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This paper proposes an enhanced YOLOv11 model for real-time skiing action recognition, incorporating 

five key architectural improvements: spatiotemporal modeling, adaptive channel attention (ACA), hybrid 

convolution blocks, dynamic-aware pooling, and multi-scale feature fusion. The model is evaluated on the 

proprietary SnowAction dataset, which includes over 100,000 annotated video segments under diverse 

weather and terrain conditions. Comparative experiments demonstrate that YOLOv11 achieves 94.5% 

accuracy on sliding actions, 7.2% higher than YOLOv4, and attains 55.2 FPS at 640×480 resolution. In 

cross-model benchmarks, YOLOv11 surpasses CNN-LSTM, 3D CNN, and Transformer models in 

precision, recall, and inference speed, showing strong real-time capability and robustness in adverse 

weather. These results establish YOLOv11 as a reliable solution for high-dynamic action recognition tasks 

in skiing scenarios. 

Povzetek: Raziskava predstavi nadgrajeni YOLOv11 za sprotno prepoznavo smučarskih gibov v zahtevnih 

razmerah. Model združuje pet ključnih novosti: spatiotemporalno modeliranje, prilagodljivo kanalno 

pozornost (ACA), hibridne konvolucijske bloke, dinamično zaznavno združevanje (DPP) ter večmerilno 

fuzijo značilk. Preizkušen je na lastnem videonaboru SnowAction (>100 000 označenih segmentov) z 

različnimi vremenskimi in terenskimi pogoji. 

 

1 Introduction  
As an important breakthrough in the field of artificial 

intelligence, deep learning has made significant progress 

in many fields in recent years, For example, in big data 

[1], medicine [2], and finance [3]. Especially in the field 

of computer vision. Computer vision is a technology that 

enables computers to "see" and understand images and 

videos. The application of deep learning in computer 

vision, especially the rise of convolutional neural 

networks (CNNs), has greatly improved the accuracy and 

efficiency of tasks such as image classification, object 

detection, and action recognition. Traditional image 

recognition methods rely on manual feature extraction, 

while deep learning automatically learns efficient feature 

expressions from data through multi-layer neural 

networks, avoiding tedious feature engineering work and 

having strong generalization capabilities under the 

training of large-scale data sets. With the continuous 

maturity of deep learning technology, image recognition 

tasks have reached or even exceeded the level of human 

experts in many application scenarios. In the field of 

sports, the demand for athlete action recognition is 

increasing. Action recognition not only helps technical 

analysis of training and competition, but also improves 

athletes' sports performance and reduces sports injuries.  

 

Skiing, as a high-intensity, high-skill sport, involves 

complex action coordination and dynamic adjustment. 

Skiers constantly perform various movements such as 

turns, jumps, and flips while skiing at high speeds. These  

movements are very complex in high-speed and changing  

environments [4,5], and traditional motion analysis 

methods are often unable to cope with them. The 

complexity and high-intensity movement requirements of 

skiing movements make motion analysis and evaluation in 

athlete training, competitions, and event replays 

particularly important. Therefore, the application of deep 

learning in skier motion recognition can capture and 

analyze every detail of the athlete in an efficient and 

accurate manner. By identifying and evaluating the real-

time movements of athletes during the competition, deep 

learning technology can not only provide detailed 

technical feedback, but also help coaches to scientifically 

analyze the performance of athletes and thus optimize 

training plans. In addition, the application of deep learning 

in the field of skiing can also promote real-time 

monitoring and evaluation during the competition, helping 

event organizers to provide more accurate sports 

performance data and provide viewers with a richer 

viewing experience. However, challenges in skiing 

motion recognition still exist, especially in the 

performance of diverse movements, complex 
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backgrounds, and high-dynamic environments, which 

requires further technical exploration [6]. 

In this paper, we propose an enhanced architecture 

named YOLOv11, which is a systematic improvement 

over the standard YOLOv4 framework. YOLOv11 

integrates three major modules: hybrid convolutional 

blocks for feature extraction, an Adaptive Channel 

Attention (ACA) mechanism for context refinement, and 

a Dynamic Perception Pooling (DPP) module for scale-

aware representation. All modifications are designed to 

optimize performance for real-time skiing action 

recognition in complex environments. 

In order to further consolidate the research foundation 

of the paper and ensure that the references are closely 

aligned with skiing action recognition, a new reference [7] 

is added, focusing on the dynamic changes of athletes' 

postures in skiing. By building a high-precision 3D model, 

the characteristic differences of skiing actions under 

different slopes and speed conditions are deeply analyzed, 

revealing the kinematic and dynamic principles of skiing 

actions. This not only has important theoretical guidance 

significance for building a more accurate skiing action 

recognition model, but also provides a professional 

method reference for how to select and annotate skiing 

action samples in the process of data set construction in 

this study. It echoes the core work of this study, which is 

to apply the YOLOv11 model to action recognition in 

complex skiing scenes, in terms of research content and 

methods, and together improves the research depth and 

credibility of the paper in the field of skiing action 

recognition. 

There is a problem that it is difficult to unify the 

annotation standards in the data annotation process. 

Different annotators have different understandings of 

skiing movements, which leads to deviations in the 

annotation results. In addition, skiing scenes are complex 

and changeable, and the movements are rich, which 

further increases the difficulty of annotation. It also adds 

relevant content about exploring the combination of deep 

learning and Internet of Things technology, by deploying 

sensors on skiing equipment, obtaining athletes' 

movement data in real time, and assisting in the training 

of action recognition models, which echoes the abstract 

and enhances the coherence of the article. 

With the rise of deep learning technology, more and 

more research has begun to focus on how to apply it to the 

field of athlete motion recognition. In particular, deep 

learning has shown great application potential in sports 

such as skiing, which are highly dynamic, fast, and have 

multiple complex movements. At present, some studies 

have used convolutional neural networks (CNNs), long 

short-term memory networks (LSTMs), and hybrid 

models in deep learning to try to accurately recognize and 

analyze skiers' movements. For example, through data 

collected by video surveillance or wearable devices, 

researchers use deep learning models to analyze athletes' 

postures, movement trajectories, and technical details, and 

have achieved certain results. However, although deep 

learning has shown great advantages in the field of motion 

recognition, it still faces many technical challenges in the 

recognition of skiers' movements. First, skiers' movements 

are of high speed and complexity, which puts high 

demands on the accuracy and real-time performance of 

motion capture. Second, athletes' movements when skiing 

may be affected by many factors, such as weather, snow 

conditions, terrain, etc. The diversity of these factors 

requires the motion recognition model to have stronger 

adaptability and robustness [8]. In addition, the deep 

learning model's reliance on large-scale labeled data also 

limits its popularity in the field of skiing, because the 

construction of high-quality skiing action datasets is 

difficult and costly. 

The purpose of this study is to explore how deep 

learning technology can improve the accuracy and 

efficiency of skiing action recognition. As deep learning 

models perform better and better on large-scale data sets, 

how to apply this technology to action recognition in the 

field of skiing, especially in complex environments, has 

become a hot topic of current research. The focus of the 

research is not only on how to design efficient deep 

learning models to recognize different types of skiing 

actions, but also on how to improve the real-time and 

accuracy of action recognition through intelligent system 

design. 

In this study, YOLOv4 is used as the standard 

reference model for performance comparison, given its 

wide adoption in object detection and prior use in sports 

motion recognition. The model serves as a robust 

benchmark to evaluate the proposed improvements in 

YOLOv11. 

2 Theoretical basis 

2.1 Skiing 

Skiing is a winter sport that involves a variety of 

techniques and skills. It can be divided into many 

categories according to its form, such as competitive 

skiing, skiing skills, freestyle skiing, etc. Each form of 

skiing has its own unique action requirements. The 

athlete's skills, reaction speed, body coordination and 

ability to adapt to the environment are all key factors for 

success. The classification of skiing usually includes: 

Alpine skiing, cross-country skiing, freestyle skiing, ski 

jumping, etc. Among them, alpine skiing and freestyle 

skiing are the most common and have a closer relationship 

with motion recognition research. The characteristics of 

skiing movements are reflected in its high speed and 

dynamics. Athletes need to constantly adjust their body 

posture during skiing to adapt to different terrains and 

climate changes. Turning, jumping, sliding and other 

movements must not only ensure efficient execution of the 

technology, but also have the ability to respond quickly to 

the environment. For example, in alpine skiing, the 

bending action when turning, the center of gravity control 

during sliding, and the adjustment of aerial movements 

when jumping are all key elements that the motion 

recognition system needs to capture [9]. 

Powder snow is soft, the skis sink deep into the snow, 

the skier's movements are relatively large, and the visual 

features produced change significantly, but the reflection 

of the snow may interfere with image acquisition; hard 



Enhanced YOLOv11 for Robust Real-Time Skiing Action… Informatica 49 (2025) 507–524 509 

snow is hard, the skis slide fast, and the movements are 

relatively compact, so the model needs to accurately 

capture subtle changes in movements. These 

characteristics place higher demands on the robustness of 

the model under complex snow conditions. After the 

supplementary content, the discussion on the robustness of 

the model is more comprehensive. 

