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The general basis of diabetes prediction using machine learning involves the application of algorithms
that take an overall look at multiple features like BMI and glucose levels, age, genetic predispositions,
and other conditions that may predict the likelihood of developing diabetes. The data-driven schemes,
such as neural networks or DTs, find patterns in past data and use these to provide reliable predictions
about future diabetes cases. These schemes keep learning and improving; they grow with new inputs. ML
now helps in early detection by the use of large datasets, thus enabling early actions such as lifestyle
changes or medical therapies. Finally, it enhances healthcare by providing individualized risk assessment
and thus enables timely actions to diminish the burden of diabetes. In addition, the application of ML
schemes, including Gaussian Process Classification-GPC, Linear Discriminant Analysis-LDA with Henry
Gas Solubility Optimization-HGSO, Chaos Game Optimization-CGO, and Chef-Based Enhancement
scheme-CBOA, has greatly benefited the process of prediction. These schemes were combined with
optimizers, guided by the objective of this work, which deals with predicting the type of diabetes and the
diagnosis of persons vulnerable to it. This was a strategic fusion aimed at creating new hybrid schemes
with increased precision in prediction. Further analysis showed that the GPCB model was the best, with
an impressive 0.981 during training. By contrast, the GPCG and GPHG schemes are relatively less
accurate, with an accuracy of 0.963 and 0.946, respectively. These results justify the utility of the
integrated approach, where advanced ML algorithms were able to generate predictive schemes superior
in terms of accuracy and efficiency compared to the classical methods.

Povzetek: V clanku je opisan sistem za napovedovanje sladkorne bolezni tipa 2 s pomocjo strojnega
ucenja. Algoritem GPCB zdruzuje klasifikacijo Gaussovega procesa z metahevristicnimi optimizacijskimi

algoritmi za kvalitetno diagnozo.

1 Introduction

Type 2 diabetes, another name for diabetes, is a long-term
metabolic illness marked by elevated blood glucose levels
because of either the pancreas's insufficient production of
insulin or its inability to utilize insulin effectively [1].
Insulin is a hormone produced by the pancreas that
regulates blood sugar levels by allowing the absorption of
glucose into the cells to use it as energy [2]. Whenever the
mechanism is disturbed, glucose builds up in the
circulation and causes hyperglycemia [3]. Diabetes is
sorted into 3 types: type I, type 11, and gestational diabetes
[4]. Type 1 diabetes, which is frequently diagnosed in
childhood or adolescence, is caused by the immune system
erroneously targeting and killing the insulin-generating
beta cells in the pancreas [5]. This involves lifetime insulin
treatment to control blood sugar levels. Type 2 diabetes,
the most prevalent kind, usually develops in adulthood and
is often associated with overweight, lack of exercise, and
genetic risk [6], [7]. Type 2 diabetes develops when the
body becomes resistant to or cannot produce sufficient

insulin to meet its needs, thereby resulting in high blood
sugar levels [8]. Gestational diabetes develops during
pregnancy when fluctuations in hormones compromise
insulin activity, increasing the risk of complications for
both mother and child [9], [10]. Diabetes' persistent High
blood sugar levels can cause a stream of issues affecting
many organ systems [11]. These include cardiovascular
disorders including strokes and heart attacks; nerve
damage; diabetic neuropathy; kidney damage causing
numbness, tingling (diabetic nephropathy), and
discomfort; as well as eye disturbances that can cause
blindness due to diabetic retinopathy, if not addressed
[12], [13]. Diabetes also raises the risk of ulcers in feet and
amputations owing to impaired circulation and damage to
nerves [14].

Management includes frequent testing of blood
glucose, proper nutrition, regular physical activity, and
insulin therapy or medication when necessary. Other
treatments for type 2 diabetes include weight loss and
smoking cessation. People with diabetes need training and
support, as enabling them with skills for optimum self-
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management reduces complications, reflecting a
collaborative approach by all involved [15]: providers of
healthcare, the patient, and family members [16], [17].
Type 2 is a complex metabolic condition that casts ripples
in personal life since it has myriad implications for many
facets [18], [19]. It presents physically as a constellation
of symptoms that include chronic thirst and frequent
urination, fatigue, and unexpected weight gain or loss
[20], [21]. This chronic fight against blood sugar
becoming normal turns out to be an everyday obsession
with food intake, medication routines, and even social
interactions [22]. Besides the physical discomforts, type 2
diabetes also has a great psychological and emotional
impact. The constant monitoring required to manage the
disease can lead to feelings of anxiety, stress, and
depression. The fear of complications is huge, with every
increase or decrease in glucose triggering a snowball
effect of questions about what this could mean for long-
term health and well-being.

Type 2 diabetes can negatively affect social
relationships and interactions. Even going out for meals
may become a maze of counting carbohydrates and
administering insulin, while social events may become
distressing in their demand to explain dietary restrictions
or personally withdraw to check blood glucose levels [23].
The stigma associated with diabetes can also make people
feel isolated or humiliated, disrupting interpersonal
interactions [24]. Besides that, type 2 diabetes may lead to
serious financial burdens. Pharmaceutical treatment,
apparatus for blood glucose monitoring, and frequent
medical consultations are not cheap, especially when
insurance coverage is inadequate. Further, loss of working
days due to poor health or visiting doctors may affect
earnings and  professional  development  [25].
Notwithstanding such constraints, persons with type 2
diabetes often show remarkable resilience and
resourcefulness [26]. Most learn to manage the
complexity of their disease through education, proactive
self-management, and support networks and feel
empowered by taking responsibility for their health.
However, the pervasive nature of type 2 diabetes ensures
its impacts are felt at all levels of life, making
comprehensive approaches to prevention, treatment, and
care of utmost importance.

Machine learning algorithms can predict the risk a
person has for diabetes and even define which type of
diabetes the person is most probable to get, considering his
or her medical history, life style habits, biomarkers, and
genetic trends. These algorithms are trained on large
datasets consisting of data from diabetic and non-diabetic
patients through a method called supervised learning. The
computers learn to find, through patterns and links in data,
small signs and risk factors associated with different types
of diabetes [27]. For example, ML schemes for the
diagnosis of type 2 diabetes consider age, BMI, family
medical history of diabetes, cholesterol levels, blood
pressure, and glucose tolerance. These combined
indicators may, therefore, enable the model to project the
likelihood of a person developing type 2 diabetes over a
specific period [28]. Other ML methods, including DT,
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LR, and SVM, might also classify individuals into types
of diabetes based on sets of different variables. This will
enable individual risk assessments and prevention
methods based on an individual profile, and in time, will
allow healthcare professionals to offer more personalized
and effective preventative treatment [29].

