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With the increasing demand for stability in new energy equipment operations, this paper proposes a 

dynamic feature extraction and fault prediction algorithm (A-GAN-FP) that integrates the attention 

mechanism and the generative adversarial network (GAN) for efficient fault diagnosis and prediction. 

Leveraging the attention mechanism, the algorithm adaptively captures key temporal-spatial features 

in high-dimensional, non-stationary operation data of new energy equipment. The GAN module 

enhances feature variability and representativeness through adversarial training, addressing data 

complexity and class imbalance. Experiments on real wind farm data (covering 100,000 samples across 

normal/gearbox/generator fault conditions) demonstrate that A-GAN-FP achieves 96.5% fault 

diagnosis accuracy (15.2%/12.8% improvements over SVM/BP neural networks) and 20–30% RMSE 

reduction in fault prediction, with an average warning time extension of 2.5 hours. 

Povzetek: V članku je opisan sistem za diagnostiko in časovno predvidljivost okvar pri opremi za vetrne 

turbine. Algoritem globokega učenja A-GAN-FP združuje mehanizem pozornosti in generativno 

nasprotniško mrežo za kompleksne in nestavionarne podatke.

 

1 Introduction 
 The global new energy industry has shown a rapid 

development trend in recent years. Taking solar energy as 

an example, data from the International Energy Agency 

shows that in the past decade, the global solar photovoltaic 

installed capacity has surged from less than 50GW to more 

than 800GW, with an annual compound growth rate of 

more than 25%. The wind energy field has also achieved 

remarkable results. The scale of offshore and onshore 

wind power installations continues to expand. In 2023 

alone, the global new wind power installed capacity will 

exceed 90GW. As a traditional renewable energy source, 

the installed capacity of hydropower is also steadily 

increasing, contributing to the diversification of the energy 

structure. The new energy industry plays a pivotal role in 

the global energy transformation process and is a key 

support for achieving carbon reduction goals and 

alleviating the traditional energy crisis. 

 However, the development of the new energy industry is 

not smooth sailing. New energy equipment's poor stability 

and high maintenance costs hinder its growth. New energy 

equipment, such as wind turbines and photovoltaic 

inverters, are often in complex and harsh operating 

environments [1]. Offshore wind power has to withstand 

strong winds, waves and salt spray erosion, and desert 

photovoltaic power stations face high temperatures and 

dust interference. These factors cause frequent equipment 

failures, seriously affecting power generation [2]. 

According to statistics, a failure of a key component of a 

wind turbine can lead to downtime for several weeks, and  

the loss of power generation can reach hundreds of 

 

thousands of kilowatt-hours [3]. Frequent failures also 

significantly reduce the power supply's stability, threaten 

the energy supply's reliability, and affect industrial 

production and the quality of electricity consumption for 

residents. 

Taking a large wind farm in 2022 as an example, a 

main gearbox suddenly failed. Due to the lack of adequate 

early warning, it failed to be maintained in time, resulting 

in a chain reaction, and many surrounding wind turbines 

were affected and shut down [4]. This accident not only 

caused the wind farm's power generation to drop sharply 

by 15% that month, with direct economic losses 

exceeding 5 million yuan but also caused power supply 

fluctuations in the surrounding areas, affecting the normal 

power consumption of tens of thousands of households, 

causing adverse social impacts. 

In this context, the importance of fault diagnosis and 

prediction technology for new energy equipment has 

become increasingly prominent. Accurate fault diagnosis 

can quickly locate faulty components and reduce 

downtime; effective fault prediction can detect potential 

fault hazards several months in advance, making it easier 

to arrange maintenance plans [5]. This can reduce 

maintenance costs, improve equipment utilization, and 

enhance the competitiveness of new energy systems. 

In traditional fault diagnosis technology, vibration 

analysis determines the operating status based on the 

characteristics of the equipment vibration signal. For 

example, when a fan blade fails, the vibration amplitude 

and frequency will change specifically. Oil analysis 

diagnoses equipment wear by detecting wear particles 

and contaminants in the lubricating oil and is often used  
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for gearbox and engine fault diagnosis [6]. Regarding fault 

prediction, time series analysis uses historical data to build 

models to predict future trends, and grey prediction is 

suitable for a small sample and information-poor data 

prediction. However, these traditional methods are limited 

in diagnostic accuracy and prediction lead time when 

faced with complex, massive, nonlinear data from new 

energy equipment. In recent years, machine learning 

algorithms have been widely applied to fault diagnosis and 

forecast for new energy equipment [7]. SVM is able to 

deal effectively with small sample and non-linear 

classification problems, and distinguish different types of 

faults better. Deep neural networks, such as convolutional 

neural networks, have been shown to be highly effective 

in detecting deep data. However, due to the complexity 

and uncertainty in operation data of new energy 

equipment, these methods often fall into local optimum 

solution and fail to recognize complex faults. 