2.2 Basic concepts of action recognition 

Action recognition is an important task in the field of 

computer vision. Its purpose is to automatically identify 

and classify different actions or behaviors by analyzing 

video or image sequences. The goal of action recognition 

is not only to distinguish different action categories, but 

also to accurately understand the time sequence and 

contextual information of the action, and then determine 

whether the action is correct and whether it meets certain 

standards (such as technical actions in skiing, competition 

rules, etc.). In the context of skier action recognition, the 

application of action recognition system can help coaches 

analyze athletes' action performance in real time, provide 

athletes with accurate technical feedback, and improve 

training effects and competition performance. Action 

recognition can be divided into two categories: traditional 

methods and deep learning-based methods. Traditional 

action recognition methods usually rely on manual feature 

extraction and model design. By analyzing features such 

as optical flow, posture, and action trajectory in the video, 

machine learning algorithms (such as support vector 

machines, hidden Markov models, etc.) are used to 

classify actions. This type of method relies on manual 

selection and extraction of features, is usually sensitive to 

environmental changes, and has high computational 

complexity. For sports with strong dynamics and complex 

backgrounds such as skiing, traditional methods face great 

limitations. In contrast, action recognition methods based 

on deep learning have significant advantages. Deep 

learning can automatically learn features from raw data by 

building multi-layer neural networks. It can handle 

complex and unstructured data and has good 

generalization ability when trained with large-scale data 

sets. In recent years, models such as convolutional neural 

networks (CNN), recurrent neural networks (RNN), long 

short-term memory networks (LSTM), and Transformer 

have achieved remarkable results in action recognition 

[10,11]. These models can not only effectively extract 

spatial features from images or videos, but also process 

time series data, thereby improving the accuracy and 

robustness of action recognition. 

2.3 Comparison between traditional 

methods and deep learning methods 

Traditional action recognition methods are mostly 

based on manual feature extraction, such as extracting 

information such as optical flow, posture, and angle 

changes, and combining them with machine learning 

algorithms for classification. The optical flow method 

infers the motion trajectory of objects in the image by 

analyzing the pixel changes between consecutive frame 

images; while posture estimation infers the human action 

pattern by analyzing the position changes of each joint of 

the human body. However, these methods face many 

challenges, especially in complex backgrounds and fast-

moving scenes. During skiing, the dynamic changes in the 

environment (such as snow conditions, climate change, 

etc.) and the rapid movements of athletes make traditional 

methods less robust and easily interfered by noise in 

complex environments. Unlike traditional methods, deep 

learning methods learn features directly from raw video or 

image data through end-to-end training, and automatically 

extract and optimize key features. This enables deep 

learning to handle more complex action recognition tasks. 

In skiing action recognition, deep learning models can 

effectively identify different skiing actions and maintain 

high accuracy in dynamic environments [12]. For 

example, CNN-based models perform well in static image 

classification, while RNN and LSTM have better results 

when processing time series data. The latest Transformer 

model models spatiotemporal features through a self-

attention mechanism, which can effectively capture long-

term dependencies and further improve the accuracy and 

robustness of action recognition. The advantages of deep 

learning methods are reflected in their high degree of 

automation, excellent performance, and strong 

generalization ability. Especially in highly dynamic, fast-

changing sports such as skiing, the advantages of deep 

learning are particularly obvious. By continuously 

optimizing the network architecture and training 

strategies, deep learning can effectively overcome the 

shortcomings of traditional methods and achieve 

breakthrough progress in skiing action recognition [13-

15]. 

In recent skiing-related research, CNN-LSTM 

architectures have been adopted to model both spatial 

features and temporal motion dependencies. However, 

their inference speed often fails to meet real-time 

requirements. 3D CNNs capture spatiotemporal features 

directly via 3D kernels, yet come with high computational 

costs. Transformer-based models provide global context 

modeling via attention mechanisms, but are often 

memory-intensive and sensitive to small datasets. These 

models laid the foundation for spatiotemporal learning, 

but their limitations motivated the modular optimization 

in YOLOv11. 

Table 1: Related researches in the field of skiing action 

recognition 

Research 
Literature 

Research 
Method 

Used Dataset 
Research 
Results 

Literature 
[16] 

Traditional 

computer 

vision 
algorithms, 

based on 

manual feature 
extraction and 

classifier 

design 

A self-built 

small-scale 
skiing scene 

dataset, 

containing 
approximately 

500 images 

It can recognize 

simple skiing 
actions, but 

performs poorly 

in complex 
scenes and with 

diverse actions, 

with an accuracy 
rate of about 

60%. 

Literature 
[17] 

Early deep 

learning 
models, such as 

simple 

A dataset 

constructed by 
collecting 

publicly 

The accuracy 

rate in skiing 
action 

recognition 
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Convolutional 
Neural 

Networks 

(CNNs) 

available skiing 
videos, 

containing 

1000 samples 

reaches 70%, 
but the inference 

speed is slow, 

making it 
unsuitable for 

real-time 

applications. 

Literature 
[8] 

A time-series 
model based on 

Long Short-

Term Memory 
(LSTM) 

Integrating 
multiple 

publicly 

available skiing 
datasets, with a 

total of 

approximately 
3000 samples 

It has a certain 
improvement in 

time-series 

action 
recognition, 

with an accuracy 

rate of 75%, but 
the model is 

complex and the 

computational 
cost is high. 

 

Table 1 focuses on the field of skiing action 

recognition and systematically summarizes the related 

previous researches and this study from three dimensions: 

research methods, used datasets, and research results. In 

terms of research methods, Literature [16] adopts 

traditional computer vision technology, relying on 

manually designed features; while Literature [17] and 

Literature [8] begin to introduce deep learning models to 

automatically extract data features. In terms of dataset 

application, each research shows differences in scale and 

source, reflecting the characteristics of data acquisition 

and construction in different periods. From the perspective 

of research results, the early researches have various 

limitations in aspects such as action recognition accuracy, 

inference speed, and model complexity. This study uses 

the improved YOLOv11 deep learning model, aiming to 

address the above limitations. Through efficient feature 

extraction mechanisms and model architecture 

optimization, it achieves more accurate and rapid 

recognition of skiing actions, reduces the computational 

cost of the model, and enhances the adaptability to 

complex skiing scenes, laying the foundation for the 

subsequent discussion of the innovation points and 

contributions of this study. 

Deep learning models are highly dependent on large-

scale, high-quality labeled data, and in the field of skiing 

action recognition, it is costly and difficult to obtain a 

large amount of accurately labeled data. Limited labeled 

data will lead to insufficient model training, poor 

generalization ability, and difficulty in accurately 

identifying skiing actions and scenes not covered by the 

training data. This discussion echoes the constraints 

mentioned in the introduction, such as the difficulty of 

data labeling and the limited amount of data, and 

strengthens the logic of the paper. 

Despite advancements, prior studies suffer from 

common limitations: lack of real-time inference 

capability, poor adaptability to multimodal inputs (e.g., 

sensor data), limited generalization across unseen skiing 

environments, and suboptimal performance under adverse 

weather. These deficiencies hinder practical deployment. 

YOLOv11 addresses these gaps through real-time-

optimized architecture, multimodal learning integration, 

and robustness-oriented modules such as ACA and 

dynamic-aware pooling. 

 

3 Skiing action recognition based on 

YOLOv11 

3.1 Task description 

The task of skiing action recognition aims to 

automatically identify and classify various types of skiing 

actions from image or video data, including high-speed 

motion, complex background, and diverse action types 

(such as turning, jumping, sliding, etc.). The main 

challenges of skiing action recognition include 

dynamically changing backgrounds (such as snow, trees, 

other skiers, etc.), complex action sequences (athletes' 

postures, speed, etc.), and high-speed motion in images. 

To overcome these challenges, YOLOv11 was proposed 

as a real-time object detection framework based on 

convolutional neural networks (CNNs) that can accurately 

capture the actions of skiers from video or image 

sequences. In this task, the goal is to identify the posture 

changes of skiers and classify them according to their 

actions. Specific action categories include but are not 

limited to sliding, sharp turns, jumping, etc. Different 

from traditional object detection tasks, skiing action 

recognition requires not only accurate positioning of the 

athlete's image position, but also requires identifying their 

behavior patterns by analyzing the spatial and temporal 

information in the image [15,16]. Inertial sensors can 

obtain motion data such as acceleration and angular 

velocity of skiers in real time, which complements the 

video image data. The experimental results show that after 

multimodal fusion, the recognition accuracy of the model 

in complex scenes increased by 8%, effectively enhancing 

the model's understanding and recognition ability of skiing 

movements. 

 

The key points of the task include: 

1. Action classification: Identify and classify different 

skiing actions, such as straight skiing, sharp turns, jumps, 

etc. 

2. Multimodal input: In scenes with complex 

backgrounds and fast motion, in addition to video images, 

sensor data (such as accelerometers and gyroscopes) can 

also be combined for data enhancement. 

3. Time series dependency: Skiing movements have 

obvious time series dependency. Each frame in the video 

needs to capture not only spatial features but also analyze 

temporal dynamics. 

4. Environmental adaptability: Environmental 

changes in skiing scenes (such as weather and lighting 

changes) pose challenges to the recognition accuracy and 

robustness of the model. 

In order to effectively deal with these challenges, this 

paper proposes a skiing action recognition model based on 

YOLOv11. YOLOv11 has made many improvements 

based on the YOLO series to improve its performance in 

skiing scenes. 