1.1 Objectives

This article proposes developing a scheme for diagnosing
types of diabetes and predicting the likelihood of a person
being affected with it. In order to solve this issue, the use
of ML schemes including LDA and GPC is chosen, along
with 3 optimizers; CGO, HGSO, and CBOA. The
integration of these optimizers with the schemes leads to
some new hybrid model generation, which is supposed to
give better performance in the prediction process. Further,
these newly designed hybrid schemes are evaluated for
their performances using different plots and tables. It is
expected that through their dense analysis, information
about the most effective performance of the different
schemes can be extracted, along with the potential deficit
in functionality among them. Such an inclusive strategy
will provide thorough knowledge about various schemes'
strengths and flaws that help in formulating approaches
related to the diagnosis and prediction of diabetes.
Gaussian Process Classification (GPC) and Linear
Discriminant Analysis (LDA) were picked owing to their
complimentary capabilities in modeling classification
challenges. GPC is a non-parametric, probabilistic model
that captures complicated, nonlinear interactions and
offers uncertainty estimates, making it suited for the
nuanced and high-risk nature of diabetes prediction.
Conversely, LDA is a basic yet powerful linear classifier
that performs well when class distributions are nearly
Gaussian. Its interpretability and minimal computing cost
make it suitable for baseline comparison. LDA is good for
efficiency and understanding, while GPC is good for
making strong, adaptable models of complicated health
data patterns. Together, they make a balanced framework.

2 Material and methods
2.1 Data collection

Prior to model training, the dataset underwent several
preprocessing procedures to enhance data quality and
model performance. Missing values were addressed using
mean imputation for numerical features. Outliers were
detected and mitigated using z-score normalization. All
continuous features were standardized to zero mean and
unit variance. Categorical variables, if any, were encoded
using one-hot encoding. Feature selection was conducted
using mutual information to retain only the most relevant
predictors. The final dataset was randomly shuffled and
split into training and testing sets using an 70:30ratio to
ensure unbiased model evaluation. Fig. 1 displays the far-
reaching consequences of diabetes on a person's life,
spanning blood pressure to pregnancy, as it affects an
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individual's well-being and lifestyle in general. This study
tries to make meaning out of the interaction of diabetes
with these major determinants, therefore, basically
determining the trend of the illness.

e High blood pressure worsens diabetes
complications by essentially destroying blood
vessels and organs. High blood pressure and
atherosclerosis accelerate the narrowing of
arteries, which limits blood flow, thereby
worsening the common diabetes consequences of
heart disease, stroke, and kidney failure.
Hypertension further increases the risk for
diabetic retinopathy, which can cause visual
impairment or even total blindness. It also leads
to peripheral artery disease, which raises the
chances of foot ulcers and amputations in
diabetic patients. Good management of blood
pressure  through lifestyle  modifications,
medication, and regular checks is of utmost
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importance in effective management and
reduction of adverse effects of diabetes on
general health. Pregnancy complicates the care of
diabetes because of fluctuating hormonal
changes and increased insulin resistance.

Gestational diabetes may be developed during
pregnancy, increasing the risk for complications
in both mother and child, including macrosomia,
preeclampsia, and anomalies at birth. Women
with  previous diabetes have difficulties
managing blood sugar levels, again increasing
risks for adverse outcomes such as preterm birth
and cesarean section delivery. Close monitoring,
dietary modification, and medication may be
necessary to achieve appropriate risk reduction
and optimal health for both mother and fetus.
Such  cooperation  between  obstetricians,
endocrinologists, and diabetes educators forms
the very foundation for the best pregnancy
outcomes among women with diabetes.
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Figure 1: The plot illustrating the Contour - color fill between the input and output



302  Informatica 49 (2025) 299-318

2.2 Linear discriminant analysis (LDA)

Linear Discriminant Analysis (LDA) is a statistical

approach used to separate two or more classes by
identifying a linear combination of characteristics that best
differentiates them. It assumes that the different classes
create data based on Gaussian distributions with the same
covariance matrix. LDA is computationally efficient,
interpretable, and particularly successful when the
relationship between features and labels is nearly linear,
making it suited for baseline comparison in medical
classification problems like diabetes prediction.
LDA assumes that the 2 categories' matrices of covariance
are similar [30], and one of the 2 categories has a greater
average than the other, as seized y; < u,. One of these
examples is the one provided for x € R classes:

Y, =2X,=2 1)
1 G 1) 2 = py)
Jeoim b 2 "
_ 1 ox (_ (= p)"27 (x — Hz)) -
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The simple logarithm of the equation’s sides is found

by (a). The equation may be written as:
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Where (a) is because xTE 1y, = xTZ " 1x since X1

is balanced and £=T = £~1. As a result, it is observed:
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As an outcome of multiplying both sides of the

equation by 2, the expression that follows is obtained:
27 (M — ) x + (ug — 1) 27 (g — 1)
+2In (E) =0 ()
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The equation of a line may be represented as a’x +
b = 0. T As aresult, if the Gaussian distributions of the 2
classes are considered, and the covariance matrices are
considered to be equal, a line displays the categorization
choice border. This approach is called LDA because the
choice border between the 2 classes is linear. The
expressions were relocated to the correct side, which
related to the second class, to create Eq. (5). Therefore, if
used 6(x):R% - R as the left-hand side calculation
(function) in Eq. (6).

() = 2(27"(uy — )" x ()

3)
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An instance x's intended class is:
A« (Lif (x) <0,
Cx) = {2, if 5(x) > 0. )

When both categories have identical priors, 7, = m, ,
Eq. (5) takes a particular form:

T
2(2_1(.“2 - .“1)) x+(uy = ) "E7 (g — pp) (8)
=0,
Whose statement on the left can be interpreted as
6(x) in Eq. (7).

2.3 Gaussian process classification (GPC)

Gaussian Process Classification (GPC) puts a

Gaussian process prior over a latent function to predict the
chance of being in a certain class. This lets GPC capture
nonlinear patterns in big datasets in a flexible way and
measure how uncertain predictions are, which is very
important for medical diagnostics. GPC is better for risk-
sensitive predictions like figuring out how likely someone
is to have diabetes since it changes its complexity
dependent on the input. This is different from fixed
parametric models.
Given a set of N training input points, in typical
classification using Gaussian methods, procedure X =
[x1, ..., xy]T and their associated class designations Y =
[Yy,..,Yy]" , one would like to forecast the class
participation percentage of a fresh test point x,. This may
be accomplished by utilizing a latent function f, which is
then mapped onto the [0; 1] interval utilizing the probit
operator. For binary classification, use the notion that y
belongs to {0,1}, where 1 displays the positive class and 0
displays the negative. Therefore, the likelihood of class
membership p(y = 1|x) might be expressed as ®(f(x)),
where @(.) is the probit purpose. Gaussian procedure
classification is then performed by applying a GP prior to
the latent function of f(x). A GP [31] is a random
procedure completely described by a mean function
m(x) = E[f(x)]and a positive definite covariance
method k(x; x) = v[f(x); f(x)]. To project an
additional test point x, , first calculate the range of the
related latent variable f.

