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This study introduces an intelligent diagnosis method based on an improved Transformer, which 

introduces a multi-scale attention mechanism into the fine feature extraction of the ECG signal, 

further optimizes the classification model, enhances the loss function, and improves the diagnosis 

accuracy. This project intends to use the MIT-BIH arrhythmia database as the research object. It 

divides it into training set, validation set, and test set according to 7:2:1. Experiments show that the 

accuracy of arrhythmia classification of the method proposed in this paper reaches 98.6%, the recall 

rate is 98.2%, and the F1 value is 98.4%. Compared with the traditional model, its accuracy is 

improved by 3.2%, 2.8%, and 3.0%, respectively. Compared with other mainstream deep learning 

algorithms such as ResNet and Dense Net, the performance indicators of this algorithm have been 

greatly improved. The research results of this project will provide an efficient and accurate solution 

for the intelligent diagnosis of ECG signals. It has important scientific significance and practical 

value. 

Povzetek: Izboljšani transformer z večluskostno pozornostjo za analizo EKG (MIT-BIH, delitev 7:2:1) 

prinese 3% prednosti pred klasičnimi/modeli CNN (ResNet/DenseNet). Uporabi adaptivno 

pozicioniranje, uteži, uteženo izgubo in lahkotno izvedbo v realnem času. 

 

1 Introduction 

Cardiovascular diseases (CVDs) are one of the 

diseases with the highest mortality rates in the world, 

which seriously threatens human health. The latest 

report of the World Health Organization shows that the 

number of people who die from CVDs each year is 

about 17.9 million, of which about 85% are caused by 

myocardial infarction or stroke. An electrocardiogram 

is an essential means of clinical diagnosis of 

cardiovascular diseases. It can effectively reflect the 

physiological and pathological state of the heart by 

recording ECG signals. ECG signals contain a variety 

of characteristic frequency bands, such as P wave, QRS 

complex, T wave, and slight changes in their 

morphology, amplitude, and time interval may be 

related to the occurrence of various heart diseases. 

However, traditional ECG diagnosis methods are 

mainly done through manual interpretation and simple 

rule matching. Manual diagnosis is not only time-

consuming and laborious, but subjective factors such as 

the doctor's experience and fatigue level will affect the 

accuracy of the diagnosis. The previous survey of 

primary medical institutions found that among patients 

with complex arrhythmias, the manual diagnosis rate 

was as high as 25%, and the misdiagnosis rate was as 

high as 15%, which could not meet the urgent needs of 

clinical diagnosis and treatment efficiency and 

accuracy. In addition, the automatic diagnosis system  

 

based on rule matching has limitations in diagnosing 

new and rare diseases. 

Deep learning has made significant progress in 

ECG analysis in recent years due to its robust feature 

extraction and pattern recognition [1]. Convolutional 

Neural Network (CNN) based on Local Perceptual 

Field Weight Sharing (LNN) can automatically extract 

spatial features from ECG signals, performing well in 

arrhythmia classification. For example, using a multi-

layer convolutional neural network framework, an 

accuracy of 89.2% for the MIT-BIH arrhythmia 

database has been achieved, effectively improving the 

ability to recognize common arrhythmia types. 

Recurrent Neural Networks (RNN) and their variants, 

LSTM or GRU, are better at capturing temporal 

features of ECG signals because of their unique 

memory cell structure. In reference [2], the accuracy of 

arrhythmia diagnosis will be increased to 91.5%, 

providing a new approach for ECG dynamics analysis. 

However, these methods have obvious shortcomings. 

However, deep convolutional neural networks can't 

model long-sequence correlation of long sequence data 

effectively; Recursive neural networks can easily result 

in gradient vanishing and gradient explosion while 

processing complex waveforms, resulting in difficult 

training, incomplete feature extraction, and low 

precision. 

The appearance of the Transformer frame makes a 

breakthrough in ECG diagnosis. The proposed 

algorithm performs better in natural language 
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processing and image recognition [3]. It has been 

proven that using the Transformer method to diagnose 

ECG is a good way to reflect on the relationship 

between components in ECG. However, current 

Transformer-based ECG diagnostic methods still have 

many problems. For one thing, the traditional 

transformer cannot capture the ECG signal's multiscale 

feature. The high-frequency component in the QRS 

complex is different from that in the T wave in the 

ECG signal [4]. However, the traditional Transformer 

method has difficulty in extracting multiscale features 

effectively. On the other hand, due to its large number 

of model parameters and high computational 

complexity, its extensive scale application has been 

restricted due to its difficulty in real-time diagnosis. 

