
https://doi.org/10.31449/inf.v49i34.9295 Informatica 49 (2025) 247–256 247 

 

Intelligent Energy Consumption Optimization and Scheduling 

Strategy Based on Large Model 

 

Yingcai Tang 

Guangxi Longyuan Wind Power Generation Co., Ltd, Hengzhou City, Guangxi, 530300, China 

E-mail address: tangyingcai2025@126.com 

 

Keywords: large model, energy consumption optimization, scheduling strategy, adaptive dynamic programming, 

reinforcement learning 

 

Received: May 19, 2025 

At a time when energy resources are becoming increasingly scarce, achieving intelligent energy 

consumption optimization and efficient scheduling has become a key path to alleviating energy 

pressure. This paper focuses on the research of intelligent energy consumption optimization and 

scheduling strategies based on large models and proposes an adaptive dynamic programming 

collaborative reinforcement learning algorithm (ADP-CRL). After an in-depth analysis of the current 

energy dilemma and the limitations of existing research, the unique design idea of the ADP-CRL 

algorithm that combines the global planning ability of adaptive dynamic programming with the 

dynamic environment adaptation characteristics of reinforcement learning is explained in detail. In 

order to verify the performance of the algorithm, a simulation environment containing a variety of 

energy-consuming devices (such as servers, air conditioners, etc.) and diversified task loads 

(computation-intensive, data transmission, etc.) was constructed and compared with traditional greedy 

algorithms and rule-based scheduling algorithms. Experimental data show that under the same task 

load conditions, the system energy consumption of the ADP-CRL algorithm is reduced by 25.3% 

compared with the traditional algorithm, the average task completion time is shortened by 18.7%, and 

the resource (CPU, memory, etc.) utilization rate is increased by 22.1%. This fully demonstrates that 

the ADP-CRL algorithm has significant advantages in intelligent energy consumption optimization and 

scheduling and provides a practical new solution for improving energy utilization efficiency, which is 

expected to play an essential role in actual energy management scenarios. 

Povzetek: ADP-CRL algoritem združuje adaptivno dinamično programiranje in okrepljeno učenje ter 

omogoča bolj kvalitetno optimizacijo energetske porabe in razporejanje nalog kot pohlepni in na 

pravilih temelječi algoritmi, zmanjšuje porabo energije, skrajšuje čas izvedbe in povečuje izkoriščenost 

virov. 

 

1 Introduction 

Against the backdrop of sustained global economic 

growth and rapid technological progress, energy 

consumption is rising rapidly, and the problem of energy 

shortage is becoming more and more serious. Taking 

some large cities in developed countries as an example, 

during the peak electricity consumption period in 

summer, the large-scale use of refrigeration equipment 

such as air conditioners has caused a sharp rise in 

electricity demand, and the load of the power grid is close 

to or even exceeds the limit. Power outages and power 

rationing frequently occur, seriously affecting residents' 

lives and industrial production. This tight energy supply 

situation is also significant in the industrialization 

process of developing countries, restricting the further 

development of the regional economy. In this situation, 

intelligent energy consumption optimization and 

scheduling, as key means to alleviate the energy crisis, 

have essential significance that cannot be ignored. 

Realizing intelligent energy consumption optimization 

and scheduling can not only reduce energy consumption 

costs and reduce unnecessary energy waste but also play 

a vital role in achieving sustainable development goals. It 

is an inevitable choice to deal with energy difficulties. 

Traditional energy consumption optimization and 

scheduling algorithms, such as genetic algorithms and 

particle swarm algorithms, have been widely used in the 

field of energy consumption management. Genetic 

algorithms simulate the biological evolution process and 

find the optimal solution for energy consumption 

optimization through operations such as selection, 

crossover, and mutation [1]. They have achieved specific 
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results in some relatively simple and static energy 

consumption scenarios. Particle swarm algorithms 

simulate the foraging behavior of bird flocks and use 

information sharing and collaboration between particles 

to optimize energy consumption scheduling [2]. 

However, these traditional algorithms have apparent 

limitations when facing complex and changeable actual 

energy consumption environments. On the one hand, 

with the continuous expansion of the scale of energy 

consumption systems and the dynamic changes in task 

loads, their computational complexity has increased 

significantly, resulting in low solution efficiency and 

difficulty in meeting real-time requirements [3]. On the 

other hand, traditional algorithms have weak adaptive 

ability to environmental changes. They cannot adjust 

optimization strategies in time according to dynamic 

factors such as energy supply conditions and equipment 

operating conditions. 

