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The general basis of diabetes prediction using machine learning involves the application of algorithms 

that take an overall look at multiple features like BMI and glucose levels, age, genetic predispositions, 

and other conditions that may predict the likelihood of developing diabetes. The data-driven schemes, 

such as neural networks or DTs, find patterns in past data and use these to provide reliable predictions 

about future diabetes cases. These schemes keep learning and improving; they grow with new inputs. ML 

now helps in early detection by the use of large datasets, thus enabling early actions such as lifestyle 

changes or medical therapies. Finally, it enhances healthcare by providing individualized risk assessment 

and thus enables timely actions to diminish the burden of diabetes. In addition, the application of ML 

schemes, including Gaussian Process Classification-GPC, Linear Discriminant Analysis-LDA with Henry 

Gas Solubility Optimization-HGSO, Chaos Game Optimization-CGO, and Chef-Based Enhancement 

scheme-CBOA, has greatly benefited the process of prediction. These schemes were combined with 

optimizers, guided by the objective of this work, which deals with predicting the type of diabetes and the 

diagnosis of persons vulnerable to it. This was a strategic fusion aimed at creating new hybrid schemes 

with increased precision in prediction. Further analysis showed that the GPCB model was the best, with 

an impressive 0.981 during training. By contrast, the GPCG and GPHG schemes are relatively less 

accurate, with an accuracy of 0.963 and 0.946, respectively. These results justify the utility of the 

integrated approach, where advanced ML algorithms were able to generate predictive schemes superior 

in terms of accuracy and efficiency compared to the classical methods. 

Povzetek: V članku je opisan sistem za napovedovanje sladkorne bolezni tipa 2 s pomočjo strojnega 

učenja. Algoritem GPCB združuje klasifikacijo Gaussovega procesa z metahevrističnimi optimizacijskimi 

algoritmi za kvalitetno diagnozo. 

 

1 Introduction 
Type 2 diabetes, another name for diabetes, is a long-term 

metabolic illness marked by elevated blood glucose levels 

because of either the pancreas's insufficient production of 

insulin or its inability to utilize insulin effectively [1]. 

Insulin is a hormone produced by the pancreas that 

regulates blood sugar levels by allowing the absorption of 

glucose into the cells to use it as energy [2]. Whenever the 

mechanism is disturbed, glucose builds up in the 

circulation and causes hyperglycemia [3]. Diabetes is 

sorted into 3 types: type I, type II, and gestational diabetes 

[4]. Type 1 diabetes, which is frequently diagnosed in 

childhood or adolescence, is caused by the immune system 

erroneously targeting and killing the insulin-generating 

beta cells in the pancreas [5]. This involves lifetime insulin 

treatment to control blood sugar levels. Type 2 diabetes, 

the most prevalent kind, usually develops in adulthood and 

is often associated with overweight, lack of exercise, and 

genetic risk [6], [7]. Type 2 diabetes develops when the 

body becomes resistant to or cannot produce sufficient 

insulin to meet its needs, thereby resulting in high blood 

sugar levels [8]. Gestational diabetes develops during 

pregnancy when fluctuations in hormones compromise 

insulin activity, increasing the risk of complications for 

both mother and child [9], [10]. Diabetes' persistent High 

blood sugar levels can cause a stream of issues affecting 

many organ systems [11]. These include cardiovascular 

disorders including strokes and heart attacks; nerve 

damage; diabetic neuropathy; kidney damage causing 

numbness, tingling (diabetic nephropathy), and 

discomfort; as well as eye disturbances that can cause 

blindness due to diabetic retinopathy, if not addressed 

[12], [13]. Diabetes also raises the risk of ulcers in feet and 

amputations owing to impaired circulation and damage to 

nerves [14]. 

Management includes frequent testing of blood 

glucose, proper nutrition, regular physical activity, and 

insulin therapy or medication when necessary. Other 

treatments for type 2 diabetes include weight loss and 

smoking cessation. People with diabetes need training and 

support, as enabling them with skills for optimum self-
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management reduces complications, reflecting a 

collaborative approach by all involved [15]: providers of 

healthcare, the patient, and family members [16], [17]. 

Type 2 is a complex metabolic condition that casts ripples 

in personal life since it has myriad implications for many 

facets [18], [19]. It presents physically as a constellation 

of symptoms that include chronic thirst and frequent 

urination, fatigue, and unexpected weight gain or loss 

[20], [21]. This chronic fight against blood sugar 

becoming normal turns out to be an everyday obsession 

with food intake, medication routines, and even social 

interactions [22]. Besides the physical discomforts, type 2 

diabetes also has a great psychological and emotional 

impact. The constant monitoring required to manage the 

disease can lead to feelings of anxiety, stress, and 

depression. The fear of complications is huge, with every 

increase or decrease in glucose triggering a snowball 

effect of questions about what this could mean for long-

term health and well-being. 

Type 2 diabetes can negatively affect social 

relationships and interactions. Even going out for meals 

may become a maze of counting carbohydrates and 

administering insulin, while social events may become 

distressing in their demand to explain dietary restrictions 

or personally withdraw to check blood glucose levels [23]. 

The stigma associated with diabetes can also make people 

feel isolated or humiliated, disrupting interpersonal 

interactions [24]. Besides that, type 2 diabetes may lead to 

serious financial burdens. Pharmaceutical treatment, 

apparatus for blood glucose monitoring, and frequent 

medical consultations are not cheap, especially when 

insurance coverage is inadequate. Further, loss of working 

days due to poor health or visiting doctors may affect 

earnings and professional development [25]. 

Notwithstanding such constraints, persons with type 2 

diabetes often show remarkable resilience and 

resourcefulness [26]. Most learn to manage the 

complexity of their disease through education, proactive 

self-management, and support networks and feel 

empowered by taking responsibility for their health. 

However, the pervasive nature of type 2 diabetes ensures 

its impacts are felt at all levels of life, making 

comprehensive approaches to prevention, treatment, and 

care of utmost importance. 

Machine learning algorithms can predict the risk a 

person has for diabetes and even define which type of 

diabetes the person is most probable to get, considering his 

or her medical history, life style habits, biomarkers, and 

genetic trends. These algorithms are trained on large 

datasets consisting of data from diabetic and non-diabetic 

patients through a method called supervised learning. The 

computers learn to find, through patterns and links in data, 

small signs and risk factors associated with different types 

of diabetes [27]. For example, ML schemes for the 

diagnosis of type 2 diabetes consider age, BMI, family 

medical history of diabetes, cholesterol levels, blood 

pressure, and glucose tolerance. These combined 

indicators may, therefore, enable the model to project the 

likelihood of a person developing type 2 diabetes over a 

specific period [28]. Other ML methods, including DT, 

LR, and SVM, might also classify individuals into types 

of diabetes based on sets of different variables. This will 

enable individual risk assessments and prevention 

methods based on an individual profile, and in time, will 

allow healthcare professionals to offer more personalized 

and effective preventative treatment [29]. 

1.1 Objectives 

This article proposes developing a scheme for diagnosing 

types of diabetes and predicting the likelihood of a person 

being affected with it. In order to solve this issue, the use 

of ML schemes including LDA and GPC is chosen, along 

with 3 optimizers: CGO, HGSO, and CBOA. The 

integration of these optimizers with the schemes leads to 

some new hybrid model generation, which is supposed to 

give better performance in the prediction process. Further, 

these newly designed hybrid schemes are evaluated for 

their performances using different plots and tables. It is 

expected that through their dense analysis, information 

about the most effective performance of the different 

schemes can be extracted, along with the potential deficit 

in functionality among them. Such an inclusive strategy 

will provide thorough knowledge about various schemes' 

strengths and flaws that help in formulating approaches 

related to the diagnosis and prediction of diabetes. 

Gaussian Process Classification (GPC) and Linear 

Discriminant Analysis (LDA) were picked owing to their 

complimentary capabilities in modeling classification 

challenges. GPC is a non-parametric, probabilistic model 

that captures complicated, nonlinear interactions and 

offers uncertainty estimates, making it suited for the 

nuanced and high-risk nature of diabetes prediction. 

Conversely, LDA is a basic yet powerful linear classifier 

that performs well when class distributions are nearly 

Gaussian. Its interpretability and minimal computing cost 

make it suitable for baseline comparison. LDA is good for 

efficiency and understanding, while GPC is good for 

making strong, adaptable models of complicated health 

data patterns. Together, they make a balanced framework. 

2 Material and methods 

2.1 Data collection 

Prior to model training, the dataset underwent several 

preprocessing procedures to enhance data quality and 

model performance. Missing values were addressed using 

mean imputation for numerical features. Outliers were 

detected and mitigated using z-score normalization. All 

continuous features were standardized to zero mean and 

unit variance. Categorical variables, if any, were encoded 

using one-hot encoding. Feature selection was conducted 

using mutual information to retain only the most relevant 

predictors. The final dataset was randomly shuffled and 

split into training and testing sets using an 70:30ratio to 

ensure unbiased model evaluation. Fig. 1 displays the far-

reaching consequences of diabetes on a person's life, 

spanning blood pressure to pregnancy, as it affects an 
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individual's well-being and lifestyle in general. This study 

tries to make meaning out of the interaction of diabetes 

with these major determinants, therefore, basically 

determining the trend of the illness. 