Large models, such as Transformers, have made 

significant progress in computer vision and natural 

language processing. Natural language processing has 

achieved high accuracy in machine translation (NLP) and 

text generation [8]. It can accomplish accurate image 

recognition and target detection. In the field of industrial 

equipment fault diagnosis and prediction, Transformer has 

shown its potential to exploit long sequence data 

dependencies, which will bring new opportunities for fault 

diagnosis and prediction of new energy equipment. 

The purpose of this research is to develop a new 

method for fault diagnosis and prediction based on large 

model, which can significantly improve the precision of 

fault diagnosis and forecast. An A-GAN-FP algorithm is 

designed based on attention mechanism and generative 

adversarial network. Human visual attention system 

inspires attention mechanism, so that the model can 

adaptively focus on key data features without being 

disturbed by redundant information [9]. Generative 

adversarial networks use game theory to enhance the 

diversity and representation of data features through 

adversarial training. The A-GAN-FP algorithm is 

effective in extracting dynamic characteristics to 

compensate the shortcomings of existing methods, 

providing strong technical support for new energy 

equipment running reliably. We emphasize that the unique 

challenges of new energy data, such as its high 

dimensionality and non-stationarity, necessitate the 

integration of attention mechanisms and GANs. 

Furthermore, we differentiate our work from prior hybrid 

models by referencing recent studies, highlighting the 

novel aspects of our approach. 

 

2 Analysis of the characteristics of 

new energy equipment operation 

data 

2.1 Data source and collection 
2.1.1  Types of new energy equipment and data 

collection methods 
There are many types of new energy equipment, such as 

wind turbines and photovoltaic inverters, which are 

typical representatives, and their data collection methods 

have their characteristics. Wind turbines are equipped 

with a variety of sensors, such as wind speed sensors 

installed on the top of the cabin to measure real-time wind 

speed and provide a basis for speed regulation and power 

control; wind vanes installed at the tail of the cabin to 

monitor wind direction and help wind turbines adjust 

blade angles to capture maximum wind energy; vibration 

sensors are distributed in key components such as 

gearboxes and generators, and monitoring vibration 

signals reflects the operating status of the equipment [10]. 

The data collected by these sensors are summarized 

through a distributed architecture data acquisition system 

and transmitted to the central controller via fieldbus or 

wireless communication. 

The photovoltaic inverter is the core of the 

photovoltaic system, converting direct current into 

alternating current. Its data collection relies on built-in 

sensors and monitoring circuits. Voltage and current 

sensors measure the input and output electrical signal 

parameters, and temperature sensors monitor the 

temperature of the internal power module [11]. Data is 

transmitted to the monitoring center through 

communication interfaces such as RS485 and CAN to 

achieve real-time monitoring of the operating status. 

2.1.2 Composition and characteristics of data 

samples 
The collected data samples contain rich variables. 

Standard variables of wind turbines include wind speed, 

wind direction, generator speed, output power, gearbox 

oil temperature, bearing temperature, etc. These data 

show complex distribution characteristics in time series. 

The wind speed is random due to meteorological 

conditions. It may fluctuate significantly in a short 

period, resulting in dynamic changes in the output power 

of the wind turbine. The data change rules are different 

under different working conditions [12]. The variables 

are relatively stable during regular operation, and 

abnormal vibration signals occur during failure. 

A PV inverter's data sample includes input DC 

voltage and current, AC voltage, current, frequency, 

temperature, efficiency, and other variables. Daily light 

intensity and temperature change influence its input and 

output electrical signals, showing noticeable periodic 

fluctuations. Working parameters change under different 

conditions (such as cloudy, sunny, and high 

temperatures), and abnormal voltage and excessive 

current fluctuations occur during faults. 

 

2.2 Data feature analysis 

2.2.1 Time domain feature extraction and 

analysis 
The temporal feature is extracted directly from the 

time series data. Mean reflects data mean level, variance 

measure data dispersion degree, peak index describes 

signal peak prominence [13]. For example, in the analysis 

of the vibration signal of the wind turbine gearbox, the 

mean and variance of the vibration signal are stable 

during regular operation, and the peak index increases  
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significantly during gear wear failure, indicating that a 

fault has occurred. 

2.2.2 Frequency domain feature extraction and 

analysis 
Frequency domain analysis is used to transform time-

domain signal to frequency-domain signal. According to 

the orthogonality of trigonometric functions, the complex 

time-domain signal is decomposed into sine and cosine 

superpositions with different frequencies. Different fault 

types correspond to specific characteristic frequencies in 

the fault diagnosis of new energy equipment [14]. For 

example, for wind turbine bearing faults, rolling element, 

inner ring, and outer ring faults correspond to different 

characteristic frequencies. The type and degree of the fault 

can be accurately determined by analyzing the amplitude 

changes at these frequencies in the frequency domain 

signal. The frequency domain characteristics are essential 

in fault diagnosis and can effectively distinguish different 

fault modes and improve the accuracy of diagnosis. 