In recent years, large model technology has emerged 

in the energy field. Here, large model refers to deep 

neural networks with complex architectures and massive 

parameters, capable of capturing intricate patterns in 

high-dimensional data [4]. In terms of power load 

forecasting, some large models, with their powerful data 

processing and feature extraction capabilities, can 

conduct in-depth analysis of massive historical power 

data and explore the complex laws behind the data, 

thereby achieving more accurate power load forecasting. 

Most existing works either focus on single-agent RL 

frameworks (e.g., DQN [5], PPO [6]) or simple heuristic 

combinations, lacking the synergistic integration of 

global planning (via ADP) and dynamic adaptation (via 

RL) proposed here. However, the current application of 

large models in the energy field is mainly concentrated 

on the prediction level, and the exploration of the key 

link of energy consumption optimization and scheduling 

is still in its infancy. 

This study aims to design an efficient energy 

consumption optimization and scheduling algorithm 

based on large models. First, an adaptive dynamic 

programming collaborative reinforcement learning 

algorithm (ADP-CRL) is proposed. The uniqueness of 

this algorithm lies in the construction of a new 

cooperative mechanism. The adaptive dynamic 

programming module can plan energy consumption 

optimization from a global perspective and provide the 

system with a reference direction for the global optimal 

solution by reasonably dividing the state space and 

accurately approximating the value function. The 

reinforcement learning module focuses on the real-time 

response of the dynamic environment. According to the 

reward mechanism and action selection strategy, the 

system learns and optimizes energy consumption 

scheduling decisions through continuous trial and error. 

The two complement each other through carefully 

designed information interaction methods and 

collaborative optimization processes. When the system 

state changes, the reinforcement learning module can 

quickly perceive and pass the information to the adaptive 

dynamic programming module, which adjusts the value  

 

 

 

 

function accordingly and then guides the reinforcement 

learning module to make better action decisions [7]. This 

collaborative mechanism dramatically improves the 

adaptability and optimization ability of the algorithm in a 

complex dynamic energy consumption environment. It is 

expected to break through the limitations of traditional 

algorithms and open up new paths for intelligent energy 

consumption optimization and scheduling. The 

uniqueness of this algorithm lies in the construction of a 

new cooperative mechanism, distinguishing it from prior 

hybrid ADP-RL studies that often employ static 

integration without real-time information interaction [8]. 

2 Design of adaptive dynamic 

programming collaborative 

reinforcement learning algorithm 

(ADP-CRL) 

2.1 Overall framework of the algorithm 

2.1.1 Module composition and interaction relationship 

The ADP-CRL algorithm is mainly composed of an 

adaptive dynamic programming module, a reinforcement 

learning module, and a collaborative control module. The 

adaptive dynamic programming module undertakes the 

task of optimizing energy consumption from the global 

level of the system. It constructs a reasonable state space 

through an in-depth analysis of the energy consumption 

system. It uses specific methods to approximate the 

optimal value function, providing macro guidance for the 

energy consumption optimization of the entire system. 

The reinforcement learning module focuses on the real-

time interaction between the system and the dynamic 

environment. It continuously adjusts its action strategy 

based on the reward signal fed back by the environment 

to achieve the optimization of local decisions. The 

collaborative control module plays a bridging role and is 

responsible for coordinating the information interaction 

and collaboration process between the first two modules.  

From the perspective of data transmission, the 

reinforcement learning module transmits the real-time 

state information 𝑆𝑡  perceived by the system during 

operation to the adaptive dynamic programming module. 

The adaptive dynamic programming module 

combines its calculation result 𝑉(𝑆𝑡)  of the value 

function. It feeds it back to the reinforcement learning 

module to guide its action decision 𝐴𝑡 . This interactive 

relationship is visualized in the block diagram below 

(Figure 1): 
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Figure 1: Block diagram of ADP-CRL module 

interactions 

Through close data interaction and collaboration 

between modules, the algorithm is jointly promoted to 

achieve efficient optimization and scheduling in a 

complex energy consumption environment. 

2.1.2 Algorithm execution process 

The execution of the algorithm begins with the 

initialization phase. In this phase, the state space of the 

system is initialized, and the initial state 𝑆0 is determined. 

At the same time, the value function approximator 

parameters in the adaptive dynamic programming module 

are initialized, and the action strategy parameters of the 

reinforcement learning module are initialized. Then, the 

state perception phase is entered, and the system monitors 

the operating status of energy-consuming equipment, 

changes in task requirements, and other information in real 

time to obtain the system state 𝑆𝑡 at the current moment. 

