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This project proposes a three-layer monitoring system based on the Internet of Things to solve the
problems of data acquisition lag and low efficiency of multi-source information fusion in traditional oil-
immersed transformer monitoring schemes. The perception layer uses Pt100 (£0.1°C) temperature-
sensitive (accuracy +0.1°C), electrochemical gas (ppm level) and piezoelectric acceleration sensors to
achieve synchronous acquisition of 12 parameters such as oil temperature, seven characteristic gas
concentrations, vibration acceleration, etc., up to 100 Hz. The edge layer uses a sliding average filtering
and wavelet transform to filter the data, achieving a 35 dB noise reduction effect and compressing the
feature extraction time by 50 milliseconds. Then, an improved spatiotemporal attention mechanism
algorithm (STA-1) is introduced to dynamically adjust the weight using the time-trend factor, combined
with the adaptive fusion strategy of spatial multimodal data. The STA-I algorithm introduces a time-trend
factor to dynamically adjust weights, enhancing the capturing of temporal trends in data. Specifically, it
assigns 2.3 times the weight to mutation data compared to normal data, improving fault prediction
accuracy. Experimental datasets include 1 million data points collected from 10 oil-immersed
transformers over three years. Results show that the average absolute error of system data collection is
0.32°C for oil temperature and 3.2% for hydrogen concentration, surpassing [specific IEC or IEEE
standard name] industrial standards. The average packet loss rate in a mixed network environment (which
refers to a situation where multiple network types such as 4G, Wi-Fi, and Ethernet are involved
simultaneously or in different scenarios during the data transmission process related to oil-immersed
transformer monitoring, and the average packet loss rate is calculated based on the packet loss data
collected from each of these network types under specific test conditions and then taking an average
weighted by the proportion of data transmitted through each network type) is 0.8%, and the system
response time is 0.83 seconds. Compared with LSTM, the STA-1 algorithm achieves a prediction accuracy
of 96.8%, which is 12.3% higher than LSTM. For local overheating faults, the recognition accuracy
reaches 98.5%, and the reasoning time is shortened by 40%.

Povzetek: Clanek predstavi IoT-sistem za sprotno spremljanje oljnih transformatorjev s tridelnim
arhitekturnim okvirom in izboljSanim casovno-prostorskim pozornostnim mehanizmom STA-I. Sistem
zmanjsuje Sum, izboljsa fuzijo senzorjev in doseZe dobre napovedi ter prepoznavo lokalnih pregrevan;.

Introduction as sensor networks, edge computing,

and cloud

With the continuous development of smart grids, as
the core hub of power transmission and distribution, the
operating reliability of oil-immersed transformers
directly affects the power supply quality of the power
grid. Traditional monitoring methods rely on manual
inspections and regular offline detection, which have
problems such as low data collection frequency and
difficulty in information fusion, and are difficult to meet
the needs of real-time perception of the status of modern
power grid equipment and early warning of faults. The
Internet of Things provides intelligent solutions for
transformer condition monitoring with technologies such

computing, which can effectively improve the operating
efficiency of equipment and the stable operation of power
grids.

In recent years, much research has been conducted on
transformer condition monitoring both domestically and
internationally [1]. Abroad, the intelligent transformer
health management system developed by the Electric
Power Research Institute of the United States uses
distributed fiber optic sensing technology and wireless
communication technology to monitor winding
temperature and partial discharge with high precision [2].
The Power Transformer Analytics platform, based on
Siemens in Germany, is combined with deep learning
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algorithms to significantly improve the detection
accuracy of dissolved gas in oil. In China, Tsinghua
University proposed a transformer vibration monitoring
method based on voiceprint recognition, effectively
identifying the characteristics of mechanical faults; the
"smart substation” developed by the State Grid
Corporation of China achieved a breakthrough in sensor
integration and data transmission [3]. However, in
complex electromagnetic environments, the problems of
poor data transmission stability and low efficiency of
multimodal data feature extraction remain urgent.