Pl X,3) = j p(fulxo X, ) pFIX,Y)Af  (9)

Where f = [fi,...,fv]T, and then using this
distribution, calculate the class participation distribution:

p(x = 1xx, X, y)
- f O p(fil e X, Y)df, (10)
24 HGSO

The following subsection describes the motivation for
HGSO, which depends on the act of Henry's law.

24.1 Henry’s Law

In 1803, William Henry created Henry's Law, a gas law
[32]. Henry's law reads as follows: "At a temperature that
remains constant, the amount of a given gas that dissolves
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in a given type and volume of liquid is inversely related to
the partial pressure that exists for that gas in equilibrium
with that liquid." Consequently, Henry's law is greatly
dependent on temperature [33] and displays that a gas's
solubility (Sg) is directly proportional to its relative
pressure (Pg), as represented in the subsequent equation:
S, =HXP, (11)
Where H is Henry's stable, which is particular to the
given gas-solvent mixture at a certain temperature, and
P, is the gas's relative pressure.
dinH  —Vsol®
= (12)
(/7 R
Furthermore, the impact of temperature dependency
on Henry's law variables has to be addressed. The Van't
Hoff equation describes how Henry's law constants vary
when a system's temperature varies:
H(T) =exp (B/T) X A (13)
Where H is an expression of 2 parameters, A as well
as B, which are the 2 factors that determine H's T
dependency. In addition, one can generate a function
based on H at the standard temperature T = 298.15K.
—Vsolf
H(T) = H? x exp( 2 (1T - 1/T‘9)> (14)
The Van't Hoff formula applies if —VsolE is a stable,
hence Eq. (14) may be rewritten as follows:
H(T) = exp(—c x (1/T — 1/T%) x HY)

(15)

2.4.2 HGSO mathematical scheme

This part describes the mathematical formulas for the
suggested HGSO method. The mathematical procedures
are outlined below:

Step 1: Initialization process.

The count of gases (population size N) and the
placements of gases have been set up using the subsequent
equation:

Xi(t + 1) = Xonin + 7 X (Xmax - Xmin) (16)

where t is the repetition time, X,,,;, and X,,,., are the

issue bounds,  is a random number between 0 and 1, and
X; is the location of the ith gas in population N. The below
equation is used to establish the count of gasses i, Henry's
constant of type j (H;(t)) partial pressure P; ; of gas i in
cluster j, and —Vsol /Rsteady value of type j (C;).

Hi(t) = |, xrand(0,1), P; ;

=l xrand (0,1), C; = I3 x rand(0,1)

where [, 1,, and l; are designated as constants with
corresponding amounts of 5E — 02, 100, and 1E — 02.

Step 2: Clustering.

In proportion to the count of gas types, the entire
number of agents is split into equal clusters. Every cluster
has the same Henry's constant measurement (H;) since
they all contain the same gases.

Step 3: Evaluation.

The gas having the largest equilibrium state among
the others of its sort is identified by analyzing each cluster

(17)
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j. The optimal gas for the entire colony is then determined
by rating the gasses.

Step 4: Update Henry’s coefficient.

Eg. (18), which updates Henry's factor, is as follows:

1 1
X exp <_C] X (m — ﬁ)>‘ T(t)

= exp (—t/iter)

T displays the temperature, T¢ displays a constant
equal to 298.15, iter is the overall count of cycles, and H;
is Henry's factor for cluster j in this equation.

Step 5: Update solubility.

The following formula is used to modify the
solubility:

S;j(t) = K X Hi(t + 1) x P, ;(t) (19)

S;j is the soluble content of gas i in cluster j, P; ; is
the amount of partial pressure on gas i in cluster j, and K
is a value that is constant.

Step 6: Update position.

The position was revised below:

+F X1r Xy X (Xi,best(t) - Xi.j(t))
+F X1 X a X (Si,j(t) X Xpest (t) — Xi,j(t))

Fese(t) + €
=fB X ———F ], =0.05
14 ﬁ exp( Fl‘](t) + £ €

Where X; ; displays the location of gas i in cluster j,
and r and t are the random constant and cycle time,
respectively. The best gas in cluster j is indicated by X, .,
while the best gas in the entire swarm is shown by X; ,es¢.
In addition, y displays gas j's capacity to interact with
other gases in cluster i, a displays the effect of other gases
on gas i in cluster j and is equal to 1, and B is a constant.
The fitness of gas i in cluster j is denoted by F; ;, whereas
Fp . displays the fitness of the best gas in the overall
system. F is the flag that modifies the direction of the
search agent and gives variety (£). X peseand Xpos are
the 2 parameters that control the exploration and
exploitation capabilities. Particularly, X; ;.5 displays the
best gas i in cluster j, whereasX,,,; displays the best gas
in the whole swarm.

Step 7: Escape from local optimum.

The purpose of this phase is to leave the local
optimum. The count of worst agents N, can be chosen and
ranked using the following equation:

N, = N X (rand(c, — ¢;) + ¢1), ¢4
=0.1landc, =0.2

The count of search agents is denoted by N.

Step 8: Update the position of the worst agents.

Gijy = Gmin (i) + 7 X (Gmax @) = Gminy) ~ (22)

In Eq. (22), G j, displays gas i's position in cluster j,
risarandom integer, and Guin (;,jy aNd Gmay (i j) represent
the problem boundaries. The steps of the process are
depicted in Fig. 2.

(18)

(20)

(1)
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Figure 2: The flowchart of the HGS.
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2.5 Chaos game optimization (CGO)

The reasons behind the groundbreaking metaheuristic
algorithm known as CGO and its computational
architecture are covered in this section.

2.5.1 Mathematical model

This section presents an optimization technique based on
the ideas of chaos theory. The mathematical foundation of
the CGO algorithm is developed based on the basic
concepts of fractals and chaotic games. The CGO
algorithm considers several solution candidates (X) that
suggest certain able seeds within a Sierpinski triangle
because many natural evolution algorithms keep an array
of solutions that evolve through random modifications and
selections. Each solution candidate (X;) in this method
contains a set of choice factors (x;) that represent where
the eligible seeds are located inside a Sierpinski triangle.
The enhancement scheme uses the Sierpinski triangle to
explore potential solutions. In the enhancement scheme,
the Sierpinski triangle is used to look for possible
solutions. The quantitative treatment of these aspects is

given below:
Xy
X2
xX=|.
Xi
Xn
xi  x? x] xd (23)
x:  x? x; xg
_ : : (i 12,.
xt x? x]Lox T 12,...d
[x}  x2 x} x2]

For each seed in the Slerplnskl triangle (search area),
the count of permissible seeds, or potential solutions, is n;
and d is the seed's size. Random selection is used to
determine where these appropriate seeds are initially
placed in the search space.
x}(0) = xL,;, + rand
=12,.

(xtmax - lmm) {, =12,.