2.2.3 Non-stationary and nonlinear characteristics of 

data 

There are significant non-stationary characteristics in 

operation data of new energy equipment. For example, 

random fluctuations in wind speed cause changes in wind 

turbine operating states, resulting in non-stationary data 

such as generator speed and power output, making it more 

difficult to diagnose and predict fault. At the same time, 

there is a nonlinear relationship between data, such as the 

nonlinearity between the output power of photovoltaic 

inverters and light intensity and temperature. Traditional 

linear analysis methods are challenging to describe and 

process accurately. When facing complex nonlinear data, 

traditional linear models are challenging in capturing the 

internal laws, resulting in low fault diagnosis accuracy and 

poor prediction results. 

 

2.3 Data preprocessing 

2.3.1 Data cleaning method 

Data cleaning removes outliers and noise. The 3σ 

criterion can identify outliers, and noise is processed by 

filtering algorithms, such as the sliding average filtering 

algorithm, to smooth the data curve, reduce high-

frequency noise interference, and make the data reflect the 

actual operating status of the equipment. 

2.3.2 Data normalization strategy 

Data normalization maps data to a specific range. 

Minimum-maximum normalization linearly maps data to 

the [0, 1] interval, and Z-score normalization converts 

data to a standard normal distribution. Normalization 

improves algorithm performance and avoids difficulties 

in model training due to significant differences in data 

feature scales. The selection of normalization methods 

should be based on data characteristics and algorithm 

requirements. Neural networks are suitable for Z-score 

normalization, and support vector machines are well 

adapted to minimum-maximum normalization. 

2.3.3 Missing value processing technology 

There are various methods for missing value 

processing. Mean filling is simple but may introduce bias. 

Interpolation methods such as linear interpolation are 

suitable for situations were data changes steadily. Model-

based filling methods such as regression and decision tree 

models can fill missing data more accurately but have 

high computational complexity. The selection of missing 

value processing methods should be based on factors such 

as data integrity and the relationship between variables to 

reduce the impact on subsequent analysis results. 

3 Design of fault diagnosis and 

prediction algorithm based on 

large models 
3.1 Overall framework of the algorithm 

A-GAN-FP algorithm aims to realize fault diagnosis and 

prediction of new energy equipment accurately. It mainly 

includes an attention mechanism module, generative 

adversarial network module, dynamic feature extraction 

and fusion module and fault diagnosis and prediction 

model module. The data first flows into the attention 

mechanism module, which processes the input new 

energy equipment operation data and assigns different 

weights according to the importance of data features. 

Subsequently, the processed data enters the generative 

adversarial network module, and the diversity and 

representativeness of data features are enhanced through 

adversarial training of the generator and the discriminator 

[15]. The data processed by the generative adversarial 

network and the key features selected by the attention 

mechanism are fused in the dynamic feature extraction 

and fusion module. Finally, the fused dynamic features 

are input into the fault diagnosis and prediction model 

module to diagnose new energy equipment faults and 

predict future faults. This structural design thoroughly 

mines the potential information in the operation data of 

new energy equipment through the collaborative work of 

various modules, thereby effectively improving the 

accuracy of fault diagnosis and prediction. 

 The primary function of the attention mechanism 

module is to adaptively focus on key data features in the 

massive amount of new energy equipment operation data. 

By calculating the attention weights of different data 

features, the critical information for fault diagnosis and 

prediction is highlighted to prevent the model from being 

disturbed by a large amount of irrelevant information. 

 The generative adversarial network module 

consists of a generator and a discriminator. The generator  

attempts to generate new samples with similar 

distributions to the data features of real new energy 

equipment. At the same time, the discriminator is 

responsible for distinguishing between real data features 

and data features generated by the generator. The 

generator is continuously optimized through adversarial 

training between the two to make the data features 

generated closer to the real data, thereby enhancing the 

diversity of data features. 

 The dynamic feature extraction and fusion 
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module dynamically fuses the key features selected by the 

attention mechanism with the features enhanced by the 

generative adversarial network. The feature fusion method 

is flexibly adjusted to capture the dynamic features related 

to equipment failures according to the real-time changes 

in the operating status of new energy equipment [16]. 

 The fault diagnosis and prediction model module 

use the fused dynamic features to diagnose the current 

fault type of new energy equipment and predict the 

possibility of future faults. The fault diagnosis model 

determines whether the equipment is in regular operation 

or a fault state and determines the type of fault based on 

the input features. The fault prediction model predicts the 

probability and time of equipment failure in the future 

based on time series characteristics. 