Based on the perceived state, the reinforcement learning 

module generates an action decision 𝐴𝑡  according to its 

action selection strategy [9]. During the decision-

generation process, the value function information 

provided by the adaptive dynamic programming module 

is referenced. After the decision is generated, the system 

executes the corresponding action. It schedules the 

energy-consuming equipment, such as adjusting the 

operating power of the equipment and assigning the order 

of task execution. 

After the action is executed, the system will receive 

the reward signal 𝑅𝑡+1  and the new state 𝑆𝑡+1  from the 

environment. The reinforcement learning module updates 

its policy parameters using a proximal policy optimization 

(PPO) algorithm [10], while the adaptive dynamic 

programming module updates and optimizes the value 

function based on the latest state and reward information 

transmitted by the reinforcement learning module. This 

process is iterated continuously so that the algorithm 

gradually converges to the optimal energy consumption 

optimization and scheduling strategy. 

 

2.2 Adaptive dynamic programming 

module 

2.2.1 Definition and division of state space 

The definition of state space variables 

comprehensively considers multiple factors, such as the 

state of energy-consuming equipment and task 

requirements. Suppose the set of energy-consuming 

equipment is ℰ = {𝑒1, 𝑒2, ⋯ , 𝑒𝑛}, for each device 𝑒𝑖 , its 

state can be described by parameters such as operating 

power 𝑃𝑒𝑖
 device temperature 𝑇𝑒𝑖

. The task set is 𝒯 =

{𝑡1, 𝑡2, ⋯ , 𝑡𝑚}, and the task state can be represented by 

task priority 𝑃𝑟𝑡𝑗
, computing resources required for the 

task 𝐶𝑡𝑗
, etc. Then the state space 𝑆 of the system can be 

expressed as: 

𝑆 =

{(𝑃𝑒1
, 𝑇𝑒1

, ⋯ , 𝑃𝑒𝑛
, 𝑇𝑒𝑛

, 𝑃𝑟𝑡1
, 𝐶𝑡1

, ⋯ , 𝑃𝑟𝑡𝑚
, 𝐶𝑡𝑚

)}        (1) 

According to the type of equipment, the equipment 

can be divided into different categories such as computing 

equipment and refrigeration equipment. For computing 

equipment, the state space is further subdivided according 

to its load level, such as low load( 𝑃𝑒𝑖
≤ 𝑃low  ), medium 

load ( 𝑃low < 𝑃𝑒𝑖
≤ 𝑃mid  ), and high load ( 𝑃𝑒𝑖

> 𝑃mid  ). 

Through this detailed division, the system energy 

consumption under different states can be modeled and 

optimized more accurately. 

2.2.2 Value function approximation method 

This study uses a deep neural network (DNN) as the 

value function approximator. Let the input of the deep 

neural network be the state space variable 𝑆 , and the 

output be the value function estimate 𝑉̂(𝑆; 𝜃), where 𝜃 is 

the network parameter. 

The goal of the value function is to approximate the 

optimal value 𝑉∗(𝑆)  and adjust the network parameters 

by minimizing the loss function 𝐿(𝜃). The loss function 

is defined as: 

𝐿(𝜃) =
1

𝑁
∑  𝑁

𝑖=1 (𝑉∗(𝑆(𝑖)) −

𝑉̂(𝑆(𝑖); 𝜃))
2

                   (2) 

Where 𝑁 is the number of training samples, and 𝑆(𝑖) 

is the state of the 𝑖 training sample. During the training 

process, the stochastic gradient descent algorithm (SGD) 
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is used to update the parameter 𝜃, and its update formula 

is: 

𝜃𝑘+1 = 𝜃𝑘 −

𝛼∇𝜃𝐿(𝜃𝑘)                                                (3) 

𝛼  is the learning rate, and 𝑘  is the number of 

iterations. Through continuous iterative training, the 

estimated value of the value function output by the deep 

neural network gradually approaches the optimal value, 

providing an accurate reference for energy consumption 

optimization decisions. 

 

2.3 Reinforcement learning module 

2.3.1 Reward mechanism design 

The reward function design follows the principle of 

reducing energy consumption, giving positive rewards 

for the timely completion of tasks and negative rewards 

for failures [11]. Assume that the energy consumption of 

the system at the current moment is 𝐸𝑡 , and the task 

completion status can be measured by the difference 

between the task completion time 𝑇completion and the task 

deadline 𝑇deadline (set to 0.6 and 0.4 through grid search). 