The begmnmg posmon of the ellgible seeds is defined

Iy i di :
by x/; x/ .0, as well as x/ ;.. indicate the maximum and

lowest permitted values for the ith solution candidate's jth
choice variable; rand is a random integer within the range
[0,1]. The way dynamical systems, often known as self-
similar and self-organizing systems, behave, as was
previously described, and display specific fundamental
patterns serves as the foundation for the core ideas of
chaos theory. The fundamental dynamical system patterns
according to chaos theory are exhibited by eligible seeds,
which are acquired beginning positions. It is possible to
ascertain whether these seeds are suitable to function as
fundamental patterns (self-similarity) for an optimization
issue by employing potential solutions (X). The candidates
for the solutions with the greatest and worst fitness values

(24)
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as well as the lowest and highest levels of eligibility are
connected.

The basic idea of this mathematical model is to create
the general shape of a Sierpinski triangle by producing
several appropriate seeds inside the search area. In this
way, fresh seeds are also produced via the Sierpinski
triangle technique. An intermediate triangle with three
seeds is created as follows for each appropriate seed in the
search field X;:

e Positioning of the previously identified Global

Best (GB),

e The average group's location (MG;),

e The ith resolution competitor (X;) is the chosen

seed.

Although the mean values of randomly chosen
eligible seeds with an equal chance of integrating the
currently regarded starting eligible seed (X;) are reflected
in the MG;, the GB is the best solution candidate with the
highest eligibility levels. Together with the identified
eligible seed (X;), the GB and MG; create a Sierpinski
triangle. In order to generate some more seeds that can be
regarded as fresh eligible seeds for finishing the Sierpinski
triangle, a temporary triangle is made inside the search
area for each of the first eligible seeds, as was previously
indicated. Four strategies are suggested to accomplish this
aim. The ith permanent triangle (ith repetition) includes a
Sierpinski triangle's three vertices [GB (green seed), MG;
(red seed), and X; (blue seed)] in addition to the n
appropriate seeds that were accessible in the previous
cycle. This homemade triangle uses the chaotic game
principle to produce fresh seeds using one die and three
seeds. X; is used to hold the first seed, GB for the second,
and MG, for the third. For the first seed, a die with three
green and three red faces was utilized. Upon rolling the
dice, the seed in the X;is shifted to the MG; (red face) or
the GB (green face) based on the resulting color. This
element is replicated using a random number generation
method that generates just 2 values, 0 as well as 1,
enabling the choice of red or green faces. When the green
face is visible, the X; seed advances in the direction of the
GB; it moves toward the MG;. Even if each green or red
face has an equal chance of appearing in the game, the
potential of getting two equivalent random integers for the
GB and the MG; is also taken into account. The direction
of the X;'s seed advancement is a line segment that
connects the GB with the MG;. The flow of seeds within
the search area must be restricted because of the chaotic
game method; hence, this component is controlled by
certain at-random factorials that were created:

Seed} = X; + a; X (B; X GB —y; X MG;), i
(25)
=12, ..,n

X; displays the ith resolution candidate, GB denotes
the global best discovered thus far, and MG; displays the
mean of a few selected, qualified seeds. While g; and y;
indicate a random integer between 0 and 1 to enable die
rolling, a; is a randomly generated factorial to reflect seed
movement limitations. Three blue and three red-faced dice
are used for the next seed (GB). Either the MG; (red face)
or the X; (blue face) receives the seed in the GB,
depending on the color that emerges from rolling the dice.
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The model used in this section is the same as the original
seed. If a blue face emerges, the seed travels to the X;; if a
red face appears, the seed goes to the MG;. Another seed,
like the first, can travel towards a location on the
connecting lines between X;and MG;. This motion is
restricted by randomly produced factorials.
Seed? = GB + a; X (B; X X; —y; X MG,), i
(26)
=12, ..,n
where each of the variables B; and y; is a random
value of 0 or 1 to simulate the option of rolling a die, and
«; is the randomly generated factorial for characterizing
the mobility limitations of the seeds. The remaining
requirements are the same as those listed for the initial
seed. The third seed is employed to roll a die with green
and blue faces, MG;. The seed is directed toward either the
X; (blue face) or the GB (green face) depending on the
color. An approach for generating random numbers is used
to duplicate this element. It yields just 2 values, 0 and 1,
so that users may select between the blue or green faces.
Additionally, the lines connecting the X; and GB can be
followed by the seed. Some random factorials are also
used to achieve this goal, such as:
Seed3 = MG; + a; X (B; X X; —v; X GB), i
(27)
=12, ..,n
In order to generate the fourth seed, an additional
method is employed to carry out the modification stage in
the qualifying seeds' position updates within the search
area. Changes in this seed's position are made depending
on arbitrary adjustments made to the randomly chosen
decision criteria. Eq. (28) depicts a schematic depiction of
the specified procedure for the 4" seed; it has the
following mathematical representation:
Seed! = X;(x¥ =xF+R), k=1[12,..,d] (28)
Where k is an integer at random in the interval [1, d]
and R is a random number with uniform distribution in the
region [0, 1]. Four formulations for ai, which controls the
mobility limitations of the seeds, are provided in order to
alter the exploration and exploitation rate of the CGO
algorithm.
Rand
2 X Rand
(6 X Rand) +1
(e X Rand) + (~¢)
In this case, 6 as well as ¢ are indeterminate numbers
in the interval [0,1], and Rand is a randomly dispersed,
equally distributed number in that interval. Given the self-
similarity problems in the fractals, the eligibility of the
new and existing seeds should be jointly assessed to
decide if the additional seeds ought to be included in the
search space's overall count of eligible seeds. The best
new solution candidates are retained after being vetted;
seeds with the lowest fitness values, or the lowest degrees
of self-similarity, are removed. It is important to note that
the mathematical method reduces the mathematical
model's complexity by using substitution. Actually, the
entire form of the Sierpinski triangle has been completed
using all of the qualifying seeds found in the search region.

To cope with the solution variables x/ breaching the
boundaries of the factors, a mathematical flag is

(29)

a; =
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constructed. For the variables that violate the technique, a
boundary change is ordered if the xij is beyond the
parameter's range. The most repetitions that can be done
in which the optimization process takes place serves as the
basis for the termination criterion.

2.6 Chef-Based Enhancement scheme
(CBOA)

A metaheuristic method called CBOA was just introduced
by [34]. The CBOA's mathematical representation and
natural architecture are covered in this section.

2.6.1 Mathematical model of CBOA

Below is a presentation of the CBOA mathematical model
using the situation from Section 2.1. First, the
initialization stage of the algorithm is initiated, much like
in other metaheuristics. There are 2 populations as a result
of the CBOA: elite agents and candidate solutions.
Therefore, as shown by Eq. (30), a matrix may be used to
represent the CBOA members.

