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This study introduces an intelligent diagnosis method based on an improved Transformer, which
introduces a multi-scale attention mechanism into the fine feature extraction of the ECG signal,
further optimizes the classification model, enhances the loss function, and improves the diagnosis
accuracy. This project intends to use the MIT-BIH arrhythmia database as the research object. It
divides it into training set, validation set, and test set according to 7:2:1. Experiments show that the
accuracy of arrhythmia classification of the method proposed in this paper reaches 98.6%, the recall
rate is 98.2%, and the F1 value is 98.4%. Compared with the traditional model, its accuracy is
improved by 3.2%, 2.8%, and 3.0%, respectively. Compared with other mainstream deep learning
algorithms such as ResNet and Dense Net, the performance indicators of this algorithm have been
greatly improved. The research results of this project will provide an efficient and accurate solution
for the intelligent diagnosis of ECG signals. It has important scientific significance and practical

value.

Povzetek: Izboljsani transformer z vecluskostno pozornostjo za analizo EKG (MIT-BIH, delitev 7:2:1)
prinese 3% prednosti pred klasicnimi/modeli CNN (ResNet/DenseNet). Uporabi adaptivno
pozicioniranje, utezi, utezeno izgubo in lahkotno izvedbo v realnem casu.

1 Introduction

Cardiovascular diseases (CVDs) are one of the
diseases with the highest mortality rates in the world,
which seriously threatens human health. The latest
report of the World Health Organization shows that the
number of people who die from CVDs each year is
about 17.9 million, of which about 85% are caused by
myocardial infarction or stroke. An electrocardiogram
is an essential means of clinical diagnosis of
cardiovascular diseases. It can effectively reflect the
physiological and pathological state of the heart by
recording ECG signals. ECG signals contain a variety
of characteristic frequency bands, such as P wave, QRS
complex, T wave, and slight changes in their
morphology, amplitude, and time interval may be
related to the occurrence of various heart diseases.
However, traditional ECG diagnosis methods are
mainly done through manual interpretation and simple
rule matching. Manual diagnosis is not only time-
consuming and laborious, but subjective factors such as
the doctor's experience and fatigue level will affect the
accuracy of the diagnosis. The previous survey of
primary medical institutions found that among patients
with complex arrhythmias, the manual diagnosis rate
was as high as 25%, and the misdiagnosis rate was as
high as 15%, which could not meet the urgent needs of
clinical diagnosis and treatment efficiency and
accuracy. In addition, the automatic diagnosis system

based on rule matching has limitations in diagnosing
new and rare diseases.

Deep learning has made significant progress in
ECG analysis in recent years due to its robust feature
extraction and pattern recognition [1]. Convolutional
Neural Network (CNN) based on Local Perceptual
Field Weight Sharing (LNN) can automatically extract
spatial features from ECG signals, performing well in
arrhythmia classification. For example, using a multi-
layer convolutional neural network framework, an
accuracy of 89.2% for the MIT-BIH arrhythmia
database has been achieved, effectively improving the
ability to recognize common arrhythmia types.
Recurrent Neural Networks (RNN) and their variants,
LSTM or GRU, are better at capturing temporal
features of ECG signals because of their unique
memory cell structure. In reference [2], the accuracy of
arrhythmia diagnosis will be increased to 91.5%,
providing a new approach for ECG dynamics analysis.
However, these methods have obvious shortcomings.
However, deep convolutional neural networks can't
model long-sequence correlation of long sequence data
effectively; Recursive neural networks can easily result
in gradient vanishing and gradient explosion while
processing complex waveforms, resulting in difficult
training, incomplete feature extraction, and low
precision.

