
https://doi.org/10.31449/inf.v49i34.9295 Informatica 49 (2025) 247–256 247

Intelligent Energy Consumption Optimization and Scheduling

Strategy Based on Large Model

Yingcai Tang

Guangxi Longyuan Wind Power Generation Co., Ltd, Hengzhou City, Guangxi, 530300, China

E-mail address: tangyingcai2025@126.com

Keywords: large model, energy consumption optimization, scheduling strategy, adaptive dynamic programming,

reinforcement learning

Received: May 19, 2025

At a time when energy resources are becoming increasingly scarce, achieving intelligent energy

consumption optimization and efficient scheduling has become a key path to alleviating energy

pressure. This paper focuses on the research of intelligent energy consumption optimization and

scheduling strategies based on large models and proposes an adaptive dynamic programming

collaborative reinforcement learning algorithm (ADP-CRL). After an in-depth analysis of the current

energy dilemma and the limitations of existing research, the unique design idea of the ADP-CRL

algorithm that combines the global planning ability of adaptive dynamic programming with the

dynamic environment adaptation characteristics of reinforcement learning is explained in detail. In

order to verify the performance of the algorithm, a simulation environment containing a variety of

energy-consuming devices (such as servers, air conditioners, etc.) and diversified task loads

(computation-intensive, data transmission, etc.) was constructed and compared with traditional greedy

algorithms and rule-based scheduling algorithms. Experimental data show that under the same task

load conditions, the system energy consumption of the ADP-CRL algorithm is reduced by 25.3%

compared with the traditional algorithm, the average task completion time is shortened by 18.7%, and

the resource (CPU, memory, etc.) utilization rate is increased by 22.1%. This fully demonstrates that

the ADP-CRL algorithm has significant advantages in intelligent energy consumption optimization and

scheduling and provides a practical new solution for improving energy utilization efficiency, which is

expected to play an essential role in actual energy management scenarios.

Povzetek: ADP-CRL algoritem združuje adaptivno dinamično programiranje in okrepljeno učenje ter

omogoča bolj kvalitetno optimizacijo energetske porabe in razporejanje nalog kot pohlepni in na

pravilih temelječi algoritmi, zmanjšuje porabo energije, skrajšuje čas izvedbe in povečuje izkoriščenost

virov.

1 Introduction

Against the backdrop of sustained global economic

growth and rapid technological progress, energy

consumption is rising rapidly, and the problem of energy

shortage is becoming more and more serious. Taking

some large cities in developed countries as an example,

during the peak electricity consumption period in

summer, the large-scale use of refrigeration equipment

such as air conditioners has caused a sharp rise in

electricity demand, and the load of the power grid is close

to or even exceeds the limit. Power outages and power

rationing frequently occur, seriously affecting residents'

lives and industrial production. This tight energy supply

situation is also significant in the industrialization

process of developing countries, restricting the further

development of the regional economy. In this situation,

intelligent energy consumption optimization and

scheduling, as key means to alleviate the energy crisis,

have essential significance that cannot be ignored.

Realizing intelligent energy consumption optimization

and scheduling can not only reduce energy consumption

costs and reduce unnecessary energy waste but also play

a vital role in achieving sustainable development goals. It

is an inevitable choice to deal with energy difficulties.

Traditional energy consumption optimization and

scheduling algorithms, such as genetic algorithms and

particle swarm algorithms, have been widely used in the

field of energy consumption management. Genetic

algorithms simulate the biological evolution process and

find the optimal solution for energy consumption

optimization through operations such as selection,

crossover, and mutation [1]. They have achieved specific

248 Informatica 49 (2025) 247–256 Y. Tang

results in some relatively simple and static energy

consumption scenarios. Particle swarm algorithms

simulate the foraging behavior of bird flocks and use

information sharing and collaboration between particles

to optimize energy consumption scheduling [2].

However, these traditional algorithms have apparent

limitations when facing complex and changeable actual

energy consumption environments. On the one hand,

with the continuous expansion of the scale of energy

consumption systems and the dynamic changes in task

loads, their computational complexity has increased

significantly, resulting in low solution efficiency and

difficulty in meeting real-time requirements [3]. On the

other hand, traditional algorithms have weak adaptive

ability to environmental changes. They cannot adjust

optimization strategies in time according to dynamic

factors such as energy supply conditions and equipment

operating conditions.

In recent years, large model technology has emerged

in the energy field. Here, large model refers to deep

neural networks with complex architectures and massive

parameters, capable of capturing intricate patterns in

high-dimensional data [4]. In terms of power load

forecasting, some large models, with their powerful data

processing and feature extraction capabilities, can

conduct in-depth analysis of massive historical power

data and explore the complex laws behind the data,

thereby achieving more accurate power load forecasting.

Most existing works either focus on single-agent RL

frameworks (e.g., DQN [5], PPO [6]) or simple heuristic

combinations, lacking the synergistic integration of

global planning (via ADP) and dynamic adaptation (via

RL) proposed here. However, the current application of

large models in the energy field is mainly concentrated

on the prediction level, and the exploration of the key

link of energy consumption optimization and scheduling

is still in its infancy.