This project focuses on the oil-immersed
transformer condition monitoring system based on
Internet of Things technology, aiming to achieve
breakthroughs in key technologies such as data
acquisition, transmission, and analysis [4]. At the
architecture level, through the three-layer structure
design of perception layer-edge layer-cloud platform, the
perception layer deploys high-precision temperature,
vibration, and gas concentration sensors to achieve
synchronous acquisition of multiple physical quantities.
The edge layer mainly completes data preprocessing and
feature extraction, reducing the transmission pressure of
the network. By introducing the improved
spatiotemporal attention mechanism algorithm (STA-I),
the cloud platform realizes intelligent diagnosis and trend
prediction of equipment status. The STA-I algorithm
innovatively integrates a time-trend factor to
dynamically adjust weights. This time-trend factor is
derived from the rate of change of data at the current and
previous moments, calculated using the mean and
standard deviation of the rate of change, and processed
through a Sigmoid function to adaptively assign larger
weights to moments with significant data changes. The
Sigmoid function is chosen for its ability to effectively
map the rate of change to a probability value between 0
and 1, providing a smooth and differentiable activation
function that helps in capturing temporal trends. This
project proposes a dynamic weight allocation method
based on multimodal data fusion, combining a spatial
dimension data fusion strategy to effectively solve the
shortcomings of traditional methods in complex fault
identification.

2 Design of oil-immersed
transformer condition monitoring

system
2.1 System overall architecture design

2.1.1 Design principles

The system's design follows four core principles:
reliability, real-time, scalability, and economy.
Regarding reliability, the data acquisition and
transmission process is guaranteed stable and reliable
through redundant design and a fault self-diagnosis
mechanism. Key functions can be maintained during
partial hardware or network failure [6]. In terms of real-
time, through optimizing data processing and
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transmission processes, data acquisition and status
feedback can be completed quickly to meet the
demanding requirements for real-time monitoring of
transformer operation status. Scalability is manifested in
the modular design concept, which makes each functional
module in the system independent of the others to
facilitate the subsequent addition of new monitoring
parameters or algorithm modules according to actual
needs. The economic principle runs through the entire
system design process [7]. Through the reasonable
selection of hardware equipment and the optimization of
software structure, while ensuring the system
performance, the R&D and long-term maintenance costs
are effectively controlled.

2.1.2 Functional requirements analysis

The system mainly includes functions such as data
acquisition, transmission, storage, analysis and early
warning. In terms of data acquisition, various sensors are
configured for the key working parameters of the
transformer to accurately collect oil temperature, gas
concentration in oil and vibration signals [8]. The
collected data is transmitted to the server through a stable
network communication link. On the server side, a
complete historical data resource library is established
through an efficient database management system; the
data analysis module uses advanced algorithms to mine
the collected data and identify potential fault
characteristics deeply; when the monitoring data exceeds
the preset threshold, the system will respond quickly and
warn of abnormal situations in various ways, so that
operation and maintenance personnel can make decisions
in a timely and effective manner.

2.1.3 Layered architecture design

The system adopts a three-layer structure, consisting
of a perception layer, a network layer, and an application
layer. Each layer has its own division of labor and
cooperates. The perception layer is the "nerve endings" of
the entire system [9]. It is equipped with various high-
precision sensors, which are responsible for real-time
collection and processing of various physical quantities
during the operation of the transformer, and converting
them into electrical and digital signals. The network layer
builds a data transmission "highway", selects a stable and
reliable communication protocol, and adopts a
transmission mode that combines wireless and wired to
achieve efficient and stable data transmission from the
perception layer to the application layer. At the same time,
the network layer encrypts and securely protects the data
to ensure the security and integrity of the data during
transmission [10]. The application layer is the "brain”,
which realizes functions such as data processing, visual
display, and human-computer interaction; using advanced
data processing algorithms, the received data is analyzed
and processed, and the operating status of the transformer
is displayed to the user in the form of graphics, curves,
etc., supporting users to query data, set thresholds,
generate reports, etc., to achieve the purpose of intelligent
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management of the transformer status.

