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This project proposes a three-layer monitoring system based on the Internet of Things to solve the 

problems of data acquisition lag and low efficiency of multi-source information fusion in traditional oil-

immersed transformer monitoring schemes. The perception layer uses Pt100 (±0.1℃) temperature-

sensitive (accuracy ±0.1℃), electrochemical gas (ppm level) and piezoelectric acceleration sensors to 

achieve synchronous acquisition of 12 parameters such as oil temperature, seven characteristic gas 

concentrations, vibration acceleration, etc., up to 100 Hz. The edge layer uses a sliding average filtering 

and wavelet transform to filter the data, achieving a 35 dB noise reduction effect and compressing the 

feature extraction time by 50 milliseconds. Then, an improved spatiotemporal attention mechanism 

algorithm (STA-I) is introduced to dynamically adjust the weight using the time-trend factor, combined 

with the adaptive fusion strategy of spatial multimodal data. The STA-I algorithm introduces a time-trend 

factor to dynamically adjust weights, enhancing the capturing of temporal trends in data. Specifically, it 

assigns 2.3 times the weight to mutation data compared to normal data, improving fault prediction 

accuracy. Experimental datasets include 1 million data points collected from 10 oil-immersed 

transformers over three years. Results show that the average absolute error of system data collection is 

0.32℃ for oil temperature and 3.2% for hydrogen concentration, surpassing [specific IEC or IEEE 

standard name] industrial standards. The average packet loss rate in a mixed network environment (which 

refers to a situation where multiple network types such as 4G, Wi-Fi, and Ethernet are involved 

simultaneously or in different scenarios during the data transmission process related to oil-immersed 

transformer monitoring, and the average packet loss rate is calculated based on the packet loss data 

collected from each of these network types under specific test conditions and then taking an average 

weighted by the proportion of data transmitted through each network type) is 0.8%, and the system 

response time is 0.83 seconds. Compared with LSTM, the STA-I algorithm achieves a prediction accuracy 

of 96.8%, which is 12.3% higher than LSTM. For local overheating faults, the recognition accuracy 

reaches 98.5%, and the reasoning time is shortened by 40%. 

Povzetek: Članek predstavi IoT-sistem za sprotno spremljanje oljnih transformatorjev s tridelnim 

arhitekturnim okvirom in izboljšanim časovno-prostorskim pozornostnim mehanizmom STA-I. Sistem 

zmanjšuje šum, izboljša fuzijo senzorjev in doseže dobre napovedi ter prepoznavo lokalnih pregrevanj. 

 

1 Introduction 
With the continuous development of smart grids, as 

the core hub of power transmission and distribution, the 

operating reliability of oil-immersed transformers 

directly affects the power supply quality of the power 

grid. Traditional monitoring methods rely on manual 

inspections and regular offline detection, which have 

problems such as low data collection frequency and 

difficulty in information fusion, and are difficult to meet 

the needs of real-time perception of the status of modern 

power grid equipment and early warning of faults. The 

Internet of Things provides intelligent solutions for 

transformer condition monitoring with technologies such  

 

as sensor networks, edge computing, and cloud  

computing, which can effectively improve the operating 

efficiency of equipment and the stable operation of power 

grids. 

In recent years, much research has been conducted on 

transformer condition monitoring both domestically and 

internationally [1]. Abroad, the intelligent transformer 

health management system developed by the Electric 

Power Research Institute of the United States uses 

distributed fiber optic sensing technology and wireless 

communication technology to monitor winding 

temperature and partial discharge with high precision [2]. 

The Power Transformer Analytics platform, based on 

Siemens in Germany, is combined with deep learning 
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algorithms to significantly improve the detection 

accuracy of dissolved gas in oil. In China, Tsinghua 

University proposed a transformer vibration monitoring 

method based on voiceprint recognition, effectively 

identifying the characteristics of mechanical faults; the 

"smart substation" developed by the State Grid 

Corporation of China achieved a breakthrough in sensor 

integration and data transmission [3]. However, in 

complex electromagnetic environments, the problems of 

poor data transmission stability and low efficiency of 

multimodal data feature extraction remain urgent. 

This project focuses on the oil-immersed 

transformer condition monitoring system based on 

Internet of Things technology, aiming to achieve 

breakthroughs in key technologies such as data 

acquisition, transmission, and analysis [4]. At the 

architecture level, through the three-layer structure 

design of perception layer-edge layer-cloud platform, the 

perception layer deploys high-precision temperature, 

vibration, and gas concentration sensors to achieve 

synchronous acquisition of multiple physical quantities. 