• High blood pressure worsens diabetes 

complications by essentially destroying blood 

vessels and organs. High blood pressure and 

atherosclerosis accelerate the narrowing of 

arteries, which limits blood flow, thereby 

worsening the common diabetes consequences of 

heart disease, stroke, and kidney failure. 

Hypertension further increases the risk for 

diabetic retinopathy, which can cause visual 

impairment or even total blindness. It also leads 

to peripheral artery disease, which raises the 

chances of foot ulcers and amputations in 

diabetic patients. Good management of blood 

pressure through lifestyle modifications, 

medication, and regular checks is of utmost 

importance in effective management and 

reduction of adverse effects of diabetes on 

general health. Pregnancy complicates the care of 

diabetes because of fluctuating hormonal 

changes and increased insulin resistance. 

• Gestational diabetes may be developed during 

pregnancy, increasing the risk for complications 

in both mother and child, including macrosomia, 

preeclampsia, and anomalies at birth. Women 

with previous diabetes have difficulties 

managing blood sugar levels, again increasing 

risks for adverse outcomes such as preterm birth 

and cesarean section delivery. Close monitoring, 

dietary modification, and medication may be 

necessary to achieve appropriate risk reduction 

and optimal health for both mother and fetus. 

Such cooperation between obstetricians, 

endocrinologists, and diabetes educators forms 

the very foundation for the best pregnancy 

outcomes among women with diabetes.

 
 

  

Figure 1: The plot illustrating the Contour - color fill between the input and output 
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2.2 Linear discriminant analysis (LDA) 

Linear Discriminant Analysis (LDA) is a statistical 

approach used to separate two or more classes by 

identifying a linear combination of characteristics that best 

differentiates them. It assumes that the different classes 

create data based on Gaussian distributions with the same 

covariance matrix. LDA is computationally efficient, 

interpretable, and particularly successful when the 

relationship between features and labels is nearly linear, 

making it suited for baseline comparison in medical 

classification problems like diabetes prediction. 

LDA assumes that the 2 categories' matrices of covariance 

are similar [30], and one of the 2 categories has a greater 

average than the other, as seized 𝜇1 < 𝜇2. One of these 

examples is the one provided for 𝑥 ∈ 𝑅 classes: 

Σ1 = Σ2 = Σ. (1) 
1

√(2𝜋)𝑑|Σ|
𝑒𝑥𝑝 (−

(𝑥 − 𝜇1)
𝑇Σ−1(𝑥 − 𝜇1)

2
)𝜋1

=
1

√(2𝜋)𝑑|Σ|
𝑒𝑥𝑝 (−

(𝑥 − 𝜇2)
𝑇Σ−1(𝑥 − 𝜇2)

2
) 𝜋2,

⟹ 𝑒𝑥𝑝 (−
(𝑥 − 𝜇1)

𝑇Σ−1(𝑥 − 𝜇1)

2
)𝜋1

= 𝑒𝑥𝑝 (−
(𝑥 − 𝜇2)

𝑇Σ−1(𝑥 − 𝜇2)

2
)𝜋2 ,

 
(𝑎)
⇒ −

1

2
(𝑥 − 𝜇1)

𝑇Σ−1(𝑥 − 𝜇1) + ln(𝜋1)

= −
1

2
(𝑥 − 𝜇2)

𝑇Σ−1(𝑥 − 𝜇2) + ln (𝜋2) 

(2) 

The simple logarithm of the equation's sides is found 

by (𝑎). The equation may be written as: 

(𝑥 − 𝜇1)
𝑇Σ−1(𝑥 − 𝜇1) = (𝑥

𝑇 −
𝜇1
𝑇)Σ−1(𝑥 − 𝜇1) = 𝑥

𝑇Σ−1𝑥 − 𝑥𝑇Σ−1𝜇1 −

𝜇1
𝑇Σ−1𝑥 + 𝜇1

𝑇Σ−1𝜇1  
(𝑎)
=
   𝑥𝑇Σ−1𝑥 + 𝜇1

𝑇Σ−1𝜇1 −

2𝜇1
𝑇Σ−1𝑥  

(3) 

Where (𝑎) is because 𝑥𝑇Σ−1𝜇1 = 𝑥
𝑇Σ−1𝑥 since Σ−1 

is balanced and Σ−𝑇 = Σ−1. As a result, it is observed: 

−
1

2
𝑥𝑇Σ−1𝑥 −

1

2
𝜇1
𝑇Σ−1𝜇1 + 𝜇1

𝑇Σ−1𝑥 + ln(𝜋1) 

=
1

2
𝑥𝑇Σ−1𝑥 −

1

2
𝜇2
𝑇Σ−1𝜇2 + 𝜇2

𝑇Σ−1𝑥 + ln (𝜋2) 
(4) 

As an outcome of multiplying both sides of the 

equation by 2, the expression that follows is obtained: 

2(Σ−1(𝜇2 − 𝜇1))
𝑇𝑥 + (𝜇1 − 𝜇2)

𝑇Σ−1(𝜇1 − 𝜇2)

+ 2 ln (
𝜋2
𝜋1
) = 0 

(5) 

The equation of a line may be represented as 𝑎𝑇𝑥 +
𝑏 = 0. T As a result, if the Gaussian distributions of the 2 

classes are considered, and the covariance matrices are 

considered to be equal, a line displays the categorization 

choice border. This approach is called LDA because the 

choice border between the 2 classes is linear. The 

expressions were relocated to the correct side, which 

related to the second class, to create Eq. (5). Therefore, if 

used 𝛿(𝑥): ℝ𝑑 → ℝ as the left-hand side calculation 

(function) in Eq. (6). 

(𝑥) ∶= 2(Σ−1(𝜇2 − 𝜇1))
𝑇
𝑥 (6) 

+(𝜇1 − 𝜇2)
𝑇Σ−1(𝜇1 − 𝜇2)) + 2 ln (

𝜋2
𝜋1
) 

An instance 𝑥's intended class is: 

𝐶̂(𝑥) = {
1, 𝑖𝑓 (𝑥) < 0,
2, 𝑖𝑓 𝛿(𝑥) > 0.

 (7) 

When both categories have identical priors, 𝜋1 = 𝜋2 , 
Eq. (5) takes a particular form: 

2(Σ−1(𝜇2 − 𝜇1))
𝑇
𝑥+(𝜇1 − 𝜇2)

𝑇Σ−1(𝜇1 − 𝜇2)

= 0, 
(8) 

Whose statement on the left can be interpreted as 

𝛿(𝑥) in Eq. (7).  

2.3 Gaussian process classification (GPC) 

Gaussian Process Classification (GPC) puts a 

Gaussian process prior over a latent function to predict the 

chance of being in a certain class. This lets GPC capture 

nonlinear patterns in big datasets in a flexible way and 

measure how uncertain predictions are, which is very 

important for medical diagnostics. GPC is better for risk-

sensitive predictions like figuring out how likely someone 

is to have diabetes since it changes its complexity 

dependent on the input. This is different from fixed 

parametric models. 

Given a set of N training input points, in typical 

classification using Gaussian methods, procedure 𝑋 =
 [𝑥1, … , 𝑥𝑁]

𝑇 and their associated class designations 𝑌 =
 [𝑌1, … , 𝑌𝑁]

𝑇 , one would like to forecast the class 

participation percentage of a fresh test point 𝑥×. This may 

be accomplished by utilizing a latent function f, which is 

then mapped onto the [0;  1] interval utilizing the probit 

operator. For binary classification, use the notion that y 

belongs to {0,1}, where 1 displays the positive class and 0 

displays the negative. Therefore, the likelihood of class 

membership 𝑝(𝑦 = 1|𝑥) might be expressed as Φ(f(x)), 
where Φ(. ) is the probit purpose. Gaussian procedure 

classification is then performed by applying a GP prior to 

the latent function of 𝑓(𝑥). A GP [31] is a random 

procedure completely described by a mean function 

𝑚(𝑥)  =  𝔼[𝑓(𝑥)] and a positive definite covariance 

method 𝕜(𝑥; 𝑥́)  =  𝕧[𝑓(𝑥);  𝑓(𝑥́)]. To project an 

additional test point 𝑥× , first calculate the range of the 

related latent variable 𝑓×. 

𝑝(𝑓×|𝑥×, 𝑋, 𝑦) = ∫𝑝(𝑓×|𝑥×, 𝑋, 𝑓) 𝑝(𝑓|𝑋, 𝑦)𝑑𝑓 (9) 

Where 𝑓 =  [𝑓1, … , 𝑓𝑁]
𝑇, and then using this 

distribution, calculate the class participation distribution: 

𝑝(𝑦× = 1|𝑥×, 𝑋, 𝑦) 

= ∫Φ(𝑓×) 𝑝(𝑓×|𝑥×, 𝑋, 𝑦)𝑑𝑓× 
(10) 

2.4 HGSO 

The following subsection describes the motivation for 

HGSO, which depends on the act of Henry's law. 

2.4.1 Henry’s Law  

In 1803, William Henry created Henry's Law, a gas law 

[32]. Henry's law reads as follows: "At a temperature that 

remains constant, the amount of a given gas that dissolves 
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in a given type and volume of liquid is inversely related to 

the partial pressure that exists for that gas in equilibrium 

with that liquid." Consequently, Henry's law is greatly 

dependent on temperature [33] and displays that a gas's 

solubility (𝑆𝑔) is directly proportional to its relative 

pressure (𝑃𝑔), as represented in the subsequent equation: 

𝑆𝑔 = 𝐻 × 𝑃𝑔 (11) 

Where 𝐻 is Henry's stable, which is particular to the 

given gas-solvent mixture at a certain temperature, and 

𝑃𝑔 is the gas's relative pressure. 