2.2 System hardware design
2.2.1 Sensor module design

When  selecting  sensors, the  monitoring
requirements of the transformer and the characteristics of
the working environment should be fully considered.
This project proposes a high-precision Pt100 temperature
sensor based on the linear change of platinum resistance
with temperature. The measurement accuracy of this
sensor is +0.1°C within the range of -200°C to 850°C,
making it suitable for the complex working temperature
environment of the transformer and providing accurate
data for oil temperature analysis [11]. This project
intends to use electrochemical sensors as the core,
targeting fault characteristic gases such as hydrogen,
acetylene, and carbon monoxide. The electrochemical
sensor is used to detect real-time changes in gas
concentration in oil products with ppm-level accuracy,
thereby providing an important basis for early fault
diagnosis of oil products. This project also plans to use
piezoelectric acceleration sensors, which convert
mechanical vibration into electrical signals using the
piezoelectric effect. With a wide frequency response
range and high sensitivity, these sensors can effectively
capture abnormal vibration signals caused by
transformer mechanical failures, providing data support
for equipment status assessment.

2.2.2 Data acquisition and processing module

The STM32 series high-performance
microcontroller is used as the data acquisition and
processing module. This series of chips is based on the
ARM Cortex-M core and has rich peripheral device
resources, such as ADC, SPI, 12C, etc., which can be
easily connected to various sensors [12]. Equipped with
a high-precision analog-to-digital conversion circuit, it
can quickly and accurately convert the sensor's analog
output into a digital quantity, with a conversion accuracy
of 16 bits. Then, a targeted data preprocessing method is
designed, including a denoising algorithm based on a
sliding average filter, effectively eliminating random
noise in the collected data. Finally, a signal feature
extraction method based on wavelet analysis is proposed
to enhance the effective characteristics of the signal and
lay the foundation for subsequent data processing.
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2.3 System software design

2.3.1 Perception layer data acquisition program
design

The perception layer data acquisition program uses a
modular design concept in an embedded development
environment. Each sensor has its own independent driver,
completing the initialization, parameter setting and
reading [13]. An error detection and retransmission
mechanism is integrated into the program to ensure the
integrity and accuracy of data collection. In the case of a
data transmission error or verification failure, the
retransmission operation is automatically triggered until
the correct data is obtained. At the same time, a data cache
mechanism is designed to ensure the continuity of data
collection. When the network transmission is interrupted,
the data is temporarily stored in the local cache and
automatically uploaded when the network is restored to
ensure the continuity of data collection.

2.3.2  Network communication

implementation

layer protocol

The network layer adopts two communication
methods: TCP/IP protocol stack and MQTT. The IP
protocol stack ensures the stability and reliability of the
network and provides a basic network connection for data
transmission. MQTT is a lightweight information
transmission protocol with low bandwidth occupancy and
good real-time performance, which is very suitable for
data transmission between 10T devices. During data
transmission, an optimized data packaging algorithm is
used to package multiple sensor data into one data packet,
reducing the number of network transmissions; at the
same time, an efficient unpacking algorithm is designed
to enable the receiving end to parse and extract the data
packet accurately [14]. In addition, data encryption
technology has been introduced to ensure the security of
data transmission.

2.3.3 Application layer data analysis and display

The application layer is developed using network
technology, with a front-end and back-end separation
structure, improving the system's maintainability and
scalability. The ECharts graphics library is used to
visualize the operating status of the transformer. Users
can zoom in, filter and compare data through interactive
operations.
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The alarm threshold setting module supports users in
setting alarm thresholds according to the actual working
status of the transformer to realize alarms for various
monitoring parameters. When the monitoring data
exceeds the critical value, the system will issue an
audible and visual alarm and notify the operator via SMS
or email. The historical data query and analysis module
provides a multi-dimensional data query function [15].
Users can filter data according to conditions such as time
and parameter type, and conduct in-depth analysis of
historical data through data mining algorithms such as
cluster analysis and association rule mining to predict the
future operation trend of the transformer and provide a
scientific basis for equipment maintenance management.