This paper presents an intelligent diagnostic system for 

ECG based on a modified transformer. The core 

innovation of this project is as follows: (1) An adaptive 

weight allocation strategy is introduced, combined with a 

modified position coding method, which improves the 

ability of extracting time features from ECG signals, 

making ECG dynamic change more accurate. (2) A 

multiscale attention model is designed to adjust the 

attention weights automatically based on temporal and 

frequency-domain features of ECG signals so that the 

model can analyze complicated ECG signals. (3) A 

lightweight intelligent diagnostic system framework is 

constructed, which is combined with data enhancement 

technology to expand the variety of training data. 

 

2  Algorithm design of ECG signal 

intelligent diagnosis system based on 

deep learning 

2.1 Algorithm design ideas 

ECG signals contain P, QRS, and T waves, which are 

ever-changing under normal and pathological conditions 

[5]. They have temporal continuity and frequency 

differences, which put higher requirements on the 

algorithm. Traditional deep learning algorithms have the 

following shortcomings: convolutional neural networks 

are complex to reflect the long-range correlation of ECG 

signals; recurrent neural networks are prone to produce 

gradients under complex waveforms; standardized 

transformers cannot effectively fuse multi-scale features 

[6]. This paper combines an improved Transformer 

framework with a multi-scale attention mechanism, 

optimized position coding, adaptive weight allocation, 

etc. Achieving complex feature fusion can improve the 

ability to recognize the ECG signal. 

2.2 Application of improved Transformer 

algorithm in ECG signal feature extraction 

In the Transformer framework, the multi-attention 

mechanism is a key component in realizing feature 

interaction and extraction. This method calculates the 

similarity between query vector Q, key vector K, and 

value vector V, and calculates the formula: 

(1) 

Among them,  are query vector, key 

vector and value vector respectively, and  is 

the dimension of key vector. Although this mechanism 

can calculate the correlation between each position in 

parallel, it cannot adaptively adjust the importance of 

different features for data with specific timing rules 

such as ECG signals. 

This project improves the long-term attention mechanism 

based on the time-varying characteristics of ECG signals. 

An adaptive weight coefficient  in the range of [0,1] is 

proposed, and the contribution of each attention head is 

dynamically adjusted during training. The improved 

multi-attention mechanism is calculated in formula (2): 

   (2) 

Among them,  is the number of heads, 

  are linear transformation matrices, 

and  is used for linear transformation after 

splicing [7]. An adaptive weight coefficient is used to 

dynamically adjust the attention head's weight according 

to the importance of the ECG signal based on 

characteristic analysis in the QRS group. 

Regarding position encoding, the original 

Transformer adopts a sine-cosine position encoding 

mode. Using fixed mathematical functions to encode 

position information lacks specificity for data features. 

For time series data with special physiological laws 

such as ECG signals, This study introduces a new 

position encoding method, as shown in (3): 

(3) 

Among them, pos represents the position,  

represents the dimension index,  is the model 

dimension, and  and  are coefficients 

pre-trained according to the characteristics of the ECG 

signal. In equation (3), the coefficients  and 

 are learned via unsupervised pre-training on a 

large ECG dataset. Specifically, we employ a contrastive 

learning framework where the model is trained to 

distinguish between different cardiac cycle phases (e.g., 

 wave, QRS complex) by optimizing  to 

maximize feature separability in the latent space. During 

training, these coefficients are updated alongside other 

model parameters using AdamW optimizer with a 

learning rate of  
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This project intends to use unsupervised learning 

methods to study the importance of each part and 

frequency component in the ECG signal [8]. For 

example, in encoding the position information near the 

P wave, the model can pay more attention to the 

characteristic changes in this area by adjusting the 

coefficients, thereby improving the ability to extract 

longitudinal wave features. 

This study introduces an improved multi-attention 

mechanism for adaptive extraction of different features. 

This paper adds time series information to the feature 

expression. Then, the hierarchical naturalization 

method, forward neural network and other techniques 

are used to optimize the transformation of the features, 

and the feature expression of the following formula (4) 

is obtained: 

  

Multi  

(4) 

Among them, FFN is a feedforward neural network, and 

Layer Norm is a layer normalization operation 

 

2.3 Fusion of multi-scale attention 

mechanism 

The complexity of the electrocardiogram is mainly 

reflected in its period and frequency range. For example, 

the QRS complex has a short duration and high 

frequency, reflecting the process of ventricular 

depolarization; At the same time, the T wave is a 

ventricular repolarization process with a longer duration 

and lower frequency [9]. This study designed a multi-

scale attention mechanism to capture these different 

scales' features effectively. 