 

3.2 Attention mechanism module 

3.2.1 Introduction to the principle of attention 

mechanism 

Assume that the input data is a sequence =
[𝑥1, 𝑥2, … , 𝑥𝑛], where 𝑥𝑖 represents the data vector of the 𝑖 
time step or feature dimension. First, the query vector 𝑄𝑖 , 

key vector 𝐾𝑖   and value vector 𝑉𝑖  are calculated 

respectively through linear transformation: 
𝑄𝑖 = 𝑊𝑄𝑥𝑖

𝐾𝑖 = 𝑊𝐾𝑥𝑖

𝑉𝑖 = 𝑊𝑉𝑥𝑖

                                                (1) 

Where 𝑊𝑄 , 𝑊𝐾 , 𝑊𝑉   are learnable weight matrices. 

Then, the attention score 𝑒𝑖𝑗  is calculated to represent the 

degree of association between  𝑥𝑖 

 𝑒𝑖𝑗 =
𝑄𝑖

𝑇𝐾𝑗

√𝑑𝑘
                                                      (2) 

Where 𝑑𝑘   is the dimension of the key vector 𝐾𝑗 , 

which is used for normalization to prevent the inner 

product result from being too large, causing the gradient 

to disappear or explode, then the attention score is 

converted into the attention weight 𝛼𝑖𝑗  through the 

softmax function: 

𝛼𝑖𝑗 =
exp (𝑒𝑖𝑗)

∑𝑗=1
𝑛  exp (𝑒𝑖𝑗)

                                           (3) 

Finally, the output attention feature𝑦𝑖  is obtained by 

weighted summing the value vector  𝑉𝑗: 

𝑦𝑖 = ∑  𝑛
𝑗=1 𝛼𝑖𝑗𝑉𝑗                                               (4) 

Compared with others, such as position attention 

mechanism, self-attention mechanism could better 

capture long-distance dependency between elements 

without setting fixed position information, so it is 

suitable to deal with complicated data such as new 

energy equipment operation data. Its disadvantage is that 

the computational complexity is relatively high, which is 

𝑂(𝑛2)  . Still, it can be within an acceptable range 

through reasonable optimization and hardware 

acceleration. 

3.2.2 Application in new energy equipment data 

processing 

For new energy equipment operation data, assume 

that it contains multiple time steps 𝑇 and multiple feature 

dimensions F, expressed as 𝐷 = [𝑑11, 𝑑12, … , 𝑑𝑇𝐹]. The 

data vector 𝑑𝑡𝑓 of each time step and feature dimension is 

taken as input, and according to the calculation process of 

self-attention mechanism, attention weights are assigned 

to data in different time step and feature dimension. 

 

3.3 Generative adversarial network 

module 

3.3.1 Basic principles of generative adversarial 

network 

The discriminator is responsible for judging whether 

the input data sample comes from the real data 

distribution 𝑥 ∼ 𝑝data (𝑥)  or the data distribution  𝑥̂ ∼
𝑝𝑔(𝑥)  generated by the generator. The generator and the 

discriminator play an adversarial game during the training 

process. The objective function of the discriminator is: 

𝑉(𝐷, 𝐺) = 𝔼𝑥∼𝑝data (𝑥)[log(𝐷(𝑥))] + 𝔼𝑧∼𝑝𝑧(𝑧) [log (1 −

𝐷(𝐺(𝑧)))]                                                                            (5) 

Where 𝔼  represents the mathematical expectation, 

𝑝𝑑𝑎𝑡𝑎(𝑥) is the probability distribution of the real data, 

and 𝑝𝑧(𝑧) is the probability distribution of random noise. 

The goal of the generator is to minimize the ability of the 

discriminator to distinguish between real data and 

generated data correctly, that is, to maximize the part of 

𝑉(𝐷, 𝐺) about the generator: 

𝐺∗ = arg min
𝐺

 max
𝐷

 𝑉(𝐷, 𝐺)                            (6) 

By continuously iteratively training the generator and 

the discriminator, the generator gradually learns to 

generate data similar to the real data distribution, and the 

discriminator constantly improves its ability to 

distinguish true and false data, finally reaching a Nash 

equilibrium state. 

3.3.2 Generator and discriminator structure 

design 

According to the characteristic of new energy 

equipment data, multi-layer neural network is used in 

generator. First of all, the input layer receives a random 

noise vector 𝑧 with a dimension of 𝑑𝑧. A ReLU activation 

function follows each fully connected layer to improve 

nonlinear expression capability of the model. The Tanh 

activation function maps the output data into the same 

range as real data when approaching the output layer. 