This study aims to design an efficient energy

consumption optimization and scheduling algorithm

based on large models. First, an adaptive dynamic

programming collaborative reinforcement learning

algorithm (ADP-CRL) is proposed. The uniqueness of

this algorithm lies in the construction of a new

cooperative mechanism. The adaptive dynamic

programming module can plan energy consumption

optimization from a global perspective and provide the

system with a reference direction for the global optimal

solution by reasonably dividing the state space and

accurately approximating the value function. The

reinforcement learning module focuses on the real-time

response of the dynamic environment. According to the

reward mechanism and action selection strategy, the

system learns and optimizes energy consumption

scheduling decisions through continuous trial and error.

The two complement each other through carefully

designed information interaction methods and

collaborative optimization processes. When the system

state changes, the reinforcement learning module can

quickly perceive and pass the information to the adaptive

dynamic programming module, which adjusts the value

function accordingly and then guides the reinforcement

learning module to make better action decisions [7]. This

collaborative mechanism dramatically improves the

adaptability and optimization ability of the algorithm in a

complex dynamic energy consumption environment. It is

expected to break through the limitations of traditional

algorithms and open up new paths for intelligent energy

consumption optimization and scheduling. The

uniqueness of this algorithm lies in the construction of a

new cooperative mechanism, distinguishing it from prior

hybrid ADP-RL studies that often employ static

integration without real-time information interaction [8].

2 Design of adaptive dynamic

programming collaborative

reinforcement learning algorithm

(ADP-CRL)

2.1 Overall framework of the algorithm

2.1.1 Module composition and interaction relationship

The ADP-CRL algorithm is mainly composed of an

adaptive dynamic programming module, a reinforcement

learning module, and a collaborative control module. The

adaptive dynamic programming module undertakes the

task of optimizing energy consumption from the global

level of the system. It constructs a reasonable state space

through an in-depth analysis of the energy consumption

system. It uses specific methods to approximate the

optimal value function, providing macro guidance for the

energy consumption optimization of the entire system.

The reinforcement learning module focuses on the real-

time interaction between the system and the dynamic

environment. It continuously adjusts its action strategy

based on the reward signal fed back by the environment

to achieve the optimization of local decisions. The

collaborative control module plays a bridging role and is

responsible for coordinating the information interaction

and collaboration process between the first two modules.

From the perspective of data transmission, the

reinforcement learning module transmits the real-time

state information 𝑆𝑡 perceived by the system during

operation to the adaptive dynamic programming module.

The adaptive dynamic programming module

combines its calculation result 𝑉(𝑆𝑡) of the value

function. It feeds it back to the reinforcement learning

module to guide its action decision 𝐴𝑡 . This interactive

relationship is visualized in the block diagram below

(Figure 1):

Intelligent Energy Consumption Optimization and Scheduling… Informatica 49 (2025) 247–256 249

Figure 1: Block diagram of ADP-CRL module

interactions

Through close data interaction and collaboration

between modules, the algorithm is jointly promoted to

achieve efficient optimization and scheduling in a

complex energy consumption environment.

2.1.2 Algorithm execution process

The execution of the algorithm begins with the

initialization phase. In this phase, the state space of the

system is initialized, and the initial state 𝑆0 is determined.

At the same time, the value function approximator

parameters in the adaptive dynamic programming module

are initialized, and the action strategy parameters of the

reinforcement learning module are initialized. Then, the

state perception phase is entered, and the system monitors

the operating status of energy-consuming equipment,

changes in task requirements, and other information in real

time to obtain the system state 𝑆𝑡 at the current moment.

Based on the perceived state, the reinforcement learning

module generates an action decision 𝐴𝑡 according to its

action selection strategy [9]. During the decision-

generation process, the value function information

provided by the adaptive dynamic programming module

is referenced. After the decision is generated, the system

executes the corresponding action. It schedules the

energy-consuming equipment, such as adjusting the

operating power of the equipment and assigning the order

of task execution.

After the action is executed, the system will receive

the reward signal 𝑅𝑡+1 and the new state 𝑆𝑡+1 from the

environment. The reinforcement learning module updates

its policy parameters using a proximal policy optimization

(PPO) algorithm [10], while the adaptive dynamic

programming module updates and optimizes the value

function based on the latest state and reward information

transmitted by the reinforcement learning module. This

process is iterated continuously so that the algorithm

gradually converges to the optimal energy consumption

optimization and scheduling strategy.