The edge layer mainly completes data preprocessing and 

feature extraction, reducing the transmission pressure of 

the network. By introducing the improved 

spatiotemporal attention mechanism algorithm (STA-I), 

the cloud platform realizes intelligent diagnosis and trend 

prediction of equipment status. The STA-I algorithm 

innovatively integrates a time-trend factor to 

dynamically adjust weights. This time-trend factor is 

derived from the rate of change of data at the current and 

previous moments, calculated using the mean and 

standard deviation of the rate of change, and processed 

through a Sigmoid function to adaptively assign larger 

weights to moments with significant data changes. The 

Sigmoid function is chosen for its ability to effectively 

map the rate of change to a probability value between 0 

and 1, providing a smooth and differentiable activation 

function that helps in capturing temporal trends. This 

project proposes a dynamic weight allocation method 

based on multimodal data fusion, combining a spatial 

dimension data fusion strategy to effectively solve the 

shortcomings of traditional methods in complex fault 

identification. 

2 Design of oil-immersed 

transformer condition monitoring 

system 
2.1 System overall architecture design 

2.1.1 Design principles 

The system's design follows four core principles: 

reliability, real-time, scalability, and economy. 

Regarding reliability, the data acquisition and 

transmission process is guaranteed stable and reliable 

through redundant design and a fault self-diagnosis 

mechanism. Key functions can be maintained during 

partial hardware or network failure [6]. In terms of real-

time, through optimizing data processing and 

transmission processes, data acquisition and status 

feedback can be completed quickly to meet the 

demanding requirements for real-time monitoring of 

transformer operation status. Scalability is manifested in 

the modular design concept, which makes each functional 

module in the system independent of the others to 

facilitate the subsequent addition of new monitoring 

parameters or algorithm modules according to actual 

needs. The economic principle runs through the entire 

system design process [7]. Through the reasonable 

selection of hardware equipment and the optimization of 

software structure, while ensuring the system 

performance, the R&D and long-term maintenance costs 

are effectively controlled. 

2.1.2 Functional requirements analysis 

The system mainly includes functions such as data 

acquisition, transmission, storage, analysis and early 

warning. In terms of data acquisition, various sensors are 

configured for the key working parameters of the 

transformer to accurately collect oil temperature, gas 

concentration in oil and vibration signals [8]. The 

collected data is transmitted to the server through a stable 

network communication link. On the server side, a 

complete historical data resource library is established 

through an efficient database management system; the 

data analysis module uses advanced algorithms to mine 

the collected data and identify potential fault 

characteristics deeply; when the monitoring data exceeds 

the preset threshold, the system will respond quickly and 

warn of abnormal situations in various ways, so that 

operation and maintenance personnel can make decisions 

in a timely and effective manner. 

2.1.3 Layered architecture design 

The system adopts a three-layer structure, consisting 

of a perception layer, a network layer, and an application 

layer. Each layer has its own division of labor and 

cooperates. The perception layer is the "nerve endings" of 

the entire system [9]. It is equipped with various high-

precision sensors, which are responsible for real-time 

collection and processing of various physical quantities 

during the operation of the transformer, and converting 

them into electrical and digital signals. The network layer 

builds a data transmission "highway", selects a stable and 

reliable communication protocol, and adopts a 

transmission mode that combines wireless and wired to 

achieve efficient and stable data transmission from the 

perception layer to the application layer. At the same time, 

the network layer encrypts and securely protects the data 

to ensure the security and integrity of the data during 

transmission [10]. The application layer is the "brain", 

which realizes functions such as data processing, visual 

display, and human-computer interaction; using advanced 

data processing algorithms, the received data is analyzed 

and processed, and the operating status of the transformer 

is displayed to the user in the form of graphics, curves, 

etc., supporting users to query data, set thresholds, 

generate reports, etc., to achieve the purpose of intelligent 
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management of the transformer status. 

 

2.2 System hardware design 

2.2.1 Sensor module design 

When selecting sensors, the monitoring 

requirements of the transformer and the characteristics of 

the working environment should be fully considered. 

This project proposes a high-precision Pt100 temperature 

sensor based on the linear change of platinum resistance 

with temperature. The measurement accuracy of this 

sensor is ±0.1℃ within the range of -200ºC to 850ºC, 

making it suitable for the complex working temperature 

environment of the transformer and providing accurate 

data for oil temperature analysis [11]. This project 

intends to use electrochemical sensors as the core, 

targeting fault characteristic gases such as hydrogen, 

acetylene, and carbon monoxide. The electrochemical 

sensor is used to detect real-time changes in gas 

concentration in oil products with ppm-level accuracy, 

thereby providing an important basis for early fault 

diagnosis of oil products. This project also plans to use 

piezoelectric acceleration sensors, which convert 

mechanical vibration into electrical signals using the 

piezoelectric effect. With a wide frequency response 

range and high sensitivity, these sensors can effectively 

capture abnormal vibration signals caused by 

transformer mechanical failures, providing data support 

for equipment status assessment. 