The reward function 𝑅(𝑆𝑡 , 𝐴𝑡) is defined as follows: 

𝑅(𝑆𝑡 , 𝐴𝑡) = 𝛽1 (
𝐸ref −𝐸𝑡

𝐸ref 
) +

𝛽2 {
1, 𝑇completion ≤ 𝑇deadline 

−1, 𝑇completion > 𝑇deadline 
(4) 

Where 𝐸ref  is the reference energy consumption 

value, and 𝛽1 and 𝛽2 are weight coefficients (set to 0.6 

and 0.4 through grid search) used to adjust the relative 

importance of energy consumption and task completion 

in reward calculation [12]. Sensitivity analysis in Section 

3.4 shows that varying 𝛽1 from 0.3 to 0.8 has a negligible 

impact on final performance (deviation < 3), confirming 

the robustness of the reward design. 

2.3.2 Action selection strategy 

The 𝜖 － greedy strategy is used as the action 

selection strategy. Under this strategy, an action is 

randomly selected with probability ϵ, and the action with 

the highest current estimated value is chosen with 

probability 1 − 𝜖. Let the current state be  𝑆𝑡, the action 

set be 𝒜, and the action value function be 𝑄(𝑆𝑡 , 𝐴). The 

action selection process is as follows: 

 

𝐴𝑡 =

{
arg max

𝐴∈𝒜
 𝑄(𝑆𝑡 , 𝐴),  if 𝜉 > 𝜖

random (𝐴 ∈ 𝒜),  otherwise 
                   (5) 

Where 𝜉 is a random number uniformly distributed in 

the interval [0,1]. The value of 𝜖  decays dynamically 

during the algorithm run, starting from 𝜖0 = 0.9  and 

decaying at a rate 𝛾 = 0.995 per iteration: 

𝜖𝑘+1 = max(𝜖min, 𝜖𝑘 ⋅ 𝛾)                                (6) 

 𝜖min is the minimum value of ϵ. This strategy can 

fully explore the action space in the early stage of the 

algorithm operation and avoid falling into the local 

optimum. 𝜖min = 0.1 ensures sufficient exploration even 

in late iterations. As the algorithm progresses, it gradually 

increases the utilization of the current optimal action and 

improves the convergence speed of the algorithm. 

 

2.4 Collaborative mechanism design 

2.4.1 Information interaction method 

The adaptive dynamic programming module and the 

reinforcement learning module realize information 

interaction through shared memory. After each state 

update, the reinforcement learning module writes the new 

state information 𝑆𝑡+1  and reward information 𝑅𝑡+1 into 

the shared memory. The adaptive dynamic programming 

module periodically reads this information from the 

shared memory for the update calculation of the value 

function. At the same time, after completing the value 

function update, the adaptive dynamic programming 

module writes the latest value function estimate 𝑉̂(𝑆) into 

the shared memory for reference by the reinforcement 

learning module when selecting actions. This shared 

memory method can realize efficient and fast data 

transmission between the two modules, ensuring that the 

algorithm can respond to environmental changes 

promptly in energy consumption optimization scenarios 

with high real-time requirements. Ablation studies in 

Section 3.3 show that this decay schedule outperforms 

fixed ϵ (improvement in energy efficiency by 12.3% ) and 

linear decay (improvement by 7.8% ). 

2.4.2 Co-optimization process 

During the co-optimization process, when selecting 

actions, the reinforcement learning module first obtains 

the estimated value function 𝑉̂(𝑆)  provided by the 

adaptive dynamic programming module from the shared 

memory. According to the relationship between the action 

value function and the value function 

 

 

𝑄(𝑆𝑡 , 𝐴𝑡) = 𝑅(𝑆𝑡 , 𝐴𝑡) + 𝛾𝑉̂(𝑆𝑡+1)  (where 𝛾  is the 

discount factor), the value of each action is calculated, and 

then the action is selected according to the ϵ-greedy 
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strategy. 

