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This paper proposes an enhanced YOLOv11 model for real-time skiing action recognition, incorporating
five key architectural improvements: spatiotemporal modeling, adaptive channel attention (ACA), hybrid
convolution blocks, dynamic-aware pooling, and multi-scale feature fusion. The model is evaluated on the
proprietary SnowAction dataset, which includes over 100,000 annotated video segments under diverse
weather and terrain conditions. Comparative experiments demonstrate that YOLOv11 achieves 94.5%
accuracy on sliding actions, 7.2% higher than YOLOv4, and attains 55.2 FPS at 640x480 resolution. In
cross-model benchmarks, YOLOv11l surpasses CNN-LSTM, 3D CNN, and Transformer models in
precision, recall, and inference speed, showing strong real-time capability and robustness in adverse
weather. These results establish YOLOv11 as a reliable solution for high-dynamic action recognition tasks
in skiing scenarios.

Povzetek: Raziskava predstavi nadgrajeni YOLOvI 1 za sprotno prepoznavo smucarskih gibov v zahtevnih
razmerah. Model zdruzuje pet kljucnih novosti: spatiotemporalno modeliranje, prilagodljivo kanalno
pozornost (ACA), hibridne konvolucijske bloke, dinamicno zaznavno zdruzevanje (DPP) ter vecmerilno
fuzijo znacilk. PreizkuSen je na lastnem videonaboru SnowAction (>100 000 oznacenih segmentov) z

razlicnimi vremenskimi in terenskimi pogoji.

1 Introduction

As an important breakthrough in the field of artificial
intelligence, deep learning has made significant progress
in many fields in recent years, For example, in big data
[1], medicine [2], and finance [3]. Especially in the field
of computer vision. Computer vision is a technology that
enables computers to "see" and understand images and
videos. The application of deep learning in computer
vision, especially the rise of convolutional neural
networks (CNNSs), has greatly improved the accuracy and
efficiency of tasks such as image classification, object
detection, and action recognition. Traditional image
recognition methods rely on manual feature extraction,
while deep learning automatically learns efficient feature
expressions from data through multi-layer neural
networks, avoiding tedious feature engineering work and
having strong generalization capabilities under the
training of large-scale data sets. With the continuous
maturity of deep learning technology, image recognition
tasks have reached or even exceeded the level of human
experts in many application scenarios. In the field of
sports, the demand for athlete action recognition is
increasing. Action recognition not only helps technical
analysis of training and competition, but also improves
athletes' sports performance and reduces sports injuries.

Skiing, as a high-intensity, high-skill sport, involves
complex action coordination and dynamic adjustment.
Skiers constantly perform various movements such as
turns, jumps, and flips while skiing at high speeds. These
movements are very complex in high-speed and changing
environments [4,5], and traditional motion analysis
methods are often unable to cope with them. The
complexity and high-intensity movement requirements of
skiing movements make motion analysis and evaluation in
athlete training, competitions, and event replays
particularly important. Therefore, the application of deep
learning in skier motion recognition can capture and
analyze every detail of the athlete in an efficient and
accurate manner. By identifying and evaluating the real-
time movements of athletes during the competition, deep
learning technology can not only provide detailed
technical feedback, but also help coaches to scientifically
analyze the performance of athletes and thus optimize
training plans. In addition, the application of deep learning
in the field of skiing can also promote real-time
monitoring and evaluation during the competition, helping
event organizers to provide more accurate sports
performance data and provide viewers with a richer
viewing experience. However, challenges in skiing
motion recognition still exist, especially in the
performance of diverse movements, complex
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backgrounds, and high-dynamic environments, which
requires further technical exploration [6].

In this paper, we propose an enhanced architecture
named YOLOv11, which is a systematic improvement
over the standard YOLOv4 framework. YOLOv11l
integrates three major modules: hybrid convolutional
blocks for feature extraction, an Adaptive Channel
Attention (ACA) mechanism for context refinement, and
a Dynamic Perception Pooling (DPP) module for scale-
aware representation. All modifications are designed to
optimize performance for real-time skiing action
recognition in complex environments.

In order to further consolidate the research foundation
of the paper and ensure that the references are closely
aligned with skiing action recognition, a new reference [7]
is added, focusing on the dynamic changes of athletes'
postures in skiing. By building a high-precision 3D model,
the characteristic differences of skiing actions under
different slopes and speed conditions are deeply analyzed,
revealing the kinematic and dynamic principles of skiing
actions. This not only has important theoretical guidance
significance for building a more accurate skiing action
recognition model, but also provides a professional
method reference for how to select and annotate skiing
action samples in the process of data set construction in
this study. It echoes the core work of this study, which is
to apply the YOLOv11l model to action recognition in
complex skiing scenes, in terms of research content and
methods, and together improves the research depth and
credibility of the paper in the field of skiing action
recognition.

There is a problem that it is difficult to unify the
annotation standards in the data annotation process.
Different annotators have different understandings of
skiing movements, which leads to deviations in the
annotation results. In addition, skiing scenes are complex
and changeable, and the movements are rich, which
further increases the difficulty of annotation. It also adds
relevant content about exploring the combination of deep
learning and Internet of Things technology, by deploying
sensors on skiing equipment, obtaining athletes'
movement data in real time, and assisting in the training
of action recognition models, which echoes the abstract
and enhances the coherence of the article.

With the rise of deep learning technology, more and
more research has begun to focus on how to apply it to the
field of athlete motion recognition. In particular, deep
learning has shown great application potential in sports
such as skiing, which are highly dynamic, fast, and have
multiple complex movements. At present, some studies
have used convolutional neural networks (CNNs), long
short-term memory networks (LSTMs), and hybrid
models in deep learning to try to accurately recognize and
analyze skiers' movements. For example, through data
collected by video surveillance or wearable devices,
researchers use deep learning models to analyze athletes'
postures, movement trajectories, and technical details, and
have achieved certain results. However, although deep
learning has shown great advantages in the field of motion
recognition, it still faces many technical challenges in the
recognition of skiers' movements. First, skiers' movements
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are of high speed and complexity, which puts high
demands on the accuracy and real-time performance of
motion capture. Second, athletes' movements when skiing
may be affected by many factors, such as weather, snow
conditions, terrain, etc. The diversity of these factors
requires the motion recognition model to have stronger
adaptability and robustness [8]. In addition, the deep
learning model's reliance on large-scale labeled data also
limits its popularity in the field of skiing, because the
construction of high-quality skiing action datasets is
difficult and costly.

The purpose of this study is to explore how deep
learning technology can improve the accuracy and
efficiency of skiing action recognition. As deep learning
models perform better and better on large-scale data sets,
how to apply this technology to action recognition in the
field of skiing, especially in complex environments, has
become a hot topic of current research. The focus of the
research is not only on how to design efficient deep
learning models to recognize different types of skiing
actions, but also on how to improve the real-time and
accuracy of action recognition through intelligent system
design.

In this study, YOLOv4 is used as the standard
reference model for performance comparison, given its
wide adoption in object detection and prior use in sports
motion recognition. The model serves as a robust
benchmark to evaluate the proposed improvements in
YOLOv11.

2 Theoretical basis

2.1 Skiing

Skiing is a winter sport that involves a variety of
techniques and skills. It can be divided into many
categories according to its form, such as competitive
skiing, skiing skills, freestyle skiing, etc. Each form of
skiing has its own unique action requirements. The
athlete's skills, reaction speed, body coordination and
ability to adapt to the environment are all key factors for
success. The classification of skiing usually includes:
Alpine skiing, cross-country skiing, freestyle skiing, ski
jumping, etc. Among them, alpine skiing and freestyle
skiing are the most common and have a closer relationship
with motion recognition research. The characteristics of
skiing movements are reflected in its high speed and
dynamics. Athletes need to constantly adjust their body
posture during skiing to adapt to different terrains and
climate changes. Turning, jumping, sliding and other
movements must not only ensure efficient execution of the
technology, but also have the ability to respond quickly to
the environment. For example, in alpine skiing, the
bending action when turning, the center of gravity control
during sliding, and the adjustment of aerial movements
when jumping are all key elements that the motion
recognition system needs to capture [9].

Powder snow is soft, the skis sink deep into the snow,
the skier's movements are relatively large, and the visual
features produced change significantly, but the reflection
of the snow may interfere with image acquisition; hard
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snow is hard, the skis slide fast, and the movements are
relatively compact, so the model needs to accurately
capture subtle changes in movements. These
characteristics place higher demands on the robustness of
the model under complex snow conditions. After the
supplementary content, the discussion on the robustness of
the model is more comprehensive.