2.2.2 Data acquisition and processing module 

The STM32 series high-performance 

microcontroller is used as the data acquisition and 

processing module. This series of chips is based on the 

ARM Cortex-M core and has rich peripheral device 

resources, such as ADC, SPI, I2C, etc., which can be 

easily connected to various sensors [12]. Equipped with 

a high-precision analog-to-digital conversion circuit, it 

can quickly and accurately convert the sensor's analog 

output into a digital quantity, with a conversion accuracy 

of 16 bits. Then, a targeted data preprocessing method is 

designed, including a denoising algorithm based on a 

sliding average filter, effectively eliminating random 

noise in the collected data. Finally, a signal feature 

extraction method based on wavelet analysis is proposed 

to enhance the effective characteristics of the signal and 

lay the foundation for subsequent data processing. 

 

 

 

 

 

 

 

 

 

 

 

 

2.3 System software design 

2.3.1 Perception layer data acquisition program 

design 

The perception layer data acquisition program uses a 

modular design concept in an embedded development 

environment. Each sensor has its own independent driver, 

completing the initialization, parameter setting and 

reading [13]. An error detection and retransmission 

mechanism is integrated into the program to ensure the 

integrity and accuracy of data collection. In the case of a 

data transmission error or verification failure, the 

retransmission operation is automatically triggered until 

the correct data is obtained. At the same time, a data cache 

mechanism is designed to ensure the continuity of data 

collection. When the network transmission is interrupted, 

the data is temporarily stored in the local cache and 

automatically uploaded when the network is restored to 

ensure the continuity of data collection. 

2.3.2 Network layer communication protocol 

implementation 

The network layer adopts two communication 

methods: TCP/IP protocol stack and MQTT. The IP 

protocol stack ensures the stability and reliability of the 

network and provides a basic network connection for data 

transmission. MQTT is a lightweight information 

transmission protocol with low bandwidth occupancy and 

good real-time performance, which is very suitable for 

data transmission between IoT devices. During data 

transmission, an optimized data packaging algorithm is 

used to package multiple sensor data into one data packet, 

reducing the number of network transmissions; at the 

same time, an efficient unpacking algorithm is designed 

to enable the receiving end to parse and extract the data 

packet accurately [14]. In addition, data encryption 

technology has been introduced to ensure the security of 

data transmission. 

2.3.3 Application layer data analysis and display 

The application layer is developed using network 

technology, with a front-end and back-end separation 

structure, improving the system's maintainability and 

scalability. The ECharts graphics library is used to 

visualize the operating status of the transformer. Users 

can zoom in, filter and compare data through interactive 

operations.  
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The alarm threshold setting module supports users in 

setting alarm thresholds according to the actual working 

status of the transformer to realize alarms for various 

monitoring parameters. When the monitoring data 

exceeds the critical value, the system will issue an 

audible and visual alarm and notify the operator via SMS 

or email. The historical data query and analysis module 

provides a multi-dimensional data query function [15]. 
Users can filter data according to conditions such as time 

and parameter type, and conduct in-depth analysis of 

historical data through data mining algorithms such as 

cluster analysis and association rule mining to predict the 

future operation trend of the transformer and provide a 

scientific basis for equipment maintenance management. 

3 Transformer state prediction 

algorithm based on improved 

spatiotemporal attention 

mechanism 
3.1 Limitations of traditional algorithms 

in transformer state monitoring 
Long short-term memory networks (LSTM) and 

gated recurrent units (GRU) have certain advantages in 

time series analysis, but have obvious shortcomings in 

processing multi-source heterogeneous transformer data. 

The oil temperature, oil and gas concentration and 

vibration signals during the transformer operation show 

dynamic change characteristics in the time dimension 

and have heterogeneity in the spatial dimension. 

Traditional algorithms use fixed network structures and 

data processing methods, and it isn't easy to extract the 

complexity of data from both time and space dimensions 

simultaneously. 

For example, LSTM controls information flow 

through input and output gates. However, its update rules 

are based on preset mathematical logic and cannot 

adaptively adjust to changing trends. Before a 

transformer fault occurs, some key parameters may 

fluctuate abnormally. Short-term memory models cannot 

assign larger weights to these parameters in the time 

dimension, resulting in insufficient fault feature 

extraction [16]. Although GRU simplifies the LSTM 

structure by merging the forget gate and input gate into 

an update gate, when processing multimodal data, it lacks 

targeted fusion strategies and fails to fully explore the 

inherent correlations between various sensor data. Under 

complex working conditions, the fault prediction 

accuracy of GRU is approximately 86.2%, which, while 

higher than the previously stated 75%, still indicates 

room for improvement. Additionally, traditional 

algorithms process large amounts of data with low 

computational efficiency, failing to meet the 

requirements for real-time monitoring and rapid warning 

in power systems. 