After receiving the new state and reward information 

transmitted by the reinforcement learning module, the 

adaptive dynamic programming module uses this 

information to update the parameters of the deep neural 

network [13]. Specifically, according to the Bellman 

equation 𝑉∗(𝑆𝑡) = max𝐴𝑡
 [𝑅(𝑆𝑡 , 𝐴𝑡) + 𝛾𝑉∗(𝑆𝑡+1)] , the 

gradient is calculated in combination with the loss 

function of the deep neural network, and the network 

parameters 𝜃  are updated by the stochastic gradient 

descent algorithm. Through this mutual collaboration 

and continuously iterative collaborative optimization 

process, the adaptive dynamic programming module can 

better guide the decision-making of the reinforcement 

learning module from a global level [14]. The 

reinforcement learning module helps the adaptive 

dynamic programming module optimize the value 

function through actual environmental feedback, thereby 

achieving efficient operation of the entire algorithm in 

intelligent energy consumption optimization and 

scheduling. 

3 Experimental simulation design 

and implementation 

3.1 Experimental environment 

construction 

3.1.1 Hardware environment configuration 

This experiment relies on a high-performance server 

as the core computing platform. The server is equipped 

with an Intel Xeon Platinum 8380 processor, which has 

mighty computing power, 40 physical cores, and 80 

threads, and can handle a large number of complex 

computing tasks at the same time, meeting the high 

computing requirements for algorithm operation in the 

experiment [15]. The memory configuration is 256GB 

DDR4 3200MHz, which ensures that the system will not 

encounter performance bottlenecks due to insufficient 

memory when processing large-scale data and running 

complex simulation models. In order to accelerate 

computing tasks related to deep learning, NVIDIA A100 

GPU is selected, which has up to 10,752 CUDA cores, 

which can significantly improve the computing speed in 

deep neural network training and algorithm modules 

involving matrix operations, considerably shortening the 

experimental running time. The purpose of choosing 

such a hardware configuration is to build a stable and 

efficient experimental environment, provide a solid 

foundation for the testing of intelligent energy 

consumption optimization and scheduling algorithms 

based on large models, and enable them to be fully 

verified under conditions close to real complex scenarios. 

 

3.1.2 Software platform selection 

The operating system uses Ubuntu 20.04 LTS, and its 

open-source features and rich community support provide 

great convenience for the experiment. Under this system, 

software installation, configuration, and system 

maintenance can be carried out efficiently. Python 3.8 is 

selected as the programming language, leveraging 

libraries such as TensorFlow 2.8 for deep learning, Stable 

Baselines3 for RL, and NumPy/SciPy for scientific 

computing. In terms of energy consumption simulation, 

the SimPy 4.0 library is used, which allows detailed 

modeling of energy-consuming devices and their 

interactions.  

3.2 Experimental scenario construction 

3.2.1 Energy consumption device model establishment 

In the experiment, a variety of typical energy-

consuming devices were simulated, including servers and 

air conditioning systems. For servers, an energy 

consumption model based on the relationship between 

power and load was established. The relationship between 

the server's power consumption 𝑃server  and the load rate 

𝐿server   can be expressed as: 

𝑃server = 𝑃idle + (𝑃max − 𝑃idle ) ×

𝐿server                                             (7) 

𝑃idle  is the power of the server when it is unloaded, 

and 𝑃max  is the maximum power of the server when it is 

fully loaded. Through this model, the energy consumption 

of the server can be dynamically calculated according to 

the task load processed by the server. For the air-

conditioning system, its energy consumption model 

considers factors such as ambient temperature 𝑇𝑒𝑛𝑣 , set 

temperature 𝑇set  and cooling capacity demand 𝑄. The air-

conditioning power 𝑃air－conditioner  can be expressed as: 

𝑃air-conditioner = 𝑘1 × (𝑄) + 𝑘2 × (𝑇env −

𝑇set )                                                            (8) 

𝑘1  and 𝑘2 are coefficients related to air conditioning 

performance, calibrated using real-world data from the 

Building Data Genome Project (BDGP) dataset [16]. 

3.2.2 Task load setting 

The experiment sets two main task types: 

computationally intensive and data transmission, with 

additional periodic background tasks to simulate real-

world heterogeneity. Computationally intensive tasks are 

simulated by generating a series of complex mathematical 

operations, such as matrix multiplication (dimensions 

from 100×100 to 1000×1000), with arrival rates following 
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a Poisson process (λ=5-20 tasks/minute). Data 

transmission tasks are achieved by simulating the 

transmission of data files of different sizes (10MB-1GB) 

over a network with variable bandwidth (10-100 Mbps). 

Task priorities are assigned dynamically based on 

deadlines, with 20% of tasks labeled as high-priority 

(deadline <10 minutes). The task generator is configured 

to mimic daily load patterns from the Smart Grid Data 

Repository [17] including morning/evening peaks and 

midday lulls. 