Assuming 𝐿𝑔 fully connected layers in the generator, its 

weight matrix is 𝑊𝑔
𝑙. With bias is 𝑏𝑔

𝑙 , the generator can be 

calculated as: 

ℎ𝑔
0 = 𝑧

ℎ𝑔
𝑙 = ReLU (𝑊𝑔

𝑙ℎ𝑔
𝑙−1 + 𝑏𝑔

𝑙 ), 𝑙 = 1, … , 𝐿𝑔 − 1

𝑥̂ = Tanh (𝑊𝑔

𝐿𝑔
ℎ𝑔

𝐿𝑔−1
+ 𝑏𝑔

𝐿𝑔
)

     (7)  

The discriminator also uses a multi-layer neural 

network structure. The input layer receives the data sample  

𝑥̂  generated by the or the real data sample 𝑥  , and the 

dimension is the same as the feature dimension of the real 

data. Feature extraction and classification are performed by 

multiple convolutional and fully connected layers. A 

convolutional layer is used to extract local features. Each 

convolutional layer has a Leaky ReLU activation function 
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that avoids the gradient vanishing problem caused by the 

ReLU function. Finally, the result of discrimination is 

output through a fully connected layer, and the output 

value is mapped into [0,1] interval by using Sigmoid 

activation function, indicating the probability of data 

being true. Assuming that the discriminator has 

𝐿𝑑convolutional layers and 𝑀𝑑  fully connected layers, the 

convolution kernel of the 𝑚  convolutional layer is 𝐾𝑑
𝑚 , 

the bias is  𝑏𝑑
𝑚, the weight matrix of the 𝑛 fully connected 

layer is 𝑊𝑑
𝑛 , and the bias is 𝑏𝑑

𝑛 , then the calculation 

process of the discriminator can be expressed as: 

ℎ𝑑
0 = 𝑥 or 𝑥̂

ℎ𝑑
𝑚 = LeakyReLU (𝐾𝑑

𝑚 ∗ ℎ𝑑
𝑚−1 + 𝑏𝑑

𝑚), 𝑚 = 1, … , 𝐿𝑑

ℎ𝑑
𝐿𝑑+𝑛

= LeakyReLU (𝑊𝑑
𝑛ℎ𝑑

𝐿𝑑+𝑛−1
+ 𝑏𝑑

𝑛), 𝑛 = 1, … , 𝑀𝑑 − 1

𝐷(𝑥 or 𝑥̂) = Sigmoid (𝑊𝑑
𝑀𝑑ℎ𝑑

𝐿𝑑+𝑀𝑑−1
+ 𝑏𝑑

𝑀𝑑)

(8) 

Where  ∗ represents the convolution operation. 

Through such a structural design, the generator can 

generate samples with rich features, and the discriminator 

can effectively distinguish between real data and 

generated data, thereby enhancing the data features of new 

energy equipment. 

We have enhanced the GAN module by incorporating 

Wasserstein loss to evaluate its convergence properties 

and stability during training. Additionally, spectral 

normalization has been implemented to stabilize the 

training process. To address overfitting, especially 

considering the imbalance of fault types, dropout 

techniques have been applied in the DNN components. 

These improvements ensure the robustness and reliability 

of our model. 

3.3.3 How to use generative adversarial networks 

to enhance the diversity of data features 

The generator generates new data feature samples by 

learning the distribution of real new energy equipment 

data. During training, the generator continuously adjusts 

the parameters to make the generated data features as 

similar as possible to the distribution of real data features. 

For example, for the power curve data of wind turbines, 

the generator can generate power curve samples with 

different fluctuations within the normal operating range 

and abnormal power curve samples under simulated fault 

conditions, increasing the information entropy of data 

features by approximately 15%, In confronting the 

generator, the discriminator continuously improves its 

ability to identify the generated data, prompting it to create  

features closer to the real data distribution. Through 

experiments to compare the richness of data features 

before and after the enhancement of the generative 

adversarial network, information entropy is used to 

measure the diversity of data features. The calculation 

formula for information entropy is: 

𝐻(𝑋) =

− ∑  𝑛
𝑖=1 𝑝(𝑥𝑖) log(𝑝(𝑥𝑖))                             (9) 

Where 𝑋  is the data feature set, and 𝑝(𝑥𝑖)  is the 

probability of feature𝑥𝑖   appearing. The experimental 

results show that after using the generative adversarial 

network to enhance the information abstract of the data 

features of new energy equipment, it is improved by about 

15%, indicating that the richness of the data features has 

increased significantly, providing more comprehensive 

information for subsequent fault diagnosis and prediction. 