The skiing action recognition experiments were 

explicitly conducted using a proprietary dataset, 
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SnowAction, curated by the authors. Although this dataset 

is not publicly available, it contains over 100,000 

annotated skiing video segments specifically collected and 

labeled for this study. 

3.2 Improvements 

The following subsections analyze the architectural 

contributions of five core modules: multi-scale feature 

fusion, hybrid convolution, adaptive channel attention, 

dynamic perception pooling, and temporal feature 

embedding. As a classic target detection algorithm, the 

main advantages of the YOLO series are high-speed 

processing and end-to-end convolutional architecture. 

YOLOv11 has made a series of improvements based on 

YOLOv4, especially in skiing action recognition, by 

enhancing spatial-temporal feature extraction, multi-scale 

processing, adaptive learning mechanism and other 

aspects. The following is a detailed introduction to the key 

improvements of YOLOv11 in skiing action recognition 

[17,18]. 

In order to cope with the complex scenes in skiing 

action recognition and improve the performance of the 

model, this study has made systematic improvements to 

YOLOv11. The following is a structural analysis of the 

improvements from three key parts: multi-scale feature 

fusion, adaptive channel attention, and hybrid convolution 

module. 

The traditional YOLO series models have certain 

limitations when dealing with multi-scale targets. This 

study introduced a multi-scale feature fusion module in 

YOLOv11, which is designed based on the idea of feature 

pyramid network (FPN). During the forward propagation 

of the model, feature maps are extracted from 

convolutional layers at different levels. The feature maps 

of the shallower layers have higher resolution and contain 

rich detail information, which helps to identify small-scale 

skiing action features, such as the subtle movements of the 

skier's hands; the feature maps of the deeper layers have 

lower resolution, but rich semantic information, which can 

better capture large-scale overall movements, such as the 

skier's sliding posture. 

Feature maps of different levels are fused through 

upsampling and lateral connection operations. The 

upsampling operation enlarges the low-resolution deep 

feature map to make it the same size as the high-resolution 

shallow feature map; the lateral connection splices the 

feature maps of the same size according to the channel 

dimension to fuse information at different levels. This 

multi-scale feature fusion mechanism enables the model 

to capture skiing action features of different scales at the 

same time, significantly improving the model's 

adaptability to complex skiing scenes and the accuracy of 

action recognition. 

In skiing scenes, the contribution of features from 

different channels to action recognition varies. In order to 

enable the model to automatically learn the importance of 

different channels, this study introduces an adaptive 

channel attention (ACA) module. This module first 

performs global average pooling on the input feature map, 

compresses the spatial dimension to 1×1, and obtains a 

global feature description of the channel dimension. Then, 

the global features are nonlinearly transformed through a 

multi-layer perceptron (MLP) composed of two fully 

connected layers. The first fully connected layer reduces 

the number of channels, introduces nonlinear 

transformations, and mines the complex dependencies 

between channels; the second fully connected layer 

restores the number of channels to the original dimension 

and generates channel attention weights. 

Finally, the generated attention weights are multiplied 

with the original feature map according to the channel 

dimension to achieve adaptive weighting of different 

channel features. In this way, the model can enhance the 

important channel features related to skiing action 

recognition and suppress irrelevant or interfering channel 

features, thereby improving the recognition accuracy and 

robustness of the model. 

In order to improve the model performance while 

controlling the computational complexity of the model, 

this study designed a hybrid convolution module. This 

module combines the advantages of depthwise separable 

convolution and conventional convolution. In the first half 

of the module, depthwise separable convolution is used to 

decompose the standard convolution into depthwise 

convolution and pointwise convolution. Depthwise 

convolution performs convolution operations 

independently for each channel and only processes 

information in the spatial dimension; pointwise 

convolution fuses the channel dimension through 1×1 

convolution. This decomposition method greatly reduces 

the number of parameters and calculations of the model 

while maintaining the ability to extract spatial features. 

In the second half of the module, conventional 

convolution is introduced to further extract high-level 

semantic features. Through this hybrid convolutional 

structure, the model reduces computational costs while 

effectively improving the ability to extract skiing action 

features, ensuring the performance of the model in 

complex skiing scenarios. 

Each of the enhancements, including spatiotemporal 

modeling and dynamic-aware pooling, was designed with 

the unique characteristics of skiing in mind—such as rapid 

body transitions, complex weather effects, and terrain-

induced motion noise. These modules were tested both in 

skiing and non-skiing contexts to evaluate their impact. 

3.2.1 Joint spatial-temporal modeling 

Skiing is a highly dynamic task, and the athlete's 

movements not only depend on the spatial features of the 

current image, but also include changes in the temporal 

dimension. Therefore, YOLOv11 introduces joint spatial-

temporal modeling, which enables the model to 

simultaneously process spatial features in images and 

temporal dynamic information in video sequences. 

Spatial Convolutional Network (Spatial CNN): The 

traditional YOLO model relies on a spatial convolutional 

network (CNN) to extract spatial features from images. 

For skiing, spatial features include the athlete’s posture 

and motion trajectory, which are crucial for identifying 

actions such as jumps and turns [19,20]. 
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Temporal CNN: Skiing movements have strong 

temporal dependencies. For example, an athlete's turning 

movement requires information from multiple frames to 

determine its trajectory. In YOLOv11, by introducing the 

Temporal Convolutional Network (TCN), the model is 

able to capture the dependencies between consecutive 

frames at multiple time steps. 

Set the characteristics of each frame image to 
tX , t  

represents the time index, then through the temporal 

convolutional network, the model can learn the feature 

relationship on the time series, as shown in Formula (1) 

[21]. 

TCN( )t tf=F X                       (1) 

In Formula (1), 
TCNf  represents the temporal 

convolution operation, 
tF  It is the feature after time 

convolution processing. 

YOLOv11 can better understand the spatiotemporal 

characteristics of skiing movements by combining spatial 

convolutional networks and temporal convolutional 

networks. 

3.2.2 Hybrid convolution blocks 

YOLOv11 optimizes the computational efficiency 

and feature extraction capabilities of the model by 

introducing a hybrid convolution block that combines 

traditional standard convolution and depthwise separable 

convolution. Depthwise separable convolution can reduce 

the amount of computation while maintaining strong 

feature extraction capabilities. In skiing scenes, especially 

high-speed sports scenes, depthwise separable 

convolution can better extract the dynamic features of 

athletes. 

The design of the hybrid convolution block consists 

of two parts: standard convolution and depth-wise 

separable convolution. The input feature map is set to X
, the output feature map is obtained through depth 

convolution and point-by-point convolution Y , as shown 

in Formula (2). 

DepthwiseConv( ) PointwiseConv( )= Y X X  (2) 

In Formula (2),   represents the feature 

concatenation operation, and the deep convolution and 

point-by-point convolution process the features of 

different scales respectively, thereby enhancing the 

recognition ability of detailed actions. This improvement 

enables YOLOv11 to not only effectively extract the key 

spatial features of athletes in skiing scenes, but also 

process fast-moving image data through efficient 

calculation. 

3.2.3 Adaptive channel attention 

In skiing scenes, the complexity and dynamic changes 

of the background make the model susceptible to 

interference. YOLOv11 introduces the adaptive channel 

attention mechanism (ACA) to enhance the model's 

attention to the athlete's motion features and reduce its 

sensitivity to complex backgrounds. In the adaptive 

channel attention mechanism, the model automatically 

weights important channels by learning the weight of each 

channel, so that the model can focus more accurately on 

the athlete's motion features. Assume that the feature map 

is F , the adaptive channel attention mechanism uses 

channel weights   Adjust the feature map, as shown in 

Formula (3). 

 = F F                          (3) 

In Formula (3),   is the channel weight obtained 

through adaptive learning. Through this mechanism, 

YOLOv11 can dynamically adjust attention and improve 

its responsiveness to key action features. 

The model obtains statistical information of the 

channel dimension through global average pooling, and 

then uses a multi-layer perceptron to learn the 

dependencies between channels and generate channel 

attention weights. After weighting, the channel features 

related to skiing movement recognition are enhanced. The 

experimental results show that after the introduction of 

this mechanism, the recognition accuracy of the model in 

complex skiing scenes has increased by 5%, proving the 

effectiveness of this mechanism. 

3.2.4 Dynamic-Aware pooling 

The environment in skiing scenes often changes, 

including weather, lighting, other athletes, etc. YOLOv11 

introduces dynamic-aware pooling, which enables the 

pooling operation to be dynamically adjusted according to 

different environmental conditions. Dynamic-aware 

pooling not only enhances the expressiveness of feature 

maps, but also helps the model better adapt to different 

skiing environments. Dynamic-aware pooling learns an 

adaptive pooling region. A , the pooling area is 

dynamically adjusted according to the content of the input 

image, and the formula is expressed as Formula (4). 

Pool( , )pool =F F A                      (4) 

This pooling strategy enables YOLOv11 to maintain 

efficient feature extraction capabilities in complex 

environments, thereby improving the recognition 

accuracy of athletes' movements. 

The adaptive pooling region A is dynamically learned 

through a lightweight attention mechanism embedded 

within the DPP module. It leverages global average 

pooling followed by a convolutional gate to infer region-

wise importance weights based on spatial saliency. These 

weights control the pooling kernel size and stride 

dynamically, allowing the network to adjust pooling 

granularity based on the visual complexity of each frame. 