The appearance of the Transformer frame makes a
breakthrough in ECG diagnosis. The proposed
algorithm performs better in natural language
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processing and image recognition [3]. It has been
proven that using the Transformer method to diagnose
ECG is a good way to reflect on the relationship
between components in ECG. However, current
Transformer-based ECG diagnostic methods still have
many problems. For one thing, the traditional
transformer cannot capture the ECG signal's multiscale
feature. The high-frequency component in the QRS
complex is different from that in the T wave in the
ECG signal [4]. However, the traditional Transformer
method has difficulty in extracting multiscale features
effectively. On the other hand, due to its large number
of model parameters and high computational
complexity, its extensive scale application has been
restricted due to its difficulty in real-time diagnosis.
This paper presents an intelligent diagnostic system for
ECG based on a modified transformer. The core
innovation of this project is as follows: (1) An adaptive
weight allocation strategy is introduced, combined with a
modified position coding method, which improves the
ability of extracting time features from ECG signals,
making ECG dynamic change more accurate. (2) A
multiscale attention model is designed to adjust the
attention weights automatically based on temporal and
frequency-domain features of ECG signals so that the
model can analyze complicated ECG signals. (3) A
lightweight intelligent diagnostic system framework is
constructed, which is combined with data enhancement
technology to expand the variety of training data.

2 Algorithm design of ECG signal
intelligent diagnosis system based on
deep learning

2.1 Algorithm design ideas

ECG signals contain P, QRS, and T waves, which are
ever-changing under normal and pathological conditions
[5]. They have temporal continuity and frequency
differences, which put higher requirements on the
algorithm. Traditional deep learning algorithms have the
following shortcomings: convolutional neural networks
are complex to reflect the long-range correlation of ECG
signals; recurrent neural networks are prone to produce
gradients under complex waveforms; standardized
transformers cannot effectively fuse multi-scale features
[6]. This paper combines an improved Transformer
framework with a multi-scale attention mechanism,
optimized position coding, adaptive weight allocation,
etc. Achieving complex feature fusion can improve the
ability to recognize the ECG signal.

2.2 Application of improved Transformer
algorithm in ECG signal feature extraction

In the Transformer framework, the multi-attention
mechanism is a key component in realizing feature
interaction and extraction. This method calculates the
similarity between query vector Q, key vector K, and
value vector V, and calculates the formula:
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Among them, Q K,V are query vector, key

vector and value vector respectively, and dr is
the dimension of key vector. Although this mechanism
can calculate the correlation between each position in
parallel, it cannot adaptively adjust the importance of
different features for data with specific timing rules
such as ECG signals.
This project improves the long-term attention mechanism
based on the time-varying characteristics of ECG signals.
An adaptive weight coefficient®; in the range of [0,1] is
proposed, and the contribution of each attention head is
dynamically adjusted during training. The improved
multi-attention mechanism is calculated in formula (2):
Multi - Head Attention (Q, K, V)

=Concat(heady, ..., head,)W?°
head ; = a;Attention (QW?, KWE,vwY)
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them, h is the number of heads,

Q K v R R .
Wi, Wi, Wi are linear transformation matrices,

and W is used for linear transformation after
splicing [7]. An adaptive weight coefficient is used to
dynamically adjust the attention head's weight according
to the importance of the ECG signal based on
characteristic analysis in the QRS group.

Regarding position encoding, the original
Transformer adopts a sine-cosine position encoding
mode. Using fixed mathematical functions to encode
position information lacks specificity for data features.
For time series data with special physiological laws
such as ECG signals, This study introduces a new
position encoding method, as shown in (3):
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Among them, pos represents the position,
represents the dimension index, Ayoga is the model

dimension, and Y2i and Yai+1are coefficients
pre-trained according to the characteristics of the ECG

signal. In equation (3), the coefficients Y2i and

Yai+1 are learned via unsupervised pre-training on a
large ECG dataset. Specifically, we employ a contrastive
learning framework where the model is trained to
distinguish between different cardiac cycle phases (e.g.,

p y

wave, QRS complex) by optimizing to
maximize feature separability in the latent space. During
training, these coefficients are updated alongside other
model parameters using AdamW optimizer with a

learning rate of ~ le — 4.
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This project intends to use unsupervised learning
methods to study the importance of each part and
frequency component in the ECG signal [8]. For
example, in encoding the position information near the
P wave, the model can pay more attention to the
characteristic changes in this area by adjusting the
coefficients, thereby improving the ability to extract
longitudinal wave features.