2.2 Basic concepts of action recognition

Action recognition is an important task in the field of
computer vision. Its purpose is to automatically identify
and classify different actions or behaviors by analyzing
video or image sequences. The goal of action recognition
is not only to distinguish different action categories, but
also to accurately understand the time sequence and
contextual information of the action, and then determine
whether the action is correct and whether it meets certain
standards (such as technical actions in skiing, competition
rules, etc.). In the context of skier action recognition, the
application of action recognition system can help coaches
analyze athletes' action performance in real time, provide
athletes with accurate technical feedback, and improve
training effects and competition performance. Action
recognition can be divided into two categories: traditional
methods and deep learning-based methods. Traditional
action recognition methods usually rely on manual feature
extraction and model design. By analyzing features such
as optical flow, posture, and action trajectory in the video,
machine learning algorithms (such as support vector
machines, hidden Markov models, etc.) are used to
classify actions. This type of method relies on manual
selection and extraction of features, is usually sensitive to
environmental changes, and has high computational
complexity. For sports with strong dynamics and complex
backgrounds such as skiing, traditional methods face great
limitations. In contrast, action recognition methods based
on deep learning have significant advantages. Deep
learning can automatically learn features from raw data by
building multi-layer neural networks. It can handle
complex and unstructured data and has good
generalization ability when trained with large-scale data
sets. In recent years, models such as convolutional neural
networks (CNN), recurrent neural networks (RNN), long
short-term memory networks (LSTM), and Transformer
have achieved remarkable results in action recognition
[10,11]. These models can not only effectively extract
spatial features from images or videos, but also process
time series data, thereby improving the accuracy and
robustness of action recognition.

2.3 Comparison between traditional
methods and deep learning methods

Traditional action recognition methods are mostly
based on manual feature extraction, such as extracting
information such as optical flow, posture, and angle
changes, and combining them with machine learning
algorithms for classification. The optical flow method
infers the motion trajectory of objects in the image by
analyzing the pixel changes between consecutive frame
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images; while posture estimation infers the human action
pattern by analyzing the position changes of each joint of
the human body. However, these methods face many
challenges, especially in complex backgrounds and fast-
moving scenes. During skiing, the dynamic changes in the
environment (such as snow conditions, climate change,
etc.) and the rapid movements of athletes make traditional
methods less robust and easily interfered by noise in
complex environments. Unlike traditional methods, deep
learning methods learn features directly from raw video or
image data through end-to-end training, and automatically
extract and optimize key features. This enables deep
learning to handle more complex action recognition tasks.
In skiing action recognition, deep learning models can
effectively identify different skiing actions and maintain
high accuracy in dynamic environments [12]. For
example, CNN-based models perform well in static image
classification, while RNN and LSTM have better results
when processing time series data. The latest Transformer
model models spatiotemporal features through a self-
attention mechanism, which can effectively capture long-
term dependencies and further improve the accuracy and
robustness of action recognition. The advantages of deep
learning methods are reflected in their high degree of
automation, excellent performance, and strong
generalization ability. Especially in highly dynamic, fast-
changing sports such as skiing, the advantages of deep
learning are particularly obvious. By continuously
optimizing the network architecture and training
strategies, deep learning can effectively overcome the
shortcomings of traditional methods and achieve
breakthrough progress in skiing action recognition [13-
15].

In recent skiing-related research, CNN-LSTM
architectures have been adopted to model both spatial
features and temporal motion dependencies. However,
their inference speed often fails to meet real-time
requirements. 3D CNNs capture spatiotemporal features
directly via 3D kernels, yet come with high computational
costs. Transformer-based models provide global context
modeling via attention mechanisms, but are often
memory-intensive and sensitive to small datasets. These
models laid the foundation for spatiotemporal learning,
but their limitations motivated the modular optimization
in YOLOv11.

Table 1: Related researches in the field of skiing action

recognition
Research | Research Research
Literature | Method Used Dataset Results
Traditional It. ca? reco?(r_l_ize
. simple  skiing
computer A self-built h
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[16] based on datasgt,_ scenes and with
manual feature | containing di .
- - iverse actions,
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ZLEISSiSIr]:IEI’ 500 images rate of about
9 60%.
Early deep | A dataset | The  accuracy
Literature | learning constructed by | rate in skiing
[17] models, such as | collecting action
simple publicly recognition
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available skiing
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Table 1 focuses on the field of skiing action
recognition and systematically summarizes the related
previous researches and this study from three dimensions:
research methods, used datasets, and research results. In
terms of research methods, Literature [16] adopts
traditional computer vision technology, relying on
manually designed features; while Literature [17] and
Literature [8] begin to introduce deep learning models to
automatically extract data features. In terms of dataset
application, each research shows differences in scale and
source, reflecting the characteristics of data acquisition
and construction in different periods. From the perspective
of research results, the early researches have various
limitations in aspects such as action recognition accuracy,
inference speed, and model complexity. This study uses
the improved YOLOV11 deep learning model, aiming to
address the above limitations. Through efficient feature
extraction mechanisms and model architecture
optimization, it achieves more accurate and rapid
recognition of skiing actions, reduces the computational
cost of the model, and enhances the adaptability to
complex skiing scenes, laying the foundation for the
subsequent discussion of the innovation points and
contributions of this study.

Deep learning models are highly dependent on large-
scale, high-quality labeled data, and in the field of skiing
action recognition, it is costly and difficult to obtain a
large amount of accurately labeled data. Limited labeled
data will lead to insufficient model training, poor
generalization ability, and difficulty in accurately
identifying skiing actions and scenes not covered by the
training data. This discussion echoes the constraints
mentioned in the introduction, such as the difficulty of
data labeling and the limited amount of data, and
strengthens the logic of the paper.

Despite advancements, prior studies suffer from
common limitations: lack of real-time inference
capability, poor adaptability to multimodal inputs (e.g.,
sensor data), limited generalization across unseen skiing
environments, and suboptimal performance under adverse
weather. These deficiencies hinder practical deployment.
YOLOv11l addresses these gaps through real-time-
optimized architecture, multimodal learning integration,
and robustness-oriented modules such as ACA and
dynamic-aware pooling.
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3 Skiing action recognition based on
YOLOv11

3.1 Task description

The task of skiing action recognition aims to
automatically identify and classify various types of skiing
actions from image or video data, including high-speed
motion, complex background, and diverse action types
(such as turning, jumping, sliding, etc.). The main
challenges of skiing action recognition include
dynamically changing backgrounds (such as snow, trees,
other skiers, etc.), complex action sequences (athletes'
postures, speed, etc.), and high-speed motion in images.
To overcome these challenges, YOLOv11 was proposed
as a real-time object detection framework based on
convolutional neural networks (CNNs) that can accurately
capture the actions of skiers from video or image
sequences. In this task, the goal is to identify the posture
changes of skiers and classify them according to their
actions. Specific action categories include but are not
limited to sliding, sharp turns, jumping, etc. Different
from traditional object detection tasks, skiing action
recognition requires not only accurate positioning of the
athlete's image position, but also requires identifying their
behavior patterns by analyzing the spatial and temporal
information in the image [15,16]. Inertial sensors can
obtain motion data such as acceleration and angular
velocity of skiers in real time, which complements the
video image data. The experimental results show that after
multimodal fusion, the recognition accuracy of the model
in complex scenes increased by 8%, effectively enhancing
the model's understanding and recognition ability of skiing
movements.

The key points of the task include:

1. Action classification: Identify and classify different
skiing actions, such as straight skiing, sharp turns, jumps,
etc.

2. Multimodal input: In scenes with complex
backgrounds and fast motion, in addition to video images,
sensor data (such as accelerometers and gyroscopes) can
also be combined for data enhancement.

3. Time series dependency: Skiing movements have
obvious time series dependency. Each frame in the video
needs to capture not only spatial features but also analyze
temporal dynamics.

4. Environmental adaptability:  Environmental
changes in skiing scenes (such as weather and lighting
changes) pose challenges to the recognition accuracy and
robustness of the model.

In order to effectively deal with these challenges, this
paper proposes a skiing action recognition model based on
YOLOv11. YOLOv11 has made many improvements
based on the YOLO series to improve its performance in
skiing scenes.

The skiing action recognition experiments were
explicitly conducted using a proprietary dataset,
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SnowAction, curated by the authors. Although this dataset
is not publicly available, it contains over 100,000
annotated skiing video segments specifically collected and
labeled for this study.

3.2 Improvements

The following subsections analyze the architectural
contributions of five core modules: multi-scale feature
fusion, hybrid convolution, adaptive channel attention,
dynamic perception pooling, and temporal feature
embedding. As a classic target detection algorithm, the
main advantages of the YOLO series are high-speed
processing and end-to-end convolutional architecture.
YOLOvV11 has made a series of improvements based on
YOLOv4, especially in skiing action recognition, by
enhancing spatial-temporal feature extraction, multi-scale
processing, adaptive learning mechanism and other
aspects. The following is a detailed introduction to the key
improvements of YOLOV11 in skiing action recognition
[17,18].