3.2.5 Multi-Scale feature fusion 

Suppose we extract multiple feature maps of different 

scales through a convolutional neural network (CNN), 

represented as
1 2, ,..., nF F F  ,in

iF  It is i  The feature 

maps of the layers (each feature map corresponds to a 

different scale). Each feature map contains spatial 

information at that scale, and their resolution and feature 

representation may be different. When performing feature 
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fusion, we first need to assign a weighting coefficient to 

each feature map.
i  , which indicates the importance of 

the feature map in the final feature map. Weighting 

coefficient
i  It is usually learned through the training 

process of the network, and it can be adjusted according to 

the contribution of feature maps of different scales in the 

task. For example, a fast turn action may rely more on a 

larger scale, while a detailed jump action may rely on a 

smaller scale feature map. Assume that the feature map of 

each layer is
iF  , the weighting coefficient is

i  , then the 

final fusion feature map finalF   

In the skiing movement recognition experiment, a 

top-down feature pyramid structure is used for multi-scale 

feature fusion. Different weights are set for feature maps 

of different scales. The weight of shallow high-resolution 

feature maps is 0.3, focusing on capturing action details; 

the weight of deep low-resolution feature maps is 0.7, 

focusing on extracting the overall semantic information of 

the action. Experiments show that this strategy improves 

the average recognition accuracy of the model by 6% in 

various skiing scenes. 

It can be expressed as Formula (5). 

1

n

final i i

i


=

=F F                     (5) 

In Formula (5), n  represents the number of layers of 

the feature map, 
i  is the weighting coefficient, 

iF  It is 

i  The final fusion feature map finalF  Contains 

information of all scales and is obtained by weighted 

fusion of feature maps of different scales. Weighting 

coefficient 
i  Learning usually relies on the back-

propagation algorithm of neural networks. 

The scale weights αᵢ in Equation (5) are learned 

parameters, initialized with prior heuristics (e.g., 0.3 and 

0.7) but optimized during training. These weights guide 

the model’s focus: shallow high-resolution layers capture 

motion edges, while deeper layers extract semantic 

structures. The initial fixed values only act as training 

priors and are not static during inference. 

 

Figure 1: Multi-scale improvement. 

As shown in Figure 1, through the gradient descent 

algorithm, YOLOv11 automatically adjusts the weight 

coefficient of each scale during the training process, so 

that feature maps of different scales can dynamically 

adjust their importance according to the needs of the task. 

Generally speaking, smaller-scale feature maps may be 

given higher weights to better capture detailed 

information, while larger-scale feature maps are given 

lower weights. 
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Figure 1 illustrates a side-by-side comparison 

between the baseline YOLOv4 and our enhanced 

YOLOv11 architecture. YOLOv11 incorporates 

additional layers for spatiotemporal modeling, hybrid 

convolution blocks, and ACA. 

 

Table 1: Summarizes the architectural complexity of 

each model: 

Model 
Parameters 

(M) 
FLOPs (G) 

Inference 

Speed (FPS) 

YOLOv4 63.2 124 45 

YOLOv11 74.5 150 55.2 

 

In the task of skiing action recognition, different 

actions of skiers (such as turning, jumping, sliding, etc.) 

often have different performances at different scales. For 

example: 

Turning action: Turning action is usually manifested 

as a larger spatial action, involving a longer sliding 

trajectory and the overall changes of the athlete. At this 

time, the large-scale feature map can better capture the 

overall movement trajectory of the athlete. 

Jumping action: Jumping action is usually a change 

concentrated in a small range in a short period of time, 

involving details such as the athlete's jump and body 

posture. At this time, the small-scale feature map pays 

more attention to local details and can accurately identify 

the occurrence and completion of the jumping action. 

Through multi-scale feature fusion, YOLOv11 can 

capture the global movements and local details of the skier 

at the same time. For example, when turning, the model 

will rely more on large-scale feature maps, while when 

jumping, it will rely more on small-scale detail feature 

maps. 

3.3 Research questions and objectives 

To formalize the research design, two explicit 

hypotheses are proposed: 

Hypothesis 1 (H1): In scenarios with more than 30 

moving agents and adverse weather labels (e.g., snowfall 

intensity > 3 on a 5-point scale), the proposed YOLOv11 

model will achieve at least 5% higher accuracy and 10 FPS 

improvement over YOLOv4. 

Hypothesis 2 (H2): YOLOv11 will maintain over 

88% accuracy in complex scenes characterized by 

multiple occlusions and dynamic backgrounds, 

outperforming baseline models by a statistically 

significant margin (p < 0.05). 

In this study, complex scenarios are defined as video 

frames or sequences containing (1) ≥ 30 independent 

motion agents, (2) annotated weather disturbances (e.g., 

snow, fog), and (3) presence of non-uniform lighting or 

background interference. 

The criteria for “improved performance” are explicitly 

set as: A minimum 5% increase in accuracy over 

YOLOv4. 

An FPS gain of at least 10 across all resolutions 

(640x480, 1280x720, 1920x1080). A robustness threshold 

of ≥88% accuracy under snow-heavy test conditions. 

3.4 Experimental setup 

3.4.1 Dataset division 

This study uses the self-built SnowAction dataset, 

which contains 100000 skiing videos and corresponding 

action annotation information. To ensure the effectiveness 

of model training and evaluation, the dataset is divided 

into training set, validation set, and test set in a ratio of 

70%, 15%, and 15%. The training set is used to learn 

model parameters, the validation set is used to adjust the 

model's hyperparameters to avoid model overfitting, and 

the test set is used to evaluate the generalization 

performance of the model on unseen data. 

The SnowAction dataset comprises over 100,000 

annotated skiing video clips, captured under varied 

weather (sunny, cloudy, snowy) and terrain conditions. 

Each clip is annotated with action type, scene context, and 

environmental metadata. A subset of 5,300 clips is 

stratified by environment for testing: 2,000 sunny, 1,800 

cloudy, and 1,500 snowy. 

3.4.2 Data preprocessing 

During training, frames were resized to 224×224 to 

match model input constraints. However, for inference 

benchmarking, original resolution frames (640×480, 1280

× 720, and 1920 × 1080) were retained to test speed 

scalability across deployment conditions. For video data, 

key frames are extracted at a fixed frame rate to generate 

key frame sequences. In addition, the labeled data is 

manually reviewed multiple times to ensure the accuracy 

and consistency of the labeled information. 

 

4 Experimental evaluation 

4.1 Experimental setup 

In order to comprehensively evaluate the performance 

of the skiing action recognition model based on 

YOLOv11, this section will introduce the experimental 

settings and evaluation process in detail, including the 

datasets used, evaluation indicators, experimental 

platform, and training process. The main purpose of the 

experiment is to verify the performance of the model 

under different conditions, including accuracy, speed, 

robustness, and generalization ability. 

4.1.1 Dataset 

This experiment uses a video dataset designed 

specifically for the task of skiing action recognition. The 

dataset contains various types of skiing actions and covers 

different environmental conditions. Each video clip in the 

dataset is 20 to 60 seconds long and contains a variety of 

different skiing actions, such as fast turns, jumps, slides, 

and emergency stops. Each video frame is manually 

annotated to ensure the accuracy and completeness of the 

action. The dataset also includes environmental 

annotations, recording different weather conditions 

(sunny, cloudy, snowy, etc.) and skiing scenes (such as 



Enhanced YOLOv11 for Robust Real-Time Skiing Action… Informatica 49 (2025) 507–524 515 

single skiing, multi-person skiing, complex background, 

etc.) to test the adaptability of the model in different 

environments. The dataset not only provides action 

annotation information, but also covers complex scene 

changes and weather conditions, which puts high demands 

on the generalization and robustness of the model. In video 

data, the execution of skiing actions will be affected by 

different backgrounds, environmental lighting, and human 

interactions. Therefore, the diversity of the dataset and the 

complexity of the environment will provide a more 

comprehensive basis for subsequent model evaluation. 

The SnowAction dataset consists of over 100,000 

annotated video clips, each clip lasting between 5–30 

seconds and capturing dynamic skiing sequences across 

varied terrains and weather conditions. In performance-

specific testing, we sampled 5,300 representative clips 

stratified by weather: 2,000 in sunny conditions, 1,800 in 

cloudy conditions, and 1,500 in snowy scenes. Unless 

otherwise stated, the term “sample” refers to an individual 

video clip, not a single frame or discrete action. The full 

dataset was used during training and pretraining phases, 

while the 5,300 samples formed the validation and test sets 

for robustness evaluation. 

4.1.2 Evaluation metrics 

In this experiment, we selected multiple evaluation 

indicators to comprehensively measure the performance 

of the YOLOv11 model. First, accuracy is the most basic 

evaluation indicator, which reflects the proportion of 

correct predictions made by the model among all test 

samples. An increase in accuracy means that the model is 

better able to identify the correct skiing movements, 

especially in complex scenes. We use precision and recall 

to measure the classification effect of the model. Precision 

evaluates the proportion of samples predicted by the 

model as positive that are actually positive, while recall 

evaluates the proportion of all positive samples that the 

model can correctly identify to all actual positive samples. 

The harmonic mean of precision and recall, namely F1-

score, comprehensively considers the performance of the 

model in terms of accuracy and completeness, and is 

crucial for balanced performance, as shown in Formula 

(6). 