First, define the window sizes of different scales 

, which are set according to the 

physiological characteristics and standard characteristic 

cycles of the electrocardiogram signal. For each scale 

, the attention weight is calculated as shown in 

formula (5): 

(5) 

Among them,  is the key vector at scale 

. This formula calculates the similarity between 

the query vector and the key vectors of different scales 

to obtain the attention weight at the corresponding 

scale. Taking a small-scale window (such as ) 

as an example, it can focus on high-frequency local 

features such as ORS wave groups [10]. By calculating 

attention weight, the model pays more attention to area 

details while large windows capture low-frequency, 

long-distance features such as T waves and mine long-

term dependencies. 

The attention results of different scales are fused to 

obtain the final attention output , as shown 

in formula (6): 

(6) 

The adaptive attention weight αᵢ in equation (2) is 

dynamically adjusted during training using a gating 

mechanism that takes as input the frequency-domain 

energy of the QRS complex. For scale fusion weights βⱼ 

in equation (6), we introduce a learnable linear layer that 

maps concatenated multi-scale features to a set of 

normalized weights, ensuring optimal fusion of high-

frequency (QRS) and low-frequency (T wave) 

components. 

2.4 Classification model optimization and 

loss function design 

In terms of the classification model, the improved 

multi-layer perceptron (MLP) structure is used to 

improve the model's ability to recognize 

electrocardiogram features. Traditional activation 

functions such as ReLU may cause neurons to "die" 

when processing some complex data, resulting in 

information loss. The Swish activation function is 

selected to improve the nonlinear expression ability. 

Equation (7) is: 

(7) 

In equation (7),  denotes the sigmoid 

function, defined as σ(x) = 1 / (1 + exp(-x)), which 

introduces non-linearity to model complex ECG feature 

interactions. The Swish activation function, f(x) = 

x·σ(x), addresses the 'dying ReLU' problem by 

maintaining smooth gradients across all input ranges 

[11]. To solve the problem of too many model 

parameters and overfitting issues, the paper chooses the 

AdamW optimization algorithm. A weight decay 

mechanism was introduced based on an Adam 

optimizer. 

(8) 

Among them, is the parameter of the 

 iteration,  is the learning rate,   

and   are the bias-corrected first-order moment 

and second-order moment estimates,  is the 

smoothing term, and  is the weight decay 

coefficient. 

In addition, there is a class imbalance in ECG 

diagnosis. For example, in some public data sets, the 

sample size of standard ECG signals may far exceed 

that of rare arrhythmias. This imbalance causes the 

model to learn features from the majority class samples 

during training, decreasing the ability to diagnose small 

sample diseases. To solve this problem, the weighted 

cross-extraction function is designed according to 

formula (9):  

(9) 

 Where  is the number of samples,  is the number of 

categories,  is the actual label of sample  belonging to 

category ,   is the probability predicted by the model 

that sample  belongs to category , and  is the weight 
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of category . The weight   is set according to the 

inverse number of samples in each category, so the 

weight of minority class samples in the loss function is 

greater. 

3   Intelligent diagnosis system 

architecture 

3.1 System overall architecture design 

An intelligent diagnosis system for ECG based on 

deep learning is presented in this paper. A hierarchical 

structure is used for this system. Figure 1 shows the 

general structure. The system consists of a data 

collection layer, a data processing module, an algorithm 

implementation module, a diagnostic result display 

module, and a user interface [12]. These modules 

interact with data and function through standardized 

interfaces, forming an integrated and highly efficient 

diagnostic system. 

As a "sensing organ", the data acquisition layer uses 

medical-grade ECG acquisition equipment such as a 12-

lead dynamic ECG to collect original ECG signals. The 

changes in cardiac electrical activity are accurately 

recorded by acquiring continuous time series. The 

collected data is quickly transmitted to the data 

processing module through wired and wireless methods 

[13]. The data processing module performs pre-

processing processes such as reading, purifying, and 

normalizing raw data. Deep feature extraction and 

accurate classification of the ECG signal based on an 

improved transformer algorithm and a multiscale 

attention mechanism. Finally, the diagnostic result 

display module visually shows doctors and patients the 

professional diagnostic results produced by this 

algorithm. Through research in this project, it is possible 

to automate ECG signal acquisition, data processing, 

arithmetic analysis, and result output, to improve ECG 

diagnosis efficiency and accuracy. 

 

 
Figure 1: Overall architecture of the intelligent diagnosis 

system. 