This study introduces an improved multi-attention
mechanism for adaptive extraction of different features.
This paper adds time series information to the feature
expression. Then, the hierarchical naturalization
method, forward neural network and other techniques
are used to optimize the transformation of the features,
and the feature expression of the following formula (4)
is obtained:

Z = LayerNorm (X +

Multi —Head Attention (X, X, X))
Z = LayerNorm (Z + FFN (Z)) (4)
Among them, FFN is a feedforward neural network, and
Layer Norm is a layer normalization operation

2.3 Fusion of
mechanism

The complexity of the electrocardiogram is mainly
reflected in its period and frequency range. For example,
the QRS complex has a short duration and high
frequency, reflecting the process of ventricular
depolarization; At the same time, the T wave is a
ventricular repolarization process with a longer duration
and lower frequency [9]. This study designed a multi-
scale attention mechanism to capture these different
scales' features effectively.

First, define the window sizes of different scales

W1, W2, ... Wi which are set according to the
physiological characteristics and standard characteristic
cycles of the electrocardiogram signal. For each scale

T, the attention weight is calculated as shown in
formula (5):

A;j = softmax (%’Z) 5)

Among them, Kj is the key vector at scale

J . This formula calculates the similarity between
the query vector and the key vectors of different scales
to obtain the attention weight at the corresponding

scale. Taking a small-scale window (such as wr)
as an example, it can focus on high-frequency local
features such as ORS wave groups [10]. By calculating
attention weight, the model pays more attention to area
details while large windows capture low-frequency,
long-distance features such as T waves and mine long-
term dependencies.

The attention results of different scales are fused to

obtain the final attention output Afisal | as shown
in formula (6):

multi-scale  attention

m
Afina = Z ] B jAj
j=1 (6)
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The adaptive attention weight o; in equation (2) is
dynamically adjusted during training using a gating
mechanism that takes as input the frequency-domain
energy of the QRS complex. For scale fusion weights j3;
in equation (6), we introduce a learnable linear layer that
maps concatenated multi-scale features to a set of
normalized weights, ensuring optimal fusion of high-
frequency (QRS) and low-frequency (T wave)
components.

2.4 Classification model optimization and
loss function design

In terms of the classification model, the improved
multi-layer perceptron (MLP) structure is used to
improve the model's ability to recognize
electrocardiogram  features.  Traditional activation
functions such as ReLU may cause neurons to "die"
when processing some complex data, resulting in
information loss. The Swish activation function is
selected to improve the nonlinear expression ability.
Equation (7) is:

Swish (x) = x - a(x) @)

In equation (7), 0(X) denotes the sigmoid
function, defined as o(x) = 1 / (1 + exp(-x)), which
introduces non-linearity to model complex ECG feature
interactions. The Swish activation function, f(x) =
x'0(x), addresses the 'dying ReLU' problem by
maintaining smooth gradients across all input ranges
[11]. To solve the problem of too many model
parameters and overfitting issues, the paper chooses the
AdamW optimization algorithm. A weight decay
mechanism was introduced based on an Adam
optimizer.

01 = Bt_LG)I}t_)LQt

= .

Among them, B:is the parameter of Ehe

t iteration, N is the learning rate, M,
and Vi are the bias-corrected first-order moment
and second-order moment estimates, € is the
smoothing term, and A is the weight decay
coefficient.