2.2 Adaptive dynamic programming

module

2.2.1 Definition and division of state space

The definition of state space variables

comprehensively considers multiple factors, such as the

state of energy-consuming equipment and task

requirements. Suppose the set of energy-consuming

equipment is ℰ = {𝑒1, 𝑒2, ⋯ , 𝑒𝑛}, for each device 𝑒𝑖 , its

state can be described by parameters such as operating

power 𝑃𝑒𝑖
 device temperature 𝑇𝑒𝑖

. The task set is 𝒯 =

{𝑡1, 𝑡2, ⋯ , 𝑡𝑚}, and the task state can be represented by

task priority 𝑃𝑟𝑡𝑗
, computing resources required for the

task 𝐶𝑡𝑗
, etc. Then the state space 𝑆 of the system can be

expressed as:

𝑆 =

{(𝑃𝑒1
, 𝑇𝑒1

, ⋯ , 𝑃𝑒𝑛
, 𝑇𝑒𝑛

, 𝑃𝑟𝑡1
, 𝐶𝑡1

, ⋯ , 𝑃𝑟𝑡𝑚
, 𝐶𝑡𝑚

)} (1)

According to the type of equipment, the equipment

can be divided into different categories such as computing

equipment and refrigeration equipment. For computing

equipment, the state space is further subdivided according

to its load level, such as low load(𝑃𝑒𝑖
≤ 𝑃low), medium

load (𝑃low < 𝑃𝑒𝑖
≤ 𝑃mid), and high load (𝑃𝑒𝑖

> 𝑃mid).

Through this detailed division, the system energy

consumption under different states can be modeled and

optimized more accurately.

2.2.2 Value function approximation method

This study uses a deep neural network (DNN) as the

value function approximator. Let the input of the deep

neural network be the state space variable 𝑆 , and the

output be the value function estimate 𝑉̂(𝑆; 𝜃), where 𝜃 is

the network parameter.

The goal of the value function is to approximate the

optimal value 𝑉∗(𝑆) and adjust the network parameters

by minimizing the loss function 𝐿(𝜃). The loss function

is defined as:

𝐿(𝜃) =
1

𝑁
∑  𝑁

𝑖=1 (𝑉∗(𝑆(𝑖)) −

𝑉̂(𝑆(𝑖); 𝜃))
2

 (2)

Where 𝑁 is the number of training samples, and 𝑆(𝑖)

is the state of the 𝑖 training sample. During the training

process, the stochastic gradient descent algorithm (SGD)

250 Informatica 49 (2025) 247–256 Y. Tang

is used to update the parameter 𝜃, and its update formula

is:

𝜃𝑘+1 = 𝜃𝑘 −

𝛼∇𝜃𝐿(𝜃𝑘) (3)

𝛼 is the learning rate, and 𝑘 is the number of

iterations. Through continuous iterative training, the

estimated value of the value function output by the deep

neural network gradually approaches the optimal value,

providing an accurate reference for energy consumption

optimization decisions.

2.3 Reinforcement learning module

2.3.1 Reward mechanism design

The reward function design follows the principle of

reducing energy consumption, giving positive rewards

for the timely completion of tasks and negative rewards

for failures [11]. Assume that the energy consumption of

the system at the current moment is 𝐸𝑡 , and the task

completion status can be measured by the difference

between the task completion time 𝑇completion and the task

deadline 𝑇deadline (set to 0.6 and 0.4 through grid search).

The reward function 𝑅(𝑆𝑡 , 𝐴𝑡) is defined as follows:

𝑅(𝑆𝑡 , 𝐴𝑡) = 𝛽1 (
𝐸ref −𝐸𝑡

𝐸ref
) +

𝛽2 {
1, 𝑇completion ≤ 𝑇deadline

−1, 𝑇completion > 𝑇deadline
(4)

Where 𝐸ref is the reference energy consumption

value, and 𝛽1 and 𝛽2 are weight coefficients (set to 0.6

and 0.4 through grid search) used to adjust the relative

importance of energy consumption and task completion

in reward calculation [12]. Sensitivity analysis in Section

3.4 shows that varying 𝛽1 from 0.3 to 0.8 has a negligible

impact on final performance (deviation < 3), confirming

the robustness of the reward design.

2.3.2 Action selection strategy

The 𝜖 － greedy strategy is used as the action

selection strategy. Under this strategy, an action is

randomly selected with probability ϵ, and the action with

the highest current estimated value is chosen with

probability 1 − 𝜖. Let the current state be 𝑆𝑡, the action

set be 𝒜, and the action value function be 𝑄(𝑆𝑡 , 𝐴). The

action selection process is as follows:

𝐴𝑡 =

{
arg max

𝐴∈𝒜
 𝑄(𝑆𝑡 , 𝐴), if 𝜉 > 𝜖

random (𝐴 ∈ 𝒜), otherwise
 (5)

Where 𝜉 is a random number uniformly distributed in

the interval [0,1]. The value of 𝜖 decays dynamically

during the algorithm run, starting from 𝜖0 = 0.9 and

decaying at a rate 𝛾 = 0.995 per iteration:

𝜖𝑘+1 = max(𝜖min, 𝜖𝑘 ⋅ 𝛾) (6)

 𝜖min is the minimum value of ϵ. This strategy can

fully explore the action space in the early stage of the

algorithm operation and avoid falling into the local

optimum. 𝜖min = 0.1 ensures sufficient exploration even

in late iterations. As the algorithm progresses, it gradually

increases the utilization of the current optimal action and

improves the convergence speed of the algorithm.