𝑑𝑙𝑛𝐻

𝑙(1/𝑇)
=
−∇𝑠𝑜𝑙𝐸

𝑅
 (12) 

Furthermore, the impact of temperature dependency 

on Henry's law variables has to be addressed. The Van't 

Hoff equation describes how Henry's law constants vary 

when a system's temperature varies: 

𝐻(𝑇) = exp (𝐵/𝑇) × 𝐴 (13) 

Where 𝐻 is an expression of 2 parameters, 𝐴 as well 

as 𝐵, which are the 2 factors that determine H's 𝑇 

dependency. In addition, one can generate a function 

based on 𝐻 at the standard temperature 𝑇 =  298.15𝐾. 

𝐻(𝑇) = 𝐻𝜃 × 𝑒𝑥𝑝 (
−∇𝑠𝑜𝑙𝐸

𝑅
(1/𝑇 − 1/𝑇𝜃)) (14) 

The Van't Hoff formula applies if −∇𝑠𝑜𝑙𝐸  is a stable, 

hence Eq. (14) may be rewritten as follows: 

𝐻(𝑇) = 𝑒𝑥𝑝(−𝑐 × (1/𝑇 − 1/𝑇𝜃) × 𝐻𝜃) (15) 

2.4.2 HGSO mathematical scheme 

This part describes the mathematical formulas for the 

suggested HGSO method. The mathematical procedures 

are outlined below: 

Step 1: Initialization process. 

The count of gases (population size N) and the 

placements of gases have been set up using the subsequent 

equation: 

 𝑋𝑖(𝑡 + 1) = 𝑋𝑚𝑖𝑛 + 𝑟 × (𝑋𝑚𝑎𝑥 − 𝑋𝑚𝑖𝑛) (16) 

where t is the repetition time, 𝑋𝑚𝑖𝑛  and 𝑋𝑚𝑎𝑥  are the 

issue bounds, 𝑟 is a random number between 0 and 1, and 

𝑋𝑖 is the location of the ith gas in population 𝑁. The below 

equation is used to establish the count of gasses 𝑖, Henry's 

constant of type 𝑗 (𝐻𝑗(𝑡)) partial pressure 𝑃𝑖,𝑗 of gas 𝑖 in 

cluster 𝑗, and −∇𝑠𝑜𝑙𝐸/𝑅steady value of type 𝑗 (𝐶𝑗). 

𝐻𝑗(𝑡) = 𝑙1 × 𝑟𝑎𝑛𝑑(0,1), 𝑃𝑖,𝑗 

= 𝑙2 × 𝑟𝑎𝑛𝑑 (0,1), 𝐶𝑗 = 𝑙3 × 𝑟𝑎𝑛𝑑(0,1) 
(17) 

where 𝑙1, 𝑙2, and 𝑙3 are designated as constants with 

corresponding amounts of 5𝐸 − 02, 100, and 1𝐸 − 02. 

Step 2: Clustering.  

In proportion to the count of gas types, the entire 

number of agents is split into equal clusters. Every cluster 

has the same Henry's constant measurement (𝐻𝑗) since 

they all contain the same gases. 

Step 3: Evaluation. 

The gas having the largest equilibrium state among 

the others of its sort is identified by analyzing each cluster 

𝑗. The optimal gas for the entire colony is then determined 

by rating the gasses.  

Step 4: Update Henry’s coefficient. 

Eq. (18), which updates Henry's factor, is as follows: 

𝐻𝑗(𝑡 + 1) = 𝐻𝑗(𝑡) 

× 𝑒𝑥𝑝 (−𝐶𝑗 × (
1

𝑇(𝑡)
−
1

𝑇𝜃
)) , 𝑇(𝑡) 

= exp (−𝑡/𝑖𝑡𝑒𝑟) 

(18) 

𝑇 displays the temperature, 𝑇𝜃 displays a constant 

equal to 298.15, iter is the overall count of cycles, and 𝐻𝑗 

is Henry's factor for cluster 𝑗 in this equation.  

Step 5: Update solubility. 

The following formula is used to modify the 

solubility: 

𝑆𝑖,𝑗(𝑡) = 𝐾 × 𝐻𝑗(𝑡 + 1) × 𝑃𝑖,𝑗(𝑡) (19) 

𝑆𝑖,𝑗   is the soluble content of gas 𝑖 in cluster 𝑗, 𝑃𝑖,𝑗 is 

the amount of partial pressure on gas 𝑖 in cluster 𝑗, and 𝐾 

is a value that is constant. 

Step 6: Update position.  

The position was revised below: 

𝑋𝑖,𝑗(𝑡 + 1) = 𝑋𝑖,𝑗(𝑡) 

+𝐹 × 𝑟 × 𝛾 × (𝑋𝑖,𝑏𝑒𝑠𝑡(𝑡) − 𝑋𝑖,𝑗(𝑡)) 

+𝐹 × 𝑟 × 𝛼 × (𝑆𝑖,𝑗(𝑡) × 𝑋𝑏𝑒𝑠𝑡(𝑡) − 𝑋𝑖,𝑗(𝑡)) 

𝛾 = 𝛽 × 𝑒𝑥𝑝 (−
𝐹𝑏𝑒𝑠𝑡(𝑡) + 𝜀

𝐹𝑖,𝑗(𝑡) + 𝜀
) , 𝜀 = 0.05 

(20) 

Where 𝑋𝑖,𝑗 displays the location of gas 𝑖 in cluster 𝑗, 

and 𝑟 and 𝑡 are the random constant and cycle time, 

respectively. The best gas in cluster j is indicated by 𝑋𝑏𝑒𝑠𝑡 , 
while the best gas in the entire swarm is shown by 𝑋𝑖,𝑏𝑒𝑠𝑡. 

In addition, 𝛾 displays gas 𝑗′𝑠 capacity to interact with 

other gases in cluster 𝑖, 𝛼 displays the effect of other gases 

on gas i in cluster j and is equal to 1, and 𝛽 is a constant. 

The fitness of gas i in cluster j is denoted by 𝐹𝑖,𝑗 , whereas 

𝐹𝑏𝑒𝑠𝑡  displays the fitness of the best gas in the overall 

system. 𝐹 is the flag that modifies the direction of the 

search agent and gives variety (±).  𝑋𝑖,𝑏𝑒𝑠𝑡and 𝑋𝑏𝑒𝑠𝑡   are 

the 2 parameters that control the exploration and 

exploitation capabilities. Particularly, 𝑋𝑖,𝑏𝑒𝑠𝑡 displays the 

best gas 𝑖 in cluster 𝑗, whereas𝑋𝑏𝑒𝑠𝑡  displays the best gas 

in the whole swarm. 

Step 7: Escape from local optimum. 

The purpose of this phase is to leave the local 

optimum. The count of worst agents 𝑁𝑤 can be chosen and 

ranked using the following equation: 

𝑁𝑤 = 𝑁 × (𝑟𝑎𝑛𝑑(𝑐2 − 𝑐1) + 𝑐1), 𝑐1 
= 0.1 𝑎𝑛𝑑 𝑐2 = 0.2  

(21) 

The count of search agents is denoted by 𝑁. 

Step 8: Update the position of the worst agents. 

𝐺(𝑖,𝑗) = 𝐺min (𝑖,𝑗) + 𝑟 × (𝐺max (𝑖,𝑗) − 𝐺min (𝑖,𝑗)) (22) 

In Eq. (22), 𝐺(𝑖,𝑗) displays gas 𝑖's position in cluster 𝑗, 

𝑟 is a random integer, and 𝐺min (𝑖,𝑗) and 𝐺max (𝑖,𝑗) represent 

the problem boundaries. The steps of the process are 

depicted in Fig. 2. 
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Figure 2: The flowchart of the HGS. 
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2.5 Chaos game optimization (CGO) 

The reasons behind the groundbreaking metaheuristic 

algorithm known as CGO and its computational 

architecture are covered in this section. 

2.5.1 Mathematical model  

This section presents an optimization technique based on 

the ideas of chaos theory. The mathematical foundation of 

the CGO algorithm is developed based on the basic 

concepts of fractals and chaotic games. The CGO 

algorithm considers several solution candidates (X) that 

suggest certain able seeds within a Sierpinski triangle 

because many natural evolution algorithms keep an array 

of solutions that evolve through random modifications and 

selections. Each solution candidate (𝑋𝑖) in this method 

contains a set of choice factors (𝑥𝑖
𝑗
) that represent where 

the eligible seeds are located inside a Sierpinski triangle. 