In addition, there is a class imbalance in ECG
diagnosis. For example, in some public data sets, the
sample size of standard ECG signals may far exceed
that of rare arrhythmias. This imbalance causes the
model to learn features from the majority class samples
during training, decreasing the ability to diagnose small
sample diseases. To solve this problem, the weighted
cross-extraction function is designed according to
formula (9):

L c
L=- _Z Z WcVic lOg @ic)
N1 £y
)

Where N is the number of samples, C is the number of
categories, Yic is the actual label of sample { belonging to
category ¢, Vie is the probability predicted by the model
that sample @ belongs to category €, and We is the weight



318 Informatica 49 (2025) 315-324

of category €. The weight Wc is set according to the
inverse number of samples in each category, so the
weight of minority class samples in the loss function is
greater.

3 Intelligent diagnosis system
architecture

3.1 System overall architecture design

An intelligent diagnosis system for ECG based on

deep learning is presented in this paper. A hierarchical
structure is used for this system. Figure 1 shows the
general structure. The system consists of a data
collection layer, a data processing module, an algorithm
implementation module, a diagnostic result display
module, and a user interface [12]. These modules
interact with data and function through standardized
interfaces, forming an integrated and highly efficient
diagnostic system.
As a "sensing organ”, the data acquisition layer uses
medical-grade ECG acquisition equipment such as a 12-
lead dynamic ECG to collect original ECG signals. The
changes in cardiac electrical activity are accurately
recorded by acquiring continuous time series. The
collected data is quickly transmitted to the data
processing module through wired and wireless methods
[13]. The data processing module performs pre-
processing processes such as reading, purifying, and
normalizing raw data. Deep feature extraction and
accurate classification of the ECG signal based on an
improved transformer algorithm and a multiscale
attention mechanism. Finally, the diagnostic result
display module visually shows doctors and patients the
professional diagnostic results produced by this
algorithm. Through research in this project, it is possible
to automate ECG signal acquisition, data processing,
arithmetic analysis, and result output, to improve ECG
diagnosis efficiency and accuracy.
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Figure 1: Overall architecture of the intelligent diagnosis
system.

3.2 Data processing module

The data processing module is the basic step for
the stable operation of the entire system. Its core
function is to perform comprehensive preprocessing
and data enhancement on the original ECG data to
ensure the high quality and diversity of the data in the
input algorithm implementation module. The system is
compatible with data reading and supports various
commonly used ECG signal formats, including the
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European Data Format (EDF), MAT, etc. By
introducing dedicated data analysis libraries such as
PyEDFIlib and SciPy in EDF format parsing, fast and
accurate data reading in various formats can be
achieved, effectively avoiding errors caused by
incompatible data formats. Data cleaning is a vital link
to ensure data quality [14]. Problems such as noise,
baseline drift, and outliers inevitably occur when
collecting original ECG signals. For high-frequency
noise, the system uses wavelet analysis technology to
accurately separate and remove noise components
according to the differences in noise and signal
characteristics in different frequency bands; for
baseline drift, the polynomial fitting method is used to
dynamically correct the signal baseline to return it to
normal values; in terms of outlier processing, the 3o
principle in statistics is applied to accurately identify
and correct outlier data to ensure the authenticity and
validity of the data. Given the common problem of
limited samples in ECG data sets, data enhancement
technology is introduced into the system [15]. Many
innovative methods are used to enhance time series
data. For example, time warping technology can
perform nonlinear time-varying processing on the
original signal without changing the characteristics of
the signal itself, generate a series of new signal
samples, and simulate different heart rate states;
amplitude scaling technology can adjust the amplitude
of the signal according to a specific ratio to simulate
the change law of ECG signals in various physiological
states such as movement and stillness. In addition, this
project will also introduce enhancement methods such
as additive Gaussian noise and random sampling to
enhance the dataset from multiple dimensions and
improve the model's generalization ability for different
types of ECGs.