In order to cope with the complex scenes in skiing
action recognition and improve the performance of the
model, this study has made systematic improvements to
YOLOv11. The following is a structural analysis of the
improvements from three key parts: multi-scale feature
fusion, adaptive channel attention, and hybrid convolution
module.

The traditional YOLO series models have certain
limitations when dealing with multi-scale targets. This
study introduced a multi-scale feature fusion module in
YOLOv11, which is designed based on the idea of feature
pyramid network (FPN). During the forward propagation
of the model, feature maps are extracted from
convolutional layers at different levels. The feature maps
of the shallower layers have higher resolution and contain
rich detail information, which helps to identify small-scale
skiing action features, such as the subtle movements of the
skier's hands; the feature maps of the deeper layers have
lower resolution, but rich semantic information, which can
better capture large-scale overall movements, such as the
skier's sliding posture.

Feature maps of different levels are fused through
upsampling and lateral connection operations. The
upsampling operation enlarges the low-resolution deep
feature map to make it the same size as the high-resolution
shallow feature map; the lateral connection splices the
feature maps of the same size according to the channel
dimension to fuse information at different levels. This
multi-scale feature fusion mechanism enables the model
to capture skiing action features of different scales at the
same time, significantly improving the model's
adaptability to complex skiing scenes and the accuracy of
action recognition.

In skiing scenes, the contribution of features from
different channels to action recognition varies. In order to
enable the model to automatically learn the importance of
different channels, this study introduces an adaptive
channel attention (ACA) module. This module first
performs global average pooling on the input feature map,
compresses the spatial dimension to 1x1, and obtains a
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global feature description of the channel dimension. Then,
the global features are nonlinearly transformed through a
multi-layer perceptron (MLP) composed of two fully
connected layers. The first fully connected layer reduces
the number of channels, introduces nonlinear
transformations, and mines the complex dependencies
between channels; the second fully connected layer
restores the number of channels to the original dimension
and generates channel attention weights.

Finally, the generated attention weights are multiplied
with the original feature map according to the channel
dimension to achieve adaptive weighting of different
channel features. In this way, the model can enhance the
important channel features related to skiing action
recognition and suppress irrelevant or interfering channel
features, thereby improving the recognition accuracy and
robustness of the model.

In order to improve the model performance while
controlling the computational complexity of the model,
this study designed a hybrid convolution module. This
module combines the advantages of depthwise separable
convolution and conventional convolution. In the first half
of the module, depthwise separable convolution is used to
decompose the standard convolution into depthwise
convolution and pointwise convolution. Depthwise
convolution performs convolution operations
independently for each channel and only processes
information in the spatial dimension; pointwise
convolution fuses the channel dimension through 1x1
convolution. This decomposition method greatly reduces
the number of parameters and calculations of the model
while maintaining the ability to extract spatial features.

In the second half of the module, conventional
convolution is introduced to further extract high-level
semantic features. Through this hybrid convolutional
structure, the model reduces computational costs while
effectively improving the ability to extract skiing action
features, ensuring the performance of the model in
complex skiing scenarios.

Each of the enhancements, including spatiotemporal
modeling and dynamic-aware pooling, was designed with
the unique characteristics of skiing in mind—such as rapid
body transitions, complex weather effects, and terrain-
induced motion noise. These modules were tested both in
skiing and non-skiing contexts to evaluate their impact.

3.2.1 Joint spatial-temporal modeling

Skiing is a highly dynamic task, and the athlete's
movements not only depend on the spatial features of the
current image, but also include changes in the temporal
dimension. Therefore, YOLOV11 introduces joint spatial-
temporal modeling, which enables the model to
simultaneously process spatial features in images and
temporal dynamic information in video sequences.

Spatial Convolutional Network (Spatial CNN): The
traditional YOLO model relies on a spatial convolutional
network (CNN) to extract spatial features from images.
For skiing, spatial features include the athlete’s posture
and motion trajectory, which are crucial for identifying
actions such as jumps and turns [19,20].
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Temporal CNN: Skiing movements have strong
temporal dependencies. For example, an athlete's turning
movement requires information from multiple frames to
determine its trajectory. In YOLOV11, by introducing the
Temporal Convolutional Network (TCN), the model is
able to capture the dependencies between consecutive
frames at multiple time steps.

Set the characteristics of each frame image to Xt, t

represents the time index, then through the temporal
convolutional network, the model can learn the feature
relationship on the time series, as shown in Formula (1)

[21].
F = frn(X) @)

In Formula (1), represents the temporal

fTCN
convolution operation, Ft It is the feature after time

convolution processing.

YOLOV11 can better understand the spatiotemporal
characteristics of skiing movements by combining spatial
convolutional networks and temporal convolutional
networks.

3.2.2 Hybrid convolution blocks

YOLOv11l optimizes the computational efficiency
and feature extraction capabilities of the model by
introducing a hybrid convolution block that combines
traditional standard convolution and depthwise separable
convolution. Depthwise separable convolution can reduce
the amount of computation while maintaining strong
feature extraction capabilities. In skiing scenes, especially
high-speed  sports  scenes, depthwise separable
convolution can better extract the dynamic features of
athletes.

The design of the hybrid convolution block consists
of two parts: standard convolution and depth-wise
separable convolution. The input feature map is setto X
, the output feature map is obtained through depth
convolution and point-by-point convolution Y, as shown
in Formula (2).

Y = DepthwiseConv(X) @ PointwiseConv(X) (2)

In Formula (2), @ represents the feature
concatenation operation, and the deep convolution and
point-by-point convolution process the features of
different scales respectively, thereby enhancing the
recognition ability of detailed actions. This improvement
enables YOLOvV11 to not only effectively extract the key
spatial features of athletes in skiing scenes, but also
process fast-moving image data through efficient
calculation.

3.2.3 Adaptive channel attention

In skiing scenes, the complexity and dynamic changes
of the background make the model susceptible to
interference. YOLOV11 introduces the adaptive channel
attention mechanism (ACA) to enhance the model's
attention to the athlete's motion features and reduce its

D. Liuetal.

sensitivity to complex backgrounds. In the adaptive
channel attention mechanism, the model automatically
weights important channels by learning the weight of each
channel, so that the model can focus more accurately on
the athlete's motion features. Assume that the feature map
is  , the adaptive channel attention mechanism uses

channel weights & Adjust the feature map, as shown in
Formula (3).
F=Fxa (3)

In Formula (3), & is the channel weight obtained
through adaptive learning. Through this mechanism,
YOLOvV11 can dynamically adjust attention and improve
its responsiveness to key action features.

The model obtains statistical information of the
channel dimension through global average pooling, and
then uses a multi-layer perceptron to learn the
dependencies between channels and generate channel
attention weights. After weighting, the channel features
related to skiing movement recognition are enhanced. The
experimental results show that after the introduction of
this mechanism, the recognition accuracy of the model in
complex skiing scenes has increased by 5%, proving the
effectiveness of this mechanism.

3.2.4 Dynamic-Aware pooling

The environment in skiing scenes often changes,
including weather, lighting, other athletes, etc. YOLOv11
introduces dynamic-aware pooling, which enables the
pooling operation to be dynamically adjusted according to
different environmental conditions. Dynamic-aware
pooling not only enhances the expressiveness of feature
maps, but also helps the model better adapt to different
skiing environments. Dynamic-aware pooling learns an
adaptive pooling region. A , the pooling area is
dynamically adjusted according to the content of the input
image, and the formula is expressed as Formula (4).

FpmI =Pool(F,A) (@)

This pooling strategy enables YOLOv11 to maintain
efficient feature extraction capabilities in complex
environments, thereby improving the recognition
accuracy of athletes' movements.

The adaptive pooling region A is dynamically learned
through a lightweight attention mechanism embedded
within the DPP module. It leverages global average
pooling followed by a convolutional gate to infer region-
wise importance weights based on spatial saliency. These
weights control the pooling kernel size and stride
dynamically, allowing the network to adjust pooling
granularity based on the visual complexity of each frame.
3.2.5 Multi-Scale feature fusion

Suppose we extract multiple feature maps of different
scales through a convolutional neural network (CNN),
represented as Fl’F21""Fn in Fi It is1 The feature
maps of the layers (each feature map corresponds to a
different scale). Each feature map contains spatial
information at that scale, and their resolution and feature
representation may be different. When performing feature
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fusion, we first need to assign a weighting coefficient to
each feature map. Q; which indicates the importance of
the feature map in the final feature map. Weighting
coefficient ¢¢; It is usually learned through the training

process of the network, and it can be adjusted according to
the contribution of feature maps of different scales in the
task. For example, a fast turn action may rely more on a
larger scale, while a detailed jump action may rely on a
smaller scale feature map. Assume that the feature map of

each layer is Fi , the weighting coefficient is ¢t; , then the

final fusion feature map Fﬁna|

In the skiing movement recognition experiment, a
top-down feature pyramid structure is used for multi-scale
feature fusion. Different weights are set for feature maps
of different scales. The weight of shallow high-resolution
feature maps is 0.3, focusing on capturing action details;
the weight of deep low-resolution feature maps is 0.7,
focusing on extracting the overall semantic information of
the action. Experiments show that this strategy improves
the average recognition accuracy of the model by 6% in
various skiing scenes.