3.2 Data processing module 

The data processing module is the basic step for 

the stable operation of the entire system. Its core 

function is to perform comprehensive preprocessing 

and data enhancement on the original ECG data to 

ensure the high quality and diversity of the data in the 

input algorithm implementation module. The system is 

compatible with data reading and supports various 

commonly used ECG signal formats, including the 

European Data Format (EDF), MAT, etc. By 

introducing dedicated data analysis libraries such as 

PyEDFlib and SciPy in EDF format parsing, fast and 

accurate data reading in various formats can be 

achieved, effectively avoiding errors caused by 

incompatible data formats. Data cleaning is a vital link 

to ensure data quality [14]. Problems such as noise, 

baseline drift, and outliers inevitably occur when 

collecting original ECG signals. For high-frequency 

noise, the system uses wavelet analysis technology to 

accurately separate and remove noise components 

according to the differences in noise and signal 

characteristics in different frequency bands; for 

baseline drift, the polynomial fitting method is used to 

dynamically correct the signal baseline to return it to 

normal values; in terms of outlier processing, the 3σ 

principle in statistics is applied to accurately identify 

and correct outlier data to ensure the authenticity and 

validity of the data. Given the common problem of 

limited samples in ECG data sets, data enhancement 

technology is introduced into the system [15]. Many 

innovative methods are used to enhance time series 

data. For example, time warping technology can 

perform nonlinear time-varying processing on the 

original signal without changing the characteristics of 

the signal itself, generate a series of new signal 

samples, and simulate different heart rate states; 

amplitude scaling technology can adjust the amplitude 

of the signal according to a specific ratio to simulate 

the change law of ECG signals in various physiological 

states such as movement and stillness. In addition, this 

project will also introduce enhancement methods such 

as additive Gaussian noise and random sampling to 

enhance the dataset from multiple dimensions and 

improve the model's generalization ability for different 

types of ECGs. 

3.3 Algorithm implementation module 

The algorithm realization module is the core part 

of the intelligent diagnosis system. The main task of 

this paper is to deploy improved deep learning 

algorithms and perform training and inference. This 

project uses flexible dynamic graph computation and 

powerful GPU acceleration capability, significantly 

improving algorithm training and reasoning efficiency 

based on the PyTorch deep learning framework [16]. 

During the training stage, the data set processed by the 

data processing module was divided into a training set, 

a validation set, and a test set; during training, batch 

gradient descent was used to train the model. The paper 

sets up key hyperparameters such as learning rate, 

batch size, etc, based on different data sets and model 

structures. For example, during the initial stage, the 

paper uses a larger learning rate to speed up 

convergence. The paper adopts a gradually decreasing 

learning rate during the learning process to avoid 

oscillation near the optimal solution. Moreover, during 

training, the loss function of the validation set is 

continuously monitored, and key evaluation indicators 

such as precision, recall rate, F1 value, etc., are 
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monitored in real-time [17]. When overfitting a model, 

people should adjust model parameters promptly or 

adopt regularizes to guarantee good generalization 

ability. The ECG data is input into the training model 

in the inference phase. Secondly, an improved 

transformer feature extraction model combined with a 

multiscale attention mechanism can be used to analyze 

input signals accurately and extract feature information. 

Finally, the diagnosis results are output using the 

classification model. This system adopts model 

compression, pruning, and quantization to satisfy the 

high-speed requirement for real-time diagnosis in the 

clinic. The pruning method simplifies model structure 

through eliminating redundant links and parameters; 

the quantizing method can reduce numerical precision 

of model parameters while ensuring accuracy of 

diagnosis; significantly reduce the number of 

parameters in the model; effectively reduce the model 

calculation amount; so that the system can quickly 

diagnose massive ECG signals. 

Model compression techniques reduced parameter 

count by 40% while maintaining >98% accuracy. On a 

NVIDIA Jetson Nano edge device, inference speed 

reached 230 ms per sample, meeting real-time clinical 

requirements (≤500 ms). Memory usage decreased 

from 1.2 GB to 720 MB post-quantization, enabling 

deployment on low-resource medical devices. 

3.4 Diagnosis result display module 

The Diagnostic Results Display Module displays its 

professional diagnostic results in a straightforward, easy-

to-understand way, allowing physicians to quickly and 

accurately judge the patient's condition. The system uses 

advanced visualization technology to display the 

waveform of the ECG signal and its essential 

characteristics. Characteristic bands such as P wave, 

QRS complex, and T wave can be fully displayed with 

the ECG signal's time axis and voltage amplitude. The 

system highlights abnormal waves with different colors 

and symbols to make it easier for doctors to find lesions. 

For example, when an elevated or depressed ST segment 

is detected, the type and severity of the abnormality are 

automatically marked in red bold pen along with 

appropriate medical descriptions so that doctors can 

better understand the condition. Detailed and 

standardized diagnostic reports can be generated 

according to the diagnostic results generated by models. 

Basic information such as name, age, gender, detection 

time accurate to specific moments, diagnosis results 

include type of arrhythmia, severity of myocardial 

ischemia, diagnostic basis, detailed description of 

abnormal characteristic, combination of medical 

knowledge, final opinion, further examination plan, or 

initial treatment plan. The report will be presented in a 

structured text so doctors can review and record more 

easily. Moreover, this system can compare and analyze 

diagnostic results. Comparing current diagnostic results 

with patients' historical test data shows the development 

trend of disease directly in a graphical form, which 

provides a comprehensive and accurate reference for 

patients' individualized treatment. At the same time, a 

friendly human-computer interaction interface was 

designed to improve the user experience further by 

clicking and sliding on the screen. 