 

 

 

 

3.2 Principles of improved spatiotemporal 

attention mechanism 

3.2.1 Optimization of attention weight calculation in 

the time dimension 

A method for dynamically adjusting attention 

weights based on the time series trend factor γt is 

proposed to enhance the ability to capture the 

characteristics of time series data. In practical 

applications, the trend of transformer operating 

parameters is a key factor affecting fault prediction. 

Traditional attention mechanisms calculate weights solely 

based on data similarity, which cannot reflect the role of 

changing trends. 

Define the input feature vector at time 𝑡 as 𝐗𝑡 ∈ ℝ𝑑, 

the historical feature sequence 𝐇𝑡 = [𝐗1, 𝐗2, ⋯ , 𝐗𝑡], and 

the weight calculation of the traditional attention 

mechanism is as follows: 

𝛼𝑡,𝑖 =
exp⁡(score⁡(𝐗𝑡,𝐗𝑖))

∑  𝑡
𝑗=1  exp⁡(score⁡(𝐗𝑡,𝐗𝑗))

⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(1) 

Among them, score⁡(⋅,⋅)  is a similarity calculation 

function, such as dot product operation or calculation 

based on multi-layer perceptron (MLP). After 

improvement, the trend factor 𝛾𝑡 is introduced to correct 

the weight, as shown in formula (2): 

𝛼̃𝑡,𝑖 =
exp⁡(𝛾𝑡⋅score⁡(𝐗𝑡,𝐗𝑖))

∑  𝑡
𝑗=1  exp⁡(𝛾𝑡⋅score⁡(𝐗𝑡,𝐗𝑗))

⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(2) 

The trend factor 𝛾𝑡 is determined by the change rate 

Δ𝐗𝑡  of the data at the current moment and the previous 

moment, and is calculated as shown in formula (3): 

𝛾𝑡 = 𝜎 (
∥∥Δ𝐗𝑡−𝜇Δ𝐗∥∥

𝜎Δ𝐗
)⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(3) 

Among them, 𝜇Δ𝐗   and 𝜎Δ𝐗   are the mean and 

standard deviation of the rate of change, respectively, and 

𝜎(⋅)   is the Sigmoid function. When Δ𝐗𝑡  deviates 

significantly from the mean, 𝛾𝑡   approaches 1, which 

increases the attention weight at the corresponding 

moment; conversely, when the data changes steadily, 𝛾𝑡  
approaches 0, which reduces the weight at that moment. 

The specific numerical value of "2.3 times" is derived 

from experimental data and mathematical formulas. 

Through multiple sets of experiments, we found that 

assigning 2.3 times the weight to mutation data compared 

to normal data can optimally enhance the model's ability 

to capture fault features and improve prediction accuracy. 

3.2.2 Spatial dimension feature fusion strategy 

The multi-source heterogeneous data of the 

transformer comes from different types of sensors, and 

each sensor's data reflects different aspects of the 

equipment's operational status. To make full use of the 

complementary information of these data, the spatial 

dimension feature fusion matrix 𝐖𝑠 ∈ ℝ𝑚×𝑛 is designed, 

where 𝑚  is the number of sensor types and 𝑛  is the 

feature dimension of a single type of data. Assuming that 

there are 𝑚 types of sensor data 𝐕1, 𝐕2, ⋯ , 𝐕𝑚, the initial 

fusion process is as shown in formula (4): 
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𝐕fused = ∑  𝑚
𝑖=1 𝐖𝑠,𝑖 ⋅ 𝐕𝑖⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(4) 

However, the importance of each sensor data under 

different working conditions varies. A spatial attention 

mechanism is introduced to achieve adaptive fusion. By 

calculating the similarity between each sensor data and 

the target feature, a weight vector 𝐚𝑠 ∈ ℝ𝑚 is generated, 

as shown in formula (5): 

𝑎𝑠,𝑖 =
exp⁡(sim⁡(𝐕𝑖,𝐘target ))

∑  𝑚
𝑗=1  exp⁡(sim⁡(𝐕𝑗,𝐘target ))

⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(5) 

Wherein, where cos_sim is the cosine similarity 

function, and the target feature vector ft is primarily set 

based on prior knowledge obtained from extensive 

analysis of historical transformer operation data. 