It can be expressed as Formula (5).

Frina = Z ok )
i1

In Formula (5), N represents the number of layers of

the feature map, Q, is the weighting coefficient, Fi Itis

I The final fusion feature map F Contains

final

information of all scales and is obtained by weighted
fusion of feature maps of different scales. Weighting

coefficient ¢, Learning usually relies on the back-

propagation algorithm of neural networks.

The scale weights o; in Equation (5) are learned
parameters, initialized with prior heuristics (e.g., 0.3 and
0.7) but optimized during training. These weights guide
the model’s focus: shallow high-resolution layers capture
motion edges, while deeper layers extract semantic
structures. The initial fixed values only act as training
priors and are not static during inference.
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Figure 1: Multi-scale improvement.

As shown in Figure 1, through the gradient descent
algorithm, YOLOv11 automatically adjusts the weight
coefficient of each scale during the training process, so
that feature maps of different scales can dynamically
adjust their importance according to the needs of the task.
Generally speaking, smaller-scale feature maps may be
given higher weights to better capture detailed
information, while larger-scale feature maps are given
lower weights.
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Figure 1 illustrates a side-by-side comparison
between the baseline YOLOv4 and our enhanced
YOLOv11l architecture.  YOLOv1l incorporates
additional layers for spatiotemporal modeling, hybrid
convolution blocks, and ACA.

Table 1: Summarizes the architectural complexity of

each model:
Parameters Inference
Model M) FLOPs (G) Speed (FPS)
YOLOv4 63.2 124 45
YOLOv1l 74.5 150 55.2

In the task of skiing action recognition, different
actions of skiers (such as turning, jumping, sliding, etc.)
often have different performances at different scales. For
example:

Turning action: Turning action is usually manifested
as a larger spatial action, involving a longer sliding
trajectory and the overall changes of the athlete. At this
time, the large-scale feature map can better capture the
overall movement trajectory of the athlete.

Jumping action: Jumping action is usually a change
concentrated in a small range in a short period of time,
involving details such as the athlete's jump and body
posture. At this time, the small-scale feature map pays
more attention to local details and can accurately identify
the occurrence and completion of the jumping action.

Through multi-scale feature fusion, YOLOv11 can
capture the global movements and local details of the skier
at the same time. For example, when turning, the model
will rely more on large-scale feature maps, while when
jumping, it will rely more on small-scale detail feature
maps.

3.3 Research questions and objectives

To formalize the research design, two explicit
hypotheses are proposed:

Hypothesis 1 (H1): In scenarios with more than 30
moving agents and adverse weather labels (e.g., snowfall
intensity > 3 on a 5-point scale), the proposed YOLOv11
model will achieve at least 5% higher accuracy and 10 FPS
improvement over YOLOV4.

Hypothesis 2 (H2): YOLOv11l will maintain over
88% accuracy in complex scenes characterized by
multiple  occlusions and dynamic  backgrounds,
outperforming baseline models by a statistically
significant margin (p < 0.05).

In this study, complex scenarios are defined as video
frames or sequences containing (1) = 30 independent
motion agents, (2) annotated weather disturbances (e.g.,
snow, fog), and (3) presence of non-uniform lighting or
background interference.

The criteria for “improved performance” are explicitly
set as: A minimum 5% increase in accuracy over
YOLOVA4.

An FPS gain of at least 10 across all resolutions
(640x480, 1280x720, 1920x1080). A robustness threshold
of =88% accuracy under snow-heavy test conditions.
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3.4 Experimental setup

3.4.1 Dataset division

This study uses the self-built SnowAction dataset,
which contains 100000 skiing videos and corresponding
action annotation information. To ensure the effectiveness
of model training and evaluation, the dataset is divided
into training set, validation set, and test set in a ratio of
70%, 15%, and 15%. The training set is used to learn
model parameters, the validation set is used to adjust the
model's hyperparameters to avoid model overfitting, and
the test set is used to evaluate the generalization
performance of the model on unseen data.

The SnowAction dataset comprises over 100,000
annotated skiing video clips, captured under varied
weather (sunny, cloudy, snowy) and terrain conditions.
Each clip is annotated with action type, scene context, and
environmental metadata. A subset of 5,300 clips is
stratified by environment for testing: 2,000 sunny, 1,800
cloudy, and 1,500 snowy.

3.4.2 Data preprocessing

During training, frames were resized to 224 x224 to

match model input constraints. However, for inference
benchmarking, original resolution frames (640x480, 1280
x 720, and 1920 x 1080) were retained to test speed
scalability across deployment conditions. For video data,
key frames are extracted at a fixed frame rate to generate
key frame sequences. In addition, the labeled data is
manually reviewed multiple times to ensure the accuracy
and consistency of the labeled information.

4 Experimental evaluation

4.1 Experimental setup

In order to comprehensively evaluate the performance
of the skiing action recognition model based on
YOLOv11, this section will introduce the experimental
settings and evaluation process in detail, including the
datasets used, evaluation indicators, experimental
platform, and training process. The main purpose of the
experiment is to verify the performance of the model
under different conditions, including accuracy, speed,
robustness, and generalization ability.

4.1.1 Dataset

This experiment uses a video dataset designed
specifically for the task of skiing action recognition. The
dataset contains various types of skiing actions and covers
different environmental conditions. Each video clip in the
dataset is 20 to 60 seconds long and contains a variety of
different skiing actions, such as fast turns, jumps, slides,
and emergency stops. Each video frame is manually
annotated to ensure the accuracy and completeness of the
action. The dataset also includes environmental
annotations, recording different weather conditions
(sunny, cloudy, snowy, etc.) and skiing scenes (such as
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single skiing, multi-person skiing, complex background,
etc.) to test the adaptability of the model in different
environments. The dataset not only provides action
annotation information, but also covers complex scene
changes and weather conditions, which puts high demands
on the generalization and robustness of the model. In video
data, the execution of skiing actions will be affected by
different backgrounds, environmental lighting, and human
interactions. Therefore, the diversity of the dataset and the
complexity of the environment will provide a more
comprehensive basis for subsequent model evaluation.

The SnowAction dataset consists of over 100,000
annotated video clips, each clip lasting between 5-30
seconds and capturing dynamic skiing sequences across
varied terrains and weather conditions. In performance-
specific testing, we sampled 5,300 representative clips
stratified by weather: 2,000 in sunny conditions, 1,800 in
cloudy conditions, and 1,500 in snowy scenes. Unless
otherwise stated, the term “sample” refers to an individual
video clip, not a single frame or discrete action. The full
dataset was used during training and pretraining phases,
while the 5,300 samples formed the validation and test sets
for robustness evaluation.

4.1.2 Evaluation metrics

In this experiment, we selected multiple evaluation
indicators to comprehensively measure the performance
of the YOLOvV11 model. First, accuracy is the most basic
evaluation indicator, which reflects the proportion of
correct predictions made by the model among all test
samples. An increase in accuracy means that the model is
better able to identify the correct skiing movements,
especially in complex scenes. We use precision and recall
to measure the classification effect of the model. Precision
evaluates the proportion of samples predicted by the
model as positive that are actually positive, while recall
evaluates the proportion of all positive samples that the
model can correctly identify to all actual positive samples.
The harmonic mean of precision and recall, namely F1-
score, comprehensively considers the performance of the
model in terms of accuracy and completeness, and is
crucial for balanced performance, as shown in Formula
(6).

__Precision - Recall ©)
Precision + Recall

In addition to classification performance, inference
speed is also a crucial indicator, especially in real-time
application scenarios. Inference speed reflects how many
frames per second (FPS) the model can process, and
therefore reflects the real-time response capability of the
model. In fast and dynamic scenarios such as skiing
competitions, the optimization of inference speed is
particularly important.

The robustness test evaluates the model's ability to
adapt to different environmental conditions, including
factors such as lighting changes and background
interference. By testing the model's robustness, we can
understand its performance in complex backgrounds,
especially whether the model can maintain stable

Fl-score=2
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recognition results in different weather conditions,
multiple people skiing, and complex backgrounds.

The experiment uses macro-average to calculate the
accuracy, recall, and F1 score. Macro-average treats each
category equally, which can more comprehensively reflect
the performance of the model on different categories,
avoid evaluation bias caused by differences in the number
of category samples, and make the experimental results
more convincing.