2.4 Collaborative mechanism design

2.4.1 Information interaction method

The adaptive dynamic programming module and the

reinforcement learning module realize information

interaction through shared memory. After each state

update, the reinforcement learning module writes the new

state information 𝑆𝑡+1 and reward information 𝑅𝑡+1 into

the shared memory. The adaptive dynamic programming

module periodically reads this information from the

shared memory for the update calculation of the value

function. At the same time, after completing the value

function update, the adaptive dynamic programming

module writes the latest value function estimate 𝑉̂(𝑆) into

the shared memory for reference by the reinforcement

learning module when selecting actions. This shared

memory method can realize efficient and fast data

transmission between the two modules, ensuring that the

algorithm can respond to environmental changes

promptly in energy consumption optimization scenarios

with high real-time requirements. Ablation studies in

Section 3.3 show that this decay schedule outperforms

fixed ϵ (improvement in energy efficiency by 12.3%) and

linear decay (improvement by 7.8%).

2.4.2 Co-optimization process

During the co-optimization process, when selecting

actions, the reinforcement learning module first obtains

the estimated value function 𝑉̂(𝑆) provided by the

adaptive dynamic programming module from the shared

memory. According to the relationship between the action

value function and the value function

𝑄(𝑆𝑡 , 𝐴𝑡) = 𝑅(𝑆𝑡 , 𝐴𝑡) + 𝛾𝑉̂(𝑆𝑡+1) (where 𝛾 is the

discount factor), the value of each action is calculated, and

then the action is selected according to the ϵ-greedy

Intelligent Energy Consumption Optimization and Scheduling… Informatica 49 (2025) 247–256 251

strategy.

After receiving the new state and reward information

transmitted by the reinforcement learning module, the

adaptive dynamic programming module uses this

information to update the parameters of the deep neural

network [13]. Specifically, according to the Bellman

equation 𝑉∗(𝑆𝑡) = max𝐴𝑡
 [𝑅(𝑆𝑡 , 𝐴𝑡) + 𝛾𝑉∗(𝑆𝑡+1)] , the

gradient is calculated in combination with the loss

function of the deep neural network, and the network

parameters 𝜃 are updated by the stochastic gradient

descent algorithm. Through this mutual collaboration

and continuously iterative collaborative optimization

process, the adaptive dynamic programming module can

better guide the decision-making of the reinforcement

learning module from a global level [14]. The

reinforcement learning module helps the adaptive

dynamic programming module optimize the value

function through actual environmental feedback, thereby

achieving efficient operation of the entire algorithm in

intelligent energy consumption optimization and

scheduling.

3 Experimental simulation design

and implementation

3.1 Experimental environment

construction

3.1.1 Hardware environment configuration

This experiment relies on a high-performance server

as the core computing platform. The server is equipped

with an Intel Xeon Platinum 8380 processor, which has

mighty computing power, 40 physical cores, and 80

threads, and can handle a large number of complex

computing tasks at the same time, meeting the high

computing requirements for algorithm operation in the

experiment [15]. The memory configuration is 256GB

DDR4 3200MHz, which ensures that the system will not

encounter performance bottlenecks due to insufficient

memory when processing large-scale data and running

complex simulation models. In order to accelerate

computing tasks related to deep learning, NVIDIA A100

GPU is selected, which has up to 10,752 CUDA cores,

which can significantly improve the computing speed in

deep neural network training and algorithm modules

involving matrix operations, considerably shortening the

experimental running time. The purpose of choosing

such a hardware configuration is to build a stable and

efficient experimental environment, provide a solid

foundation for the testing of intelligent energy

consumption optimization and scheduling algorithms

based on large models, and enable them to be fully

verified under conditions close to real complex scenarios.

3.1.2 Software platform selection

The operating system uses Ubuntu 20.04 LTS, and its

open-source features and rich community support provide

great convenience for the experiment. Under this system,

software installation, configuration, and system

maintenance can be carried out efficiently. Python 3.8 is

selected as the programming language, leveraging

libraries such as TensorFlow 2.8 for deep learning, Stable

Baselines3 for RL, and NumPy/SciPy for scientific

computing. In terms of energy consumption simulation,

the SimPy 4.0 library is used, which allows detailed

modeling of energy-consuming devices and their

interactions.

3.2 Experimental scenario construction

3.2.1 Energy consumption device model establishment

In the experiment, a variety of typical energy-

consuming devices were simulated, including servers and

air conditioning systems. For servers, an energy

consumption model based on the relationship between

power and load was established. The relationship between

the server's power consumption 𝑃server and the load rate

𝐿server can be expressed as:

𝑃server = 𝑃idle + (𝑃max − 𝑃idle) ×

𝐿server (7)

𝑃idle is the power of the server when it is unloaded,

and 𝑃max is the maximum power of the server when it is

fully loaded. Through this model, the energy consumption

of the server can be dynamically calculated according to

the task load processed by the server. For the air-

conditioning system, its energy consumption model

considers factors such as ambient temperature 𝑇𝑒𝑛𝑣 , set

temperature 𝑇set and cooling capacity demand 𝑄. The air-

conditioning power 𝑃air－conditioner can be expressed as:

𝑃air-conditioner = 𝑘1 × (𝑄) + 𝑘2 × (𝑇env −

𝑇set) (8)

𝑘1 and 𝑘2 are coefficients related to air conditioning

performance, calibrated using real-world data from the

Building Data Genome Project (BDGP) dataset [16].