The enhancement scheme uses the Sierpinski triangle to 

explore potential solutions. In the enhancement scheme, 

the Sierpinski triangle is used to look for possible 

solutions. The quantitative treatment of these aspects is 

given below: 

𝑋 =

[
 
 
 
 
 
𝑋1
𝑋2
⋮
𝑋𝑖
⋮
𝑋𝑛]
 
 
 
 
 

=

[
 
 
 
 
 
 𝑥1
1 𝑥1

2 … 𝑥1
𝑗
… 𝑥1

𝑑

𝑥2
1 𝑥2

2 … 𝑥2
𝑗
… 𝑥2

𝑑

⋮ ⋮ … ⋮ ⋱ ⋮

𝑥𝑖
1 𝑥𝑖

2 … 𝑥𝑖
𝑗
… 𝑥𝑖

𝑑

⋮ ⋮ … ⋮ ⋱ ⋮
𝑥𝑛
1 𝑥𝑛

2 … 𝑥𝑛
𝑖 … 𝑥𝑛

𝑑]
 
 
 
 
 
 

, {
𝑖 = 1,2, . . , 𝑛.
𝑖 = 1,2, … , 𝑑.

 

(23) 

For each seed in the Sierpinski triangle (search area), 

the count of permissible seeds, or potential solutions, is n; 

and d is the seed's size. Random selection is used to 

determine where these appropriate seeds are initially 

placed in the search space. 

𝑥𝑖
𝑗(0) = 𝑥𝑚𝑖𝑛

𝑖 + 𝑟𝑎𝑛𝑑 

∙ (𝑥𝑖,𝑚𝑎𝑥
𝑗

− 𝑥𝑖,𝑚𝑖𝑛
𝑗

), {
𝑖 = 1,2, … , 𝑛.
𝑗 = 1,2,… , 𝑑.

 
(24) 

The beginning position of the eligible seeds is defined 

by 𝑥𝑖
𝑗
; 𝑥𝑖,𝑚𝑎𝑥

𝑗
 as well as 𝑥𝑖,𝑚𝑖𝑛

𝑗
 indicate the maximum and 

lowest permitted values for the ith solution candidate's jth 

choice variable; rand is a random integer within the range 

[0,1]. The way dynamical systems, often known as self-

similar and self-organizing systems, behave, as was 

previously described, and display specific fundamental 

patterns serves as the foundation for the core ideas of 

chaos theory. The fundamental dynamical system patterns 

according to chaos theory are exhibited by eligible seeds, 

which are acquired beginning positions. It is possible to 

ascertain whether these seeds are suitable to function as 

fundamental patterns (self-similarity) for an optimization 

issue by employing potential solutions (𝑋). The candidates 

for the solutions with the greatest and worst fitness values 

as well as the lowest and highest levels of eligibility are 

connected. 

The basic idea of this mathematical model is to create 

the general shape of a Sierpinski triangle by producing 

several appropriate seeds inside the search area. In this 

way, fresh seeds are also produced via the Sierpinski 

triangle technique. An intermediate triangle with three 

seeds is created as follows for each appropriate seed in the 

search field 𝑋𝑖: 
• Positioning of the previously identified Global 

Best (GB), 

• The average group's location (𝑀𝐺𝑖),  
• The 𝑖th resolution competitor (𝑋𝑖) is the chosen 

seed. 

Although the mean values of randomly chosen 

eligible seeds with an equal chance of integrating the 

currently regarded starting eligible seed (𝑋𝑖) are reflected 

in the 𝑀𝐺𝑖, the GB is the best solution candidate with the 

highest eligibility levels. Together with the identified 

eligible seed (𝑋𝑖), the GB and 𝑀𝐺𝑖 create a Sierpinski 

triangle. In order to generate some more seeds that can be 

regarded as fresh eligible seeds for finishing the Sierpinski 

triangle, a temporary triangle is made inside the search 

area for each of the first eligible seeds, as was previously 

indicated. Four strategies are suggested to accomplish this 

aim. The 𝑖th permanent triangle (ith repetition) includes a 

Sierpinski triangle's three vertices [GB (green seed), 𝑀𝐺𝑖 
(red seed), and 𝑋𝑖 (blue seed)] in addition to the n 

appropriate seeds that were accessible in the previous 

cycle. This homemade triangle uses the chaotic game 

principle to produce fresh seeds using one die and three 

seeds. 𝑋𝑖 is used to hold the first seed, GB for the second, 

and 𝑀𝐺𝑖 for the third. For the first seed, a die with three 

green and three red faces was utilized. Upon rolling the 

dice, the seed in the 𝑋𝑖is shifted to the 𝑀𝐺𝑖 (red face) or 

the GB (green face) based on the resulting color. This 

element is replicated using a random number generation 

method that generates just 2 values, 0 as well as 1, 

enabling the choice of red or green faces. When the green 

face is visible, the 𝑋𝑖 seed advances in the direction of the 

GB; it moves toward the 𝑀𝐺𝑖. Even if each green or red 

face has an equal chance of appearing in the game, the 

potential of getting two equivalent random integers for the 

GB and the 𝑀𝐺𝑖 is also taken into account. The direction 

of the 𝑋𝑖 's seed advancement is a line segment that 

connects the GB with the 𝑀𝐺𝑖. The flow of seeds within 

the search area must be restricted because of the chaotic 

game method; hence, this component is controlled by 

certain at-random factorials that were created: 

𝑆𝑒𝑒𝑑𝑖
1 = 𝑋𝑖 + 𝛼𝑖 × (𝛽𝑖 × 𝐺𝐵 − 𝛾𝑖 ×𝑀𝐺𝑖), 𝑖 

= 1,2, … , 𝑛. 
(25) 

𝑋𝑖 displays the 𝑖𝑡ℎ resolution candidate, GB denotes 

the global best discovered thus far, and 𝑀𝐺𝑖   displays the 

mean of a few selected, qualified seeds. While 𝛽𝑖 and 𝛾𝑖 
indicate a random integer between 0 and 1 to enable die 

rolling, 𝛼𝑖 is a randomly generated factorial to reflect seed 

movement limitations. Three blue and three red-faced dice 

are used for the next seed (GB). Either the 𝑀𝐺𝑖 (red face) 

or the 𝑋𝑖 (blue face) receives the seed in the GB, 

depending on the color that emerges from rolling the dice. 
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The model used in this section is the same as the original 

seed. If a blue face emerges, the seed travels to the 𝑋𝑖; if a 

red face appears, the seed goes to the 𝑀𝐺𝑖. Another seed, 

like the first, can travel towards a location on the 

connecting lines between 𝑋𝑖and 𝑀𝐺𝑖 . This motion is 

restricted by randomly produced factorials.  

𝑆𝑒𝑒𝑑1
2 = 𝐺𝐵 + 𝛼𝑖 × (𝛽𝑖 × 𝑋𝑖 − 𝛾𝑖 ×𝑀𝐺𝑖), 𝑖 

= 1,2, … , 𝑛. 
(26) 

where each of the variables 𝛽𝑖 and 𝛾𝑖 is a random 

value of 0 or 1 to simulate the option of rolling a die, and 

𝛼𝑖 is the randomly generated factorial for characterizing 

the mobility limitations of the seeds. The remaining 

requirements are the same as those listed for the initial 

seed. The third seed is employed to roll a die with green 

and blue faces, 𝑀𝐺𝑖. The seed is directed toward either the 

𝑋𝑖 (blue face) or the GB (green face) depending on the 

color. An approach for generating random numbers is used 

to duplicate this element. It yields just 2 values, 0 and 1, 

so that users may select between the blue or green faces. 

Additionally, the lines connecting the 𝑋𝑖 and GB can be 

followed by the seed. Some random factorials are also 

used to achieve this goal, such as: 

𝑆𝑒𝑒𝑑1
3 = 𝑀𝐺𝑖 + 𝛼𝑖 × (𝛽𝑖 × 𝑋𝑖 − 𝛾𝑖 × 𝐺𝐵), 𝑖 

= 1,2, … , 𝑛. 
(27) 

In order to generate the fourth seed, an additional 

method is employed to carry out the modification stage in 

the qualifying seeds' position updates within the search 

area. Changes in this seed's position are made depending 

on arbitrary adjustments made to the randomly chosen 

decision criteria. Eq. (28) depicts a schematic depiction of 

the specified procedure for the 4th seed; it has the 

following mathematical representation: 

𝑆𝑒𝑒𝑑𝑖
4 = 𝑋𝑖(𝑥𝑖

𝑘 = 𝑥𝑖
𝑘 + 𝑅),   𝑘 = [1,2, … , 𝑑]. (28) 

Where 𝑘 is an integer at random in the interval [1, 𝑑] 
and 𝑅 is a random number with uniform distribution in the 

region [0, 1]. Four formulations for 𝛼𝑖, which controls the 

mobility limitations of the seeds, are provided in order to 

alter the exploration and exploitation rate of the CGO 

algorithm. 

𝛼𝑖 = {

𝑅𝑎𝑛𝑑
2 × 𝑅𝑎𝑛𝑑

(𝛿 × 𝑅𝑎𝑛𝑑) + 1
(𝜀 × 𝑅𝑎𝑛𝑑) + (~𝜀)

 (29) 

In this case, δ as well as ε are indeterminate numbers 

in the interval [0,1], and Rand is a randomly dispersed, 

equally distributed number in that interval. Given the self-

similarity problems in the fractals, the eligibility of the 

new and existing seeds should be jointly assessed to 

decide if the additional seeds ought to be included in the 

search space's overall count of eligible seeds. The best 

new solution candidates are retained after being vetted; 

seeds with the lowest fitness values, or the lowest degrees 

of self-similarity, are removed. It is important to note that 

the mathematical method reduces the mathematical 

model's complexity by using substitution. Actually, the 

entire form of the Sierpinski triangle has been completed 

using all of the qualifying seeds found in the search region. 