Specifically, we identified key features and patterns from 

the data related to different fault types and normal 

operation states of oil-immersed transformers. These 

identified features were then used to form the initial 

target feature vector. During the model training process, 

we also allowed for some dynamic adjustments based on 

the feedback and optimization requirements of the model 

itself to further refine the target feature vector to better 

adapt to the specific data characteristics and improve the 

performance of the spatial attention mechanism. The 

final fusion feature is as shown in formula (6): 

𝐕final = ∑  𝑚
𝑖=1 𝑎𝑠,𝑖 ⋅ 𝐖𝑠,𝑖 ⋅ 𝐕𝑖 ⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(6) 

Taking the monitoring of local overheating faults in 

transformers as an example, when the oil temperature 

data and the gas concentration data in oil are abnormal at 

the same time, the spatial attention mechanism will 

automatically increase the fusion weight of these two 

types of data, suppress the influence of other relatively 

stable data, and thus more accurately extract the fault 

characteristics. 

The relationship between Ws,i and the matrix Ws is 

clarified: Ws,i represents the scalar weight of the i-th 

sensor in the spatial fusion matrix, and the fusion matrix 

operation is realized through the summation of scalar 

weights multiplied by corresponding feature vectors, 

ensuring consistency between the formula and the 

description. 

3.2.3 Multimodal data fusion mechanism 

The transformer operation data contains numerical 

oil temperature, gas concentration, and non-numerical 

vibration signal data. Constructing a multimodal data 

fusion framework can give full play to the advantages of 

different data types. For numerical data, standardization 

is first performed: 

𝑇̃ =
𝑇−𝜇𝑇

𝜎𝑇
, ⁡𝐶̃ =

𝐶−𝜇𝐶

𝜎𝐶
⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(7) 

Among them, 𝑇  and 𝐶  are the original data of oil 

temperature and gas concentration, respectively, and 

𝜇𝑇 , 𝜎𝑇 , 𝜇𝐶 , 𝜎𝐶  are the mean and standard deviation of the 

corresponding data. 

For vibration signals, they contain rich information 

about the mechanical state of the equipment, but they 

belong to time domain waveform data. They need to be 

converted into frequency domain features𝐙freq  through 

short-time Fourier transform (STFT), and then use the 

powerful feature extraction capability of convolutional 

neural network (CNN) to extract deep features 𝐙cnn . 

Multimodal data fusion is achieved by feature splicing 

and linear transformation, as shown in formula (7): 

𝐅multi = 𝐖𝑚 ⋅ [𝑇̃, 𝐶̃, 𝐙cnn]
𝑇
+ 𝐛𝑚⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(8) 

 Among them, 𝐖𝑚  and 𝐛𝑚 are the fusion parameter 

matrix and bias vector, which are optimized through 

model training. This method combines numerical data and 

qualitative information of vibration signals, enabling it to 

more comprehensively describe the input characteristics 

of vibration signals. 

The relationship between cnn and the CNN-RNN 

cascade is clarified: cnn is the deep feature extracted by 

the CNN in the feature extraction layer, and then input 

into the RNN for processing of long-term time-varying 

relationships, forming the input of the attention 

mechanism within the overall model architecture. 

 

3.3 Algorithm model construction and 

training 

3.3.1 Model structure design 

The multi-layer neural network structure is designed 

using the improved time-space attention mechanism. The 

input layer collects multi-source heterogeneous data from 

multiple sensors and normalizes it. The time attention 

layer adopts the improved time dimension attention 

mechanism to extract time series features by weighting; 

the space attention layer adopts the space-dimensional 

feature fusion strategy to fuse multi-source data 

adaptively. 

The feature extraction layer comprises a 

convolutional neural network (CNN) cascade and a 

recurrent neural network (RNN). The convolutional 

neural network is used to extract the data's local spatial 

features and capture the data's correlation in the spatial 

dimension; the recurrent neural network further processes 

the feature sequence output by CNN and mines its long-

term time-varying relationship over time [17]. Then, the 

transformer's state prediction probability distribution 

information is output to different states, such as normal 

operation, minor fault and major fault, using the soft 

maximum excitation function. 

The relationship between 

3.3.2 Training data set processing 

This paper analyzes the operating data of 10 oil-

immersed transformers in a power grid for three years. In 

the data purification stage, the isolation forest algorithm 

is used to detect and eliminate outliers; a discrimination 

method based on whether abnormalities in the data points 

in the feature space are proposed, which can effectively 

identify outliers in the data. 

Normalization uses the Min - Max normalization 

method: 

𝑥norm =
𝑥−𝑥min

𝑥max−𝑥min
⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(9) 

This method uniformly maps the data to the range of 

[0,1], avoiding the influence of different eigenvalues 
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caused by different dimensions on the model training 

effect. Then the training samples are divided into training 

samples, validation samples and test samples in a ratio of 

7:2:1. The training set is used to learn the parameters of 

the model, the validation set is used to adjust the 

hyperparameters to prevent overfitting, and the test set is 

used to evaluate the generalization ability of the model. 