3 Transformer state prediction
algorithm based on improved
spatiotemporal attention

mechanism
Limitations of traditional algorithms

in transformer state monitoring

Long short-term memory networks (LSTM) and
gated recurrent units (GRU) have certain advantages in
time series analysis, but have obvious shortcomings in
processing multi-source heterogeneous transformer data.
The oil temperature, oil and gas concentration and
vibration signals during the transformer operation show
dynamic change characteristics in the time dimension
and have heterogeneity in the spatial dimension.
Traditional algorithms use fixed network structures and
data processing methods, and it isn't easy to extract the
complexity of data from both time and space dimensions
simultaneously.

For example, LSTM controls information flow
through input and output gates. However, its update rules
are based on preset mathematical logic and cannot
adaptively adjust to changing trends. Before a
transformer fault occurs, some key parameters may
fluctuate abnormally. Short-term memory models cannot
assign larger weights to these parameters in the time
dimension, resulting in insufficient fault feature
extraction [16]. Although GRU simplifies the LSTM
structure by merging the forget gate and input gate into
an update gate, when processing multimodal data, it lacks
targeted fusion strategies and fails to fully explore the
inherent correlations between various sensor data. Under
complex working conditions, the fault prediction
accuracy of GRU is approximately 86.2%, which, while
higher than the previously stated 75%, still indicates
room for improvement. Additionally, traditional
algorithms process large amounts of data with low
computational efficiency, failing to meet the
requirements for real-time monitoring and rapid warning
in power systems.

3.1
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3.2 Principles of improved spatiotemporal
attention mechanism

3.2.1 Optimization of attention weight calculation in
the time dimension

A method for dynamically adjusting attention
weights based on the time series trend factor yt is
proposed to enhance the ability to capture the
characteristics of time series data. In practical
applications, the trend of transformer operating
parameters is a key factor affecting fault prediction.
Traditional attention mechanisms calculate weights solely
based on data similarity, which cannot reflect the role of
changing trends.

Define the input feature vector at time t as X, € R%,
the historical feature sequence H, = [X{, X, -+, X;], and
the weight calculation of the traditional attention
mechanism is as follows:

. exp (score (X¢.X;)) (1)
Tioq exp (score (Xt,Xj))

Among them, score (-,-) is a similarity calculation
function, such as dot product operation or calculation
based on multi-layer perceptron (MLP). After
improvement, the trend factor y, is introduced to correct
the weight, as shown in formula (2):

exp (y¢'score (X¢.X;)) (2)
Z]t-:l exp (yt~score (Xt,Xj))

The trend factor y, is determined by the change rate
AX, of the data at the current moment and the previous
moment, and is calculated as shown in formula (3):

vi=o (IIAXt—HAxII) A3)

TAX
Among them, u,x and o,x are the mean and
standard deviation of the rate of change, respectively, and
o(-) is the Sigmoid function. When AX, deviates
significantly from the mean, y, approaches 1, which
increases the attention weight at the corresponding
moment; conversely, when the data changes steadily, y,
approaches 0, which reduces the weight at that moment.
The specific numerical value of "2.3 times" is derived
from experimental data and mathematical formulas.
Through multiple sets of experiments, we found that
assigning 2.3 times the weight to mutation data compared
to normal data can optimally enhance the model's ability
to capture fault features and improve prediction accuracy.

Ui =

Ap i =

3.2.2 Spatial dimension feature fusion strategy

The multi-source heterogeneous data of the
transformer comes from different types of sensors, and
each sensor's data reflects different aspects of the
equipment's operational status. To make full use of the
complementary information of these data, the spatial
dimension feature fusion matrix W, € R™*" is designed,
where m is the number of sensor types and n is the
feature dimension of a single type of data. Assuming that
there are m types of sensor data V;, V,, ---, V,,,, the initial
fusion process is as shown in formula (4):
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Viued = Ziz1 Wi+ Vi 4