X1 X114 - X1,dim

X =

(30)

Xnlyy,  Xnvaim xN,dim]Nxdim
where N is the population size, dim is the issue length
(a € [1,N],b € [1,dim]), X is the CBOA population
matrix, and x,;, indicates the value of the bth problem
parameter for the ath CBOA member. CBOA members'
locations are established using Eg. (31):
Xqp = LOWy + rand - (UP, — LOW,) (31)
Where rand is an arbitrary number in the range of [0,
1], LOW, and UP, are the lower and upper limits of the
bth problem factor, correspondingly. Each member's goal
function may be determined and expressed as a vector
according to Eq. (32):
FitxX,

Fit = (32)

FitXy .,

Fit symbolizes the values of objective functions,
whereas FitX, displays the value of a member. The
objective function's value is used as the selection criteria
for selecting the best candidate solution. The optimal
member of the population and potential solution is the one
that has the highest value for the objective function. It's
time to complete the CBOA's processing steps after the
algorithm has been launched. The CBOA is composed of
two demographic groups: elite agents and candidate
solutions. These two groups' update procedures are
different. Its elements are changed at each cycle, and the
values of the aim function are computed and evaluated. As
a result, the best member is changed after each repetition.
Upon comparing the values of the objective function, elite
agents are selected from among the CBOA members with
the highest values. The values of the goal function are used
to sort the population matrix in decreasing order.
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X,
SX =[SXnc
SXn Nx1
SX1,1 SX1,dim (33)
sz\‘lc,1 SxNC.‘,dim
= |SXNnc+11 SXNC+1,dim
SXN,1 SXn,aim  dyygim
SFitX,
| SFitXy,
SFit = sFitX e (34)
sFitxy 1.

Where NC is the count of chef instructors, SX denotes
the sorted demographic matrix, and SFit displays the
ascending objective function value vector. Following that,
changes will be made in 2 steps for each group, from 1 to
NC and NC + 1to N. NC has started to represent one-
fifth of the entire population in the first group division. For
instance, NC = 6 if there are 30 populations in the
beginning. All cycles or the end of the epochs result in the
availability of a single chef.

Step 1- Updating for chef instructors:

Chef instructors use the two best chef instructors'
strategies to hone their culinary skills. At first, they try to
acquire chef educator methods by imitating the best elite
agent. This plan describes the global exploration and
capabilities of the CBOA. The primary benefit of this
upgrade is that before instructing candidate solutions, chef
educators may test their skills against the best chefs. This
method allows for the upgrading of candidate solutions,
not only the most gifted individuals. By doing this, it
prevents the algorithm from being stuck in the local
optimum and promotes more precise and effective
scanning over the many search space regions. In this
example, freshly established cooking teacher posts are
filled using Eq. (35).

$%q,p ) = sx,,, + rand

. (Besth —Ind -sxa,b)
sxqp F S specifies the first strategy for switching
chef instructors, and CFS indicates the new role for the
ath-ordered member in the bth manage. The best chef
instructor in the bth coordinate, or X, in the SX matrix, is
represented by BestC,. | nd is a randomly chosen number
from the set {1,2}, and rand is an arbitrary number in the
interval [0,1]. Eq. (36) is used to determine this condition:

SX, = {SX,ECFS),SFit((ICFS) < Fit, (36)

S5X,, else

In this equation, SFit((ICFS) displays the objective
function of SX,ECFS),and Fita is the fitness function ath
member. Based onthe second method, each culinary
teacher strives to develop their abilities via individual
practice. This method intends to increase CBOA's
exploitation capabilities and local search. Every elite
agents culinary expertise identifies the factors needed to

(35)
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get the aim function's ideal value. This updating technique
is beneficial since every person searches for better
opportunities in the vicinity, independent of the location
of other community members. This idea is to use Egs. (37)
to (38) to produce a random position around each culinary
instructor in the search space for each issue variable b €
[1, dim]. If this random site increases the goal function's
value, it can be updated. Egs. (39) to (40) are used to
model this scenario.

Low 1 = Low, ™ jiter 37)
Ul Jiter (38)
Here, LOW,"°““and UP{***Y show the local

boundaries of the bth issue variable, where iteris a
parameter for repetition.

sx‘(llclf ) = SXqp + LOWb(lomD

+rand. (UP{°P — Low, V), j —1,NC,)  (39)
=1,..,dimm
(€SS) ., (CSS)
sx, = 3%a” SFitT gy (40)
SX,, else

sx{)is the new location for the ath-ranked
membership according to the chef's next strategy called
C 55, sx displays its bth manage, and SFit " is the
goal variable value.

Step 2- candidate solutions ' updates As per the
CBOA, candidate solutions pursuing culinary arts use
these three methods to enhance their cooking abilities:

A chef trains each student, randomly assigning them
to a class. This method has the benefit of having a chef
mentor the pupils, which helps them acquire new skills. It
alludes to users who have moved to the other search zone
in the technique. If the best chef instructor teaches pupils,
on the other hand, there won't be a worldwide search since
there will be a computational bias in favor of the best. The
guidance and training of the elite agent determine each
culinary student's new role. This situation is expressed in
Eq. (41).

SFS
sxé’b ) = SXqp +rand

. (CIRa,b —Ind - sxay)

Based on the learner's initial strategy, known as SFS,

the updated position for the ath-sorted member is

expressed as sx_; >, where Cly_, is the elite agent and R

is an arbitrary index in the interval [0, NC]. New locations
are found using Eq. (42).

SX, = {ng”, SFitSr
SXa else

SFitfst) is the ultimate value for SFS.

The CBOA's technique involves treating every factor
as a skill. Each student learns and mimics one of the chef
instructor's skills. An instructor chosen at random from the
collection CIj is used (R is selected from [1, NC]). This is
comparable to changing just one variable instead of every
possible answer in terms of algorithms. This enhances
global exploration and search. In order to recreate this
situation, the first lead instructor, represented by the
Clg,, vector, is randomly selected for each culinary learner
sx, (@ CBOA member selected at random from Ra's index

(41)

< Fit, (42)
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from [1, NC]). To represent a talent of the selected head
instructor, the cth coordinate of the vector of sx,, the
culinary pupil, is picked at random from [1, dim]. Clg_ is
this value. In this case, Eq. (43) may be used to calculate
the new location:

Sxéslfs) _ {CIRa,b’ b=c
, SXq b else
where b is the problem size ([1, dim]), a matches the

population and takes a value in the range of [NC +
1,NC + N], c is a random integer selected from
[1,dim], and SSS is the student's next strategy.
Consequently, the location update is established using Eq.

(44).
ox. = [SX& Fies$ < Fit,
@b SX,, else

SXx5% relates to the new position of ath ranked
member based on SSS.

Using one of the two last methods, personal activities
or research, each culinary student aims to grow personally.
This is the algorithm's exploitation stage. The benefit of
this approach is that it makes local search stronger while

(43)

(44)

SXqp, else

is a random number chosen

where r dim

from [1, dim] and sx_, > displays the updated calculated
state of the ath member based on the student's third
strategy (STS). Eq. (46) displays the changes:
{SX,ES”), Fits®™ < Fit,

SXa,b =
Sxqp ,else

(46)

Fit SX&™ displays the desired function value of

sx57™) as STS. Culinary learners and elite agents discuss
CBOA tactics.