3.3 Algorithm implementation module

The algorithm realization module is the core part
of the intelligent diagnosis system. The main task of
this paper is to deploy improved deep learning
algorithms and perform training and inference. This
project uses flexible dynamic graph computation and
powerful GPU acceleration capability, significantly
improving algorithm training and reasoning efficiency
based on the PyTorch deep learning framework [16].
During the training stage, the data set processed by the
data processing module was divided into a training set,
a validation set, and a test set; during training, batch
gradient descent was used to train the model. The paper
sets up key hyperparameters such as learning rate,
batch size, etc, based on different data sets and model
structures. For example, during the initial stage, the
paper uses a larger learning rate to speed up
convergence. The paper adopts a gradually decreasing
learning rate during the learning process to avoid
oscillation near the optimal solution. Moreover, during
training, the loss function of the validation set is
continuously monitored, and key evaluation indicators
such as precision, recall rate, F1 value, etc., are
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monitored in real-time [17]. When overfitting a model,
people should adjust model parameters promptly or
adopt regularizes to guarantee good generalization
ability. The ECG data is input into the training model
in the inference phase. Secondly, an improved
transformer feature extraction model combined with a
multiscale attention mechanism can be used to analyze
input signals accurately and extract feature information.
Finally, the diagnosis results are output using the
classification model. This system adopts model
compression, pruning, and quantization to satisfy the
high-speed requirement for real-time diagnosis in the
clinic. The pruning method simplifies model structure
through eliminating redundant links and parameters;
the quantizing method can reduce numerical precision
of model parameters while ensuring accuracy of
diagnosis; significantly reduce the number of
parameters in the model; effectively reduce the model
calculation amount; so that the system can quickly
diagnose massive ECG signals.

Model compression techniques reduced parameter
count by 40% while maintaining >98% accuracy. On a
NVIDIA Jetson Nano edge device, inference speed
reached 230 ms per sample, meeting real-time clinical
requirements (<500 ms). Memory usage decreased
from 1.2 GB to 720 MB post-quantization, enabling
deployment on low-resource medical devices.

3.4 Diagnosis result display module

The Diagnostic Results Display Module displays its
professional diagnostic results in a straightforward, easy-
to-understand way, allowing physicians to quickly and
accurately judge the patient's condition. The system uses
advanced visualization technology to display the
waveform of the ECG signal and its essential
characteristics. Characteristic bands such as P wave,
QRS complex, and T wave can be fully displayed with
the ECG signal's time axis and voltage amplitude. The
system highlights abnormal waves with different colors
and symbols to make it easier for doctors to find lesions.
For example, when an elevated or depressed ST segment
is detected, the type and severity of the abnormality are
automatically marked in red bold pen along with
appropriate medical descriptions so that doctors can
better understand the condition. Detailed and
standardized diagnostic reports can be generated
according to the diagnostic results generated by models.
Basic information such as name, age, gender, detection
time accurate to specific moments, diagnosis results
include type of arrhythmia, severity of myocardial
ischemia, diagnostic basis, detailed description of
abnormal characteristic, combination of medical
knowledge, final opinion, further examination plan, or
initial treatment plan. The report will be presented in a
structured text so doctors can review and record more
easily. Moreover, this system can compare and analyze
diagnostic results. Comparing current diagnostic results
with patients' historical test data shows the development
trend of disease directly in a graphical form, which
provides a comprehensive and accurate reference for
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patients' individualized treatment. At the same time, a
friendly human-computer interaction interface was
designed to improve the user experience further by
clicking and sliding on the screen.