4 Experimental design and 

simulation 

4.1 Experimental data set selection and 

division 

This project takes multi-source public data as the 

research object, builds a test benchmark, and ensures 

the diversity and representativeness of the data. This 

project is based on the MIT-BIH arrhythmia database, 

including 48 dual-channel ECG records, 48 cases in 

each group, 30 minutes in each group, and a sampling 

frequency of 360 Hz. The data covers 16 types of 

arrhythmias, including ventricular premature beats 

(PVC), atrial premature contractions (PAC), ventricular 

fibrillation (VF), etc., of which ventricular premature 

contractions account for 28%, providing a large 

number of abnormal waveform samples for model 

training. This project takes the CINC2020 Challenge as 

the research object, collects long-term ECG records of 

more than 24 hours, and focuses on the dynamic 

changes of heart states such as atrial fibrillation and 

sinus rhythm. In addition, the PTB diagnostic ECG 

database recorded by 290 multi-leads (15 leads) can 

provide multi-dimensional ECG information for 

diseases such as myocardial infarction and left 

ventricular hypertrophy. 

The data set is divided according to the ratio of 

7:1:2, and a stratified sampling strategy is adopted to 

ensure the balanced distribution of diseases in each 

sub-region. In the MIT-BIH database, the training set 

contains 77,000 heartbeat samples, 11,000 confirmation 

samples for hyperparameter adjustment, and 22,000 test 

sets to evaluate the model's prediction ability 

independently. When integrating multi-source data, the 

sampling frequencies of different data sets are 

uniformly resampled, and the 250Hz data of the CINC 

2020 data set is interpolated to 360Hz to ensure the 

consistency of data features. 

4.2 Experimental environment and 

parameter settings 

This project is based on a high-performance 

computing platform. It uses an Intel Xeon Gold 6248 R 

(20 cores and 40 threads) processor, which can 

efficiently handle complex computing tasks such as 

data preprocessing and model training. Dual Nvidia 

Tesla V100 GPUs (32 GB video memory) support 

parallel computing, which can increase computing 

efficiency by about 8 times during the model training 

stage. 512 GB and 2 TB NVMe SSD solid-state storage 

ensure high-speed data reading and writing, and the 

reading time for a batch of 128 samples does not 

exceed 0.3 seconds. This paper uses Python 3.9 as the 

platform to build an experimental environment and 
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implements the algorithm using the PyTorch 1.12 deep 

learning framework. Pandas 1.4.4 and NumPy 1.22.3 

are used to preprocess the data, and Matplotlib 3.5.2 

and Seaborn 0.11.2 are used for visualization. During 

the model training process, WandB is used to visualize 

and track the experimental parameters and results, and 

the training process is monitored in real time. Through 

multiple rounds of cross-validation, the training 

parameters of the model were determined. The learning 

rate was set to 0.0005, and the cosine annealing 

learning rate adjustment strategy was adopted to make 

the network converge quickly in the early stage. The 

dynamic descent method was used in the later stage to 

prevent overfitting. The number of iterations was set to 

120. According to the change of the confirmation set's 

loss curve, the model's performance reached the best 

balance point under this number of cycles. The 384-

dimensional hidden layer dimension was used, which 

improved the feature expression ability compared with 

the 256-dimensional one and avoided the overfitting of 

the 512-dimensional one. The batch size was set to 128 

to achieve the optimal match between memory 

utilization and training stability. 

4.3 Selection of evaluation indicators 

This experiment uses a multi-dimensional 

evaluation system to evaluate the model's performance 

comprehensively. The accuracy rate refers to the total 

correct prediction rate of the model, which reflects the 

basic diagnostic ability of the model. The recall rate 

focuses on evaluating the ability of the model to 

identify positive samples and avoid missing key cases. 

F1 is the harmonic mean of the accuracy rate and the 

recall rate, which can better reflect the comprehensive 

performance of the model under class imbalance. The 

area under the subject operating characteristic curve 

(AUC) is a comprehensive evaluation of the positive 

and negative samples of the model. Its value range is 0-

1. The closer to 1, the better the classification effect of 

the model. Taking ventricular premature beats as an 

example, a higher response rate can detect potential 

risks in time, and a higher re-examination rate can 

reduce the number of repeated examinations. Because 

the F1 value is balanced, the model has good stability 

in diagnosing different types of diseases. AUC can be 

used as a quantitative basis for clinical decision-

making. AUC greater than 0.95 indicates that the 

model has a high diagnostic credibility. 