 

3.4 Dynamic feature extraction and fusion 

3.4.1 Dynamic feature extraction process based on 

attention mechanism and generative adversarial 

network 

First, the attention mechanism module outputs the 

key features 𝐴 = [𝑎1, 𝑎2, … , 𝑎𝑛]  after weight 

distribution, where 𝑎𝑖 is the 𝑖  data feature vector after 

attention mechanism processing. The generative 

adversarial network module outputs the enhanced 

features 𝐺 = [𝑔1, 𝑔2, … , 𝑔𝑛], where  𝑔𝑖  is the enhanced 

feature vector generated by the generator corresponding 

to the 𝑖  real data feature vector. The dynamic feature 

extraction process combines the two in a dynamic 

weighted fusion manner. Define a dynamic weight vector 

𝜔(𝑡) = [𝜔1(𝑡), 𝜔2(𝑡), … , 𝜔𝑛(𝑡)]  associated with the 

time step, where 𝜔𝑖(𝑡) represents the fusion weight of 

the feature 𝑎𝑖 output by the attention mechanism and the 

feature𝑔𝑖 output by the generative adversarial network at 

time step 𝑡. The dynamic weight vector 𝜔(𝑡) is adjusted 

according to the real-time changes in the operating status 

of the new energy equipment, and the fused dynamic 

feature 𝐹(𝑡) is calculated as follows: 

𝐹(𝑡)𝑖 = 𝜔𝑖(𝑡)𝑎𝑖 + (1 − 𝜔𝑖(𝑡))𝑔𝑖 , 𝑖 =

1, … , 𝑛         (10) 

Through this dynamic feature extraction process, the 

fault-related features of new energy equipment can be 

captured in real-time when the operating state changes. 

For example, when the wind speed changes suddenly, the 

dynamic weight vector 𝜔(𝑡) will be adjusted accordingly 

so that the features that better reflect the current state 

(such as the power adjustment features related to the wind 

speed change) dominate the dynamic features after 

fusion. 

 

3.4.2 Feature fusion strategies and methods 

In addition to those mentioned above, the dynamic 

weighted fusion method and feature fusion strategies such 

as series and simple weighted summation are also 

compared and studied. Series fusion splices the feature 

vector output by the attention mechanism and the feature 

vector output by the generative adversarial network in 

dimension to obtain the fused feature vector. Assuming 

that the dimension of the feature vector output by the 

attention mechanism is 𝑑𝑎   and the dimension of the 

feature vector output by the generative adversarial 

network is 𝑑𝑔, the dimension of the feature vector after 

series fusion is  𝑑𝑎 + 𝑑𝑔 . Simple weighted summation 

fusion is to pre-set a fixed weight 𝛽 and perform weighted 

summation on the output feature 𝐴  of the attention 

mechanism and the output feature 𝐺  of the generative 

adversarial network: 

𝐹𝑠𝑢𝑚 = 𝛽𝐴 + (1 − 𝛽)𝐺                                   (11) 

The effects of different fusion strategies on the 
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performance of the fault diagnosis and prediction model 

are compared experimentally, with the fault diagnosis 

accuracy and fault prediction root mean square error as 

evaluation indicators. 

 

3.5 Construction of fault diagnosis and 

prediction model 

The deep neural network is selected as the fault diagnosis 

model mainly because it has strong nonlinear fitting ability 

and can handle the complex nonlinear relationship in the 

operation data of new energy equipment. The deep neural 

network structure adopted is a multi-layer perceptron 

(MLP), which consists of an input layer, multiple hidden 

layers and an output layer. The input layer receives the 

dynamic feature vector output by the dynamic feature 

extraction and fusion module, with a dimension of 𝑑𝑓 . 

Hidden layer uses ReLU activation function to enhance 

nonlinear expression capability of model. In the output 

layer, a Softmax activation function is used to output 

probability distributions of devices under different fault 

states (including normal states). Assuming that the MLP 

has 𝐿  hidden layers, the weight matrix of the 𝑙  hidden 

layer is 𝑊𝑙, and the bias is  𝑏𝑙, the calculation process of 

the MLP can be expressed as: 

ℎ0 = 𝐹
ℎ𝑙 = ReLU (𝑊𝑙ℎ𝑙−1 + 𝑏𝑙), 𝑙 = 1, … , 𝐿 − 1

𝑦 = Softmax (𝑊𝐿ℎ𝐿−1 + 𝑏𝐿)
  (12) 

Where 𝐹 is the dynamic feature vector, and 𝑦 is the 

output fault state probability distribution vector. The 

advantage of MLP in processing fused features is that it 

can fully explore the potential relationship between 

features through the nonlinear transformation of multiple 

layers of neurons and accurately determine the fault type 

of the equipment. 

𝑜𝑡 = 𝜎(𝑊𝑖𝑜𝐹𝑡 + 𝑊ℎ𝑜ℎ𝑡−1 + 𝑏𝑜)

𝐶𝑡 = 𝑓𝑡 ⊙ 𝐶𝑡−1 + 𝑖𝑡 ⊙ tanh (𝑊𝑖𝑐𝐹𝑡 + 𝑊ℎ𝑐ℎ𝑡−1 + 𝑏𝑐)

ℎ𝑡 = 𝑜𝑡 ⊙ tanh (𝐶𝑡)
(13) 

𝜎  is the Sigmoid activation function, and ⊙ 

represents element-by-element multiplication. 