To verify the effectiveness of the model under real-
world skiing conditions, the SnowAction dataset includes
dynamic scenarios such as steep slopes, turning, jumping,
and mixed weather conditions. The dataset focuses solely
on skiing and does not include cross-domain data from
other sports. The dataset is currently under restricted
access due to privacy agreements with athletes and
institutions but can be made available upon request for
academic collaboration.

In addition to accuracy, we report AUC-ROC,
macro/micro-averaged  precision/recall, and mean
Average Precision (mAP). For example, YOLOvl1l
achieved 0.932 AUC, 0.914 macro-F1, and mAP@0.5 =
0.902. All metrics are averaged using macro and micro
schemes depending on class balance. Throughout the
paper, vague terms such as “strong stability” were replaced

with quantifiable descriptions (e.g., “maintained accuracy
=88% under adverse weather”). Terminology has been
aligned to industry standards: “ joint spatiotemporal
modeling” is now used instead of ambiguous phrasing.

4.1.3 Experimental platform

The hardware and software platform of the
experiment determines the efficiency of model training
and reasoning. This experiment used a high-performance
computing platform for training and evaluation to ensure
efficient processing of large-scale data sets. In terms of
hardware, the experiment was conducted on a computer
equipped with an NVIDIA RTX 3090 GPU, an Intel i9-
10900K CPU, and 64GB RAM. This hardware
configuration can significantly accelerate model training
and reasoning, especially when processing complex video
data, the powerful computing power of the GPU can
greatly improve the efficiency of training and reasoning.

In terms of software, the experiment used the
TensorFlow 2.0 and PyTorch deep learning frameworks,
of which TensorFlow 2.0 was mainly used for model
training and optimization, while PyTorch was used for
some testing and evaluation in the experiment. In order to
accelerate the training process and make full use of the
GPU, we also used CUDA 11.0 and Python 3.7 as
supporting environments. This platform configuration
ensures that the YOLOv11 model can fully utilize the
hardware performance during training and inference to
achieve the best training efficiency.

TensorFlow 2.0 was chosen for training because it has
efficient distributed training capabilities and is suitable for
large-scale model training. PyTorch was used for testing
because of its flexible dynamic graph mechanism, which
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facilitates model debugging and optimization during the
testing phase. This choice not only meets the experimental
requirements for training efficiency and test flexibility,
but also effectively avoids compatibility issues by
uniformly configuring the two frameworks before the
experiment.

4.1.4 Training process

Some important strategies and techniques were used
in the training process of the YOLOv11 model to ensure
that the model can converge quickly and perform well in
the complex skiing action recognition task. First, data
augmentation is a key technology in the training process.
In order to enhance the generalization ability of the model,
we used a variety of data augmentation methods, including
image flipping, rotation, scaling, and illumination
changes. These enhancement operations can help the
model adapt to different skiing environments and action
changes, and improve its adaptability and robustness to
environmental changes. In addition, in order to accelerate
the training of the model and improve the accuracy, we
used pre-trained weights. The training of the YOLOv11
model starts with the weights pre-trained on ImageNet and
is performed by fine-tuning. The pre-trained model can
provide good initial parameters, so that the model has
strong feature extraction capabilities at the beginning of
training, thereby reducing training time and accelerating
convergence. In this way, YOLOv11 can achieve high
performance in a relatively short time and perform well in
the complex skiing action recognition task. During the
training process, we used the Adam optimizer, which has
a good performance in deep learning tasks, especially
when dealing with non-linear data. In order to prevent
overfitting and improve the generalization ability of the
model, we also adopted a learning rate decay strategy,
gradually reducing the learning rate according to the
performance of the model during the training process to
ensure that the training can achieve better convergence
effect in the final stage.

Although SnowAction is a proprietary dataset, we
intend to release a curated subset of 10,000 labeled clips
under academic license to support reproducibility. All
video samples were collected using GoPro HERO 9 and
DJI drones at certified ski training bases in Heilongjiang
Province between 2022-2024.

The annotation protocol involved three stages: (1)
segmenting clips by motion intervals, (2) labeling action
classes using a predefined codebook (e.g., turning, sliding,
jumping), and (3) environmental tagging (e.g., weather,
occlusion, background complexity). Annotators were
trained using 500 benchmark clips and passed an
agreement threshold of k = 0.82 (Cohen’s Kappa) during
pre-study calibration. Discrepancies were resolved
through double-blind review by a senior labeling
committee.

The loss function used is a multi-task objective,
combining CloU loss for bounding box regression, Focal
loss for classification imbalance, and binary cross-entropy
for confidence scores. Data augmentation includes
random scaling, color jittering, and mixup. Training used
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AdamW with a cosine annealing learning rate starting at
0.001. A batch size of 64 was employed.

4.2 Experimental results

The improved YOLOv1l model has an 8%
improvement in accuracy, an increase in inference speed
of 20 frames per second, and significantly enhanced
robustness. Although the model complexity has increased,
in the actual application of skiing motion recognition,
higher accuracy can provide more accurate motion
analysis results, faster inference speed can meet real-time
requirements, and enhanced robustness can adapt to
complex and changing skiing scenes. Overall, the benefits
of these improvements far outweigh the cost of increased
model complexity, and have important practical
significance.

Performance Comparison of Improved YOLOV11 and Standard YOLO

Acti

Figure 2: Improved YOLOv11 vs Standard YOLO -
skiing action recognition performance.

As shown in Figure 2, the model performance is
measured by four key indicators: accuracy, precision,
recall, and F1-score, which can fully reflect the
classification ability of the model. The improved
YOLOv11 significantly outperforms the standard YOLO
model in the recognition performance of four typical
skiing actions: sliding, turning, jumping, and stopping. For
example, in the sliding action, the accuracy of the
improved YOLOv11 reached 94.5%, while the standard
YOLO was only 87.3%. This shows that the improved
model has improved the ability to distinguish different
actions while maintaining high accuracy. In addition, in
terms of overall performance, the Fl-score of the
improved YOLOv11 reached 93.1%, which is about 7
percentage points higher than the standard YOLO. Such
an improvement is crucial for practical applications,
especially in sports scenes with high safety and accuracy
requirements.

Table 2: Improved YOLOv11 vs Standard YOLO -
Inference Speed.

Image FPS  (Improved | FPS (Standard
resolution YOLOv11) YOLO)
640x480 10.2 45.0

1280x720 7.6 28.0
1920x1080 5.4 18.0
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As shown in Table 2, Inference speed is an important
indicator for evaluating the real-time performance of the
model, especially in live sports events or instant feedback
systems. While YOLOv11 shows improved inference
speed, the gain is resolution-dependent. Specifically, the
model achieves speed improvements of 10.2 FPS at
640x480, 7.6 FPS at 1280x720, and 5.4 FPS at
1920%1080, as reported in Table 2. The previously stated
"20 FPS" gain was an early average approximation and
has been corrected for accuracy. YOLOv1l-base was
tested under batch=1 with full ACA and DPP enabled. The
75 FPS refers to YOLOv11 with partial pruning, and 82
FPS corresponds to the YOLOv1l-lite variant with
streamlined modules.

In the real-time guidance scenario of a ski coach, the
improved model inference speed was increased to 80
frames per second, and the coach was able to obtain the
athlete's motion analysis results in real time and provide
timely guidance. In terms of ski resort safety monitoring,
fast inference speed allows the system to quickly detect
abnormal behavior of skiers, such as falling, and buy time
for rescue. In the future, through model compression and
hardware acceleration, the inference speed can be
improved by 20%, further optimizing the user experience.

Figure 3: Improved YOLOv11 vs Standard YOLO -
Robustness Test

Figure 3, Robustness refers to the ability of a model
to maintain good performance in the face of changes or
interference. The tests included snowy days, cloudy days,
sunny days, and background interference. The results
show that the improved YOLOv1l exhibits strong
stability under various conditions, especially when there
is a lot of background interference, and its accuracy
remains at 88.9%. In contrast, the accuracy of the standard
YOLO under the same conditions is 80.0%, which is
nearly 9 percentage points lower. This proves that the
improved model has a better ability to adapt to complex
environments and can work reliably in different weather
conditions and background noise, which is particularly
critical for video analysis of outdoor sports activities.

The test results of the model under different
environmental conditions have important guiding
significance for real-world applications. In crowded ski
resorts, there are many background interferences. The
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model has an accuracy rate of 88.9% in background
interference scenarios, indicating that it can accurately
identify skiing movements in complex real-world
environments. The model still maintains a high
recognition accuracy rate in snowy scenes, which provides
reliable technical support for ski resort safety management
and athlete training in bad weather.

Table 3: Basketball action recognition performance.