2.7 Performance evaluator

A variety of indicators are utilized to assess classifier
performance. The term "accuracy" refers to the proportion
of accurately predicted observations. Three commonly
used metrics are recall, accuracy, and precision. Total
accuracy, which encompasses both real negatives and
positives, is referred to as accuracy. Unbalanced datasets
can lower accuracy. Recall finds only positives and
assumes minimal mistakes. The F1 score is helpful in
schools with different distributions since it balances
recollection and accuracy. It can handle both false
negatives and real positives. These measures assist in
estimating the efficacy of ML schemes.
TP + TN

A = 47

Couraty = 1p TN+ P+ FN (47)

Precision P _I:ng . (48)

Recal=TPR= — = ———— 49

eca P _TP+FN (49)
2 X Recall X Precision

F1score = (50)

Recall + Precision

(sTS) _ {sxa,b + Low, Y + rand - (URL**Y — Low, ™Y

N. Zhang et al.

also allowing the algorithm to find more practical answers
that are closer to previously discovered solutions. When
every obstacle is viewed as a skill, kids will work to
improve these skills in order to become more fit. Thus, Eq.
(45) is used to find new locations.

The selection of HGSO, CGO, and CBOA stems from
their distinct abilities to enhance exploration and
exploitation during model optimization critical in high-
dimensional, nonlinear domains like diabetes prediction.
HGSO draws on thermodynamic principles to escape local
optima, improving convergence reliability. CGO
leverages fractal-inspired chaotic dynamics, offering
effective global search in complex spaces. CBOA mimics
human learning strategies to balance global and local
refinement. While these optimizers are general-purpose,
their adaptability makes them suitable for fine-tuning
model parameters in sensitive health-related tasks. These
schemes were integrated to boost classification
performance beyond what standalone models achieve.
Although formal ablation studies were not conducted here,
the comparative evaluation highlights clear improvements
in predictive metrics, justifying their inclusion.

(45)

where in the further analysis the sign TP designates
the case of a positive forecast of the good luck, FP - the
abbreviation of fall positive - is used in the case when the
outcome of a case is bad. In the case when the forecast is
negative and the real result is really negative TN gives the
same result. The FN means a bad forecast when the real
result is good.

3 Result and discussion

The results obtained from these hybrid schemes are
represented comprehensively with various graphs and
tables. These tools systematically compare and contrast
each model's performance for an in-depth assessment of
the functions of each model. From a careful study of the
results represented in the graphs and tables, insightful
analysis is performed to identify the best model that
performs well in terms of predictive accuracy and
suitability for the prediction process. Moreover, this
review also points out schemes with flaws or limits,
adding a critical perspective to the work, especially in
respect of their applicability to real-life scenarios. This
strong assessment methodology allows researchers to
make informed decisions on model selection and
optimization for prediction tasks, helping to advance not
only the science but also practical applications behind
predictive modeling.

3.1 Convergence curve

The convergence curve has a significant influence on
prediction processes since it displays the rate at which a
scheme learns. A steep slope in the convergence curve
displays that convergence happens fast, and hence, the
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model quickly learns the pattern and forecasts stabilize. In
contrast, a shallow curve indicates slower convergence,
which means the model takes longer to comprehend
patterns, and hence, the predictions are highly
unpredictable throughout training. This helps to
understand this curve for optimizing the training tactics
and finding a balance between underestimating and
overfitting. The suggestions made include those of
learning rate changes, batch size changes, and model
topology for best prediction performance with no
convergence or wasted time in unnecessary training. The
convergence curve in Fig. 3 illustrates and compares the
results of the hybrid schemes presented. Fig. 3 displays the
convergence behavior of each hybrid model across
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iterations, revealing learning stability and showing which
schemes reach optimal accuracy most efficiently during
training. It can be seen from this figure that, among the
LDCB, LDCG, and LDHG schemes, the LDCG model,
which has reached an accuracy of 0.930, has been
outperformed by the LDCB model with 0.968 accuracy,
whereas its accuracy is higher than that of the LDHG
model, which stands at 0.921. Similarly, among the
GPHG, GPCG, and GPCB schemes, the GPHG schemes
showed an accuracy of 0.942, proving that their accuracy
is the lowest compared to the GPCG model, which had an
accuracy of 0.960, and the GPCB model, which had an
accuracy of 0.980. Their optimal condition was achieved
after 60 cycles.

Figure 3: 3D The convergence curve for the 3 schemes

3.2 Schemes comparison

Table 1 displays the outcomes of both the LDR and GPC
schemes, as well as their respective hybrid forms in
different phases. Table 1 summarizes the accuracy,
precision, recall, and Fl-scores of all models during
training, testing, and overall phases, enabling side-by-side
evaluation of classifier performance. In the training phase,
it becomes apparent that the functionality of the LDR
model, boasting an accuracy of 0.916, falls short than
another base model, GPC, achieving 0.937 accuracy in the
same phase. Similarly, its hybrid counterpart, the LDHG
model, with an accuracy of 0.926, also lags behind the
GPHG model with 0.946 accuracy. Furthermore, the
precision value of the GPCG model, reaching 0.963,

outperforms the precision value of the LDCG model,
which stands at 0.935, during the training phase.

Upon comparing the outcomes of the schemes during
the testing phase, it becomes apparent that the recall value
of the hybrid forms of GPC schemes exceeds that of the
hybrid form of the LDR model. Specifically, during the
testing phase, it is evident that LDCG, with a recall value
of 0.922, demonstrates weaker functionality than GPCG,
which achieves a recall value of 0.957. However,
following the LDCB model with a recall value of 0.961,
the LDCG model boasts the highest value among its group
members. Conversely, GPCG, with a recall value of 0.957,
signifies that its performance surpasses that of the GPHG
and GPC schemes, which have recall values of 0.935 and
0.909, in that order, although it does not outperform
GPCB, with a recall value of 0.978, during the testing
phase.