To cope with the solution variables 𝑥𝑖
𝑗
 breaching the 

boundaries of the factors, a mathematical flag is 

constructed. For the variables that violate the technique, a 

boundary change is ordered if the 𝑥𝑖
𝑗
 is beyond the 

parameter's range. The most repetitions that can be done 

in which the optimization process takes place serves as the 

basis for the termination criterion. 

2.6 Chef-Based Enhancement scheme 

(CBOA) 

A metaheuristic method called CBOA was just introduced 

by [34]. The CBOA's mathematical representation and 

natural architecture are covered in this section.  

2.6.1 Mathematical model of CBOA  

Below is a presentation of the CBOA mathematical model 

using the situation from Section 2.1. First, the 

initialization stage of the algorithm is initiated, much like 

in other metaheuristics. There are 2 populations as a result 

of the CBOA: elite agents and candidate solutions. 

Therefore, as shown by Eq. (30), a matrix may be used to 

represent the CBOA members. 

𝑋 = [
𝑋1
⋮
𝑋𝑁

]

𝑁×1

= [

𝑥1,1 … 𝑥1,𝑑𝑖𝑚
⋱

𝑥𝑁,𝑑𝑖𝑚 … 𝑥𝑁,𝑑𝑖𝑚
]

𝑁×𝑑𝑖𝑚

 (30) 

where 𝑁 is the population size, dim is the issue length 

(𝑎 ∈ [1, 𝑁], 𝑏 ∈ [1, 𝑑𝑖𝑚]), 𝑋 is the CBOA population 

matrix, and 𝑥𝑎,𝑏 indicates the value of the bth problem 

parameter for the ath CBOA member. CBOA members' 

locations are established using Eq. (31): 

𝑥𝑎,𝑏 = 𝐿𝑂𝑊𝑏 + 𝑟𝑎𝑛𝑑 ∙ (𝑈𝑃𝑏 − 𝐿𝑂𝑊𝑏) (31) 

Where rand is an arbitrary number in the range of [0, 

1], 𝐿𝑂𝑊𝑏  and 𝑈𝑃𝑏  are the lower and upper limits of the 

𝑏𝑡ℎ problem factor, correspondingly. Each member's goal 

function may be determined and expressed as a vector 

according to Eq. (32): 

𝐹𝑖𝑡 = [
𝐹𝑖𝑡𝑥𝑋1
⋮

𝐹𝑖𝑡𝑋𝑁

]

𝑁×1

 (32) 

𝐹𝑖𝑡 symbolizes the values of objective functions, 

whereas 𝐹𝑖𝑡𝑋𝑎 displays the value of a member. The 

objective function's value is used as the selection criteria 

for selecting the best candidate solution. The optimal 

member of the population and potential solution is the one 

that has the highest value for the objective function. It's 

time to complete the CBOA's processing steps after the 

algorithm has been launched. The CBOA is composed of 

two demographic groups: elite agents and candidate 

solutions. These two groups' update procedures are 

different. Its elements are changed at each cycle, and the 

values of the aim function are computed and evaluated. As 

a result, the best member is changed after each repetition. 

Upon comparing the values of the objective function, elite 

agents are selected from among the CBOA members with 

the highest values. The values of the goal function are used 

to sort the population matrix in decreasing order. 
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𝑆𝑋 =

[
 
 
 
 
𝑆𝑋1
⋮

𝑆𝑋𝑁𝐶
⋮
𝑆𝑋𝑁 ]

 
 
 
 

𝑁×1

=

[
 
 
 
 
 
𝑠𝑥1,1
⋮

𝑠𝑥𝑁𝐶,1
𝑠𝑥𝑁𝐶+1,1
⋮

𝑠𝑥𝑁,1

…

𝑠𝑥1,𝑑𝑖𝑚
⋮

𝑠𝑥𝑁𝐶,𝑑𝑖𝑚
𝑠𝑥𝑁𝐶+1,𝑑𝑖𝑚

⋮
𝑠𝑥𝑁,𝑑𝑖𝑚 ]

 
 
 
 
 

𝑁×𝑑𝑖𝑚

 

(33) 

𝑆𝐹𝑖𝑡 =

[
 
 
 
 
 
𝑆𝐹𝑖𝑡𝑋1
⋮

𝑆𝐹𝑖𝑡𝑋𝑁𝐶
𝑆𝐹𝑖𝑡𝑋𝑁𝐶+1

⋮
𝑆𝐹𝑖𝑡𝑋𝑁 ]

 
 
 
 
 

𝑁×1

 (34) 

Where NC is the count of chef instructors, 𝑆𝑋 denotes 

the sorted demographic matrix, and SFit displays the 

ascending objective function value vector. Following that, 

changes will be made in 2 steps for each group, from 1 to 

𝑁𝐶 and 𝑁𝐶 +  1 𝑡𝑜 𝑁. 𝑁𝐶 has started to represent one-

fifth of the entire population in the first group division. For 

instance, 𝑁𝐶 = 6 if there are 30 populations in the 

beginning. All cycles or the end of the epochs result in the 

availability of a single chef. 

Step 1- Updating for chef instructors:  

Chef instructors use the two best chef instructors' 

strategies to hone their culinary skills. At first, they try to 

acquire chef educator methods by imitating the best elite 

agent. This plan describes the global exploration and 

capabilities of the CBOA. The primary benefit of this 

upgrade is that before instructing candidate solutions, chef 

educators may test their skills against the best chefs. This 

method allows for the upgrading of candidate solutions, 

not only the most gifted individuals. By doing this, it 

prevents the algorithm from being stuck in the local 

optimum and promotes more precise and effective 

scanning over the many search space regions. In this 

example, freshly established cooking teacher posts are 

filled using Eq. (35). 

𝑠𝑥𝑎,𝑏
(𝐶𝐹𝑆) = 𝑠𝑥𝑎,𝑏 + 𝑟𝑎𝑛𝑑

∙ (𝐵𝑒𝑠𝑡𝐶𝑏 − 𝐼𝑛𝑑 ∙ 𝑠𝑥𝑎,𝑏) 
(35) 

𝑠𝑥𝑎,𝑏
𝐶𝐹 𝑆 specifies the first strategy for switching 

chef instructors, and 𝐶𝐹𝑆 indicates the new role for the 

ath-ordered member in the bth manage. The best chef 

instructor in the bth coordinate, or 𝑆𝑋1 in the 𝑆𝑋 matrix, is 

represented by 𝐵𝑒𝑠𝑡𝐶𝑏. I nd is a randomly chosen number 

from the set {1,2}, and rand is an arbitrary number in the 

interval [0,1]. Eq. (36) is used to determine this condition: 

𝑆𝑋𝑎 = {
𝑆𝑋𝑎

(𝐶𝐹𝑆)
, 𝑆𝐹𝑖𝑡𝑎

(𝐶𝐹𝑆)
< 𝐹𝑖𝑡𝑎

𝑆𝑋𝑎,   𝑒𝑙𝑠𝑒
 (36) 

In this equation, 𝑆𝐹𝑖𝑡𝑎
(𝐶𝐹𝑆)

 displays the objective 

function of 𝑆𝑋𝑎
(𝐶𝐹𝑆)

, and Fita is the fitness function ath 

member. Based on the second method, each culinary 

teacher strives to develop their abilities via individual 

practice. This method intends to increase CBOA's 

exploitation capabilities and local search. Every elite 

agents culinary expertise identifies the factors needed to 

get the aim function's ideal value. This updating technique 

is beneficial since every person searches for better 

opportunities in the vicinity, independent of the location 

of other community members. This idea is to use Eqs. (37) 

to (38) to produce a random position around each culinary 

instructor in the search space for each issue variable 𝑏 ∈
 [1, 𝑑𝑖𝑚]. If this random site increases the goal function's 

value, it can be updated. Eqs. (39) to (40) are used to 

model this scenario. 

𝐿𝑂𝑊𝑏
(𝑙𝑜𝑐𝑎)

= 𝐿𝑂𝑊𝑏
(𝑙𝑜𝑐𝑎𝑙)

/𝑖𝑡𝑒𝑟 (37) 

𝑈𝑃𝑏
(𝑙𝑜𝑐𝑎𝑙)

/𝑖𝑡𝑒𝑟 (38) 

Here, 𝐿𝑂𝑊𝑏
(𝑙𝑜𝑐𝑎𝑙)

and 𝑈𝑃𝑏
(𝑙𝑜𝑐𝑎𝑙)

 show the local 

boundaries of the 𝑏𝑡ℎ issue variable, where 𝑖𝑡𝑒𝑟 is a 

parameter for repetition. 