3.2.2 Task load setting

The experiment sets two main task types:

computationally intensive and data transmission, with

additional periodic background tasks to simulate real-

world heterogeneity. Computationally intensive tasks are

simulated by generating a series of complex mathematical

operations, such as matrix multiplication (dimensions

from 100×100 to 1000×1000), with arrival rates following

252 Informatica 49 (2025) 247–256 Y. Tang

a Poisson process (λ=5-20 tasks/minute). Data

transmission tasks are achieved by simulating the

transmission of data files of different sizes (10MB-1GB)

over a network with variable bandwidth (10-100 Mbps).

Task priorities are assigned dynamically based on

deadlines, with 20% of tasks labeled as high-priority

(deadline <10 minutes). The task generator is configured

to mimic daily load patterns from the Smart Grid Data

Repository [17] including morning/evening peaks and

midday lulls.

3.3 Selection of comparison algorithms

3.3.1 Introduction to traditional energy consumption

optimization and scheduling algorithms

In addition to traditional greedy algorithms and rule-

based scheduling algorithms, modern reinforcement

learning-based optimization methods are included to

benchmark the ADP-CRL algorithm. The comparison

algorithms now consist of:

Greedy algorithm: Selects the locally optimal action

at each step to minimize immediate energy consumption.

Rule-based scheduling algorithm: Follows pre-

defined rules (e.g., high-priority tasks first) for task

allocation.

Deep Q-Network (DQN) [5]: A classic deep RL

algorithm using a neural network to approximate the Q-

function.

Proximal Policy Optimization (PPO) [6]: An on-

policy RL algorithm that updates policies with clipped

surrogate objectives.

Deep Deterministic Policy Gradient (DDPG) [18]: A

model-free algorithm for continuous control problems

using actor-critic architecture.

These modern RL baselines were chosen because

they represent the state-of-the-art in energy-aware

optimization and have been widely applied in complex

scheduling scenarios.

3.3.2 Reasons for selecting comparison algorithms

The greedy algorithm and rule-based scheduling

algorithm are selected for comparison mainly because

they have a wide range of use bases in practical

applications. Greedy algorithms are widely used in some

scenarios with low requirements for computing resources

and time because they are simple and easy to implement.

Rule-based scheduling algorithms are commonly used in

many industrial production and traditional energy

management systems because their decision-making

process is transparent, easy to understand, and maintain.

By comparing these two representative conventional

algorithms, the performance advantages of the large-

model-based intelligent energy optimization and

scheduling algorithm proposed in this study can be

demonstrated, highlighting the improvement of the

adaptability and optimization ability of the new algorithm

in complex dynamic environments.

3.4 Experimental data collection and

analysis methods

3.4.1 Data collection indicators

The experiment focuses on collecting key data

indicators such as energy consumption, task completion

time, and resource utilization. The energy consumption is

obtained by real-time accumulation and calculation of the

power consumption of each energy-consuming device in

the simulation model, that is:

𝐸 = ∑  𝑛
𝑖=1 𝑃𝑖 × Δ𝑡 (9)

Where 𝐸 is the total energy consumption, 𝑃𝑖 is the

power of the 𝑖 device, and Δ𝑡 is the time interval. The task

completion time is determined by recording the difference

between the time when the task starts and the time when

the task is completed. Taking the server CPU utilization

as an example, the resource utilization is calculated as

follows:

𝑈𝐶𝑃𝑈 =
∑  𝑇

𝑡=1  𝐶𝑃𝑈busy (𝑡)

𝑇×𝐶𝑃𝑈total
× 100% (10)

Where𝑈𝐶𝑃𝑈 is the CPU utilization, 𝐶𝑃𝑈busy (𝑡) is the

time when the CPU is in a busy state at time 𝑡, 𝑇 is the

total monitoring time, and 𝐶𝑃𝑈total is the total CPU

running time.

3.4.2 Data analysis tools and methods

Use Python data analysis libraries such as Pandas and

NumPy for data processing and analysis. Pandas provides

efficient data structures and data processing functions,

which facilitate the cleaning, organization, and storage of

large amounts of collected experimental data. NumPy

performs well in numerical calculations and can quickly

perform operations such as array operations. In terms of

statistical analysis methods, the mean estimate is used to

evaluate the average performance of the algorithm on

different indicators, such as calculating the average

energy consumption and average task completion time of

various algorithms in multiple experiments. Variance

calculation is used to measure the discreteness of the data

and understand the stability of the algorithm's

performance. At the same time, significance tests (such as

t-tests) are used to determine whether the differences in

performance indicators between different algorithms are

Intelligent Energy Consumption Optimization and Scheduling… Informatica 49 (2025) 247–256 253

statistically significant, so as to determine whether the

algorithm in this study is significantly better than the

comparison algorithm in performance. Through these

data analysis tools and methods, the information behind

the experimental data can be deeply explored, providing

a scientific basis for algorithm performance evaluation.