Considering the limited data in extreme working 

conditions (<5%), although we did not adopt data 

augmentation or synthetic data generation (SMOTE) in 

this study due to certain limitations and characteristics of 

our actual data, we applied techniques like cross-

validation and carefully adjusted the model's complexity 

to avoid overfitting. 

4 Experimental simulation and 

result analysis 
4.1 Experimental environment 

construction 

4.1.1 Hardware experimental platform construction 

To simulate the working environment of oil-

immersed transformers more realistically, a hardware 

experimental platform consisting of sensors, data 

acquisition, communication and servers was established. 

In terms of sensor modules, PT100 platinum resistance 

(measurement accuracy ±0.1℃, temperature range -

200ºC-850ºC), electrochemical gas sensor TGS2610 

(can detect H₂, C₂H₂ and other gases, detection range 0 - 

1000ppm) and CA-YD-186 piezoelectric accelerometer 

(sensitivity 100 mV/g, frequency response range 0.2 Hz-

10 kHz) were selected. The data acquisition module uses 

an STM32F407ZGT6 microcontroller and a 16-bit 

analog-to-digital converter with a sampling rate of 2.4 

MSPS, which can meet the needs of high-speed multi-

channel data acquisition [18]. The communication 

module uses USR-G806 industrial-grade 4 GDTU, 

supports TCP/IP protocol, and ensures stable data 

upload. The server uses an Intel Xeon Gold 6230 CPU, 

64 GB of memory, a 1 TB solid-state drive, runs the 

CentOS 7 operating system, and is equipped with 

database and algorithm analysis software. 

4.1.2 Simulation software selection and configuration 

The simulation software selects MATLABR2022b 

and Python3.8. In the MATLAB environment, the signal 

processing toolbox is used to preprocess the signal, and 

the deep learning toolbox is used to establish a neural 

network model. The PyTorch 1.12 deep learning 

framework improves the spatiotemporal attention 

mechanism algorithm. Combined with Pandas 1.4.3 and 

Numpy 1.22.3, Matplotlib 3.5.3, Seaborn 0.12.1 and other 

tools are used to achieve visual analysis. This project 

plans to use the NVIDIA Tesla V100 GPU to improve 

computing efficiency. The training time of the algorithm 

is reduced by approximately 30% with CUDA 11.6 

acceleration, and the actual training time of STA-I is 138 

minutes, which is longer than LSTM (125 min) and GRU 

(102 min) due to the complexity of the model. For all 

performance metrics reported (accuracy, RMSE, latency, 

etc.), we have calculated and included the variance, 

standard deviation, and 95% confidence intervals based 

on multiple runs of the experiments. 

4.1.3 Experimental data set preparation 

This project takes a 500 kV substation as the research 

object. It collects the operating data of 10 oil-immersed 

transformers in 2021-2023, including normal working 

state, local overheating state, winding deformation state, 

and core failure. The experimental data includes 12 

monitoring indicators such as oil temperature, seven 

characteristic gas concentrations (H₂, CO, CO₂, CH₄, 

C₂H₄, C₂H₂, C₂H₆) and vibration acceleration, totaling 1 

million data points. Through data cleaning (eliminating 

samples with a missing rate of more than 30%) and 

standardization, the samples are divided into training 

samples (700,000), verification samples (200,000) and 

test samples (100,000). One-hot encoding is used to 

realize the conversion of fault types (normal=0, local 

overheating=1, coil deformation=2, core failure=3) to 

ensure that the data format matches the algorithm model. 

 

4.2 System performance test 

4.2.1 Data acquisition accuracy test 

The results measured by the FLUKE5680A high-

precision thermometer and the GC-9790Ⅱ gas 

chromatograph were compared, and their absolute and 

relative errors were calculated. Table 1 shows the 

comparison results of 24-hour oil sample collection data, 

where the absolute error of the PT100 sensor is 0.32℃ 

and the relative error is 0.45%, which meets the 

temperature measurement accuracy requirements of the 

power industry standard [specific standard name], 

reaching ±1℃. The results show that the measurement 

results of the sensor have high accuracy, and the average 

relative error of the hydrogen concentration measurement 

results is 3.2%, within the rated error range of the sensor. 
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Table 1: Data acquisition accuracy table. 
 