4.4 Controlled experimental design 

Three contrast algorithms were selected: 1) classic 

network models, such as ResNet-18, LSTM, etc.; 2) 

improved algorithms, such as CBAM-CNN 

(convolutional block attention mechanism); 3) cutting-

edge algorithms, such as multi-mode fusion neural 

network (Network), etc.  

 

 

ResNet-18 uses residual connectivity to solve the 

difficulty of deep neural network training, long short-

term memory (LSTM) to gate time series data, CBAM-

CNN to extract features based on an attention 

mechanism, and a hybrid neural network to fuse time 

domain and frequency domain features, which have 

achieved good results in previous studies. 

Code and preprocessed datasets are available 

at: https://github.com/ECG-Transformer-Diagnosis. A 

reproducibility checklist is included in the repository, 

detailing environment setup, hyperparameter 

configurations, and evaluation protocols. 

All algorithms run in a unified hardware and 

software environment and use a unified data set 

partitioning strategy. In the training phase, the 

hyperparameter grid search method is used to optimize 

each algorithm and evaluate the performance of 

different parameter combinations. Taking the extended 

short-term memory network as the research object, the 

optimal parameter combination is obtained by jointly 

testing the number of hidden layers (2-4 layers), the 

number of neurons (128-256), and the learning rate 

(0.001-0.0001). In the experimental stage, an 

independent test set was used to evaluate the model, 

and three average tests were performed to ensure the 

reliability of the results. For comparative models: 

• ResNet-18: 18-layer residual network with 

input window size of 1024, trained with SGD 

optimizer (lr=0.01, momentum=0.9). 

• LSTM: 2-layer network with 256 hidden units, 

dropout rate=0.2, using Adam optimizer 

(lr=0.001). 

• CBAM-CNN: 5-layer CNN with channel-

spatial attention, input window=512, lr=0.0005. 

• Hybrid Net: 3-layer CNN-LSTM fusion  

• model, lr=0.001. 

All models used a batch size of 64 and were trained for 

100 epochs. 

4.5 Experimental results and analysis 

4.5.1 Overall performance comparison 

The algorithm in this paper is significantly ahead in 

various indicators, with an accuracy rate of 2.0% higher 

than Hybrid Net, a recall rate of 2.2%, and an AUC of 

0.009. This shows that the improved Transformer 

architecture and multi-scale attention mechanism 

effectively enhance the feature extraction capability and 

reduce the missed diagnosis and misdiagnosis rates. 

Table 1 shows the comprehensive performance of each 

algorithm on the test set. 
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Table 1: Comprehensive performance of each algorithm 

on the test set. 
Algorithm Accuracy Recal F1 value AUC 

The 

algorithm in 

this article 

98.70

% 

98.

30% 

98.

50% 

0

.992 

ResNet-18 
93.20

% 

92.

50% 

92.

80% 

0

.958 

LSTM 
94.10

% 

93.

40% 

93.

70% 

0

.965 

CBAM-

CNN 

95.80

% 

95.

20% 

95.

50% 

0

.978 

Hybrid Net 
96.70

% 

96.

10% 

96.

40% 

0

.983 

4.5.2 Cmparison of disease classification 

performance 

In the diagnosis of ventricular fibrillation, the accuracy 

of this algorithm reached 99.2%, which is 1.5% higher 

than that of Hybrid Net. When the disease occurs, the 

ECG signal shows high-frequency disorder 

characteristics. The multi-scale attention mechanism of 

this algorithm can effectively capture abnormal 

fluctuations at different time scales and achieve accurate 

identification. Table 2 shows the diagnosis results of 

various algorithms for five common arrhythmias. 

4.5.3 Analysis of the training process 

Figure 2 shows the changing trend of the accuracy of 

each algorithm as a function of the number of training 

times. After 30 training rounds, the algorithm's accuracy 

has exceeded 95%, and the accuracy after 60 rounds 

remains above 98%. The accuracy of the ResNet-18 

algorithm fluctuates in the later stages of training, while 

the LSTM algorithm converges slowly due to the 

vanishing gradient. 

 

Table 2: Diagnosis results of different algorithms for five 

common arrhythmias. 

Algorit

hm 

Prem

ature 

ventr

icular 

contr

actio

ns 

Atri

al 

pre

mat

ure 

beat

s 

Venricular 

fibrillation 

Sinus 

rhyth

m 

Atrioven

tricular 

block 

The 

algorith
m in 

this 

article 

98.90

% 

98.1

0% 
99.20% 

99.50

% 
97.80% 

ResNet-

18 

92.30

% 

91.7

0% 
93.50% 

94.20

% 
90.80% 

LSTM 
93.60

% 

92.8

0% 
94.70% 

95.10

% 
91.60% 

CBAM-
CNN 

95.50
% 

94.9
0% 

96.80% 
97.30
% 

93.20% 

Hybrid 

Net 

96.80

% 

96.3

0% 
97.70% 

98.10

% 
94.50% 

 
Figure 2: The accuracy trend of each algorithm with 

the number of training rounds. 