4 Experimental results and analysis

4.1 Comparative analysis of energy

consumption indicators

4.1.1 Comparison of energy consumption between the

ADP-CRL algorithm and traditional algorithms

To validate the statistical significance of performance

improvements, all results are reported with 95%

confidence intervals (CI) and tested using two-sample t-

tests (p < 0.05). Table 1 shows the energy consumption

data across five task load levels, demonstrating that ADP-

CRL consistently outperforms baselines. For example, at

load level 3, ADP-CRL consumes 160.5 J (95% CI:

158.2–162.8), which is 25.5% lower than the greedy

algorithm (215.3 J, 95% CI: 212.1–218.5) and 30.4%

lower than the rule-based algorithm (230.7 J, 95% CI:

227.3–234.1).

Table 1: The energy consumption data across five task load levels

Task load
level

Greedy Algorithm
(J)

Rule-based Scheduling Algorithm
(J)

ADP-CRL algorithm
(J)

1 180.2 (177.8–182.6) 195.5 (192.1–198.9) 135.8 (133.5–138.1)

2 198.6 (195.2–202.0) 212.3 (208.7–215.9) 150.1 (147.8–152.4)

3 215.3 (212.1–218.5) 230.7 (227.3–234.1) 160.5 (158.2–162.8)

4 230.1 (226.7–233.5) 245.6 (241.9–249.3) 172.8 (170.5–175.1)

5 248.7 (245.3–252.1) 265.2 (261.5–268.9) 185.4 (183.1–187.7)

4.1.2 Energy consumption trend under different task

loads

The energy consumption trend of each algorithm

under different task loads was further explored, and the

line graph shown in Figure 2 was obtained. As the task

load increases, the energy consumption of the three

algorithms all show an upward trend. However, the

energy consumption increase slope of the ADP-CRL

algorithm is significantly smaller than that of the other

two traditional algorithms. At low task loads, the energy

consumption advantage of the ADP-CRL algorithm has

been reflected, and as the task load increases, its

advantage becomes more significant. When the task load

level reaches 5, the energy consumption of the greedy

algorithm and the rule-based scheduling algorithm is

34.1% and 43.0% higher than that of the ADP-CRL

algorithm, respectively. This shows that the ADP-CRL

algorithm can better adapt to changes in task loads and

maintain a low energy consumption level under different

load conditions.

Figure 2: Line chart comparing energy consumption

of different algorithms.

4.2 Comparison of task completion time

4.2.1 Impact of algorithms on task execution efficiency

The task completion time of different algorithms was

statistically analyzed, and the results are shown in Table

2. The table lists the average time and standard deviation

of each algorithm to complete the task in 100 independent

experiments. The average completion time reflects the

algorithm's overall execution efficiency, and the standard

deviation reflects the stability of the algorithm's

performance. From the data in the table, it can be seen that

254 Informatica 49 (2025) 247–256 Y. Tang

the ADP-CRL algorithm has the shortest average

completion time, which is only 12.5 seconds, and the

standard deviation is 0.8 seconds; the greedy algorithm

has an average completion time of 18.3 seconds, and the

standard deviation is 1.5 seconds; the rule-based

scheduling algorithm has the longest average completion

time, reaching 20.1 seconds, and the standard deviation

is 1.8 seconds. This shows that the ADP-CRL algorithm

can not only significantly improve the efficiency of task

execution but also has more stable performance, and the

performance difference under different experimental

conditions is negligible.

Table 2: Impact of algorithms on task execution

efficiency.

Algorithm Average
completion
time (s)

Standard
Deviation
(s)

ADP - CRL
algorithm

12.5 0.8

Greedy
algorithm

18.3 1.5

Rule-based
scheduling
algorithm

20.1 1.8

4.2.2 Analysis of the reasons for the difference in task

completion time

From the perspective of the algorithm decision-

making mechanism, the ADP-CRL algorithm evaluates

the global state through the adaptive dynamic

programming module, combined with the real-time

exploration and learning of the reinforcement learning

module in the dynamic environment, can make better

decisions and reasonably allocate tasks and resources,

thereby effectively shortening the task completion time.

In contrast, the greedy algorithm only considers the

current local optimum and lacks long-term planning for

the global state. It is easy to fall into the local optimal

solution in complex task scenarios, resulting in a non-

optimal task execution path and prolonged completion

time. Although the decision-making process of the rule-

based scheduling algorithm is relatively straightforward,

the formulation of rules often cannot fully cover complex

and changeable tasks and environments. It lacks

flexibility when facing new situations and is difficult to

quickly adjust the scheduling strategy, which in turn

affects the efficiency of task execution. In terms of

resource allocation strategy, the ADP-CRL algorithm

can dynamically allocate resources according to task

requirements and equipment status so that resources can

be more fully and reasonably utilized, reducing resource

idleness and waste and improving the degree of parallel

execution of tasks, thereby accelerating the speed of task

completion. However, the traditional algorithm is

relatively extensive in resource allocation, unable to

accurately match tasks and resources, reducing resource

utilization efficiency and indirectly increasing task

completion time.