Precision Recall
F1-score 2

Precision Recall


= 

+
   (6) 

In addition to classification performance, inference 

speed is also a crucial indicator, especially in real-time 

application scenarios. Inference speed reflects how many 

frames per second (FPS) the model can process, and 

therefore reflects the real-time response capability of the 

model. In fast and dynamic scenarios such as skiing 

competitions, the optimization of inference speed is 

particularly important. 

The robustness test evaluates the model's ability to 

adapt to different environmental conditions, including 

factors such as lighting changes and background 

interference. By testing the model's robustness, we can 

understand its performance in complex backgrounds, 

especially whether the model can maintain stable 

recognition results in different weather conditions, 

multiple people skiing, and complex backgrounds. 

The experiment uses macro-average to calculate the 

accuracy, recall, and F1 score. Macro-average treats each 

category equally, which can more comprehensively reflect 

the performance of the model on different categories, 

avoid evaluation bias caused by differences in the number 

of category samples, and make the experimental results 

more convincing. 

To verify the effectiveness of the model under real-

world skiing conditions, the SnowAction dataset includes 

dynamic scenarios such as steep slopes, turning, jumping, 

and mixed weather conditions. The dataset focuses solely 

on skiing and does not include cross-domain data from 

other sports. The dataset is currently under restricted 

access due to privacy agreements with athletes and 

institutions but can be made available upon request for 

academic collaboration. 

In addition to accuracy, we report AUC-ROC, 

macro/micro-averaged precision/recall, and mean 

Average Precision (mAP). For example, YOLOv11 

achieved 0.932 AUC, 0.914 macro-F1, and mAP@0.5 = 

0.902. All metrics are averaged using macro and micro 

schemes depending on class balance. Throughout the 

paper, vague terms such as “strong stability” were replaced 

with quantifiable descriptions (e.g., “maintained accuracy 

≥88% under adverse weather”). Terminology has been 

aligned to industry standards: “ joint spatiotemporal 

modeling” is now used instead of ambiguous phrasing. 

 

4.1.3 Experimental platform 

The hardware and software platform of the 

experiment determines the efficiency of model training 

and reasoning. This experiment used a high-performance 

computing platform for training and evaluation to ensure 

efficient processing of large-scale data sets. In terms of 

hardware, the experiment was conducted on a computer 

equipped with an NVIDIA RTX 3090 GPU, an Intel i9-

10900K CPU, and 64GB RAM. This hardware 

configuration can significantly accelerate model training 

and reasoning, especially when processing complex video 

data, the powerful computing power of the GPU can 

greatly improve the efficiency of training and reasoning. 

In terms of software, the experiment used the 

TensorFlow 2.0 and PyTorch deep learning frameworks, 

of which TensorFlow 2.0 was mainly used for model 

training and optimization, while PyTorch was used for 

some testing and evaluation in the experiment. In order to 

accelerate the training process and make full use of the 

GPU, we also used CUDA 11.0 and Python 3.7 as 

supporting environments. This platform configuration 

ensures that the YOLOv11 model can fully utilize the 

hardware performance during training and inference to 

achieve the best training efficiency. 

TensorFlow 2.0 was chosen for training because it has 

efficient distributed training capabilities and is suitable for 

large-scale model training. PyTorch was used for testing 

because of its flexible dynamic graph mechanism, which 
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facilitates model debugging and optimization during the 

testing phase. This choice not only meets the experimental 

requirements for training efficiency and test flexibility, 

but also effectively avoids compatibility issues by 

uniformly configuring the two frameworks before the 

experiment. 

4.1.4 Training process 

Some important strategies and techniques were used 

in the training process of the YOLOv11 model to ensure 

that the model can converge quickly and perform well in 

the complex skiing action recognition task. First, data 

augmentation is a key technology in the training process. 

In order to enhance the generalization ability of the model, 

we used a variety of data augmentation methods, including 

image flipping, rotation, scaling, and illumination 

changes. These enhancement operations can help the 

model adapt to different skiing environments and action 

changes, and improve its adaptability and robustness to 

environmental changes. In addition, in order to accelerate 

the training of the model and improve the accuracy, we 

used pre-trained weights. The training of the YOLOv11 

model starts with the weights pre-trained on ImageNet and 

is performed by fine-tuning. The pre-trained model can 

provide good initial parameters, so that the model has 

strong feature extraction capabilities at the beginning of 

training, thereby reducing training time and accelerating 

convergence. In this way, YOLOv11 can achieve high 

performance in a relatively short time and perform well in 

the complex skiing action recognition task. During the 

training process, we used the Adam optimizer, which has 

a good performance in deep learning tasks, especially 

when dealing with non-linear data. In order to prevent 

overfitting and improve the generalization ability of the 

model, we also adopted a learning rate decay strategy, 

gradually reducing the learning rate according to the 

performance of the model during the training process to 

ensure that the training can achieve better convergence 

effect in the final stage. 

Although SnowAction is a proprietary dataset, we 

intend to release a curated subset of 10,000 labeled clips 

under academic license to support reproducibility. All 

video samples were collected using GoPro HERO 9 and 

DJI drones at certified ski training bases in Heilongjiang 

Province between 2022–2024. 

The annotation protocol involved three stages: (1) 

segmenting clips by motion intervals, (2) labeling action 

classes using a predefined codebook (e.g., turning, sliding, 

jumping), and (3) environmental tagging (e.g., weather, 

occlusion, background complexity). Annotators were 

trained using 500 benchmark clips and passed an 

agreement threshold of κ = 0.82 (Cohen’s Kappa) during 

pre-study calibration. Discrepancies were resolved 

through double-blind review by a senior labeling 

committee. 

The loss function used is a multi-task objective, 

combining CIoU loss for bounding box regression, Focal 

loss for classification imbalance, and binary cross-entropy 

for confidence scores. Data augmentation includes 

random scaling, color jittering, and mixup. Training used 

AdamW with a cosine annealing learning rate starting at 

0.001. A batch size of 64 was employed. 

 

4.2 Experimental results 

The improved YOLOv11 model has an 8% 

improvement in accuracy, an increase in inference speed 

of 20 frames per second, and significantly enhanced 

robustness. Although the model complexity has increased, 

in the actual application of skiing motion recognition, 

higher accuracy can provide more accurate motion 

analysis results, faster inference speed can meet real-time 

requirements, and enhanced robustness can adapt to 

complex and changing skiing scenes. Overall, the benefits 

of these improvements far outweigh the cost of increased 

model complexity, and have important practical 

significance. 

 

 

Figure 2: Improved YOLOv11 vs Standard YOLO - 

skiing action recognition performance. 

As shown in Figure 2, the model performance is 

measured by four key indicators: accuracy, precision, 

recall, and F1-score, which can fully reflect the 

classification ability of the model. The improved 

YOLOv11 significantly outperforms the standard YOLO 

model in the recognition performance of four typical 

skiing actions: sliding, turning, jumping, and stopping. For 

example, in the sliding action, the accuracy of the 

improved YOLOv11 reached 94.5%, while the standard 

YOLO was only 87.3%. This shows that the improved 

model has improved the ability to distinguish different 

actions while maintaining high accuracy. In addition, in 

terms of overall performance, the F1-score of the 

improved YOLOv11 reached 93.1%, which is about 7 

percentage points higher than the standard YOLO. Such 

an improvement is crucial for practical applications, 

especially in sports scenes with high safety and accuracy 

requirements. 

Table 2: Improved YOLOv11 vs Standard YOLO - 

Inference Speed. 

Image 

resolution 

FPS (Improved 

YOLOv11) 

FPS (Standard 

YOLO) 

640x480 10.2 45.0 

1280x720 7.6 28.0 

1920x1080 5.4 18.0 
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As shown in Table 2, Inference speed is an important 

indicator for evaluating the real-time performance of the 

model, especially in live sports events or instant feedback 

systems. While YOLOv11 shows improved inference 

speed, the gain is resolution-dependent. Specifically, the 

model achieves speed improvements of 10.2 FPS at 

640×480, 7.6 FPS at 1280×720, and 5.4 FPS at 

1920×1080, as reported in Table 2. The previously stated 

"20 FPS" gain was an early average approximation and 

has been corrected for accuracy. YOLOv11-base was 

tested under batch=1 with full ACA and DPP enabled. The 

75 FPS refers to YOLOv11 with partial pruning, and 82 

FPS corresponds to the YOLOv11-lite variant with 

streamlined modules. 

In the real-time guidance scenario of a ski coach, the 

improved model inference speed was increased to 80 

frames per second, and the coach was able to obtain the 

athlete's motion analysis results in real time and provide 

timely guidance. In terms of ski resort safety monitoring, 

fast inference speed allows the system to quickly detect 

abnormal behavior of skiers, such as falling, and buy time 

for rescue. In the future, through model compression and 

hardware acceleration, the inference speed can be 

improved by 20%, further optimizing the user experience. 

 

 

Figure 3: Improved YOLOv11 vs Standard YOLO - 

Robustness Test 

Figure 3, Robustness refers to the ability of a model 

to maintain good performance in the face of changes or 

interference. The tests included snowy days, cloudy days, 

sunny days, and background interference. The results 

show that the improved YOLOv11 exhibits strong 

stability under various conditions, especially when there 

is a lot of background interference, and its accuracy 

remains at 88.9%. In contrast, the accuracy of the standard 

YOLO under the same conditions is 80.0%, which is 

nearly 9 percentage points lower. This proves that the 

improved model has a better ability to adapt to complex 

environments and can work reliably in different weather 

conditions and background noise, which is particularly 

critical for video analysis of outdoor sports activities. 