 
Figure 3: Loss function decline curve. 

 

Figure 3 shows the decreasing curve of the loss 

function. After 80 rounds of training, the loss value of 

the algorithm dropped to 0.052, which is much lower 

than other algorithms. The improved Transformer 

framework accelerates the convergence of model 

parameters and reduces the number of training iterations 

through adaptive allocation of weights. 

4.5.4 Generalization ability evaluation 

Figure 4 compares the F1 value performance of 

various algorithms in different data sets. In the three 

data sets of MIT-BIH, CINC2020, and PTB, the F1 

fluctuation of this algorithm is only 1.2%, while the 

fluctuation of ResNet-18 is only 4.1%. The 

experimental results show that the algorithm proposed 

in this paper is robust to data with different sample 

frequencies, different numbers of leads, and other 

disease types, and can effectively avoid performance 

degradation caused by uneven data distribution. 

 
Figure 4: F1 value performance of each algorithm 

on different data sets. 
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Ablation studies were conducted to validate 

component contributions: 

• Removing multi-scale attention reduced 

accuracy by 1.8%. 

• Replacing adaptive positional encoding with 

sinusoidal encoding decreased F1 by 1.2%. 

• Disabling data augmentation increased 

validation loss by 0.15. 

• These results confirm the critical role of 

proposed mechanisms in preventing overfitting 

and enhancing feature representation. 

 

The algorithm's excellent performance comes from 

the architectural innovation and mechanism 

optimization. This study introduces an ECG signal 

extraction method based on dynamic weight allocation 

and uses a multi-scale attention mechanism to achieve 

effective fusion of different frequency components. 

Previous studies have found that the model still has 

deficiencies in recognizing low-frequency arrhythmias 

(such as ventricular flutter), which need further 

research. In addition, this project will also explore 

technologies such as model pruning and knowledge 

extraction to improve the feasibility of edge device 

deployment. 

Statistical significance was assessed using 

Wilcoxon signed-rank tests (α=0.05). The proposed 

method achieved p<0.001 for all performance metrics 

compared to baseline models, with 95% confidence 

intervals for accuracy: 98.7% ± 0.3%, significantly 

outperforming Hybrid Net (96.7% ± 0.5%). 

5 Conclusion 

This project intends to build a deep learning 

intelligent diagnosis system for ECG based on deep 

learning. The paper can improve the detection and 

classification of ECG signals through a multi-scale 

attention mechanism and an optimized classification 

model. Experimental results show that the proposed 

algorithm is superior to traditional and mainstream 

deep learning algorithms, showing a promising 

prospect in clinical settings. However, this research has 

limitations. First of all, experimental data come from 

the MIT-BIH arrhythmia database. While the proposed 

method excels in arrhythmia detection, its current 

design focuses on short-term ECG segments (30-

minute records), limiting sensitivity to chronic 

conditions like myocardial infarction that require long-

term ST-segment trend analysis. Future work will 

extend the model to multi-lead, long-duration signals 

and incorporate XAI techniques (e.g., Grad-CAM) to 

enhance interpretability for clinical validation. 

References 
[1] Goud, P. S., Sastry, P. N., & Sekhar, P. C. (2024). 

A novel intelligent deep optimized framework for 

heart disease prediction and classification using 

ECG signals. Multimedia Tools and Applications, 

83(12), 34715–34731. 

https://doi.org/10.1007/s11042-023-16850-4 

[2] Saini, S. K., & Gupta, R. (2022). Artificial 

intelligence methods for analysis of 

electrocardiogram signals for cardiac 

abnormalities: State-of-the-art and future 

challenges. Artificial Intelligence Review, 55(2), 

1519–1565. https://doi.org/10.1007/s10462-021-

09999-7 

[3] Refaee, E. A., & Shamsudheen, S. (2022). A 

computing system that integrates deep learning and 

the internet of things for effective disease 

diagnosis in smart health care systems. Journal of 

Supercomputing, 78(7), 9285–9306. 

https://doi.org/10.1007/s11227-021-04263-9 

[4] Abubaker, M. B., & Babayiğit, B. (2022). 

Detection of cardiovascular diseases in ECG 

images using machine learning and deep learning 

methods. IEEE Transactions on Artificial 

Intelligence, 4(2), 373–382. 

https://doi.org/10.1109/TAI.2022.3159505 

[5] Zhuang, J., Sun, J., & Yuan, G. (2023). 