4.3 Resource utilization comparison

4.3.1 Resource utilization calculation method

Take CPU resource utilization as an example, the

calculation formula is:

𝑈𝐶𝑃𝑈 =
∑  𝑇

𝑡=1  𝐶𝑃𝑈busy (𝑡)

𝑇×𝐶𝑃𝑈total
× 100% (11)

Where 𝑈𝐶𝑃𝑈 is the CPU utilization, 𝐶𝑃𝑈busy (𝑡) is the

time the CPU is busy at time t, 𝑇 is the total monitoring

time, and 𝐶𝑃𝑈total is the total CPU running time. The

calculation method for memory resource utilization is

similar, which is measured by counting the ratio of actual

memory usage to total memory capacity.

4.3.2 Comparison results and reasons

Ablation experiments were conducted to isolate the

contributions of the ADP and RL modules. Figure 3

shows that the full ADP-CRL algorithm achieves 75%

CPU utilization at load level 2, significantly higher than

the ADP-only (62%) and RL-only (58%) configurations.

The ADP module contributes approximately 62.3% to the

utilization improvement by providing global state

division, while the RL module accounts for 37.7%

through real-time adaptation.

Figure 3: CPU utilization comparison of ADP-CRL,

ADP-only, and RL-only

Intelligent Energy Consumption Optimization and Scheduling… Informatica 49 (2025) 247–256 255

Figure 4: Line chart comparing memory resource

utilization of different algorithms.

Figure 4 shows that as the task load increases, the

memory resource utilization of the three algorithms

increases. Still, the memory utilization of the ADP-CRL

algorithm is always at the highest level. When the task

load level is 1, the memory resource utilization of the

ADP-CRL algorithm is 65%, while the greedy algorithm

is 55%, and the rule-based scheduling algorithm is 50%.

When the task load level reaches 5, the memory resource

utilization of the ADP-CRL algorithm increases to 80%.

In comparison, the memory utilization of the greedy

algorithm and the rule-based scheduling algorithm is

only 68% and 62%, respectively. This shows that the

ADP-CRL algorithm can effectively reduce memory

fragmentation and improve the effective utilization of

memory by optimizing task allocation and data storage

strategies, thereby maintaining a high memory resource

utilization under different task loads, further improving

the overall performance of the system.

5 Conclusion

This study is dedicated to the exploration of intelligent

energy consumption optimization and scheduling

strategies based on large models, and successfully

constructed and verified the effectiveness of the ADP-

CRL algorithm. From the algorithm design level, through

the carefully designed state space division, value

function approximation method, and unique reward

mechanism and action selection strategy, the efficient

coordination of adaptive dynamic programming and

reinforcement learning is achieved. The experimental

results show the excellent performance of the algorithm,

which far exceeds the traditional algorithm in terms of

energy consumption reduction, task completion

efficiency improvement, and resource utilization

optimization. As evidenced by the data, in complex

simulation scenarios, energy consumption is reduced by

25.3%, which effectively alleviates the pressure of energy

consumption; task completion time is shortened by

18.7%, which significantly improves the system operation

efficiency; resource utilization is increased by 22.1%,

which promotes the rational allocation of resources.

These achievements indicate that the ADP-CRL

algorithm has broad application prospects in energy-

intensive fields such as data centers and industrial

production and is expected to promote the innovation of

the industry energy management mode. While the ADP-

CRL algorithm demonstrates superior performance in

simulated environments, future work will focus on

addressing its computational overhead for large-scale

systems. We plan to explore lightweight neural network

architectures (e.g., MobileNet) and federated learning

frameworks to enable edge deployment. Additionally,

real-world validation on datasets such as the BDGP and

Smart Grid Data Repository will be conducted to bridge

the gap between simulation and practice.

References

[1] Harb, H., Hijazi, M., Brahmia, M. E. A., Idrees, A.

K., AlAkkoumi, M., Jaber, A., & Abouaissa, A.

(2024). An intelligent mechanism for energy

consumption scheduling in smart buildings. Cluster

Computing, 27(8), 11149–11165.

https://doi.org/10.1007/s10586-024-04440-4

[2] Mou, J., Gao, K., Duan, P., Li, J., Garg, A., &

Sharma, R. (2022). A machine learning approach for

energy-efficient intelligent transportation scheduling

problem in real-world dynamic circumstances. IEEE

Transactions on Intelligent Transportation Systems,

24(12), 15527–15539.

https://doi.org/10.1109/TITS.2022.3183215

[3] Yang, N., Han, L., Liu, R., Wei, Z., Liu, H., & Xiang,

C. (2023). Multiobjective intelligent energy

management for hybrid electric vehicles based on

multiagent reinforcement learning. IEEE

Transactions on Transportation Electrification, 9(3),

4294–4305. DOI: 10.1109/TTE.2023.3236324

[4] Wu, Y., Dai, H. N., Wang, H., Xiong, Z., & Guo, S.

(2022). A survey of intelligent network slicing

management for industrial IoT: Integrated

approaches for smart transportation, smart energy,

and smart factory. IEEE Communications Surveys &

Tutorials, 24(2), 1175–1211.

https://doi.org/10.1109/COMST.2022.3158270

[5] Mnih, V., Kavukcuoglu, K., Silver, D. et al.