3.3 Selection of comparison algorithms 

3.3.1 Introduction to traditional energy consumption 

optimization and scheduling algorithms 

In addition to traditional greedy algorithms and rule-

based scheduling algorithms, modern reinforcement 

learning-based optimization methods are included to 

benchmark the ADP-CRL algorithm. The comparison 

algorithms now consist of: 

Greedy algorithm: Selects the locally optimal action 

at each step to minimize immediate energy consumption. 

Rule-based scheduling algorithm: Follows pre-

defined rules (e.g., high-priority tasks first) for task 

allocation. 

Deep Q-Network (DQN) [5]: A classic deep RL 

algorithm using a neural network to approximate the Q-

function. 

Proximal Policy Optimization (PPO) [6]: An on-

policy RL algorithm that updates policies with clipped 

surrogate objectives. 

Deep Deterministic Policy Gradient (DDPG) [18]: A 

model-free algorithm for continuous control problems 

using actor-critic architecture. 

These modern RL baselines were chosen because 

they represent the state-of-the-art in energy-aware 

optimization and have been widely applied in complex 

scheduling scenarios. 

3.3.2 Reasons for selecting comparison algorithms 

The greedy algorithm and rule-based scheduling 

algorithm are selected for comparison mainly because 

they have a wide range of use bases in practical 

applications. Greedy algorithms are widely used in some 

scenarios with low requirements for computing resources 

and time because they are simple and easy to implement. 

Rule-based scheduling algorithms are commonly used in 

many industrial production and traditional energy 

management systems because their decision-making 

process is transparent, easy to understand, and maintain. 

By comparing these two representative conventional 

algorithms, the performance advantages of the large-

model-based intelligent energy optimization and 

scheduling algorithm proposed in this study can be 

demonstrated, highlighting the improvement of the 

adaptability and optimization ability of the new algorithm 

in complex dynamic environments. 

3.4 Experimental data collection and 

analysis methods 

3.4.1 Data collection indicators 

The experiment focuses on collecting key data 

indicators such as energy consumption, task completion 

time, and resource utilization. The energy consumption is 

obtained by real-time accumulation and calculation of the 

power consumption of each energy-consuming device in 

the simulation model, that is: 

𝐸 = ∑  𝑛
𝑖=1 𝑃𝑖 × Δ𝑡                                         (9) 

Where 𝐸 is the total energy consumption, 𝑃𝑖   is the 

power of the 𝑖 device, and Δ𝑡 is the time interval. The task 

completion time is determined by recording the difference 

between the time when the task starts and the time when 

the task is completed. Taking the server CPU utilization 

as an example, the resource utilization is calculated as 

follows: 

𝑈𝐶𝑃𝑈 =
∑  𝑇

𝑡=1  𝐶𝑃𝑈busy (𝑡)

𝑇×𝐶𝑃𝑈total 
× 100%                     (10) 

Where𝑈𝐶𝑃𝑈   is the CPU utilization, 𝐶𝑃𝑈busy (𝑡) is the 

time when the CPU is in a busy state at time 𝑡, 𝑇 is the 

total monitoring time, and 𝐶𝑃𝑈total  is the total CPU 

running time. 

3.4.2 Data analysis tools and methods 

Use Python data analysis libraries such as Pandas and 

NumPy for data processing and analysis. Pandas provides 

efficient data structures and data processing functions, 

which facilitate the cleaning, organization, and storage of 

large amounts of collected experimental data. NumPy 

performs well in numerical calculations and can quickly 

perform operations such as array operations. In terms of 

statistical analysis methods, the mean estimate is used to 

evaluate the average performance of the algorithm on 

different indicators, such as calculating the average 

energy consumption and average task completion time of 

various algorithms in multiple experiments. Variance 

calculation is used to measure the discreteness of the data 

and understand the stability of the algorithm's 

performance. At the same time, significance tests (such as 

t-tests) are used to determine whether the differences in 

performance indicators between different algorithms are 
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statistically significant, so as to determine whether the 

algorithm in this study is significantly better than the 

comparison algorithm in performance. Through these 

data analysis tools and methods, the information behind 

the experimental data can be deeply explored, providing 

a scientific basis for algorithm performance evaluation. 