Arrhythmia diagnosis of young martial arts 

athletes based on deep learning for smart medical 

care. Neural Computing and Applications, 35(20), 

14641–14652. https://doi.org/10.1007/s00521-021-

06159-4 

[6] Liu, J., et al. (2022). A review of arrhythmia 

detection based on electrocardiogram with 

artificial intelligence. Expert Review of Medical 

Devices, 19(7), 549–560. 

https://doi.org/10.1080/17434440.2022.2115887 

[7] Pandey, S. K., & Janghel, R. R. (2021). 

Classification of electrocardiogram signal using an 

ensemble of deep learning models. Data 

Technologies and Applications, 55(3), 446–460. 

https://doi.org/10.1108/DTA-05-2020-0108 

[8] Debroy, P., Smarandache, F., Majumder, P., 

Majumdar, P., & Seban, L. (2025). OPA-IF-

Neutrosophic-TOPSIS Strategy under SVNS 

Environment Approach and Its Application to 

Select the Most Effective Control Strategy for 

Aquaponic System. Informatica, 36(1), 1-32. 

https://doi.org/10.15388/24-INFOR583 

[9] Widayat, I. W., Arsyad, A. A., Mantau, A. J., 

Adhitya, Y., & Köppen, M. (2025). Fuzzy 

Methods in Smart Farming: A Systematic Review. 

Informatica, 36(2), 453-489. 

https://doi.org/10.15388/24-INFOR579 

[10] Žvirblis, T., Pikšrys, A., Bzinkowski, D., Rucki, 

M., Kilikevičius, A., & Kurasova, O. (2024). Data 

Augmentation for Classification of Multi-Domain 

Tension Signals. Informatica, 35(4), 883-908. 

https://doi.org/10.15388/24-INFOR578 

[11] Khafaga, D. S., et al. (2023). Dipper Throated 

Algorithm for feature selection and classification 

in electrocardiogram. Computer Systems Science 

and Engineering, 45(2), 1469–1482. 

https://doi.org/10.32604/csse.2023.031943 

[12] Joy, S. I., et al. (2023). Review on advent of 

artificial intelligence in electrocardiogram for the 

https://doi.org/10.1109/TAI.2022.3159505
https://doi.org/10.1080/17434440.2022.2115887
https://doi.org/10.1108/DTA-05-2020-0108
https://doi.org/10.32604/csse.2023.031943


Intelligent Diagnosis System of ECG Signal Based… Informatica 49 (2025) 315–324 323 

detection of extra-cardiac and cardiovascular 

disease. IEEE Canadian Journal of Electrical and 

Computer Engineering, 46(2), 99–106. 

https://doi.org/10.1109/ICJECE.2022.3228588 

[13] Ukil, A., Marin, L., Mukhopadhyay, S. C., & Jara, 

A. J. (2022). AFSense-ECG: Atrial fibrillation 

condition sensing from single lead 

electrocardiogram (ECG) signals. IEEE Sensors 

Journal, 22(12), 12269–12277. 

https://doi.org/10.1109/JSEN.2022.3162691 

[14] Prakash, A. J., et al. (2023). A new approach of 

transparent and explainable artificial intelligence 

technique for patient-specific ECG beat 

classification. IEEE Sensors Letters, 7(5), 1–4. 

https://doi.org/10.1109/LSENS.2023.3268677 

[15] Singhal, S., & Kumar, M. (2023). A systematic 

review on artificial intelligence-based techniques 

for diagnosis of cardiovascular arrhythmia 

diseases: Challenges and opportunities. Archives 

of Computational Methods in Engineering, 30(2), 

865–888. https://doi.org/10.1007/s11831-022-

09823-7 

[16] Silva, B. V., Marques, J., Menezes, M. N., 

Oliveira, A. L., & Pinto, F. J. (2023). Artificial 

intelligence-based diagnosis of acute pulmonary 

embolism: Development of a machine learning 

model using 12-lead electrocardiogram. Revista 

Portuguesa de Cardiologia, 42(7), 643–651. 

https://doi.org/10.1016/j.repc.2023.03.016 

[17] Cervenka, M., Kohout, J., & Lipus, B. (2024). A 

Novel Radial Basis Function Description of a 

Smooth Implicit Surface for Musculoskeletal 

Modelling. Informatica, 35(4), 721-750. 

https://doi.org/10.15388/24-INFOR571 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

https://doi.org/10.1109/ICJECE.2022.3228588
https://doi.org/10.1109/JSEN.2022.3162691
https://doi.org/10.1109/LSENS.2023.3268677
https://doi.org/10.1016/j.repc.2023.03.016
https://doi.org/10.15388/24-INFOR571


324 Informatica 49 (2025) 315–324 H. Huang et al. 

 

 

 

 

 
 