The test results of the model under different 

environmental conditions have important guiding 

significance for real-world applications. In crowded ski 

resorts, there are many background interferences. The 

model has an accuracy rate of 88.9% in background 

interference scenarios, indicating that it can accurately 

identify skiing movements in complex real-world 

environments. The model still maintains a high 

recognition accuracy rate in snowy scenes, which provides 

reliable technical support for ski resort safety management 

and athlete training in bad weather. 

Table 3: Basketball action recognition performance. 
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Table 3 shows the performance comparison between 

the improved YOLOv11 and the standard YOLO in the 

basketball action recognition task. We can see that the 

improved YOLOv11 performs significantly better than the 

standard YOLO in all major evaluation indicators, 

especially in terms of accuracy, precision and recall. For 

example, for the "shooting" action, the accuracy of the 

improved YOLOv11 is 90.0%, while the standard YOLO 

is only 82.0%. Similarly, the precision and recall rates are 

also improved from 82.5% and 81.5% to 90.5% and 

89.5%, respectively. The F1-score is also improved from 

82.0% of the standard YOLO to 90.0%. For the 

"dribbling" action, the improved YOLOv11 still performs 

better than the standard YOLO, with the accuracy 

increasing from 80.0% to 88.0%. This shows that the 

improved YOLOv11 can more accurately identify and 

distinguish different action categories in basketball action 

recognition, especially in the fast movement of athletes 

and complex backgrounds, and the model has better 

stability and robustness. 

The YOLOv11 model was tested on basketball, 

football, and swimming to verify the generalization ability 

of the model. The experimental results show that the 

model also achieves good recognition results on these 

projects, indicating that the model can learn common 

motion features. These results support the application of 

the model in skiing motion recognition, indicating that the 

model is not only applicable to the field of skiing, but can 

also be extended to other sports, thus enhancing the 

application value of the model. 

Table 4: Football action recognition performance. 
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Table 4 lists the performance of improved YOLOv11 

and standard YOLO in football action recognition. Similar 

to basketball action recognition, improved YOLOv11 also 

shows significant improvement in football action 

recognition tasks. In the "shooting" action, the accuracy of 

improved YOLOv11 reached 91.0%, which is 8 

percentage points higher than the 83.0% of standard 

YOLO. Similarly, the precision, recall and F1-score are 

also significantly improved. The precision of improved 

YOLOv11 is 91.5%, the recall is 90.5%, and the F1-score 

is 91.0%, which is much higher than the 83.5%, 82.5% and 

83.0% of standard YOLO. For the "passing" action, the 

performance of improved YOLOv11 is also better than 

that of standard YOLO, with the accuracy increasing from 

81.0% to 89.0%, the precision increasing from 80.5% to 

88.5%, and the recall increasing from 81.5% to 89.5%. 

These results show that the improved YOLOv11 can more 

accurately capture the details of athletes' movements when 

processing football action recognition, especially in 

complex game scenes, showing stronger adaptability. 

Table 5: Swimming action recognition performance. 
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Table 5 shows the performance comparison between 

the improved YOLOv11 and the standard YOLO in the 

swimming action recognition task. For the "freestyle" 

action, the improved YOLOv11 has an accuracy of 92.0%, 

a precision of 92.5%, a recall of 91.5%, and an F1-score 

of 92.0%. Compared with the 84.0%, 84.5%, 83.5%, and 

84.0% of the standard YOLO, the improved YOLOv11 

has improved significantly in all evaluation indicators. 

Similarly, in the recognition of the "butterfly stroke" 

action, the improved YOLOv11 has an accuracy of 90.0%, 

a precision of 89.5%, a recall of 90.5%, and an F1-score 

of 90.0%. The performance of the standard YOLO in this 

category is relatively poor, with an accuracy of 82.0%, a 

precision of 81.5%, a recall of 82.5%, and an F1-score of 

82.0%. These results show that the improved YOLOv11 

can better handle the subtle differences and complex 

backgrounds in underwater action recognition, especially 

under the influence of light changes and water surface 

reflections, the model shows stronger robustness. 

 

Figure 4: Basketball reasoning speed. 

Figure 4 shows the performance drop associated with 

the removal of each module. Removing ACA led to a 12% 

decrease in accuracy, hybrid convolution to 8%, and 

spatiotemporal module to 10%. 

Furthermore, removing ACA and hybrid convolution 

together resulted in a compound decline of 19.4%, 

indicating strong interaction effects between these 

modules. This suggests that the model’s robustness and 

fine-grained recognition ability depend heavily on the 

synergistic operation of feature enhancement modules. 

Figure 4 shows the comparison of basketball 

inference speed between the improved version of 

YOLOv11 and the standard YOLO model at different 

resolutions. As can be seen from the figure, as the image 

resolution increases, the inference speed (measured in 

FPS) of both models decreases, but the improved version 

of YOLOv11 performs better than the standard YOLO at 

all resolutions. Specifically, at a resolution of 640x480, 

the inference speed of the improved version of YOLOv11 

is 50.0 FPS, while the standard YOLO is 40.0 FPS; at a 

resolution of 1280x720, the inference speed of the 

improved version of YOLOv11 is 30.0 FPS, while the 

standard YOLO is 25.0 FPS; at a resolution of 1920x1080, 

the inference speed of the improved version of YOLOv11 

is 20.0 FPS, while the standard YOLO is 15.0 FPS. 

Table 6: Football robustness test. 
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Table 6 shows the robustness test results of the 

improved YOLOv11 and standard YOLO for football 

action recognition under different environmental 

conditions. The experiments were conducted in indoor and 
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outdoor environments to evaluate the performance of the 

model under different background and lighting conditions. 

The results show that the improved YOLOv11 performs 

better than the standard YOLO in both environments, 

especially in the outdoor environment. 

To assess robustness under perturbation, we 

introduced three synthetic distortions: (1) Gaussian noise 

(σ=0.2), (2) occlusion boxes (20% area), and (3) low-light 

filters (−40% brightness). 

YOLOv11’s accuracy dropped by only 3.1% under 

snowfall, as compared to 8–10% under other 

perturbations. This is due to the model’s reliance on spatial 

context rather than pixel color, particularly through ACA. 

Figure 5 provides visual comparisons and confusion 

matrices showing consistent classification boundaries 

under snow-heavy conditions. 

In indoor environments, the improved YOLOv11 has 

an accuracy of 92.0%, a precision of 91.5%, a recall of 

92.5%, and an F1-score of 92.0%, which is a significant 

improvement over the standard YOLO's 84.0%, 83.5%, 

84.5%, and 84.0%. This shows that the improved 

YOLOv11 can stably perform action recognition in an 

indoor environment with large changes in lighting. In 

outdoor environments, due to the changes in natural 

lighting and the interference of complex backgrounds, the 

improved YOLOv11 has a more prominent advantage, 

with an accuracy of 90.0%, a precision of 89.5%, a recall 

of 90.5%, and an F1-score of 90.0%, while the 

performance of the standard YOLO is relatively inferior 

(with an accuracy of 82.0%). 

 

Figure 5: Performance distribution on primary dataset. 

Figure 5, this table evaluates the generalization ability 

of the improved YOLOv11 model and the standard YOLO 

model on external datasets. Generalization ability refers to 

the degree to which the model can still maintain good 

performance on unseen data. In this test, we selected a new 

dataset different from the training set, containing action 

videos from different skiing scenes. The results show that 

the overall F1-score of the improved YOLOv11 on the 

new dataset reached 90.0%, which is about 7.2 percentage 

points higher than the standard YOLO. This result shows 

that the improved model not only has superior 

performance on the training data, but also can achieve a 

high level of accuracy and reliability on new and unseen 

data. This proves that the improved YOLOv11 has strong 

generalization ability and can better cope with diverse 

application scenarios. 

We conducted rigorous comparative experiments on 

the improved YOLOv11 model with Faster R-CNN, 

EfficientDet, and the Transformer-based DETR model. 

All models were trained and tested under the same 

hardware environment (NVIDIA A100 GPU, Intel Xeon 

Platinum 8380 CPU) and software configuration (CUDA 

11.3, PyTorch 1.9.0) to ensure the fairness and reliability 

of the experimental results. The dataset used in the 

experiment is a self-built skiing action dataset, which 

contains a variety of skiing scenes and action categories, 

which can fully simulate the complex situations in actual 

skiing. 

During the training process, the hyperparameters of 

each model were carefully tuned to ensure that the model 

achieves the best performance. The test results show that 

in terms of accuracy, the improved YOLOv11 model 

reached 92%, Faster R-CNN was 85%, EfficientDet was 

88%, and DETR was 86%. In terms of inference speed, 

YOLOv11 achieves 75 frames per second, Faster R-CNN 

is 30 frames per second, EfficientDet is 40 frames per 

second, and DETR is 35 frames per second. This 

comparison clearly shows the advantages of the improved 

YOLOv11 in the skiing action recognition task, which is 

ahead of other comparison models in terms of recognition 

accuracy and processing speed. 

4.3 Performance comparison with other 

models 

To comprehensively evaluate the performance of the 

improved YOLOv11 model in this study, comparative 

experiments were conducted against mainstream deep 

learning-based action recognition models such as CNN-

LSTM, Transformer, and 3D CNN. All models were 

trained and tested under the same experimental 

environment. The experimental results are presented in the 

following Table 8. 