Table 1: The outcome of the showcased developed schemes

Section Model Metric values —
Accuracy Precision Recall F1-score
LDR 0.916 0.917 0.916 0.917
Train LDHG 0.926 0.925 0.926 0.925
LDCG 0.935 0.935 0.935 0.935
LDCB 0.972 0.972 0.972 0.972
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GPC 0.937 0.937 0.937 0.937
GPHG 0.946 0.947 0.946 0.946
GPCG 0.963 0.963 0.963 0.963
GPCB 0.981 0.981 0.981 0.981
LDR 0.874 0.876 0.874 0.875
LDHG 0.913 0.913 0.913 0.913
LDCG 0.922 0.921 0.922 0.921
Test LDCB 0.961 0.961 0.961 0.961
GPC 0.909 0.914 0.909 0.910
GPHG 0.935 0.937 0.935 0.936
GPCG 0.957 0.961 0.957 0.957
GPCB 0.978 0.979 0.978 0.978
LDR 0.904 0.905 0.904 0.904
LDHG 0.922 0.922 0.922 0.922
LDCG 0.931 0.931 0.931 0.931
All LDCB 0.969 0.969 0.969 0.969
GPC 0.928 0.929 0.928 0.929
GPHG 0.943 0.944 0.943 0.943
GPCG 0.961 0.962 0.961 0.961
GPCB 0.980 0.981 0.980 0.980

The 3D wall plot of Fig. 4 visualizes model accuracy
comparison across three different phases, namely
Training, Testing, and All. By taking into account the
performances for all the phases of three schemes, a
number of thrilling trends can be found out. First and
foremost, during the All phase, the LDR model performed
best among them with a marvelous score of its precision
metric 0.905, which really exhibits the competency of this
model with a touch towards precision. With that said, GPC
outcompetes all its contenders during the same stage with
outstanding precision and F1 score records at an
astonishing 0.929, while it preserves high consistency

between its measures, which remain around 0.928 with
regard to both accuracy and recall, demonstrating an
overall robust behavior in performance. In sharp contrast,
the LDHG model displays very consistent results in all
four metrics, reaching a stable performance of 0.922 in all,
reflecting a balanced performance considering different
evaluation standards. In contrast, the GPHG model has
strengths and weaknesses mixed up on the metrics.
Although it has a very commendable score in the precision
metric of 0.944, the value is low in other metrics, having
0.943 for accuracy, recall, and F1 score, showing its
relative weakness in those aspects.
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0.980

Figure 4: 3D Walls-plot for the performance of the schemes across phases

Table 2 presents a comparison of the functional conditions. For instance, the LDR model showcases an
performance of schemes under both healthy and diabetes  accuracy of 0.93 under healthy conditions, aligning with
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the precision value of the LDHG model. However, the
LDCB model emerges as the top performer with a
precision value of 0.97, indicating its superiority over the
LDCG model, which achieves a precision value of 0.94,
as well as other preceding schemes. Among the hybrid
versions of the GPC model, the GPCB and GPCG
schemes emerge with the highest accuracy under healthy
conditions, boasting precision values of 0.99 and 0.98,
respectively. Following closely, the GPHG model
achieves a precision value of 0.97, while the GPC model
records a precision value of 0.95, indicating slightly
weaker functionality compared to the former schemes.

N. Zhang et al.

Nevertheless, the hybrid forms of the GPC model
showcase superior functionality in contrast to the LDA
scheme and its variants.

Furthermore, under diabetes conditions, the LDCB
model exhibits a higher recall value of 0.95, surpassing the
recall values of the LDCG, LDHG, and LDA schemes,
which stand at 0.90 and 0.88, in that order. Moreover, the
recall value of the LDCB model exceeds that of the GPC
and GPHG schemes, which are 0.91 and 0.94,
respectively. However, it falls short of surpassing the
recall values of the GPCG and GPCB schemes, which are
0.96 and 0.98, respectively.

Table 2: Categorization of assessment criteria for the performance of the developed schemes

Metric Condition Model

values LDR LDHG | LDCG | LDCB | GPC GPHG | GPCG | GPCB

Precision Hgalthy 0.93 0.93 0.94 0.97 0.95 0.97 0.98 0.99
Diabetes 0.85 0.90 0.91 0.96 0.88 0.90 0.93 0.97

Recall Hgalthy 0.92 0.95 0.95 0.98 0.94 0.94 0.96 0.98
Diabetes 0.88 0.88 0.90 0.95 0.91 0.94 0.96 0.98

F1-score Hgalthy 0.93 0.94 0.95 0.98 0.94 0.96 0.97 0.98
Diabetes 0.86 0.89 0.90 0.95 0.90 0.92 0.95 0.97

The column line symbol plot in Fig. 5 provides a
comparison between the values recorded in both healthy
and diabetic situations and the values predicted by the
schemes. Under the diabetes condition, it is evident that
the LDCB model, with 254 out of 268 measured values,
demonstrates higher accuracy than the LDCG model,
which achieves 240 out of 267 measured values.
Similarly, the base model, LDR, performs better with 236
out of 268 measured values compared to the LDHG
model, which also achieves 236 out of 268 measured
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values. Conversely, under the healthy condition, both
GPC and GPHG schemes achieve 468 and 471 out of 500
measured values, respectively, indicating lower accuracy
compared to the GPCG and GPCB schemes, which
achieve 480 and 491 out of 500 measured values,
respectively. Besides, the GPCG and GPHG schemes
attain values of 258/268 and 253/268, respectively, under
the diabetes condition, which indicates moderate
performance by the GPCB model, with attained values of
262/268, and the GPC model, at 245/268.

500 Ia,, -Healthl;f=0= Diabetes 270
L 265

400
L 260

300
L 255

200
- 250

100
L 245

0

Measured GPC GPHG GPCG GPCB

Figure 5: Column-line symbol plot to represent the difference among the schemes

To avoid overfitting, the model's performance was
checked at three different phases: training, testing, and
overall. Also, the fact that the training and testing
measures show the same patterns means that the model is
generalizing instead of overfitting. Even though there
wasn't a formal validation set, the hybrid schemes'

performance in all phases give us an idea of how strong
they are. In the future, we will use cross-validation and
explicit regularization approaches to better control
overfitting and make the model more generalizable.
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The ROC is a measure that fundamentally depends on
how well binary classifiers work. It compares the false
positive rate (1-specificity) to the true positive rate
(sensitivity) at various thresholds. This graph conveys
useful information about the capability of the classifier to
differentiate classes in all possible threshold settings. The
ROC is atool that actually enables the researchers to study
the compromise between true positives and false positives,
thus giving a complete view of the efficiency of the
classifier. Besides, the ROC's AUC gives a quantitative
measure of the discriminatory power of a classifier, where
larger AUC means better performance. Also, the ROC plot
allows for better selection of the optimal cut-off value to
classify the samples according to the needs of the specific
application, considering sensitivity and specificity to get
the same result desired. Therefore, the ROC curve
displays a very important means for testing, comparing,
and fine-tuning binary classification schemes, thus
contributing to enhanced ML model predictive power in a
slew of applications. Moreover, in Fig. 6, the outcomes of
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the suggested schemes are carefully analyzed with the
help of the ROC curve, which is a perfect inseparable tool
used to analyze the performance of the classifier. It is
observed, upon detailed analysis, that GPCB and GPCG
are ahead of their competitors in reaching a TPR value of
1.0 at an earlier stage and hence delivers exceptional
performance in classification problems. After that, LDCB
and GPHG come very close as the second and third
schemes, reaching a TPR of 1.0 just a little later but with
a sharp increase, further establishing their effectiveness.
In sharp contrast, the LDR model lags far behind its
counterparts since its vector has the gentlest slope among
the compared schemes. Nevertheless, the LDR model
eventually attains 1.0 TPR but takes its time in comparison
with the others. The above analysis displays how different
schemes may perform to the extent and also how often the
ROC curve proves useful for making subtle choices
regarding classifier behavior, which might not be
immediately apparent in other forms, and helps drive
better decisions for predictive modeling tasks.
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Figure 6: ROC curves depict the performance of the most efficient hybrid schemes