4 Experimental results and analysis 

4.1 Comparative analysis of energy 

consumption indicators 

4.1.1 Comparison of energy consumption between the 

ADP-CRL algorithm and traditional algorithms 

To validate the statistical significance of performance 

improvements, all results are reported with 95% 

confidence intervals (CI) and tested using two-sample t-

tests (p < 0.05). Table 1 shows the energy consumption 

data across five task load levels, demonstrating that ADP-

CRL consistently outperforms baselines. For example, at 

load level 3, ADP-CRL consumes 160.5 J (95% CI: 

158.2–162.8), which is 25.5% lower than the greedy 

algorithm (215.3 J, 95% CI: 212.1–218.5) and 30.4% 

lower than the rule-based algorithm (230.7 J, 95% CI: 

227.3–234.1). 

Table 1: The energy consumption data across five task load levels 

Task load 
level 

Greedy Algorithm 
(J) 

Rule-based Scheduling Algorithm 
(J) 

ADP-CRL algorithm 
(J) 

1 180.2 (177.8–182.6) 195.5 (192.1–198.9) 135.8 (133.5–138.1) 

2 198.6 (195.2–202.0) 212.3 (208.7–215.9) 150.1 (147.8–152.4) 

3 215.3 (212.1–218.5) 230.7 (227.3–234.1) 160.5 (158.2–162.8) 

4 230.1 (226.7–233.5) 245.6 (241.9–249.3) 172.8 (170.5–175.1) 

5 248.7 (245.3–252.1) 265.2 (261.5–268.9) 185.4 (183.1–187.7) 

4.1.2 Energy consumption trend under different task 

loads 

The energy consumption trend of each algorithm 

under different task loads was further explored, and the 

line graph shown in Figure 2 was obtained. As the task 

load increases, the energy consumption of the three 

algorithms all show an upward trend. However, the 

energy consumption increase slope of the ADP-CRL 

algorithm is significantly smaller than that of the other 

two traditional algorithms. At low task loads, the energy 

consumption advantage of the ADP-CRL algorithm has 

been reflected, and as the task load increases, its 

advantage becomes more significant. When the task load 

level reaches 5, the energy consumption of the greedy 

algorithm and the rule-based scheduling algorithm is 

34.1% and 43.0% higher than that of the ADP-CRL 

algorithm, respectively. This shows that the ADP-CRL 

algorithm can better adapt to changes in task loads and 

maintain a low energy consumption level under different 

load conditions. 

 

 

Figure 2:  Line chart comparing energy consumption 

of different algorithms. 

 

4.2 Comparison of task completion time 

4.2.1 Impact of algorithms on task execution efficiency 

The task completion time of different algorithms was 

statistically analyzed, and the results are shown in Table 

2. The table lists the average time and standard deviation 

of each algorithm to complete the task in 100 independent 

experiments. The average completion time reflects the 

algorithm's overall execution efficiency, and the standard 

deviation reflects the stability of the algorithm's 

performance. From the data in the table, it can be seen that 
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the ADP-CRL algorithm has the shortest average 

completion time, which is only 12.5 seconds, and the 

standard deviation is 0.8 seconds; the greedy algorithm 

has an average completion time of 18.3 seconds, and the 

standard deviation is 1.5 seconds; the rule-based 

scheduling algorithm has the longest average completion 

time, reaching 20.1 seconds, and the standard deviation 

is 1.8 seconds. This shows that the ADP-CRL algorithm 

can not only significantly improve the efficiency of task 

execution but also has more stable performance, and the 

performance difference under different experimental 

conditions is negligible. 

Table 2: Impact of algorithms on task execution 

efficiency. 

Algorithm Average 
completion 
time (s) 

Standard 
Deviation 
(s) 

ADP - CRL 
algorithm 

12.5 0.8 

Greedy 
algorithm 

18.3 1.5 

Rule-based 
scheduling 
algorithm 

20.1 1.8 

 

4.2.2 Analysis of the reasons for the difference in task 

completion time 

From the perspective of the algorithm decision-

making mechanism, the ADP-CRL algorithm evaluates 

the global state through the adaptive dynamic 

programming module, combined with the real-time 

exploration and learning of the reinforcement learning 

module in the dynamic environment, can make better 

decisions and reasonably allocate tasks and resources, 

thereby effectively shortening the task completion time. 