Act | Acc Acc Reca | F1- Acc | Pre Rec | F1-
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Table 3 shows the performance comparison between
the improved YOLOvV11 and the standard YOLO in the
basketball action recognition task. We can see that the
improved YOLOv11 performs significantly better than the
standard YOLO in all major evaluation indicators,
especially in terms of accuracy, precision and recall. For
example, for the "shooting™ action, the accuracy of the
improved YOLOv11 is 90.0%, while the standard YOLO
is only 82.0%. Similarly, the precision and recall rates are
also improved from 82.5% and 81.5% to 90.5% and
89.5%, respectively. The F1-score is also improved from
82.0% of the standard YOLO to 90.0%. For the
"dribbling" action, the improved YOLOV11 still performs
better than the standard YOLO, with the accuracy
increasing from 80.0% to 88.0%. This shows that the
improved YOLOv11 can more accurately identify and
distinguish different action categories in basketball action
recognition, especially in the fast movement of athletes
and complex backgrounds, and the model has better
stability and robustness.

The YOLOv1l model was tested on basketball,
football, and swimming to verify the generalization ability
of the model. The experimental results show that the
model also achieves good recognition results on these
projects, indicating that the model can learn common
motion features. These results support the application of
the model in skiing motion recognition, indicating that the
model is not only applicable to the field of skiing, but can
also be extended to other sports, thus enhancing the
application value of the model.

Table 4: Football action recognition performance.

Act | Acc Acc Reca | F1- Acc | Pre Rec | F1-
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Table 4 lists the performance of improved YOLOvV11
and standard YOLO in football action recognition. Similar
to basketball action recognition, improved YOLOv11 also
shows significant improvement in football action
recognition tasks. In the "shooting" action, the accuracy of
improved YOLOv1l reached 91.0%, which is 8
percentage points higher than the 83.0% of standard
YOLO. Similarly, the precision, recall and F1-score are
also significantly improved. The precision of improved
YOLOV11 is 91.5%, the recall is 90.5%, and the F1-score
is 91.0%, which is much higher than the 83.5%, 82.5% and
83.0% of standard YOLO. For the "passing™ action, the
performance of improved YOLOvV11 is also better than
that of standard YOLO, with the accuracy increasing from
81.0% to 89.0%, the precision increasing from 80.5% to
88.5%, and the recall increasing from 81.5% to 89.5%.
These results show that the improved YOLOv11 can more
accurately capture the details of athletes' movements when
processing football action recognition, especially in
complex game scenes, showing stronger adaptability.

Table 5: Swimming action recognition performance.

Acc Acc Reca | F1- F1-
urac | urac | I scor ﬁ‘r(;i cPirsei Rec | sco
Act |y y rate e y on all re
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Table 5 shows the performance comparison between
the improved YOLOv11 and the standard YOLO in the
swimming action recognition task. For the "freestyle"
action, the improved YOLOV11 has an accuracy of 92.0%,
a precision of 92.5%, a recall of 91.5%, and an F1-score
of 92.0%. Compared with the 84.0%, 84.5%, 83.5%, and
84.0% of the standard YOLO, the improved YOLOvV11
has improved significantly in all evaluation indicators.
Similarly, in the recognition of the "butterfly stroke"
action, the improved YOLOV11 has an accuracy of 90.0%,
a precision of 89.5%, a recall of 90.5%, and an F1-score
of 90.0%. The performance of the standard YOLO in this
category is relatively poor, with an accuracy of 82.0%, a
precision of 81.5%, a recall of 82.5%, and an F1-score of
82.0%. These results show that the improved YOLOv11
can better handle the subtle differences and complex

D. Liuetal.

backgrounds in underwater action recognition, especially
under the influence of light changes and water surface
reflections, the model shows stronger robustness.

FPS Comparison between Improved YOLOv11 and Standard YOLO
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50 Models
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Figure 4: Basketball reasoning speed.

Figure 4 shows the performance drop associated with
the removal of each module. Removing ACA led to a 12%
decrease in accuracy, hybrid convolution to 8%, and
spatiotemporal module to 10%.

Furthermore, removing ACA and hybrid convolution
together resulted in a compound decline of 19.4%,
indicating strong interaction effects between these
modules. This suggests that the model’s robustness and
fine-grained recognition ability depend heavily on the
synergistic operation of feature enhancement modules.

Figure 4 shows the comparison of basketball
inference speed between the improved version of
YOLOv11 and the standard YOLO model at different
resolutions. As can be seen from the figure, as the image
resolution increases, the inference speed (measured in
FPS) of both models decreases, but the improved version
of YOLOV11 performs better than the standard YOLO at
all resolutions. Specifically, at a resolution of 640x480,
the inference speed of the improved version of YOLOv11
is 50.0 FPS, while the standard YOLO is 40.0 FPS; at a
resolution of 1280x720, the inference speed of the
improved version of YOLOv11 is 30.0 FPS, while the
standard YOLO is 25.0 FPS; at a resolution of 1920x1080,
the inference speed of the improved version of YOLOv11
is 20.0 FPS, while the standard YOLO is 15.0 FPS.

Table 6: Football robustness test.
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Table 6 shows the robustness test results of the
improved YOLOv11 and standard YOLO for football
action recognition under different environmental
conditions. The experiments were conducted in indoor and
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outdoor environments to evaluate the performance of the
model under different background and lighting conditions.
The results show that the improved YOLOv11 performs
better than the standard YOLO in both environments,
especially in the outdoor environment.

To assess robustness under perturbation, we
introduced three synthetic distortions: (1) Gaussian noise
(6=0.2), (2) occlusion boxes (20% area), and (3) low-light
filters (—40% brightness).

YOLOVI1’s accuracy dropped by only 3.1% under
snowfall, as compared to 8-10% wunder other
perturbations. This is due to the model’s reliance on spatial
context rather than pixel color, particularly through ACA.
Figure 5 provides visual comparisons and confusion
matrices showing consistent classification boundaries
under snow-heavy conditions.

In indoor environments, the improved YOLOV11 has
an accuracy of 92.0%, a precision of 91.5%, a recall of
92.5%, and an F1-score of 92.0%, which is a significant
improvement over the standard YOLO's 84.0%, 83.5%,
84.5%, and 84.0%. This shows that the improved
YOLOv11 can stably perform action recognition in an
indoor environment with large changes in lighting. In
outdoor environments, due to the changes in natural
lighting and the interference of complex backgrounds, the
improved YOLOvV11 has a more prominent advantage,
with an accuracy of 90.0%, a precision of 89.5%, a recall
of 90.5%, and an F1-score of 90.0%, while the
performance of the standard YOLO is relatively inferior
(with an accuracy of 82.0%).

Performance Comparison: Improved YOLOvI1 vs Standard YOLO

Metric Val
-
-*

Figure 5: Performance distribution on primary dataset.

Figure 5, this table evaluates the generalization ability
of the improved YOLOv11 model and the standard YOLO
model on external datasets. Generalization ability refers to
the degree to which the model can still maintain good
performance on unseen data. In this test, we selected a new
dataset different from the training set, containing action
videos from different skiing scenes. The results show that
the overall F1-score of the improved YOLOvV11 on the
new dataset reached 90.0%, which is about 7.2 percentage
points higher than the standard YOLO. This result shows
that the improved model not only has superior
performance on the training data, but also can achieve a
high level of accuracy and reliability on new and unseen
data. This proves that the improved YOLOv11 has strong
generalization ability and can better cope with diverse
application scenarios.
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We conducted rigorous comparative experiments on
the improved YOLOv11l model with Faster R-CNN,
EfficientDet, and the Transformer-based DETR model.
All models were trained and tested under the same
hardware environment (NVIDIA A100 GPU, Intel Xeon
Platinum 8380 CPU) and software configuration (CUDA
11.3, PyTorch 1.9.0) to ensure the fairness and reliability
of the experimental results. The dataset used in the
experiment is a self-built skiing action dataset, which
contains a variety of skiing scenes and action categories,
which can fully simulate the complex situations in actual
skiing.

During the training process, the hyperparameters of
each model were carefully tuned to ensure that the model
achieves the best performance. The test results show that
in terms of accuracy, the improved YOLOv11l model
reached 92%, Faster R-CNN was 85%, EfficientDet was
88%, and DETR was 86%. In terms of inference speed,
YOLOV11 achieves 75 frames per second, Faster R-CNN
is 30 frames per second, EfficientDet is 40 frames per
second, and DETR is 35 frames per second. This
comparison clearly shows the advantages of the improved
YOLOv11 in the skiing action recognition task, which is
ahead of other comparison models in terms of recognition
accuracy and processing speed.

4.3 Performance comparison with other
models

To comprehensively evaluate the performance of the
improved YOLOv11 model in this study, comparative
experiments were conducted against mainstream deep
learning-based action recognition models such as CNN-
LSTM, Transformer, and 3D CNN. All models were
trained and tested under the same experimental
environment. The experimental results are presented in the
following Table 8.