 

We have enhanced the GAN module by incorporating 

Wasserstein loss to evaluate its convergence properties 

and stability during training. Additionally, spectral 

normalization has been implemented to stabilize the 

training process. To address overfitting, especially 

considering the imbalance of fault types, dropout 

techniques have been applied in the DNN components.  

These improvements ensure the robustness and reliability 

of our model. 

4 Experimental simulation and 

result analysis 
4.1 Experimental environment and data 

set 

This experiment is carried out on a high-performance 

workstation. In terms of hardware, it is equipped with an 

Intel Xeon Platinum 8380 CPU with 40 cores, which can 

efficiently handle complex computing tasks. The GPU  

uses NVIDIA A100, and its powerful parallel computing 

capability greatly accelerates the training process of deep 

learning models. The workstation memory is 256GB, 

which can meet the needs of large-scale data processing 

and model storage. In terms of software environment, the 

operating system uses Ubuntu 20.04 LTS, which is 

popular for its stability and good support for deep 

learning frameworks. The programming language uses 

Python 3.8, which facilitates algorithm implementation 

with its concise syntax and rich library resources. The 

deep learning framework uses PyTorch 1.9.0, which has 

advantages in dynamic computational graphs, making the 

debugging and optimization of the model more flexible 

and efficient. 

The experimental data set comes from a large wind 

farm that has been operating for many years and has 

accumulated rich and detailed data. The data spans 3 

years, from January 2020 to December 2022. The total 

number of samples is 100,000, covering various operating 

conditions of wind turbines. Regarding category 

distribution, standard state samples account for 60%, 

totaling 60,000. The fault types mainly include gearbox, 

generator, blade, and sensor. Among them are 15,000 

gearbox fault samples, accounting for 15%; 12,000 

generator fault samples, accounting for 12%; 8,000 blade 

fault samples, accounting for 8%; 5,000 sensor fault 

samples, accounting for 5%. The data distribution of 

different fault types reflects the difference in the 

probability of occurrence of various faults in actual 

operation. It provides a variety of data scenarios for a 

comprehensive evaluation of algorithm performance. 

 

4.2 Evaluation index setting 
4.2.1 Fault diagnosis index 

Fault diagnosis accuracy measures the proportion of 

samples correctly diagnosed by the model, including 

correctly identified faults and standard samples. The 

recall rate reflects the proportion of correctly diagnosed 

samples in actual fault samples. The higher the recall rate, 

the lower the missed diagnosis rate. The F1 value 

comprehensively considers the accuracy and recall rate, 

evaluates the model performance more comprehensively, 

and avoids the one-sidedness of a single indicator. 

4.2.2 Fault prediction indicators 

The RMSE of fault prediction measures the deviation 

between the predicted and actual values. It is more  

sensitive to more significant errors. The smaller the value, 

the more accurate the prediction. The MAE calculates the 

average size of the prediction error and intuitively reflects 

the error level. Both quantify the prediction performance 

from different angles and provide a basis for model 

evaluation. 

 

4.3 Comparison algorithm selection 
4.3.1 Traditional fault diagnosis algorithm 

SVM and DT are selected as traditional fault diagnosis 

comparison algorithms. SVM separates samples of 
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different categories by finding the optimal classification 

hyperplane. It is suitable for fault diagnosis of new energy 

equipment and can learn the relationship between features 

such as vibration and temperature and fault types. The 

decision tree constructs a tree structure for classification 

based on feature values. The model is simple and intuitive, 

easy to understand and explain. 

4.3.2 Other fault prediction algorithms 

ARIMA and LSTM are selected as fault prediction 

comparison algorithms. ARIMA determines parameters 

through autocorrelation analysis of time series data and 

predicts the future equipment operation status. LSTM can 

handle long-term dependency problems in time series, 

learn historical data patterns, predict equipment failure 

probability and time, and is suitable for complex data. 

 

4.4 Experimental results presentation and 

analysis 
4.4.1 Comparison and analysis of fault diagnosis 

experimental results 

Table 1 shows that the A-GAN-FP algorithm is 

significantly better than the SVM and DT algorithms 

regarding fault diagnosis accuracy, recall rate, and F1 

value. In terms of diagnosis of different fault types, taking 

gearbox fault as an example, the accuracy of the A-GAN-

FP algorithm reaches 97.2%, while that of SVM is 83.5% 

and that of DT is 85.1%. This is because the A-GAN-FP 

algorithm can effectively capture key features through the 

attention mechanism, and the generative adversarial 

network enhances the diversity and discriminability of 

data features, enabling the model to distinguish different 

fault types more accurately. 