4 Experimental design and
simulation

4.1 Experimental data set selection and
division

This project takes multi-source public data as the
research object, builds a test benchmark, and ensures
the diversity and representativeness of the data. This
project is based on the MIT-BIH arrhythmia database,
including 48 dual-channel ECG records, 48 cases in
each group, 30 minutes in each group, and a sampling
frequency of 360 Hz. The data covers 16 types of
arrhythmias, including ventricular premature beats
(PVC), atrial premature contractions (PAC), ventricular
fibrillation (VF), etc., of which ventricular premature
contractions account for 28%, providing a large
number of abnormal waveform samples for model
training. This project takes the CINC2020 Challenge as
the research object, collects long-term ECG records of
more than 24 hours, and focuses on the dynamic
changes of heart states such as atrial fibrillation and
sinus rhythm. In addition, the PTB diagnostic ECG
database recorded by 290 multi-leads (15 leads) can
provide multi-dimensional ECG information for
diseases such as myocardial infarction and left
ventricular hypertrophy.

The data set is divided according to the ratio of
7:1:2, and a stratified sampling strategy is adopted to
ensure the balanced distribution of diseases in each
sub-region. In the MIT-BIH database, the training set
contains 77,000 heartbeat samples, 11,000 confirmation
samples for hyperparameter adjustment, and 22,000 test
sets to evaluate the model's prediction ability
independently. When integrating multi-source data, the
sampling frequencies of different data sets are
uniformly resampled, and the 250Hz data of the CINC
2020 data set is interpolated to 360Hz to ensure the
consistency of data features.

4.2 Experimental environment and
parameter settings

This project is based on a high-performance
computing platform. It uses an Intel Xeon Gold 6248 R
(20 cores and 40 threads) processor, which can
efficiently handle complex computing tasks such as
data preprocessing and model training. Dual Nvidia
Tesla V100 GPUs (32 GB video memory) support
parallel computing, which can increase computing
efficiency by about 8 times during the model training
stage. 512 GB and 2 TB NVVMe SSD solid-state storage
ensure high-speed data reading and writing, and the
reading time for a batch of 128 samples does not
exceed 0.3 seconds. This paper uses Python 3.9 as the
platform to build an experimental environment and
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implements the algorithm using the PyTorch 1.12 deep
learning framework. Pandas 1.4.4 and NumPy 1.22.3
are used to preprocess the data, and Matplotlib 3.5.2
and Seaborn 0.11.2 are used for visualization. During
the model training process, WandB is used to visualize
and track the experimental parameters and results, and
the training process is monitored in real time. Through
multiple rounds of cross-validation, the training
parameters of the model were determined. The learning
rate was set to 0.0005, and the cosine annealing
learning rate adjustment strategy was adopted to make
the network converge quickly in the early stage. The
dynamic descent method was used in the later stage to
prevent overfitting. The number of iterations was set to
120. According to the change of the confirmation set's
loss curve, the model's performance reached the best
balance point under this number of cycles. The 384-
dimensional hidden layer dimension was used, which
improved the feature expression ability compared with
the 256-dimensional one and avoided the overfitting of
the 512-dimensional one. The batch size was set to 128
to achieve the optimal match between memory
utilization and training stability.

4.3 Selection of evaluation indicators

This experiment uses a multi-dimensional
evaluation system to evaluate the model's performance
comprehensively. The accuracy rate refers to the total
correct prediction rate of the model, which reflects the
basic diagnostic ability of the model. The recall rate
focuses on evaluating the ability of the model to
identify positive samples and avoid missing key cases.
F1 is the harmonic mean of the accuracy rate and the
recall rate, which can better reflect the comprehensive
performance of the model under class imbalance. The
area under the subject operating characteristic curve
(AUC) is a comprehensive evaluation of the positive
and negative samples of the model. Its value range is O-
1. The closer to 1, the better the classification effect of
the model. Taking ventricular premature beats as an
example, a higher response rate can detect potential
risks in time, and a higher re-examination rate can
reduce the number of repeated examinations. Because
the F1 value is balanced, the model has good stability
in diagnosing different types of diseases. AUC can be
used as a quantitative basis for clinical decision-
making. AUC greater than 0.95 indicates that the
model has a high diagnostic credibility.