𝑠𝑥𝑎,𝑏
(𝐶𝑆𝑆) = 𝑠𝑥𝑎,𝑏 + 𝐿𝑂𝑊𝑏

(𝑙𝑜𝑐𝑎𝑙)
 

+𝑟𝑎𝑛𝑑. (𝑈𝑃𝑏
(𝑙𝑜𝑐𝑎𝑙) − 𝐿𝑂𝑊𝑏

(𝑙𝑜𝑐𝑎𝑙)), 𝑗 − 1, 𝑁𝐶, 𝐽 

= 1,… , 𝑑𝑖𝑚𝑚 

(39) 

𝑆𝑋𝑎 = {
𝑆𝑋𝑎

(𝐶𝑆𝑆)
, 𝑆𝐹𝑖𝑡𝑎

(𝐶𝑆𝑆)

𝑆𝑋𝑎 , 𝑒𝑙𝑠𝑒
< 𝐹𝑖𝑡𝑎 (40) 

𝑆𝑋𝑎
(𝐶𝑆𝑆)

 is the new location for the ath-ranked 

membership according to the chef's next strategy called 

𝐶 𝑆𝑆, 𝑠𝑥𝑎,𝑏
(𝐶𝑆𝑆)

 displays its 𝑏𝑡ℎ manage, and 𝑆𝐹𝑖𝑡𝑎
(𝐶𝑆𝑆)

is the 

goal variable value.  

Step 2- candidate solutions ' updates As per the 

CBOA, candidate solutions pursuing culinary arts use 

these three methods to enhance their cooking abilities: 

A chef trains each student, randomly assigning them 

to a class. This method has the benefit of having a chef 

mentor the pupils, which helps them acquire new skills. It 

alludes to users who have moved to the other search zone 

in the technique. If the best chef instructor teaches pupils, 

on the other hand, there won't be a worldwide search since 

there will be a computational bias in favor of the best. The 

guidance and training of the elite agent determine each 

culinary student's new role. This situation is expressed in 

Eq. (41). 

𝑠𝑥𝑎,𝑏
(𝑆𝐹𝑆) = 𝑠𝑥𝑎,𝑏 + 𝑟𝑎𝑛𝑑 

∙ (𝐶𝐼𝑅𝑎,𝑏 − 𝐼𝑛𝑑 ∙ 𝑠𝑥𝑎,𝑏) 
(41) 

Based on the learner's initial strategy, known as SFS, 

the updated position for the 𝑎th-sorted member is 

expressed as 𝑠𝑥𝑎,𝑏
(𝑆𝐹𝑆)

, where 𝐶𝐼𝑅𝑎,𝑏 is the elite agent and 𝑅 

is an arbitrary index in the interval [0, 𝑁𝐶]. New locations 

are found using Eq. (42). 

𝑆𝑋𝑎 = {
𝑆𝑋𝑎

𝑆𝐹𝑆, 𝑆𝐹𝑖𝑡𝑎
(𝑆𝐹𝑆)

𝑆𝑋𝑎, 𝑒𝑙𝑠𝑒
< 𝐹𝑖𝑡𝑎 (42) 

𝑆𝐹𝑖𝑡𝑎
(𝑆𝐹𝑆)

 is the ultimate value for SFS. 

The CBOA's technique involves treating every factor 

as a skill. Each student learns and mimics one of the chef 

instructor's skills. 𝐴𝑛 instructor chosen at random from the 

collection 𝐶𝐼𝑅  is used (𝑅 is selected from [1, 𝑁𝐶]). This is 

comparable to changing just one variable instead of every 

possible answer in terms of algorithms. This enhances 

global exploration and search. In order to recreate this 

situation, the first lead instructor, represented by the 

𝐶𝐼𝑅𝑎  vector, is randomly selected for each culinary learner 

𝑠𝑥𝑎 (a CBOA member selected at random from Ra's index 
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from [1, 𝑁𝐶]). To represent a talent of the selected head 

instructor, the cth coordinate of the vector of 𝑠𝑥𝑎, the 

culinary pupil, is picked at random from [1, 𝑑𝑖𝑚]. 𝐶𝐼𝑅𝑐 is 

this value. In this case, Eq. (43) may be used to calculate 

the new location: 

𝑠𝑥𝑎,𝑏
(𝑆𝑆𝑆)

= {
𝐶𝐼𝑅𝑎,𝑏 , 𝑏 = 𝑐

𝑠𝑥𝑎,𝑏 , 𝑒𝑙𝑠𝑒
 (43) 

where 𝑏 is the problem size ([1, 𝑑𝑖𝑚]), 𝑎 matches the 

population and takes a value in the range of [𝑁𝐶 +
 1, 𝑁𝐶 +  𝑁], c is a random integer selected from 

[1, 𝑑𝑖𝑚], and SSS is the student's next strategy. 

Consequently, the location update is established using Eq. 

(44). 

𝑆𝑋𝑎,𝑏 = {
𝑆𝑋𝑎

(𝑆𝑆𝑆)
, 𝐹𝑖𝑡𝑆𝑎

(𝑆𝑆𝑆)
< 𝐹𝑖𝑡𝑎

𝑆𝑋𝑎 , 𝑒𝑙𝑠𝑒
 (44) 

𝑆𝑋𝑖
(𝑆𝑆𝑆)

 relates to the new position of 𝑎𝑡ℎ ranked 

member based on 𝑆𝑆𝑆. 

Using one of the two last methods, personal activities 

or research, each culinary student aims to grow personally. 

This is the algorithm's exploitation stage. The benefit of 

this approach is that it makes local search stronger while 

also allowing the algorithm to find more practical answers 

that are closer to previously discovered solutions. When 

every obstacle is viewed as a skill, kids will work to 

improve these skills in order to become more fit. Thus, Eq. 

(45) is used to find new locations. 

The selection of HGSO, CGO, and CBOA stems from 

their distinct abilities to enhance exploration and 

exploitation during model optimization critical in high-

dimensional, nonlinear domains like diabetes prediction. 

HGSO draws on thermodynamic principles to escape local 

optima, improving convergence reliability. CGO 

leverages fractal-inspired chaotic dynamics, offering 

effective global search in complex spaces. CBOA mimics 

human learning strategies to balance global and local 

refinement. While these optimizers are general-purpose, 

their adaptability makes them suitable for fine-tuning 

model parameters in sensitive health-related tasks. These 

schemes were integrated to boost classification 

performance beyond what standalone models achieve. 

Although formal ablation studies were not conducted here, 

the comparative evaluation highlights clear improvements 

in predictive metrics, justifying their inclusion.

𝑠𝑥𝑎,𝑏
(𝑆𝑇𝑆)

= {
𝑠𝑥𝑎,𝑏 + 𝐿𝑂𝑊𝑏

(𝑙𝑜𝑐𝑎𝑙)
+ 𝑟𝑎𝑛𝑑 ∙ (𝑈𝑃𝑏

(𝑙𝑜𝑐𝑎𝑙)
− 𝐿𝑂𝑊𝑏

(𝑙𝑜𝑐𝑎𝑙)
)

𝑠𝑥𝑎,𝑏 ,   𝑒𝑙𝑠𝑒
 (45) 

 

where 𝑟 dim is a random number chosen 

from [1, 𝑑𝑖𝑚] and 𝑠𝑥𝑎,𝑏
(𝑆𝑇𝑆)

 displays the updated calculated 

state of the ath member based on the student's third 

strategy (𝑆𝑇𝑆). Eq. (46) displays the changes: 

𝑆𝑋𝑎,𝑏 = {
𝑆𝑋𝑎

(𝑆𝑇𝑆)
, 𝐹𝑖𝑡𝑆𝑎

(𝑆𝑇𝑆)
< 𝐹𝑖𝑡𝑎

𝑠𝑥𝑎,𝑏  , 𝑒𝑙𝑠𝑒
 (46) 

Fit 𝑆𝑋𝑎
(𝑆𝑇𝑆)

 displays the desired function value of 

𝑆𝑋𝑎
(𝑆𝑇𝑆)

 as 𝑆𝑇𝑆. Culinary learners and elite agents discuss 

𝐶𝐵𝑂𝐴 tactics. 

2.7 Performance evaluator 

A variety of indicators are utilized to assess classifier 

performance. The term "accuracy" refers to the proportion 

of accurately predicted observations. Three commonly 

used metrics are recall, accuracy, and precision. Total 

accuracy, which encompasses both real negatives and 

positives, is referred to as accuracy. Unbalanced datasets 

can lower accuracy. Recall finds only positives and 

assumes minimal mistakes. The F1 score is helpful in 

schools with different distributions since it balances 

recollection and accuracy. It can handle both false 

negatives and real positives. These measures assist in 

estimating the efficacy of ML schemes. 

Accuracy =
TP + TN

TP + TN + FP + FN
 (47) 

Precision =
TP

TP + FP
 (48) 

Recall = TPR =
TP

P
=

TP

TP + FN
 (49) 

F1 score =
2 × Recall ×  Precision

Recall + Precision
 (50) 

where in the further analysis the sign TP designates 

the case of a positive forecast of the good luck, FP - the 

abbreviation of fall positive - is used in the case when the 

outcome of a case is bad. In the case when the forecast is 

negative and the real result is really negative TN gives the 

same result. The FN means a bad forecast when the real 

result is good. 

3 Result and discussion 
The results obtained from these hybrid schemes are 

represented comprehensively with various graphs and 

tables. These tools systematically compare and contrast 

each model's performance for an in-depth assessment of 

the functions of each model. From a careful study of the 

results represented in the graphs and tables, insightful 

analysis is performed to identify the best model that 

performs well in terms of predictive accuracy and 

suitability for the prediction process. Moreover, this 

review also points out schemes with flaws or limits, 

adding a critical perspective to the work, especially in 

respect of their applicability to real-life scenarios. This 

strong assessment methodology allows researchers to 

make informed decisions on model selection and 

optimization for prediction tasks, helping to advance not 

only the science but also practical applications behind 

predictive modeling. 