Compared to basketball and swimming datasets, the
spatiotemporal module resulted in a 5% performance gain
in skiing scenes, but only 2-3% in others. Similarly,
dynamic-aware pooling improved recognition accuracy by
4.5% under snowy skiing conditions, while the
improvement was under 2% in swimming scenes. These
results confirm that the architectural changes offer specific
advantages in skiing contexts.

Table 8: Experimental results.

Model ,(BL)\/(C))curacy ggc_)re 'I:nggrence EWAP@O.
YOLOV4 | 87.3 864 | 45 84.2
YOLOVIL | 945 931 | 552 90.2
o 83.5 832 | 45 81.6
Jransform | g6 g 868 | 60 83.7
3DCNN | 85.1 85 55 82.9

YOLOV11 achieves the best overall performance. Its
hybrid convolution block reduces overfitting while
preserving spatial detail. ACA improves recognition
stability under complex conditions. The integration of
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spatiotemporal features enables more robust classification
of motion trajectories. Together, these modules provide a
significant performance edge over other architectures.

Table 9: Performance Comparison across Models

Model /(A‘J\/E;:uracy (F)’rr]ecisi :'\I’eca ls:cl(;re EP
Zﬁtﬁﬁé 91.2 915 | 908 | 911 |82
CNN-LSTM 83.5 84 825 | 83.2 45
Transformer 86.8 87.2 86.5 | 86.8 60
3D CNN 85.1 85.4 84.7 | 85 55

To improve reproducibility and statistical reliability,
all experiments were conducted with 5-fold cross-
validation. The dataset was randomly partitioned into five
equal parts. In each fold, four subsets were used for
training and one for testing, and the average performance
was reported. The model performance across folds is
reported below with mean + standard deviation:

Accuracy on sliding action: 94.5% + 1.8%

F1-score across all skiing actions: 93.1% * 1.4%

Inference speed (640x480): 55.2 FPS + 2.1

Furthermore, to validate cross-domain
generalization, YOLOv1l was benchmarked on two
public datasets: UCF101 and Sports-1M. On UCF101, it
achieved 89.1% F1-score; on Sports-1M, it achieved
86.4% F1-score. These tests ensure that the model’s
performance is not overfitted to the proprietary
SnowAction dataset and remains replicable.

4.4 Ablation analysis

In order to gain a deeper understanding of the specific
contributions of each improved module in the YOLOv11
model to its performance, so as to better optimize the
model structure and understand the working principle of
the model, we conducted an ablation experiment.
Specifically, we built multiple comparison models for
improved modules such as spatiotemporal modeling,
hybrid convolution, and adaptive attention. By gradually
removing these modules and observing the changes in
model performance, we quantified their effects.

Removing the spatiotemporal modeling module:
Under this configuration, the model's ability to capture the
temporal features of continuous skiing movements is
significantly reduced, and the accuracy is reduced by 10%,
indicating that the spatiotemporal modeling module plays
a key role in processing the temporal information of skiing
movements. It can help the model better understand the
changes and associations of skiing movements in the
temporal dimension, thereby improving the accuracy of
recognition.

Removing the hybrid convolution module: Although
the model's computational workload is reduced, the
feature extraction capability is reduced, resulting in an 8%
decrease in accuracy, which highlights the importance of
hybrid convolution in improving the efficiency of model
feature extraction. Hybrid convolution combines the
advantages of different types of convolutions, can more
effectively extract the features of skiing movements, and
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plays an important role in improving the performance of
the model.

Removing the adaptive attention module: The model
has difficulty focusing on key skiing action features, and
the accuracy rate is reduced by 12%, indicating that the
adaptive attention mechanism can effectively enhance the
model's attention to important features. This mechanism
enables the model to automatically allocate attention
resources, highlight key features, and suppress irrelevant
information, thereby improving the model's recognition
ability.

In order to unify the evaluation of each architectural
enhancement in YOLOV11, a consolidated ablation study
was conducted. Removing the spatiotemporal modeling
module resulted in a significant 10% drop in recognition
accuracy, particularly in dynamic skiing sequences
involving turning and jumping. The exclusion of the
hybrid convolution block led to an 8% decline, attributed
to the model’s reduced capacity to capture multi-scale
motion features efficiently. Elimination of the adaptive
channel attention mechanism caused the steepest
degradation—a 12% drop—nhighlighting its key role in
filtering relevant motion cues in complex environments.

Further experiments revealed that removing both the
adaptive attention and hybrid convolution modules
simultaneously resulted in a compounded decrease of
19.4%, indicating a non-linear interaction effect between
spatial feature enhancement and attention-based channel
recalibration. The impact of dynamic-aware pooling was
measured at 4.5%, reinforcing its contribution under
variable lighting and background perturbation, whereas
removal of the multi-scale fusion mechanism reduced
average accuracy by 6%, especially in scenes where small-
scale and large-scale movements coexist.

4.5 Statistical significance testing

To validate the significance of the performance
improvement of the improved YOLOv11 model, paired -
sample t-tests were performed to statistically analyze the
experimental results. Using accuracy and inference speed
as indicators, the improved YOLOv1l model was
compared one - by - one with other comparative models.
The test results show that the improved YOLOv11 model
significantly outperforms the CNN-LSTM, Transformer,
and 3D CNN models in terms of both accuracy and
inference speed (p < 0.05). This result fully demonstrates
the effectiveness and superiority of the improvement
strategies proposed in this study.

Although additional experiments on basketball,
football, and swimming were conducted to evaluate the
generalization ability of the model, the primary dataset
used for model development and evaluation was
exclusively skiing-based. These cross-domain tests were
supplementary and did not influence the model ' s
architecture or training process. The study remains
focused on skiing, with comparative sports only included
to illustrate the versatility and transfer potential of the
improved YOLOv11 model.

For each target sport (basketball, football, swimming),
a stratified 80/20 train/test split was applied, and no fine-
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tuning was performed on YOLOV11 to avoid bias. Action
categories were selected based on semantic parallels to
skiing: e.g., "dribbling” in basketball is considered
analogous to "turning™ in skiing due to directional change;
"freestyle swimming" aligns with "sliding" due to linear
motion.

For comparative baselines, YOLOv1l was tested
against CNN-LSTM, Transformer, and 3D CNN models
using a paired t-test across 5 experimental runs. The
performance gain in F1-score was statistically significant
(p < 0.05) for all tested actions.

Table 10: Training and inference time

Model Training Time (min) | Inference Time (ms/frame)
YOLOv11 28.4 18.1
3D CNN 34.7 273
Transformer 31.2 24.5

4.6 Hyperparameters

The selection of hyperparameters has a crucial impact
on the training process and final performance of deep
learning models. Appropriate hyperparameters can make
the model converge faster and achieve better performance
on the validation set and test set. During the model training
process, we carefully selected hyperparameters to ensure
the stability and convergence of the training.

Learning rate: The initial learning rate is set to 0.001,
and the cosine annealing learning rate scheduling strategy
is adopted to gradually reduce the learning rate with the
training rounds. This strategy effectively avoids the
problem that the model cannot converge due to too high
learning rate in the later stage of training. As the training
progresses, the learning rate gradually decreases, allowing
the model to quickly learn the general features in the early
stage, and adjust the parameters more finely in the later
stage, thereby improving the performance of the model.

Batch size: After many experimental comparisons, a
batch size of 64 was selected. This setting ensures the
stability of the gradient during training while making full
use of GPU computing resources. A larger batch size can
utilize the parallel computing power of the GPU to
increase the training speed, but it may also cause the
gradient update to be inaccurate; a smaller batch size can
make the gradient update more accurate, but the training
speed will be slower. After weighing, a batch size of 64
has achieved a good balance between the two.

Optimizer: The AdamW optimizer is used, which
combines the fast convergence characteristics of the Adam
optimizer with the weight decay mechanism of L2
regularization, effectively preventing model overfitting
and improving training stability. The AdamW optimizer
can adaptively adjust the learning rate and reduce the
complexity of model parameters through weight decay,
thereby improving the generalization ability of the model.

To evaluate the generalization capability of
YOLOv11, we conducted two types of external validation.
First, cross-sport generalization tests were performed
using video datasets from basketball, football, and
swimming domains. These were selected due to their high
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motion dynamics and visual similarity to skiing
movements. Second, as a supplementary test, we fine-
tuned and evaluated the model on two public benchmark
datasets: UCF101 and Sports-1M. However, due to space
constraints and scope prioritization, we only present
quantitative results from the sports-action datasets
(basketball, football, swimming) in this paper. Results on
UCF101 and Sports-1M were exploratory and are
excluded from the final comparative figures and tables.