4.4 Controlled experimental design

Three contrast algorithms were selected: 1) classic
network models, such as ResNet-18, LSTM, etc.; 2)
improved  algorithms, such as CBAM-CNN
(convolutional block attention mechanism); 3) cutting-
edge algorithms, such as multi-mode fusion neural
network (Network), etc.

ResNet-18 uses residual connectivity to solve the
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difficulty of deep neural network training, long short-
term memory (LSTM) to gate time series data, CBAM-
CNN to extract features based on an attention
mechanism, and a hybrid neural network to fuse time
domain and frequency domain features, which have
achieved good results in previous studies.

Code and preprocessed datasets are available
at: https://github.com/ECG-Transformer-Diagnosis. A
reproducibility checklist is included in the repository,
detailing  environment  setup,  hyperparameter
configurations, and evaluation protocols.

All algorithms run in a unified hardware and
software environment and use a unified data set
partitioning strategy. In the training phase, the
hyperparameter grid search method is used to optimize
each algorithm and evaluate the performance of
different parameter combinations. Taking the extended
short-term memory network as the research object, the
optimal parameter combination is obtained by jointly
testing the number of hidden layers (2-4 layers), the
number of neurons (128-256), and the learning rate
(0.001-0.0001). In the experimental stage, an
independent test set was used to evaluate the model,
and three average tests were performed to ensure the
reliability of the results. For comparative models:

e ResNet-18: 18-layer residual network with
input window size of 1024, trained with SGD
optimizer (Ir=0.01, momentum=0.9).

e LSTM: 2-layer network with 256 hidden units,
dropout rate=0.2, using Adam optimizer
(Ir=0.001).

e CBAM-CNN: 5-layer CNN with channel-
spatial attention, input window=512, 1r=0.0005.

e  Hybrid Net: 3-layer CNN-LSTM fusion

e model, Ir=0.001.

All models used a batch size of 64 and were trained for
100 epochs.

4.5 Experimental results and analysis
4.5.1 Overall performance comparison

The algorithm in this paper is significantly ahead in
various indicators, with an accuracy rate of 2.0% higher
than Hybrid Net, a recall rate of 2.2%, and an AUC of
0.009. This shows that the improved Transformer
architecture and multi-scale attention mechanism
effectively enhance the feature extraction capability and
reduce the missed diagnosis and misdiagnosis rates.
Table 1 shows the comprehensive performance of each
algorithm on the test set.
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Table 1: Comprehensive performance of each algorithm
on the test set.

Algorithm Accuracy Recal F1value | AUC
;arlhf)rithm in 98.70 98. 98. 0
goritn % 30% 50% 992

this article
93.20 92. 92. 0
ResNet-18 | o, 50% 80% 958
94.10 93. 93. 0
LSTM % 40% 70% .965
CBAM- 95.80 95. 95. 0
CNN % 20% 50% .978
. 96.70 96. 96. 0
Hybrid Net | 10% 40% 983

4.5.2 Cmparison of disease classification
performance

In the diagnosis of ventricular fibrillation, the accuracy
of this algorithm reached 99.2%, which is 1.5% higher
than that of Hybrid Net. When the disease occurs, the
ECG signal shows  high-frequency  disorder
characteristics. The multi-scale attention mechanism of
this algorithm can effectively capture abnormal
fluctuations at different time scales and achieve accurate
identification. Table 2 shows the diagnosis results of
various algorithms for five common arrhythmias.

4.5.3 Analysis of the training process

Figure 2 shows the changing trend of the accuracy of
each algorithm as a function of the number of training
times. After 30 training rounds, the algorithm's accuracy
has exceeded 95%, and the accuracy after 60 rounds
remains above 98%. The accuracy of the ResNet-18
algorithm fluctuates in the later stages of training, while
the LSTM algorithm converges slowly due to the
vanishing gradient.

Table 2: Diagnosis results of different algorithms for five
common arrhythmias.