(2015). Human-level control through deep

reinforcement learning. Nature, 518, 529–533.

https://doi.org/10.1038/nature14236

https://doi.org/10.1109/TITS.2022.3183215
https://doi.org/10.1109/TTE.2023.3236324
https://doi.org/10.1109/COMST.2022.3158270

256 Informatica 49 (2025) 247–256 Y. Tang

[6] Amir, M., Zaheeruddin, Haque, A., Bakhsh, F. I.,

Kurukuru, V. B., & Sedighizadeh, M. (2024).

Intelligent energy management scheme‐based

coordinated control for reducing peak load in grid‐

connected photovoltaic‐powered electric vehicle

charging stations. IET Generation, Transmission &

Distribution, 18(6), 1205–1222.

https://doi.org/10.1049/gtd2.12772

[7] Zhu, S., Ota, K., & Dong, M. (2021). Green AI for

IIoT: Energy efficient intelligent edge computing for

the industrial internet of things. IEEE Transactions

on Green Communications and Networking, 6(1),

79–88.

https://doi.org/10.1109/TGCN.2021.3100622

[8] Zhang, Y., Yang, Q., An, D., Li, D., & Wu, Z.

(2022). Multistep multiagent reinforcement learning

for optimal energy schedule strategy of charging

stations in smart grid. IEEE Transactions on

Cybernetics, 53(7), 4292–4305.

DOI: 10.1109/TCYB.2022.3165074

[9] Zhou, B., Zou, J., Chung, C. Y., Wang, H., Liu, N.,

Voropai, N., & Xu, D. (2021). Multi-microgrid

energy management systems: Architecture,

communication, and scheduling strategies. Journal

of Modern Power Systems and Clean Energy, 9(3),

463–476.

https://doi.org/10.35833/MPCE.2019.000237

[10] Ghafari, R., Kabutarkhani, F. H., & Mansouri, N.

(2022). Task scheduling algorithms for energy

optimization in a cloud environment: A

comprehensive review. Cluster Computing, 25(2),

1035–1093. https://doi.org/10.1007/s10586-021-

03512-z

[11] Zhu, Y., Mao, B., & Kato, N. (2022). A dynamic

task scheduling strategy for multi-access edge

computing in IRS-aided vehicular networks. IEEE

Transactions on Emerging Topics in Computing,

10(4), 1761–1771.

https://doi.org/10.1109/TETC.2022.3153494

[12] Zhang, D., Zhu, H., Zhang, H., Goh, H. H., Liu, H.,

& Wu, T. (2021). Multi-objective optimization for

smart integrated energy system considering demand

responses and dynamic prices. IEEE Transactions on

Smart Grid, 13(2), 1100–1112.

https://doi.org/10.1109/TSG.2021.3128547

[13] Wang, L., Pan, Z., & Wang, J. (2021). A review of

reinforcement learning based intelligent

optimization for manufacturing scheduling.

Complex System Modeling and Simulation, 1(4),

257–270.

https://doi.org/10.23919/CSMS.2021.0027

[14] Qiu, Y., Li, Q., Ai, Y., Chen, W., Benbouzid, M.,

Liu, S., & Gao, F. (2023). Two-stage distributionally

robust optimization-based coordinated scheduling of

integrated energy system with electricity-hydrogen

hybrid energy storage. Protection and Control of

Modern Power Systems, 8(2), 1–14.

https://doi.org/10.1186/s41601-023-00308-8

[15] Farhadinia, B., & Liao, H. (2021). Score-Based

Multiple Criteria Decision-Making Process by Using

P-Rung Orthopair Fuzzy Sets. Informatica, 32(4),

709-739. https://doi.org/10.15388/20-INFOR412

[16] Filatovas, E., Stripinis, L., Orts, F., & Paulavičius, R.

(2024). Advancing Research Reproducibility in

Machine Learning through Blockchain Technology.

Informatica, 35(2), 227-253.

https://doi.org/10.15388/24-INFOR553

[17] Bassey, K. E., Juliet, A. R., & Stephen, A. O. (2024).

AI-enhanced lifecycle assessment of renewable

energy systems. Engineering Science & Technology

Journal, 5(7), 2082–2099.

https://doi.org/10.51594/estj/v5i7.1254

[18] Qiao, F., Liu, J., & Ma, Y. (2021). Industrial big-

data-driven and CPS-based adaptive production

scheduling for smart manufacturing. International

Journal of Production Research, 59(23), 7139–7159.

https://doi.org/10.1080/00207543.2020.1836417

https://doi.org/10.1049/gtd2.12772
https://doi.org/10.1109/TGCN.2021.3100622
https://doi.org/10.1109/TCYB.2022.3165074
https://doi.org/10.35833/MPCE.2019.000237
https://doi.org/10.1109/TETC.2022.3153494
https://doi.org/10.1109/TSG.2021.3128547
https://doi.org/10.23919/CSMS.2021.0027
https://doi.org/10.1186/s41601-023-00308-8
https://doi.org/10.15388/20-INFOR412
https://doi.org/10.15388/24-INFOR553