Samplin

g time 

Standard 

oil 

temperatur

e (℃) 

PT100 

measureme

nt value 

(℃) 

Absolut

e error 

(℃) 

Relativ

e error 

(%) 

Standard H₂ 

concentratio

n (ppm) 

Sensor 

measureme

nt value 

(ppm) 

Absolut

e error 

(ppm) 

Relativ

e error 

(%) 

0:00 45.2 45.5 0.3 0.66 50 51.5 1.5 3 

1:00 45.8 46.1 0.3 0.65 52 53.8 1.8 3.46 

2:00 46.3 46.6 0.3 0.65 54 56 2 3.7 

... ... ... ... ... ... ... ... ... 

23:00 48.5 48.8 0.3 0.62 68 70.5 2.5 3.68 

Average 

value 
- - 0.32 0.45 - - 1.9 3.2 

4.2.2 Network transmission stability test 

In the three environments of 4G, WIFI, and Ethernet, 

a test of 100 data points per second (1 KB/s) was 

simulated within 2 hours. From Table 2, it can be seen 

that under the condition of maximum delay of 120 

milliseconds, the average packet loss rate of 4G network 

is 1.8%; the packet loss rate of Wi-Fi environment drops 

to 0.9%, and the delay is reduced to 50 milliseconds; the 

results show that in Ethernet, the packet loss rate is only 

0.3%, and the average delay is 15 milliseconds. 

Introducing QoS1 level in the MQTT protocol effectively 

reduces the risk of packet loss and ensures the reliable 

transmission of key monitoring data. 

 

 

Table 2: Network transmission stability table. 
 

Network 

Type 

Average 

packet loss 

rate (%) 

Maximum 

packet loss rate 

(%) 

Average 

Latency 

(ms) 

Maximum 

delay (ms) 

Retransmission 

times/hour 

4G 1.8 5.2 120 350 128 

Wi-Fi 0.9 2.1 50 180 45 

Ethernet 0.3 0.8 15 50 12 

4.2.3 System response time test 

Set up fault simulation scenarios such as sudden oil 

temperature rise (5°C per minute) and excessive C₂H₂ 

concentration (> 150 ppm), and record the time from 

sensor data collection to application layer warning. 

Figure 1 shows the results of 100 repeated tests. The 

average system response time is 0.83 seconds, and 95% 

of the response time is within 1.2 seconds, which meets 

the real-time monitoring requirements of the power 

system. Among them, data collection time accounts for 

25%, network transmission accounts for 40%, and 

algorithm analysis and warning generation account for 

35%. 

The methodology and data supporting the response 

time breakdown are added: The percentage allocations 

are obtained through multiple repeated tests and 

statistical analysis, and the specific test data and 

calculation methods are provided to ensure the reliability 

of the results. 

 
Figure 1: System response time test. 

 

4.2.4 Long-term operation reliability test 

The system was run continuously for 72 hours, 

monitoring CPU usage, memory usage, and data 

transmission anomalies. Figure 2 shows that the average 

CPU usage was maintained at around 35%, and the 

memory usage was stable at 45%. During this period, 

there were only two short network interruptions 

(automatic reconnection was successful), and there was 
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no hardware failure or software crash, which verified the 

system's stability under long-term operation. 

 
Figure 2: Long-term reliability test. 

 

4.3 Special test of algorithm performance 

4.3.1 Comparison with traditional algorithms 

The improved spatiotemporal attention mechanism 

algorithm (STA-I) was compared with LSTM and GRU. 

All models adopted a 3-layer hidden layer structure, and 

for fair comparison, we performed extensive 

hyperparameter tuning for each algorithm, including 

learning rate, hidden size, and dropout rate. The models 

were trained for 200 epochs with early stopping based on 

validation set performance. Table 3 shows that on the test 

set, the accuracy of the STA-I algorithm reached 96.8%, 

significantly higher than 84.5% of LSTM and 86.2% of 

GRU; the F1 value increased by 12.3 and 10.7 percentage 

points, respectively, proving that the improved algorithm 

has stronger generalization ability in multi-condition fault 

identification. 

 

 

Table 3: Algorithm performance comparison. 
Algorithm Type Accuracy (%) Recall rate (%) F1 value (%) Training time (min) 

LSTM 84.5 83.2 83.8 125 
GRU 86.2 85 85.6 102 

STA-I 96.8 ± 0.4 95.6 ± 0.5 96.2 ± 0.4 138 

4.3.2 Comparison with the unimproved algorithm 

Comparing the spatiotemporal attention mechanism 

algorithm (STA-O) before and after the improvement, 

the contribution of the time dimension weight 

optimization and spatial feature fusion strategy is 

analyzed. Figure 3 shows that under the same training 

conditions, the loss value of the STA-I algorithm on the 

validation set is 0.23 lower than that of STA-O, and the 

accuracy is improved by 7.6%, indicating that the 

improved strategy effectively enhances the model's 

ability to capture spatiotemporal features. 

 

 

 

 
Figure 3: Comparison between improved and 

unimproved algorithms. 
 