Prem | Atri
ature | al
Algorit ventr | pre Venricular Sinus | Atrioven
hrr? icular | mat fibrillation rhyth | tricular
contr | ure m block
actio beat
ns s
The
algorith | g5 95 | g1 99.50
m in ' . 99.20% ' 97.80%
. % 0% %
this
article
ResNNet- | 22:30 1 507 | 93.50% 220 | 90.80%
LSTM 09/3'60 gf/f 94.70% ;‘:_"10 91.60%
CBAM- | 9550 | 94.9 o 97.30 o
CNN % 0% 96.80% % 93.20%
Hybrid 96.80 | 96.3 o 98.10 o
Net % 0% 97.70% % 94.50%
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Figure 2: The accuracy trend of each algorithm with
the number of training rounds.

Loss vs. Training Epochs
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Figure 3: Loss function decline curve.

Figure 3 shows the decreasing curve of the loss
function. After 80 rounds of training, the loss value of
the algorithm dropped to 0.052, which is much lower
than other algorithms. The improved Transformer
framework accelerates the convergence of model
parameters and reduces the number of training iterations
through adaptive allocation of weights.

4.5.4 Generalization ability evaluation

Figure 4 compares the F1 value performance of
various algorithms in different data sets. In the three
data sets of MIT-BIH, CINC2020, and PTB, the F1
fluctuation of this algorithm is only 1.2%, while the
fluctuation of ResNet-18 is only 4.1%. The
experimental results show that the algorithm proposed
in this paper is robust to data with different sample
frequencies, different numbers of leads, and other
disease types, and can effectively avoid performance
degradation caused by uneven data distribution.

F1 Score on Different Datasets

.09 Our Method

ResNet—18
LSTM
GBAM-CNN
Hybr idNet

o
o

F1 Score
o
o

o
'S

0.21

MIT-BIH

GINC 2020 PTB
Datasets

Figure 4: F1 value performance of each algorithm
on different data sets.
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Ablation studies were conducted to validate
component contributions:

e Removing multi-scale
accuracy by 1.8%.

e Replacing adaptive positional encoding with
sinusoidal encoding decreased F1 by 1.2%.

e Disabling data augmentation increased
validation loss by 0.15.

e These results confirm the critical role of
proposed mechanisms in preventing overfitting
and enhancing feature representation.

attention  reduced

The algorithm's excellent performance comes from
the  architectural innovation and  mechanism
optimization. This study introduces an ECG signal
extraction method based on dynamic weight allocation
and uses a multi-scale attention mechanism to achieve
effective fusion of different frequency components.
Previous studies have found that the model still has
deficiencies in recognizing low-frequency arrhythmias
(such as wventricular flutter), which need further
research. In addition, this project will also explore
technologies such as model pruning and knowledge
extraction to improve the feasibility of edge device
deployment.

Statistical ~ significance was assessed using
Wilcoxon signed-rank tests (0=0.05). The proposed
method achieved p<0.001 for all performance metrics
compared to baseline models, with 95% confidence
intervals for accuracy: 98.7% + 0.3%, significantly
outperforming Hybrid Net (96.7% * 0.5%).

5 Conclusion

This project intends to build a deep learning
intelligent diagnosis system for ECG based on deep
learning. The paper can improve the detection and
classification of ECG signals through a multi-scale
attention mechanism and an optimized classification
model. Experimental results show that the proposed
algorithm is superior to traditional and mainstream
deep learning algorithms, showing a promising
prospect in clinical settings. However, this research has
limitations. First of all, experimental data come from
the MIT-BIH arrhythmia database. While the proposed
method excels in arrhythmia detection, its current
design focuses on short-term ECG segments (30-
minute records), limiting sensitivity to chronic
conditions like myocardial infarction that require long-
term ST-segment trend analysis. Future work will
extend the model to multi-lead, long-duration signals
and incorporate XAl techniques (e.g., Grad-CAM) to
enhance interpretability for clinical validation.
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