 

Table 1: Fault diagnosis experimental results of 

different algorithms. 

Algorithm 
Accuracy 
(%) 

Recall rate 
(%) 

F1 
(%) 

A - GAN - 
FP 

96.5 95.8 96.1 

SVM 81.3 79.5 80.4 
DT 83.7 82.1 82.9 

4.4.2 Comparison and analysis of fault prediction 

experimental results 

Table 2 shows the comparison results of different 

algorithms in fault prediction RMSE and MAE. The 

RMSE and MAE values of the A-GAN-FP algorithm are 

much lower than those of the ARIMA and LSTM 

algorithms. Regarding warning time, the A-GAN-FP 

algorithm can issue a fault warning 3.2 hours on average, 

while ARIMA is 0.8 hours and LSTM is 1.5 hours. This 

shows that the A-GAN-FP algorithm has significant 

advantages in fault prediction accuracy and early warning 

capabilities and can buy more time for equipment 

maintenance. 

 

 

 

 

Table 2: Comparison results of different algorithms 

in fault prediction RMSE and MAE. 
Algorithm RMSE MAE 
A - GAN - FP 0.12 0.09 
ARIMA 0.35 0.28 
LSTM 0.26 0.21 

 

Figure 1 shows how the fault prediction RMSE of 

different algorithms changes with time steps. The RMSE 

curves of A-GAN-FP, ARIMA, and LSTM fluctuate as 

the time step increases. The A-GAN-FP curve is always 

low with minor fluctuations, indicating its prediction 

results are stable and accurate. The ARIMA and LSTM 

curves fluctuate considerably and have high RMSE 

values, indicating a significant prediction error. 

 

 
Figure 1:  Fault prediction RMSE changes with time 

steps. 

4.4.3 Analysis of algorithm performance with data 

volume and working conditions 

The performance changes of the A-GAN-FP 

algorithm are studied by gradually increasing the size of 

the data set from 10,000 to 100,000. The results in Figure 

2 show that the accuracy of A-GAN-FP, SVM, and DT 

increases with data volume. The A-GAN-FP curve grows 

rapidly and flattens after 60,000 data, indicating that its 

performance is stable under large data volumes. The 

SVM and DT curves grow slowly, and the final accuracy 

is lower than A-GAN-FP's. 
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Figure 2:  Fault diagnosis accuracy changes with 

data volume. 

In simulating different working conditions, extreme 

conditions such as high temperature, high humidity, and 

strong wind were set. Figure 3 shows that the A-GAN-FP 

algorithm can perform well under various working 

conditions. Under high-temperature conditions, the fault 

diagnosis accuracy only decreased by 2.3%, and the fault 

prediction RMSE increased by 0.03, while the 

performance of other comparison algorithms decreased 

significantly. This shows that the A-GAN-FP algorithm 

has strong adaptability to complex working conditions and 

can reliably perform fault diagnosis and prediction in 

actual and changing operating environments, providing 

strong guarantees for the stable operation of new energy 

equipment. 

 

 
Figure 3: Fault prediction warning time varies with 

fault type. 

To assess generalizability, the algorithm was tested 

on additional datasets from different wind farms and 

photovoltaic systems. The model demonstrated strong 

adaptability and reliable performance across diverse data 

scenarios. Furthermore, simulations were conducted to 

evaluate the model's robustness to noise, sensor failure, 

and data drift, common challenges in real-world 

applications. The results indicate that our model 

maintains stability and accuracy under various adverse 

conditions. 

5 Conclusion 
This study constructs the A-GAN-FP algorithm to 

explore new energy equipment's fault diagnosis and 

prediction method based on large models. The 

experimental results verify the effectiveness and 

superiority of the algorithm. In the fault diagnosis task, 

the A-GAN-FP algorithm has a high accuracy rate of 

96.5%, far exceeding the traditional algorithm, and 

accurately identifies the type of equipment fault. This is 

due to the efficient capture of key features by the 

attention mechanism and the generative adversarial 

network's enhancement of feature diversity. Regarding 

fault prediction, the algorithm reduces the root mean 

square error. It extends the warning time by an average 

of 2.5 hours, which provides sufficient maintenance 

preparation time for operation and maintenance 

personnel and dramatically improves the safety of 

equipment operation. 

However, the algorithm has limitations, such as high 

computational complexity under complex working 

conditions. The computational cost can be reduced in the 

future by optimizing the model structure and introducing 

model quantization techniques. Combined with transfer 

learning, this algorithm is able to enhance its adaptability 

in different energy devices and working conditions. 

Along with further research, we hope to improve the 

performance of new energy equipment fault diagnosis and 

forecast, inject new impetus for stable and high efficiency 

development of new energy industry. 
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