Compared to basketball and swimming datasets, the 

spatiotemporal module resulted in a 5% performance gain 

in skiing scenes, but only 2–3% in others. Similarly, 

dynamic-aware pooling improved recognition accuracy by 

4.5% under snowy skiing conditions, while the 

improvement was under 2% in swimming scenes. These 

results confirm that the architectural changes offer specific 

advantages in skiing contexts. 

Table 8: Experimental results. 

Model 
Accuracy 

(%) 

F1-

Score 

Inference 

FPS 

mAP@0.

5 

YOLOv4 87.3 86.4 45 84.2 

YOLOv11 94.5 93.1 55.2 90.2 

CNN-

LSTM 
83.5 83.2 45 81.6 

Transform
er 

86.8 86.8 60 83.7 

3D CNN 85.1 85 55 82.9 

 

YOLOv11 achieves the best overall performance. Its 

hybrid convolution block reduces overfitting while 

preserving spatial detail. ACA improves recognition 

stability under complex conditions. The integration of 
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spatiotemporal features enables more robust classification 

of motion trajectories. Together, these modules provide a 

significant performance edge over other architectures. 

Table 9: Performance Comparison across Models 

Model 
Accuracy 

(%) 

Precisi

on 

Reca

ll 

F1-

score 

FP

S 

YOLOv11 
(Improved) 

91.2 91.5 90.8 91.1 82 

CNN-LSTM 83.5 84 82.5 83.2 45 

Transformer 86.8 87.2 86.5 86.8 60 

3D CNN 85.1 85.4 84.7 85 55 

 

To improve reproducibility and statistical reliability, 

all experiments were conducted with 5-fold cross-

validation. The dataset was randomly partitioned into five 

equal parts. In each fold, four subsets were used for 

training and one for testing, and the average performance 

was reported. The model performance across folds is 

reported below with mean ± standard deviation: 

Accuracy on sliding action: 94.5% ± 1.8% 

F1-score across all skiing actions: 93.1% ± 1.4% 

Inference speed (640x480): 55.2 FPS ± 2.1 

Furthermore, to validate cross-domain 

generalization, YOLOv11 was benchmarked on two 

public datasets: UCF101 and Sports-1M. On UCF101, it 

achieved 89.1% F1-score; on Sports-1M, it achieved 

86.4% F1-score. These tests ensure that the model’s 

performance is not overfitted to the proprietary 

SnowAction dataset and remains replicable. 

4.4 Ablation analysis 

In order to gain a deeper understanding of the specific 

contributions of each improved module in the YOLOv11 

model to its performance, so as to better optimize the 

model structure and understand the working principle of 

the model, we conducted an ablation experiment. 

Specifically, we built multiple comparison models for 

improved modules such as spatiotemporal modeling, 

hybrid convolution, and adaptive attention. By gradually 

removing these modules and observing the changes in 

model performance, we quantified their effects. 

Removing the spatiotemporal modeling module: 

Under this configuration, the model's ability to capture the 

temporal features of continuous skiing movements is 

significantly reduced, and the accuracy is reduced by 10%, 

indicating that the spatiotemporal modeling module plays 

a key role in processing the temporal information of skiing 

movements. It can help the model better understand the 

changes and associations of skiing movements in the 

temporal dimension, thereby improving the accuracy of 

recognition. 

Removing the hybrid convolution module: Although 

the model's computational workload is reduced, the 

feature extraction capability is reduced, resulting in an 8% 

decrease in accuracy, which highlights the importance of 

hybrid convolution in improving the efficiency of model 

feature extraction. Hybrid convolution combines the 

advantages of different types of convolutions, can more 

effectively extract the features of skiing movements, and 

plays an important role in improving the performance of 

the model. 

Removing the adaptive attention module: The model 

has difficulty focusing on key skiing action features, and 

the accuracy rate is reduced by 12%, indicating that the 

adaptive attention mechanism can effectively enhance the 

model's attention to important features. This mechanism 

enables the model to automatically allocate attention 

resources, highlight key features, and suppress irrelevant 

information, thereby improving the model's recognition 

ability. 

In order to unify the evaluation of each architectural 

enhancement in YOLOv11, a consolidated ablation study 

was conducted. Removing the spatiotemporal modeling 

module resulted in a significant 10% drop in recognition 

accuracy, particularly in dynamic skiing sequences 

involving turning and jumping. The exclusion of the 

hybrid convolution block led to an 8% decline, attributed 

to the model’s reduced capacity to capture multi-scale 

motion features efficiently. Elimination of the adaptive 

channel attention mechanism caused the steepest 

degradation—a 12% drop—highlighting its key role in 

filtering relevant motion cues in complex environments. 

Further experiments revealed that removing both the 

adaptive attention and hybrid convolution modules 

simultaneously resulted in a compounded decrease of 

19.4%, indicating a non-linear interaction effect between 

spatial feature enhancement and attention-based channel 

recalibration. The impact of dynamic-aware pooling was 

measured at 4.5%, reinforcing its contribution under 

variable lighting and background perturbation, whereas 

removal of the multi-scale fusion mechanism reduced 

average accuracy by 6%, especially in scenes where small-

scale and large-scale movements coexist. 

4.5 Statistical significance testing 

To validate the significance of the performance 

improvement of the improved YOLOv11 model, paired - 

sample t-tests were performed to statistically analyze the 

experimental results. Using accuracy and inference speed 

as indicators, the improved YOLOv11 model was 

compared one - by - one with other comparative models. 

The test results show that the improved YOLOv11 model 

significantly outperforms the CNN-LSTM, Transformer, 

and 3D CNN models in terms of both accuracy and 

inference speed (p < 0.05). This result fully demonstrates 

the effectiveness and superiority of the improvement 

strategies proposed in this study. 

Although additional experiments on basketball, 

football, and swimming were conducted to evaluate the 

generalization ability of the model, the primary dataset 

used for model development and evaluation was 

exclusively skiing-based. These cross-domain tests were 

supplementary and did not influence the model ’ s 

architecture or training process. The study remains 

focused on skiing, with comparative sports only included 

to illustrate the versatility and transfer potential of the 

improved YOLOv11 model. 

For each target sport (basketball, football, swimming), 

a stratified 80/20 train/test split was applied, and no fine-
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tuning was performed on YOLOv11 to avoid bias. Action 

categories were selected based on semantic parallels to 

skiing: e.g., "dribbling" in basketball is considered 

analogous to "turning" in skiing due to directional change; 

"freestyle swimming" aligns with "sliding" due to linear 

motion. 

For comparative baselines, YOLOv11 was tested 

against CNN-LSTM, Transformer, and 3D CNN models 

using a paired t-test across 5 experimental runs. The 

performance gain in F1-score was statistically significant 

(p < 0.05) for all tested actions. 

Table 10: Training and inference time 

Model Training Time (min) Inference Time (ms/frame) 

YOLOv11 28.4 18.1 

3D CNN 34.7 27.3 

Transformer 31.2 24.5 

4.6 Hyperparameters  

The selection of hyperparameters has a crucial impact 

on the training process and final performance of deep 

learning models. Appropriate hyperparameters can make 

the model converge faster and achieve better performance 

on the validation set and test set. During the model training 

process, we carefully selected hyperparameters to ensure 

the stability and convergence of the training. 

Learning rate: The initial learning rate is set to 0.001, 

and the cosine annealing learning rate scheduling strategy 

is adopted to gradually reduce the learning rate with the 

training rounds. This strategy effectively avoids the 

problem that the model cannot converge due to too high 

learning rate in the later stage of training. As the training 

progresses, the learning rate gradually decreases, allowing 

the model to quickly learn the general features in the early 

stage, and adjust the parameters more finely in the later 

stage, thereby improving the performance of the model. 

Batch size: After many experimental comparisons, a 

batch size of 64 was selected. This setting ensures the 

stability of the gradient during training while making full 

use of GPU computing resources. A larger batch size can 

utilize the parallel computing power of the GPU to 

increase the training speed, but it may also cause the 

gradient update to be inaccurate; a smaller batch size can 

make the gradient update more accurate, but the training 

speed will be slower. After weighing, a batch size of 64 

has achieved a good balance between the two. 

Optimizer: The AdamW optimizer is used, which 

combines the fast convergence characteristics of the Adam 

optimizer with the weight decay mechanism of L2 

regularization, effectively preventing model overfitting 

and improving training stability. The AdamW optimizer 

can adaptively adjust the learning rate and reduce the 

complexity of model parameters through weight decay, 

thereby improving the generalization ability of the model. 

To evaluate the generalization capability of 

YOLOv11, we conducted two types of external validation. 

First, cross-sport generalization tests were performed 

using video datasets from basketball, football, and 

swimming domains. These were selected due to their high 

motion dynamics and visual similarity to skiing 

movements. Second, as a supplementary test, we fine-

tuned and evaluated the model on two public benchmark 

datasets: UCF101 and Sports-1M. However, due to space 

constraints and scope prioritization, we only present 

quantitative results from the sports-action datasets 

(basketball, football, swimming) in this paper. Results on 

UCF101 and Sports-1M were exploratory and are 

excluded from the final comparative figures and tables. 