The SHAP additive explanations in Fig. 7 depict the
effects of various factors such as glucose or BMI
indicators that influence the possibility of diabetes. The
following explanation succinctly defines the effects of
such factors on the occurrence of diabetes.

e High levels of blood glucose, normally due to
excessive consumption of sugar or reduced action of
insulin, may eventually lead to the development of
diabetes. Blood glucose that remains high over a
continuous period places a load on the pancreas
secreting insulin, and, with time, may make it lose its
efficiency. This can result in insulin resistance-a
condition whereby cells become unable to efficiently
act in response to insulin signals, causing more
accumulation of glucose. Besides, high levels of
glucose can cause the damage of blood vessels and
neurons, which raise the risk of complication
development in diabetic patients. Hence, keeping
blood glucose within the norm through proper

nutrition, regular physical activity, and medication is
considered a significant approach to diabetic
prevention and management. BMI, which is
determined using weight and height measures, is
another widely accepted indicator of body fatness
associated with the risk of developing diabetes.

e A high BMI means excess adipose tissue interferes
with insulin action, apart from increasing the
inflammatory component, leading to insulin
resistance and impaired glucose tolerance. The
underlying fat also secretes hormones and cytokines,
further dampening metabolic processes and
increasing diabetes risk. Also, a higher BMI is more
often than not associated with other risk factors like
sedentary lifestyle and lousy food, increasing the
chances of diabetes. By enhancing insulin sensitivity
and overall metabolic health, dietary and activity
changes that control body mass index (BMI) can
lower the risk of diabetes. Therefore, maintaining a
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healthy BMI is crucial for both preventing and
treating diabetes.
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Figure 7: The sensitivity analysis results

Table 3 provides the results of a 5-fold cross-validation
for the GPC and LDR models, assessing their stability and
generalization across different subsets of the dataset. Each
fold (K1 to K5) represents an independent split where the
model was trained on 80% of the data and tested on the
remaining 20%. The GPC model demonstrates
consistently high performance across all folds, with
accuracy values ranging from 0.916 to 0.928, indicating

strong generalization and low variance. In contrast, the
LDR model shows slightly lower accuracy across all folds,
with values ranging from 0.887 to 0.904. The results
clearly suggest that GPC outperforms LDR not only in
individual experiments but also in terms of cross-validated
reliability. These findings reinforce the robustness of GPC
for diabetes prediction tasks under varying training-test
partitions.

Table 3: K-fold cross validation.

K Fold Number

Models
K1 K2 K3 K4 K5
GPC 0.920 0.927 0.924 0.916 0.928
LDR 0.887 0.895 0.901 0.896 0.904

Table 4 presents the results of the Wilcoxon signed-
rank test conducted to compare the performance
differences between baseline classifiers and their hybrid
optimized variants. The test evaluates whether observed
differences in classification performance are statistically
significant. A lower p-value (typically < 0.05) indicates a
statistically meaningful improvement. Among the models,
the GPCHG scheme achieved a p-value of 0.0348,
indicating a statistically significant enhancement over the
base GPC model. Similarly, GPCG produced a marginally

significant result with a p-value of 0.0679, while others
such as GPC-CBOA and LDR-based hybrids did not show
statistically significant improvements, as their p-values
exceeded 0.1. The stat column represents the test statistic
for ranking the difference between paired models. These
findings validate that only specific optimizer integrations
particularly with GPC deliver meaningful predictive
advantages, supporting the selective use of metaheuristics
in medical classification contexts like Type 2 diabetes
prediction.
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Table 4: Wilcoxon test.

Models stat P value

GPC 644 2.25E-01

GPC Henry gas solubility optimization 338 3.48E-02
GPC chaos game Optimization 155 6.79E-02
GPC Chef-Based Optimization Algorithm 48 4.39E-01
LDR 1200 2.45E-01

LDR-Henry gas solubility optimization 824 4.39E-01
LDR-chaos game Optimization 675 6.80E-01
LDR-Chef-Based Optimization Algorithm 125 4.14E-01
GPC 644 2.25E-01

GPC-Henry gas solubility optimization 338 3.48E-02
GPC-chaos game Optimization 155 6.79E-02
GPC-Chef-Based Optimization Algorithm 48 4.39E-01

4 Conclusion

The various advantages of early detection of diabetes by
using ML are: it enables early interference, thus
preventing the development of complications such as
cardiovascular diseases and neuropathy; ML algorithms
sift through enormous volumes of data to spot patterns that
are so subtle they could indicate diabetes risk, hence
improving their accuracy. This will, therefore, be enabling
personalized treatment plans for better patient care. Also,
automating diagnostics cuts down the healthcare costs and
workload for medical staff. In a nutshell, ML aims at early
diabetes detection, providing an improvement for patient
outcomes through easy healthcare access, thus adopting a
proactive stance towards the disease's management.

However, this work aims to project diabetes using ML
schemes comprising GPC and LDA, coupled with 3
optimizers: Henry Gass Solubility Optimization, Chef
Base Enhancement Algorithm, and Chaos Game
Optimization. With the view of improving the accuracy of
the prediction, it was decided to couple the schemes with
the optimizers. These results mean that the model GPC
and its hybrid forms provide better performance than the
LDA scheme and its hybrids. Comparing results in GPC,
GPHG, GPCG, and GPCB, for instance, out of these, the
best result was from the GPCB model in the "All" phase,
with an accuracy value of 0.980. In that respect, the GPCG
model stands out as the second-best model with an
accuracy of 0.961, while the GPHG model gives medium
performance in this comparison, with an accuracy of
0.943. In this comparison, the GPC model has the weakest
functionality, with an accuracy of 0.928.

e Limitations:

There are several drawbacks to projection using ML
techniques. The most critical problem of overfitting that
most schemes biased the training data and gather noise
rather than underlying patterns, which is poor in
generalization in unknown data. When the schemes are
relatively simple to represent the complexity of the data,
underfitting happens with poor accuracy in the forecast.
Biases in training data can persist in ML schemes, leading
to biased forecasts, especially in sensitive domains like
healthcare and criminal justice. Furthermore, ML
algorithms need big, high-quality datasets for training,
which are not always available, especially in specialist
sectors or when dealing with sensitive data. The dynamic
nature of real-world data makes it challenging to sustain
model correctness over time; hence, regular monitoring
and updating become necessary. To solve these
limitations, several methods have been tried to reduce
overfitting, such as regularization; feature engineering to
make the schemes perform better; and algorithms that are
fair-aware to reduce biases. All of the above can be further
improved by enhancing openness and interpretability of
schemes, thus building trust and enabling their adoption in
applications of importance. This calls for more research
and development on these issues so that the MLC forecasts
become increasingly accurate and dependable.
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