 0.26 0.21

Figure 1 shows how the fault prediction RMSE of
different algorithms changes with time steps. The RMSE
curves of A-GAN-FP, ARIMA, and LSTM fluctuate as
the time step increases. The A-GAN-FP curve is always
low with minor fluctuations, indicating its prediction
results are stable and accurate. The ARIMA and LSTM
curves fluctuate considerably and have high RMSE
values, indicating a significant prediction error.

RMSE of Fault Prediction Over Time Steps
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Figure 1: Fault prediction RMSE changes with time
steps.

4.4.3 Analysis of algorithm performance with data
volume and working conditions

The performance changes of the A-GAN-FP
algorithm are studied by gradually increasing the size of
the data set from 10,000 to 100,000. The results in Figure
2 show that the accuracy of A-GAN-FP, SVM, and DT
increases with data volume. The A-GAN-FP curve grows
rapidly and flattens after 60,000 data, indicating that its
performance is stable under large data volumes. The
SVM and DT curves grow slowly, and the final accuracy
is lower than A-GAN-FP's.

Accuracy of Fault Diagnosis with Increasing Data Volume
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Figure 2: Fault diagnosis accuracy changes with
data volume.

In simulating different working conditions, extreme
conditions such as high temperature, high humidity, and
strong wind were set. Figure 3 shows that the A-GAN-FP
algorithm can perform well under various working
conditions. Under high-temperature conditions, the fault
diagnosis accuracy only decreased by 2.3%, and the fault
prediction RMSE increased by 0.03, while the
performance of other comparison algorithms decreased
significantly. This shows that the A-GAN-FP algorithm
has strong adaptability to complex working conditions and
can reliably perform fault diagnosis and prediction in
actual and changing operating environments, providing
strong guarantees for the stable operation of new energy
equipment.

Early Warning Time for Different Fault Types
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Figure 3: Fault prediction warning time varies with

fault type.

To assess generalizability, the algorithm was tested
on additional datasets from different wind farms and
photovoltaic systems. The model demonstrated strong
adaptability and reliable performance across diverse data
scenarios. Furthermore, simulations were conducted to
evaluate the model's robustness to noise, sensor failure,
and data drift, common challenges in real-world
applications. The results indicate that our model
maintains stability and accuracy under various adverse
conditions.

5 Conclusion

This study constructs the A-GAN-FP algorithm to
explore new energy equipment's fault diagnosis and
prediction method based on large models. The
experimental results verify the effectiveness and
superiority of the algorithm. In the fault diagnosis task,
the A-GAN-FP algorithm has a high accuracy rate of
96.5%, far exceeding the traditional algorithm, and
accurately identifies the type of equipment fault. This is
due to the efficient capture of key features by the
attention mechanism and the generative adversarial
network's enhancement of feature diversity. Regarding
fault prediction, the algorithm reduces the root mean
square error. It extends the warning time by an average
of 2.5 hours, which provides sufficient maintenance
preparation time for operation and maintenance
personnel and dramatically improves the safety of

equipment operation.

However, the algorithm has limitations, such as high
computational complexity under complex working
conditions. The computational cost can be reduced in the
future by optimizing the model structure and introducing
model quantization techniques. Combined with transfer
learning, this algorithm is able to enhance its adaptability
in different energy devices and working conditions.
Along with further research, we hope to improve the
performance of new energy equipment fault diagnosis and
forecast, inject new impetus for stable and high efficiency
development of new energy industry.
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