3.1 Convergence curve 

The convergence curve has a significant influence on 

prediction processes since it displays the rate at which a 

scheme learns. A steep slope in the convergence curve 

displays that convergence happens fast, and hence, the 
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model quickly learns the pattern and forecasts stabilize. In 

contrast, a shallow curve indicates slower convergence, 

which means the model takes longer to comprehend 

patterns, and hence, the predictions are highly 

unpredictable throughout training. This helps to 

understand this curve for optimizing the training tactics 

and finding a balance between underestimating and 

overfitting. The suggestions made include those of 

learning rate changes, batch size changes, and model 

topology for best prediction performance with no 

convergence or wasted time in unnecessary training. The 

convergence curve in Fig. 3 illustrates and compares the 

results of the hybrid schemes presented. Fig. 3 displays the 

convergence behavior of each hybrid model across 

iterations, revealing learning stability and showing which 

schemes reach optimal accuracy most efficiently during 

training. It can be seen from this figure that, among the 

LDCB, LDCG, and LDHG schemes, the LDCG model, 

which has reached an accuracy of 0.930, has been 

outperformed by the LDCB model with 0.968 accuracy, 

whereas its accuracy is higher than that of the LDHG 

model, which stands at 0.921. Similarly, among the 

GPHG, GPCG, and GPCB schemes, the GPHG schemes 

showed an accuracy of 0.942, proving that their accuracy 

is the lowest compared to the GPCG model, which had an 

accuracy of 0.960, and the GPCB model, which had an 

accuracy of 0.980. Their optimal condition was achieved 

after 60 cycles.

  

Figure 3: 3D The convergence curve for the 3 schemes 

3.2 Schemes comparison  

Table 1 displays the outcomes of both the LDR and GPC 

schemes, as well as their respective hybrid forms in 

different phases. Table 1 summarizes the accuracy, 

precision, recall, and F1-scores of all models during 

training, testing, and overall phases, enabling side-by-side 

evaluation of classifier performance. In the training phase, 

it becomes apparent that the functionality of the LDR 

model, boasting an accuracy of 0.916, falls short than 

another base model, GPC, achieving 0.937 accuracy in the 

same phase. Similarly, its hybrid counterpart, the LDHG 

model, with an accuracy of 0.926, also lags behind the 

GPHG model with 0.946 accuracy. Furthermore, the 

precision value of the GPCG model, reaching 0.963, 

outperforms the precision value of the LDCG model, 

which stands at 0.935, during the training phase. 

Upon comparing the outcomes of the schemes during 

the testing phase, it becomes apparent that the recall value 

of the hybrid forms of GPC schemes exceeds that of the 

hybrid form of the LDR model. Specifically, during the 

testing phase, it is evident that LDCG, with a recall value 

of 0.922, demonstrates weaker functionality than GPCG, 

which achieves a recall value of 0.957. However, 

following the LDCB model with a recall value of 0.961, 

the LDCG model boasts the highest value among its group 

members. Conversely, GPCG, with a recall value of 0.957, 

signifies that its performance surpasses that of the GPHG 

and GPC schemes, which have recall values of 0.935 and 

0.909, in that order, although it does not outperform 

GPCB, with a recall value of 0.978, during the testing 

phase.

Table 1: The outcome of the showcased developed schemes 

Section Model 
Metric values 

Accuracy Precision Recall F1-score 

Train 

LDR 0.916 0.917 0.916 0.917 

LDHG 0.926 0.925 0.926 0.925 

LDCG 0.935 0.935 0.935 0.935 

LDCB 0.972 0.972 0.972 0.972 



310 Informatica 49 (2025) 299–318                                                                                                                              N. Zhang et al. 

 

 

  

GPC 0.937 0.937 0.937 0.937 

GPHG 0.946 0.947 0.946 0.946 

GPCG 0.963 0.963 0.963 0.963 

GPCB 0.981 0.981 0.981 0.981 

Test 

LDR 0.874 0.876 0.874 0.875 

LDHG 0.913 0.913 0.913 0.913 

LDCG 0.922 0.921 0.922 0.921 

LDCB 0.961 0.961 0.961 0.961 

GPC 0.909 0.914 0.909 0.910 

GPHG 0.935 0.937 0.935 0.936 

GPCG 0.957 0.961 0.957 0.957 

GPCB 0.978 0.979 0.978 0.978 

All 

LDR 0.904 0.905 0.904 0.904 

LDHG 0.922 0.922 0.922 0.922 

LDCG 0.931 0.931 0.931 0.931 

LDCB 0.969 0.969 0.969 0.969 

GPC 0.928 0.929 0.928 0.929 

GPHG 0.943 0.944 0.943 0.943 

GPCG 0.961 0.962 0.961 0.961 

GPCB 0.980 0.981 0.980 0.980 

 

The 3D wall plot of Fig. 4 visualizes model accuracy 

comparison across three different phases, namely 

Training, Testing, and All. By taking into account the 

performances for all the phases of three schemes, a 

number of thrilling trends can be found out. First and 

foremost, during the All phase, the LDR model performed 

best among them with a marvelous score of its precision 

metric 0.905, which really exhibits the competency of this 

model with a touch towards precision. With that said, GPC 

outcompetes all its contenders during the same stage with 

outstanding precision and F1 score records at an 

astonishing 0.929, while it preserves high consistency 

between its measures, which remain around 0.928 with 

regard to both accuracy and recall, demonstrating an 

overall robust behavior in performance. In sharp contrast, 

the LDHG model displays very consistent results in all 

four metrics, reaching a stable performance of 0.922 in all, 

reflecting a balanced performance considering different 

evaluation standards. In contrast, the GPHG model has 

strengths and weaknesses mixed up on the metrics. 

Although it has a very commendable score in the precision 

metric of 0.944, the value is low in other metrics, having 

0.943 for accuracy, recall, and F1 score, showing its 

relative weakness in those aspects.
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Figure 4: 3D Walls-plot for the performance of the schemes across phases 

Table 2 presents a comparison of the functional 

performance of schemes under both healthy and diabetes 

conditions. For instance, the LDR model showcases an 

accuracy of 0.93 under healthy conditions, aligning with 
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the precision value of the LDHG model. However, the 

LDCB model emerges as the top performer with a 

precision value of 0.97, indicating its superiority over the 

LDCG model, which achieves a precision value of 0.94, 

as well as other preceding schemes. Among the hybrid 

versions of the GPC model, the GPCB and GPCG 

schemes emerge with the highest accuracy under healthy 

conditions, boasting precision values of 0.99 and 0.98, 

respectively. Following closely, the GPHG model 

achieves a precision value of 0.97, while the GPC model 

records a precision value of 0.95, indicating slightly 

weaker functionality compared to the former schemes. 

Nevertheless, the hybrid forms of the GPC model 

showcase superior functionality in contrast to the LDA 

scheme and its variants. 

Furthermore, under diabetes conditions, the LDCB 

model exhibits a higher recall value of 0.95, surpassing the 

recall values of the LDCG, LDHG, and LDA schemes, 

which stand at 0.90 and 0.88, in that order. Moreover, the 

recall value of the LDCB model exceeds that of the GPC 

and GPHG schemes, which are 0.91 and 0.94, 

respectively. However, it falls short of surpassing the 

recall values of the GPCG and GPCB schemes, which are 

0.96 and 0.98, respectively.

Table 2: Categorization of assessment criteria for the performance of the developed schemes 

Metric 

values 
Condition 

Model 

LDR LDHG LDCG LDCB GPC GPHG GPCG GPCB 

Precision 
Healthy 0.93 0.93 0.94 0.97 0.95 0.97 0.98 0.99 

Diabetes 0.85 0.90 0.91 0.96 0.88 0.90 0.93 0.97 

Recall 
Healthy 0.92 0.95 0.95 0.98 0.94 0.94 0.96 0.98 

Diabetes 0.88 0.88 0.90 0.95 0.91 0.94 0.96 0.98 

F1-score 
Healthy 0.93 0.94 0.95 0.98 0.94 0.96 0.97 0.98 

Diabetes 0.86 0.89 0.90 0.95 0.90 0.92 0.95 0.97 

 

The column line symbol plot in Fig. 5 provides a 

comparison between the values recorded in both healthy 

and diabetic situations and the values predicted by the 

schemes. Under the diabetes condition, it is evident that 

the LDCB model, with 254 out of 268 measured values, 

demonstrates higher accuracy than the LDCG model, 

which achieves 240 out of 267 measured values. 

Similarly, the base model, LDR, performs better with 236 

out of 268 measured values compared to the LDHG 

model, which also achieves 236 out of 268 measured 

values. Conversely, under the healthy condition, both 

GPC and GPHG schemes achieve 468 and 471 out of 500 

measured values, respectively, indicating lower accuracy 

compared to the GPCG and GPCB schemes, which 

achieve 480 and 491 out of 500 measured values, 

respectively. Besides, the GPCG and GPHG schemes 

attain values of 258/268 and 253/268, respectively, under 

the diabetes condition, which indicates moderate 

performance by the GPCB model, with attained values of 

262/268, and the GPC model, at 245/268.