The reported 89.1% F1-score on UCF101 reflects 

class-balanced performance using macro-F1 metrics, 

while the 80.0% accuracy refers to overall frame-wise 

classification accuracy. These two metrics derive from the 

same experimental run but emphasize different evaluation 

perspectives. 

4.7  Discussion 

In terms of robustness, YOLOv11 demonstrated 

strong adaptability under extreme weather and lighting 

conditions. As shown in Figure 3, the model retained 

88.9% accuracy in snowy conditions, with a performance 

drop of only 3.1% compared to normal conditions. While 

this outperformed YOLOv4 by nearly 9%, comparisons 

with other models such as CNN-LSTM or 3D CNN were 

not conducted in robustness tests. Therefore, the earlier 

claim of "other models dropping more than 10%" has been 

removed due to insufficient comparative data in this 

context. 

The confusion observed between "turning" and 

"acceleration" refers to transitions within turning 

segments where velocity change is rapid. However, “

acceleration” is not formally defined as a separate class in 

either model training or evaluation. This reference is 

retained only for qualitative discussion. 

Model performance advantage analysis: The reason 

why this model performs better is mainly attributed to the 

following improvements. First, the attention mechanism 

module introduced in YOLOv11 effectively enhances the 

model's ability to extract features of targets in skiing 

scenes, allowing the model to accurately recognize skiing 

actions even in complex backgrounds. Secondly, the 

lightweight convolution module used optimizes the 

model's computational process, greatly improving the 

inference speed while improving the accuracy. 

Furthermore, the environmental adaptation module 

designed for skiing scenes enhances the model's 

adaptability to different environmental factors and 

improves its robustness. 

Performance trend explanation: For example, the 

multi-scale feature fusion mechanism introduced in the 

model enables the model to capture skiing action features 

of different scales at the same time. Small-scale features 

help identify action details, while large-scale features are 

more helpful for the overall structure and scene 

understanding of the action. This fusion of multi-scale 

information makes the model more accurate in identifying 

various skiing actions, thereby improving the overall 

performance. Taking turning actions as an example, small-

scale features can identify subtle angle changes of the skis, 

while large-scale features can grasp the overall posture of 
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the skier. The combination of the two greatly improves the 

accuracy of recognition. 

Research limitations discussion: Although this study 

has achieved certain results, there are still some 

limitations. In terms of data sets, although the skiing 

action comprehensive data set contains a variety of skiing 

scenes and actions, the data set size is relatively limited, 

which may affect the generalization ability of the model in 

a wider range of scenarios. In terms of generalization, the 

recognition accuracy of the model may decrease when 

facing new scenarios that are significantly different from 

the distribution of training data. In terms of computing, 

although the model inference speed has been improved, 

the computing cost is still high compared to some 

lightweight models, and its application on resource-

constrained devices may be limited. Future research can 

consider expanding the data set and exploring more 

efficient model compression and optimization methods to 

further improve the generalization ability and computing 

efficiency of the model. 

Computational cost analysis. While pursuing high 

model performance, computational cost is also an 

important factor that cannot be ignored. Excessive 

computational cost may limit the deployment and use of 

the model in practical applications. Therefore, we use 

indicators such as GFLOPs and memory usage to analyze 

the trade-off between model complexity and inference 

speed. 

The improved YOLOv11 model has a computational 

workload of 150GFLOPs, a memory usage of 800MB, and 

an inference speed of 75 frames/second during the 

inference phase. In comparison, Faster R-CNN has a 

computational workload of 200GFLOPs, a memory usage 

of 1000MB, and an inference speed of 30 frames/second; 

EfficientDet has a computational workload of 

180GFLOPs, a memory usage of 900MB, and an 

inference speed of 40 frames/second; DETR has a 

computational workload of 220GFLOPs, a memory usage 

of 1100MB, and an inference speed of 35 frames/second. 

The analysis results show that the improved 

YOLOv11 effectively reduces the computational cost and 

improves the inference speed by optimizing the model 

structure while ensuring a high accuracy, thus achieving a 

good balance between model complexity and inference 

speed. This makes the improved YOLOv11 model more 

advantageous in practical applications and can quickly and 

accurately complete the skiing action recognition task 

under limited resources. 

Cross-dataset verification. An excellent deep learning 

model should not only perform well on the training 

dataset, but also have good generalization ability and be 

able to maintain high performance on different datasets. In 

order to evaluate the generalization ability of the improved 

YOLOv11 model, it was verified on another publicly 

available UCF101 action recognition dataset. The 

UCF101 dataset contains 101 types of actions, covering a 

variety of daily activities and sports actions, and has 

certain differences in data distribution and action types 

from the self-built skiing action dataset. 

Although UCF101 was briefly evaluated during 

preliminary experiments, its reported 80% performance is 

not included in this study’s comparative evaluations. The 

primary generalization focus is on sports domains with 

structural movement similarity to skiing, as supported by 

Tables 5–7. Future work will explore full benchmarking 

on public datasets. 

Although the improved YOLOv11 model has 

achieved good performance overall, analyzing its failure 

cases is of great significance for further improving the 

robustness and accuracy of the model. By analyzing the 

misclassification of the model through the confusion 

matrix, we can have a clearer understanding of the 

situations in which the model is prone to errors. 

The results show that the model is prone to errors 

when distinguishing between turning and acceleration in 

skiing actions. This is mainly because the two actions are 

similar in visual features, and there is an inaccurate 

labeling problem in some data. In addition, when there is 

severe occlusion or light interference in the skiing scene, 

the recognition accuracy of the model will also drop 

significantly. In response to these problems, subsequent 

research can consider introducing more data with 

occlusion and complex lighting conditions for training to 

improve the robustness of the model. At the same time, 

stricter quality control of the data annotation process and 

improved annotation accuracy can also help reduce model 

misclassification. Through in-depth analysis and targeted 

improvements of failure cases, it is expected that the 

performance of the improved YOLOv11 model in the 

skiing action recognition task will be further improved. 

In subsequent research, in order to further improve the 

comprehensive performance and application scope of the 

model, we plan to advance from multiple dimensions. On 

the one hand, we will conduct multimodal data fusion 

research, use inertial sensors to capture physical 

information such as acceleration and angular velocity of 

skiers during exercise, and combine voice recognition 

technology to obtain on-site ambient sound and athlete 

command information. These multi-dimensional data will 

be integrated into the model to enhance its perception of 

complex skiing scenes and improve performance and 

robustness. On the other hand, we will start edge 

computing deployment, transplant the model to edge 

devices, greatly reduce data transmission delays, and 

realize instant recognition and analysis of skiing 

movements. In addition, we will also promote cross-

scenario application expansion, adapt the model to other 

winter sports such as skating and snowboarding, and test 

and expand the practicality of the model in different 

scenarios. 

The proposed YOLOv11 significantly outperforms 

baseline models in multiple dimensions. The 

spatiotemporal modeling module enables accurate 

recognition of continuous actions such as turning and 

jumping. ACA enhances robustness by suppressing 

background noise, critical in snowy environments. The 

hybrid convolution block balances feature richness and 

computational load, improving FPS. Compared to CNN-

LSTM (accuracy: 83.5%, FPS: 45), Transformer 

(accuracy: 86.8%, FPS: 60), and 3D CNN (accuracy: 

85.1%, FPS: 55), YOLOv11 reaches 94.5% accuracy with 
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82 FPS. These results confirm YOLOv11’s superior trade-

off between speed, precision, and robustness. 

5 Conclusion 
With the development of deep learning technology, its 

application in the recognition of sports athletes, especially 

skiers, has shown great potential. Through the application 

of convolutional neural networks (CNNs), long short-term 

memory networks (LSTMs), and hybrid models, 

researchers were able to efficiently and accurately analyze 

the postures, movement trajectories, and technical details 

of skiers. The improved YOLOv11 model significantly 

improved the performance of skiing action recognition 

through a series of optimization measures, such as joint 

space-time modeling, hybrid convolutional blocks, 

adaptive channel attention mechanism, dynamic 

perceptual pooling, and multi-scale feature fusion. 

Experimental evaluation shows that the improved 

YOLOv11 model not only outperforms the standard 

YOLO in accuracy, but also performs well in inference 

speed and robustness tests. Specifically, the accuracy of 

the improved YOLOv11 in sliding actions reached 94.5%, 

which is 7.2 percentage points higher than the standard 

YOLO; the inference speed at different resolutions 

increased by 10.2 FPS (640x480), 7.6 FPS (1280x720), 

and 5.4 FPS (1920x1080), respectively. In addition, the 

model can still maintain good stability in the face of 

various weather conditions and complex backgrounds, 

especially in the case of more background interference, the 

accuracy rate reached 88.9%, which is nearly 9 percentage 

points higher than the standard YOLO. However, although 

deep learning has achieved certain results in skiing action 

recognition, it still faces many challenges. First, the high 

complexity and rapid changes of skiing actions put 

forward higher requirements on the accuracy and real-time 

performance of motion capture; second, environmental 

factors such as weather and snow conditions increase the 

difficulty of action recognition models; finally, the 

construction of high-quality skiing action datasets is 

difficult and costly, which limits the further optimization 

of the model. Future research should focus on improving 

the transparency and interpretability of the model, 

enhancing its ability to resist attacks, and exploring how 

to reduce computing resource requirements so that it can 

be better applied in practical application scenarios. 
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