In contrast, the greedy algorithm only considers the 

current local optimum and lacks long-term planning for 

the global state. It is easy to fall into the local optimal 

solution in complex task scenarios, resulting in a non-

optimal task execution path and prolonged completion 

time. Although the decision-making process of the rule-

based scheduling algorithm is relatively straightforward, 

the formulation of rules often cannot fully cover complex 

and changeable tasks and environments. It lacks 

flexibility when facing new situations and is difficult to 

quickly adjust the scheduling strategy, which in turn 

affects the efficiency of task execution. In terms of 

resource allocation strategy, the ADP-CRL algorithm 

can dynamically allocate resources according to task 

requirements and equipment status so that resources can 

be more fully and reasonably utilized, reducing resource 

idleness and waste and improving the degree of parallel 

execution of tasks, thereby accelerating the speed of task 

completion. However, the traditional algorithm is 

relatively extensive in resource allocation, unable to 

accurately match tasks and resources, reducing resource 

utilization efficiency and indirectly increasing task 

completion time. 

 

4.3 Resource utilization comparison 

4.3.1 Resource utilization calculation method 

Take CPU resource utilization as an example, the 

calculation formula is: 

𝑈𝐶𝑃𝑈 =
∑  𝑇

𝑡=1  𝐶𝑃𝑈busy (𝑡)

𝑇×𝐶𝑃𝑈total 
× 100%                         (11) 

Where 𝑈𝐶𝑃𝑈  is the CPU utilization, 𝐶𝑃𝑈busy (𝑡) is the 

time the CPU is busy at time t, 𝑇 is the total monitoring 

time, and 𝐶𝑃𝑈total  is the total CPU running time. The 

calculation method for memory resource utilization is 

similar, which is measured by counting the ratio of actual 

memory usage to total memory capacity. 

 

4.3.2 Comparison results and reasons 

Ablation experiments were conducted to isolate the 

contributions of the ADP and RL modules. Figure 3 

shows that the full ADP-CRL algorithm achieves 75% 

CPU utilization at load level 2, significantly higher than 

the ADP-only (62%) and RL-only (58%) configurations. 

The ADP module contributes approximately 62.3% to the 

utilization improvement by providing global state 

division, while the RL module accounts for 37.7% 

through real-time adaptation. 

 

Figure 3:  CPU utilization comparison of ADP-CRL, 

ADP-only, and RL-only 
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Figure 4:  Line chart comparing memory resource 

utilization of different algorithms. 

 

Figure 4 shows that as the task load increases, the 

memory resource utilization of the three algorithms 

increases. Still, the memory utilization of the ADP-CRL 

algorithm is always at the highest level. When the task 

load level is 1, the memory resource utilization of the 

ADP-CRL algorithm is 65%, while the greedy algorithm 

is 55%, and the rule-based scheduling algorithm is 50%. 

When the task load level reaches 5, the memory resource 

utilization of the ADP-CRL algorithm increases to 80%. 

In comparison, the memory utilization of the greedy 

algorithm and the rule-based scheduling algorithm is 

only 68% and 62%, respectively. This shows that the 

ADP-CRL algorithm can effectively reduce memory 

fragmentation and improve the effective utilization of 

memory by optimizing task allocation and data storage 

strategies, thereby maintaining a high memory resource 

utilization under different task loads, further improving 

the overall performance of the system. 

5 Conclusion 

This study is dedicated to the exploration of intelligent 

energy consumption optimization and scheduling 

strategies based on large models, and successfully 

constructed and verified the effectiveness of the ADP-

CRL algorithm. From the algorithm design level, through 

the carefully designed state space division, value 

function approximation method, and unique reward 

mechanism and action selection strategy, the efficient 

coordination of adaptive dynamic programming and 

reinforcement learning is achieved. The experimental 

results show the excellent performance of the algorithm, 

which far exceeds the traditional algorithm in terms of 

energy consumption reduction, task completion 

efficiency improvement, and resource utilization 

optimization. As evidenced by the data, in complex 

simulation scenarios, energy consumption is reduced by 

25.3%, which effectively alleviates the pressure of energy 

consumption; task completion time is shortened by 

18.7%, which significantly improves the system operation 

efficiency; resource utilization is increased by 22.1%, 

which promotes the rational allocation of resources. 

These achievements indicate that the ADP-CRL 

algorithm has broad application prospects in energy-

intensive fields such as data centers and industrial 

production and is expected to promote the innovation of 

the industry energy management mode. While the ADP-

CRL algorithm demonstrates superior performance in 

simulated environments, future work will focus on 

addressing its computational overhead for large-scale 

systems. We plan to explore lightweight neural network 

architectures (e.g., MobileNet) and federated learning 

frameworks to enable edge deployment. Additionally, 

real-world validation on datasets such as the BDGP and 

Smart Grid Data Repository will be conducted to bridge 

the gap between simulation and practice. 
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