  

Figure 5: Column-line symbol plot to represent the difference among the schemes

To avoid overfitting, the model's performance was 

checked at three different phases: training, testing, and 

overall. Also, the fact that the training and testing 

measures show the same patterns means that the model is 

generalizing instead of overfitting. Even though there 

wasn't a formal validation set, the hybrid schemes' 

performance in all phases give us an idea of how strong 

they are. In the future, we will use cross-validation and 

explicit regularization approaches to better control 

overfitting and make the model more generalizable. 
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The ROC is a measure that fundamentally depends on 

how well binary classifiers work. It compares the false 

positive rate (1-specificity) to the true positive rate 

(sensitivity) at various thresholds. This graph conveys 

useful information about the capability of the classifier to 

differentiate classes in all possible threshold settings. The 

ROC is a tool that actually enables the researchers to study 

the compromise between true positives and false positives, 

thus giving a complete view of the efficiency of the 

classifier. Besides, the ROC's AUC gives a quantitative 

measure of the discriminatory power of a classifier, where 

larger AUC means better performance. Also, the ROC plot 

allows for better selection of the optimal cut-off value to 

classify the samples according to the needs of the specific 

application, considering sensitivity and specificity to get 

the same result desired. Therefore, the ROC curve 

displays a very important means for testing, comparing, 

and fine-tuning binary classification schemes, thus 

contributing to enhanced ML model predictive power in a 

slew of applications. Moreover, in Fig. 6, the outcomes of 

the suggested schemes are carefully analyzed with the 

help of the ROC curve, which is a perfect inseparable tool 

used to analyze the performance of the classifier. It is 

observed, upon detailed analysis, that GPCB and GPCG 

are ahead of their competitors in reaching a TPR value of 

1.0 at an earlier stage and hence delivers exceptional 

performance in classification problems. After that, LDCB 

and GPHG come very close as the second and third 

schemes, reaching a TPR of 1.0 just a little later but with 

a sharp increase, further establishing their effectiveness. 

In sharp contrast, the LDR model lags far behind its 

counterparts since its vector has the gentlest slope among 

the compared schemes. Nevertheless, the LDR model 

eventually attains 1.0 TPR but takes its time in comparison 

with the others. The above analysis displays how different 

schemes may perform to the extent and also how often the 

ROC curve proves useful for making subtle choices 

regarding classifier behavior, which might not be 

immediately apparent in other forms, and helps drive 

better decisions for predictive modeling tasks.

 

Figure 6: ROC curves depict the performance of the most efficient hybrid schemes 

The SHAP additive explanations in Fig. 7 depict the 

effects of various factors such as glucose or BMI 

indicators that influence the possibility of diabetes. The 

following explanation succinctly defines the effects of 

such factors on the occurrence of diabetes. 

• High levels of blood glucose, normally due to 

excessive consumption of sugar or reduced action of 

insulin, may eventually lead to the development of 

diabetes. Blood glucose that remains high over a 

continuous period places a load on the pancreas 

secreting insulin, and, with time, may make it lose its 

efficiency. This can result in insulin resistance-a 

condition whereby cells become unable to efficiently 

act in response to insulin signals, causing more 

accumulation of glucose. Besides, high levels of 

glucose can cause the damage of blood vessels and 

neurons, which raise the risk of complication 

development in diabetic patients. Hence, keeping 

blood glucose within the norm through proper 

nutrition, regular physical activity, and medication is 

considered a significant approach to diabetic 

prevention and management. BMI, which is 

determined using weight and height measures, is 

another widely accepted indicator of body fatness 

associated with the risk of developing diabetes. 

• A high BMI means excess adipose tissue interferes 

with insulin action, apart from increasing the 

inflammatory component, leading to insulin 

resistance and impaired glucose tolerance. The 

underlying fat also secretes hormones and cytokines, 

further dampening metabolic processes and 

increasing diabetes risk. Also, a higher BMI is more 

often than not associated with other risk factors like 

sedentary lifestyle and lousy food, increasing the 

chances of diabetes. By enhancing insulin sensitivity 

and overall metabolic health, dietary and activity 

changes that control body mass index (BMI) can 

lower the risk of diabetes. Therefore, maintaining a 
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healthy BMI is crucial for both preventing and 

treating diabetes.

 

Figure 7: The sensitivity analysis results 

Table 3 provides the results of a 5-fold cross-validation 

for the GPC and LDR models, assessing their stability and 

generalization across different subsets of the dataset. Each 

fold (K1 to K5) represents an independent split where the 

model was trained on 80% of the data and tested on the 

remaining 20%. The GPC model demonstrates 

consistently high performance across all folds, with 

accuracy values ranging from 0.916 to 0.928, indicating 

strong generalization and low variance. In contrast, the 

LDR model shows slightly lower accuracy across all folds, 

with values ranging from 0.887 to 0.904. The results 

clearly suggest that GPC outperforms LDR not only in 

individual experiments but also in terms of cross-validated 

reliability. These findings reinforce the robustness of GPC 

for diabetes prediction tasks under varying training-test 

partitions.

 

Table 3: K-fold cross validation.  

Models 
K Fold Number 

K1 K2 K3 K4 K5 

GPC 0.920 0.927 0.924 0.916 0.928 

LDR 0.887 0.895 0.901 0.896 0.904 

 

Table 4 presents the results of the Wilcoxon signed-

rank test conducted to compare the performance 

differences between baseline classifiers and their hybrid 

optimized variants. The test evaluates whether observed 

differences in classification performance are statistically 

significant. A lower p-value (typically < 0.05) indicates a 

statistically meaningful improvement. Among the models, 

the GPCHG scheme achieved a p-value of 0.0348, 

indicating a statistically significant enhancement over the 

base GPC model. Similarly, GPCG produced a marginally 

significant result with a p-value of 0.0679, while others 

such as GPC-CBOA and LDR-based hybrids did not show 

statistically significant improvements, as their p-values 

exceeded 0.1. The stat column represents the test statistic 

for ranking the difference between paired models. These 

findings validate that only specific optimizer integrations 

particularly with GPC deliver meaningful predictive 

advantages, supporting the selective use of metaheuristics 

in medical classification contexts like Type 2 diabetes 

prediction. 
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Table 4: Wilcoxon test. 

Models stat P value 

GPC 644 2.25E-01 

GPC Henry gas solubility optimization 338 3.48E-02 

GPC chaos game Optimization 155 6.79E-02 

GPC Chef-Based Optimization Algorithm 48 4.39E-01 

LDR 1200 2.45E-01 

LDR-Henry gas solubility optimization 824 4.39E-01 

LDR-chaos game Optimization 675 6.80E-01 

LDR-Chef-Based Optimization Algorithm 125 4.14E-01 

GPC 644 2.25E-01 

GPC-Henry gas solubility optimization 338 3.48E-02 

GPC-chaos game Optimization 155 6.79E-02 

GPC-Chef-Based Optimization Algorithm 48 4.39E-01 

 

 

4 Conclusion 
The various advantages of early detection of diabetes by 

using ML are: it enables early interference, thus 

preventing the development of complications such as 

cardiovascular diseases and neuropathy; ML algorithms 

sift through enormous volumes of data to spot patterns that 

are so subtle they could indicate diabetes risk, hence 

improving their accuracy. This will, therefore, be enabling 

personalized treatment plans for better patient care. Also, 

automating diagnostics cuts down the healthcare costs and 

workload for medical staff. In a nutshell, ML aims at early 

diabetes detection, providing an improvement for patient 

outcomes through easy healthcare access, thus adopting a 

proactive stance towards the disease's management. 

However, this work aims to project diabetes using ML 

schemes comprising GPC and LDA, coupled with 3 

optimizers: Henry Gass Solubility Optimization, Chef 

Base Enhancement Algorithm, and Chaos Game 

Optimization. With the view of improving the accuracy of 

the prediction, it was decided to couple the schemes with 

the optimizers. These results mean that the model GPC 

and its hybrid forms provide better performance than the 

LDA scheme and its hybrids. Comparing results in GPC, 

GPHG, GPCG, and GPCB, for instance, out of these, the 

best result was from the GPCB model in the "All" phase, 

with an accuracy value of 0.980. In that respect, the GPCG 

model stands out as the second-best model with an 

accuracy of 0.961, while the GPHG model gives medium 

performance in this comparison, with an accuracy of 

0.943. In this comparison, the GPC model has the weakest 

functionality, with an accuracy of 0.928. 

• Limitations: 

There are several drawbacks to projection using ML 

techniques. The most critical problem of overfitting that 

most schemes biased the training data and gather noise 

rather than underlying patterns, which is poor in 

generalization in unknown data. When the schemes are 

relatively simple to represent the complexity of the data, 

underfitting happens with poor accuracy in the forecast. 

Biases in training data can persist in ML schemes, leading 

to biased forecasts, especially in sensitive domains like 

healthcare and criminal justice. Furthermore, ML 

algorithms need big, high-quality datasets for training, 

which are not always available, especially in specialist 

sectors or when dealing with sensitive data. The dynamic 

nature of real-world data makes it challenging to sustain 

model correctness over time; hence, regular monitoring 

and updating become necessary. To solve these 

limitations, several methods have been tried to reduce 

overfitting, such as regularization; feature engineering to 

make the schemes perform better; and algorithms that are 

fair-aware to reduce biases. All of the above can be further 

improved by enhancing openness and interpretability of 

schemes, thus building trust and enabling their adoption in 

applications of importance. This calls for more research 

and development on these issues so that the MLC forecasts 

become increasingly accurate and dependable. 
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