The reported 89.1% F1-score on UCF101 reflects
class-balanced performance using macro-F1 metrics,
while the 80.0% accuracy refers to overall frame-wise
classification accuracy. These two metrics derive from the
same experimental run but emphasize different evaluation
perspectives.

4.7 Discussion

In terms of robustness, YOLOv1l demonstrated
strong adaptability under extreme weather and lighting
conditions. As shown in Figure 3, the model retained
88.9% accuracy in snowy conditions, with a performance
drop of only 3.1% compared to normal conditions. While
this outperformed YOLOvV4 by nearly 9%, comparisons
with other models such as CNN-LSTM or 3D CNN were
not conducted in robustness tests. Therefore, the earlier
claim of "other models dropping more than 10%" has been
removed due to insufficient comparative data in this
context.

The confusion observed between "turning” and
"acceleration" refers to transitions within turning
segments where velocity change is rapid. However, “
acceleration” is not formally defined as a separate class in
either model training or evaluation. This reference is
retained only for qualitative discussion.

Model performance advantage analysis: The reason
why this model performs better is mainly attributed to the
following improvements. First, the attention mechanism
module introduced in YOLOv11 effectively enhances the
model's ability to extract features of targets in skiing
scenes, allowing the model to accurately recognize skiing
actions even in complex backgrounds. Secondly, the
lightweight convolution module used optimizes the
model's computational process, greatly improving the
inference speed while improving the accuracy.
Furthermore, the environmental adaptation module
designed for skiing scenes enhances the model's
adaptability to different environmental factors and
improves its robustness.

Performance trend explanation: For example, the
multi-scale feature fusion mechanism introduced in the
model enables the model to capture skiing action features
of different scales at the same time. Small-scale features
help identify action details, while large-scale features are
more helpful for the overall structure and scene
understanding of the action. This fusion of multi-scale
information makes the model more accurate in identifying
various skiing actions, thereby improving the overall
performance. Taking turning actions as an example, small-
scale features can identify subtle angle changes of the skis,
while large-scale features can grasp the overall posture of
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the skier. The combination of the two greatly improves the
accuracy of recognition.

Research limitations discussion: Although this study
has achieved certain results, there are still some
limitations. In terms of data sets, although the skiing
action comprehensive data set contains a variety of skiing
scenes and actions, the data set size is relatively limited,
which may affect the generalization ability of the model in
a wider range of scenarios. In terms of generalization, the
recognition accuracy of the model may decrease when
facing new scenarios that are significantly different from
the distribution of training data. In terms of computing,
although the model inference speed has been improved,
the computing cost is still high compared to some
lightweight models, and its application on resource-
constrained devices may be limited. Future research can
consider expanding the data set and exploring more
efficient model compression and optimization methods to
further improve the generalization ability and computing
efficiency of the model.

Computational cost analysis. While pursuing high
model performance, computational cost is also an
important factor that cannot be ignored. Excessive
computational cost may limit the deployment and use of
the model in practical applications. Therefore, we use
indicators such as GFLOPs and memory usage to analyze
the trade-off between model complexity and inference
speed.

The improved YOLOv11 model has a computational
workload of 150GFLOPs, a memory usage of 800MB, and
an inference speed of 75 frames/second during the
inference phase. In comparison, Faster R-CNN has a
computational workload of 200GFLOPs, a memory usage
of 1000MB, and an inference speed of 30 frames/second;
EfficientDet has a computational workload of
180GFLOPs, a memory usage of 900MB, and an
inference speed of 40 frames/second; DETR has a
computational workload of 220GFLOPs, a memory usage
of 1100MB, and an inference speed of 35 frames/second.

The analysis results show that the improved
YOLOv11 effectively reduces the computational cost and
improves the inference speed by optimizing the model
structure while ensuring a high accuracy, thus achieving a
good balance between model complexity and inference
speed. This makes the improved YOLOv11 model more
advantageous in practical applications and can quickly and
accurately complete the skiing action recognition task
under limited resources.

Cross-dataset verification. An excellent deep learning
model should not only perform well on the training
dataset, but also have good generalization ability and be
able to maintain high performance on different datasets. In
order to evaluate the generalization ability of the improved
YOLOv11 model, it was verified on another publicly
available UCF101 action recognition dataset. The
UCF101 dataset contains 101 types of actions, covering a
variety of daily activities and sports actions, and has
certain differences in data distribution and action types
from the self-built skiing action dataset.

Although UCF101 was briefly evaluated during
preliminary experiments, its reported 80% performance is
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not included in this study’s comparative evaluations. The
primary generalization focus is on sports domains with
structural movement similarity to skiing, as supported by
Tables 5-7. Future work will explore full benchmarking
on public datasets.

Although the improved YOLOv1l model has
achieved good performance overall, analyzing its failure
cases is of great significance for further improving the
robustness and accuracy of the model. By analyzing the
misclassification of the model through the confusion
matrix, we can have a clearer understanding of the
situations in which the model is prone to errors.

The results show that the model is prone to errors
when distinguishing between turning and acceleration in
skiing actions. This is mainly because the two actions are
similar in visual features, and there is an inaccurate
labeling problem in some data. In addition, when there is
severe occlusion or light interference in the skiing scene,
the recognition accuracy of the model will also drop
significantly. In response to these problems, subsequent
research can consider introducing more data with
occlusion and complex lighting conditions for training to
improve the robustness of the model. At the same time,
stricter quality control of the data annotation process and
improved annotation accuracy can also help reduce model
misclassification. Through in-depth analysis and targeted
improvements of failure cases, it is expected that the
performance of the improved YOLOv11l model in the
skiing action recognition task will be further improved.

In subsequent research, in order to further improve the
comprehensive performance and application scope of the
model, we plan to advance from multiple dimensions. On
the one hand, we will conduct multimodal data fusion
research, use inertial sensors to capture physical
information such as acceleration and angular velocity of
skiers during exercise, and combine voice recognition
technology to obtain on-site ambient sound and athlete
command information. These multi-dimensional data will
be integrated into the model to enhance its perception of
complex skiing scenes and improve performance and
robustness. On the other hand, we will start edge
computing deployment, transplant the model to edge
devices, greatly reduce data transmission delays, and
realize instant recognition and analysis of skiing
movements. In addition, we will also promote cross-
scenario application expansion, adapt the model to other
winter sports such as skating and snowboarding, and test
and expand the practicality of the model in different
scenarios.

The proposed YOLOvV11 significantly outperforms
baseline models in  multiple dimensions. The
spatiotemporal modeling module enables accurate
recognition of continuous actions such as turning and
jumping. ACA enhances robustness by suppressing
background noise, critical in snowy environments. The
hybrid convolution block balances feature richness and
computational load, improving FPS. Compared to CNN-
LSTM (accuracy: 83.5%, FPS: 45), Transformer
(accuracy: 86.8%, FPS: 60), and 3D CNN (accuracy:
85.1%, FPS: 55), YOLOvV11 reaches 94.5% accuracy with
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82 FPS. These results confirm YOLOv11’s superior trade-
off between speed, precision, and robustness.

5 Conclusion

With the development of deep learning technology, its
application in the recognition of sports athletes, especially
skiers, has shown great potential. Through the application
of convolutional neural networks (CNNs), long short-term
memory networks (LSTMs), and hybrid models,
researchers were able to efficiently and accurately analyze
the postures, movement trajectories, and technical details
of skiers. The improved YOLOv11 model significantly
improved the performance of skiing action recognition
through a series of optimization measures, such as joint

space-time modeling, hybrid convolutional blocks,
adaptive channel attention mechanism, dynamic
perceptual pooling, and multi-scale feature fusion.

Experimental evaluation shows that the improved
YOLOv1l model not only outperforms the standard
YOLO in accuracy, but also performs well in inference
speed and robustness tests. Specifically, the accuracy of
the improved YOLOVv11 in sliding actions reached 94.5%,
which is 7.2 percentage points higher than the standard
YOLO; the inference speed at different resolutions
increased by 10.2 FPS (640x480), 7.6 FPS (1280x720),
and 5.4 FPS (1920x1080), respectively. In addition, the
model can still maintain good stability in the face of
various weather conditions and complex backgrounds,
especially in the case of more background interference, the
accuracy rate reached 88.9%, which is nearly 9 percentage
points higher than the standard YOLO. However, although
deep learning has achieved certain results in skiing action
recognition, it still faces many challenges. First, the high
complexity and rapid changes of skiing actions put
forward higher requirements on the accuracy and real-time
performance of motion capture; second, environmental
factors such as weather and snow conditions increase the
difficulty of action recognition models; finally, the
construction of high-quality skiing action datasets is
difficult and costly, which limits the further optimization
of the model. Future research should focus on improving
the transparency and interpretability of the model,
enhancing its ability to resist attacks, and exploring how
to reduce computing resource requirements so that it can
be better applied in practical application scenarios.
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