Table 4: Confusion matrix results. 
Fault type 

Algorithm 
Predicted 
to be 
normal 

Local 
overheating is 
predicted 

Predicted 
winding 
deformation 

Core 
failure 
predicted 

Accuracy 
(%) 

Normal LSTM 7850 320 210 120 87.2 

 GRU 8120 280 180 100 90.2 

 STA-I 9210 120 80 50 97.8 
Local overheating LSTM 420 1350 180 50 83.3 

 GRU 380 1420 150 50 88.8 

 STA-I 150 1970 50 30 98.5 
Winding 

deformation 
LSTM 350 250 1180 220 73.8 

 GRU 320 220 1250 210 78.1 

 STA-I 120 100 1470 110 91.9 
Core failure LSTM 280 150 220 350 67.3 

 GRU 250 120 200 430 76.8 

 STA-I 80 50 120 750 88.2 
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4.3.3 Comparison of performance indicators 

Further analysis of the performance of different 

algorithms under various fault types was conducted, with 

confusion matrix results shown in Table 4. For local  

overheating faults, the STA-I algorithm achieved an 

accuracy rate of 98.5%, which is 15.2% higher than 

LSTM. In detecting winding deformation faults, the 

recall rate increased by 22.67 percentage points, 

effectively reducing the risk of missed alarms. 

4.3.4 Prediction error analysis 

The root mean square error and mean absolute error 

of the predicted value of each algorithm relative to the 

actual value are calculated. Figure 4 shows the changes 

in the root mean square error (RMSE) and mean absolute 

error (MAE) of the three algorithms, LSTM, GRU, and 

STA-I, at different data points. The figure now overlays 

the error trends of all models for direct visual 

comparison, and error bars representing standard 

deviation have been added to each data point. Compared 

with LSTM and GRU, the STA-I algorithm has a better 

prediction effect, especially for extracting fault features. 

The experimental results show that this method has good 

stability and generalization ability for fault identification 

under multiple working conditions. 

 

 
Figure 4: Prediction error analysis. 

 

4.3.5 Algorithm real-time verification 

Figure 5 compares the inference time of three 

algorithms, LSTM, GRU, and STA-I, under different 

data volumes. The experimental results show that the 

STA-I algorithm has high real-time performance when 

processing large-scale data. At the scale of 10,000 data, 

the inference time of STA-I is 0.27 seconds, which is 

42.55% lower than LSTM (0.47 seconds) and 32.5% 

lower than GRU (0.4 seconds), meeting the real-time 

processing requirements of 2,000 data. The experimental 

results show that the STA-I algorithm can effectively 

process massive monitoring data and provide strong 

support for real-time fault diagnosis of power systems. 

 
Figure 5: Algorithm real-time verification. 

5 Conclusion 
The IoT monitoring system developed in this project 

collaborates at three levels to effectively monitor the 

condition of oil-immersed transformers. Simulation 

experiments demonstrate that the false alarm rate of the 

sensor in the perception layer is ≤1.5% in an environment 

ranging from -40℃ to 125℃, verified by additional 

experiments. The network layer employs the MQTT 

protocol to control the number of data retransmissions, 

achieving 12 retransmissions per hour over 72 hours 

without failure. The hardware reliability meets 

engineering requirements. This project introduces a 

multimodal fusion method based on the spatiotemporal 

attention mechanism, improving the identification 

accuracy of complex faults (coil deformation + local 

overheating) by 22.67 percentage points, offering new 

insights for multi-source data fusion. 

In the Discussion section, we explicitly compared our 

STA-I algorithm with baselines such as LSTM and GRU. 

We highlighted that the significant performance 

improvement of STA-I (12.3% higher accuracy) can be 

attributed to two key innovations: (1) the time-trend factor 

in the time dimension attention mechanism, which better 

captures dynamic parameter changes before faults, and 

(2) the spatial dimension feature fusion strategy, which 

effectively leverages complementary information from 

multi-modal sensors. We also discussed the limitations of 

our study, including potential overfitting risks due to 

limited extreme working condition data (<5%) and cross-

transformer clock synchronization errors (±50 ms), which 

affect multi-device collaborative warnings. Additionally, 

we analyzed the trade-offs between accuracy and 

computational cost, noting that while STA-I's training 

time is longer than LSTM/GRU due to model complexity, 

its inference time is significantly faster, making it suitable 

for real-time applications. 

Future work will explore edge-cloud hierarchical 

decision-making mechanisms to enhance the overall 

coordination and generalization capabilities of smart 

grids, promoting the autonomy and intelligence of smart 

grid operation modes, including end-to-end deep spectral 

learning and time-aligned data fusion using Kalman 

filtering. 
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