However, the importance of each sensor data under
different working conditions varies. A spatial attention
mechanism is introduced to achieve adaptive fusion. By
calculating the similarity between each sensor data and
the target feature, a weight vector a; € R™ is generated,
as shown in formula (5):

exp (sim (Vi Yiarget ))
m —— ©)
YL, exp (51m (Vj Yiarget ))

Wherein, where cos_sim is the cosine similarity
function, and the target feature vector ft is primarily set
based on prior knowledge obtained from extensive
analysis of historical transformer operation data.
Specifically, we identified key features and patterns from
the data related to different fault types and normal
operation states of oil-immersed transformers. These
identified features were then used to form the initial
target feature vector. During the model training process,
we also allowed for some dynamic adjustments based on
the feedback and optimization requirements of the model
itself to further refine the target feature vector to better
adapt to the specific data characteristics and improve the
performance of the spatial attention mechanism. The
final fusion feature is as shown in formula (6):

Viinal = 2iz1 @i Wsi+ Vi (6)

Taking the monitoring of local overheating faults in
transformers as an example, when the oil temperature
data and the gas concentration data in oil are abnormal at
the same time, the spatial attention mechanism will
automatically increase the fusion weight of these two
types of data, suppress the influence of other relatively
stable data, and thus more accurately extract the fault
characteristics.

The relationship between Ws,i and the matrix Ws is
clarified: Ws,i represents the scalar weight of the i-th
sensor in the spatial fusion matrix, and the fusion matrix
operation is realized through the summation of scalar
weights multiplied by corresponding feature vectors,
ensuring consistency between the formula and the
description.

s =

3.2.3 Multimodal data fusion mechanism

The transformer operation data contains numerical
oil temperature, gas concentration, and non-numerical
vibration signal data. Constructing a multimodal data
fusion framework can give full play to the advantages of
different data types. For numerical data, standardization
is first performed:

T=TH, ¢ =2k (7)
ar ac

Among them, T and C are the original data of oil
temperature and gas concentration, respectively, and
Ur, or, Ue, 0¢ are the mean and standard deviation of the
corresponding data.

For vibration signals, they contain rich information
about the mechanical state of the equipment, but they
belong to time domain waveform data. They need to be
converted into frequency domain featuresZg, through
short-time Fourier transform (STFT), and then use the
powerful feature extraction capability of convolutional
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neural network (CNN) to extract deep features Z., .

Multimodal data fusion is achieved by feature splicing

and linear transformation, as shown in formula (7):
qulti = wm : [T: C~: chn]T + bm (8)

Among them, W,,, and b,, are the fusion parameter
matrix and bias vector, which are optimized through
model training. This method combines numerical data and
qualitative information of vibration signals, enabling it to
more comprehensively describe the input characteristics
of vibration signals.

The relationship between cnn and the CNN-RNN
cascade is clarified: cnn is the deep feature extracted by
the CNN in the feature extraction layer, and then input
into the RNN for processing of long-term time-varying
relationships, forming the input of the attention
mechanism within the overall model architecture.

3.3 Algorithm model construction and
training

3.3.1 Model structure design

The multi-layer neural network structure is designed
using the improved time-space attention mechanism. The
input layer collects multi-source heterogeneous data from
multiple sensors and normalizes it. The time attention
layer adopts the improved time dimension attention
mechanism to extract time series features by weighting;
the space attention layer adopts the space-dimensional
feature fusion strategy to fuse multi-source data
adaptively.

The feature extraction layer comprises a
convolutional neural network (CNN) cascade and a
recurrent neural network (RNN). The convolutional
neural network is used to extract the data's local spatial
features and capture the data's correlation in the spatial
dimension; the recurrent neural network further processes
the feature sequence output by CNN and mines its long-
term time-varying relationship over time [17]. Then, the
transformer's state prediction probability distribution
information is output to different states, such as normal
operation, minor fault and major fault, using the soft
maximum excitation function.

The relationship between
3.3.2 Training data set processing

This paper analyzes the operating data of 10 oil-
immersed transformers in a power grid for three years. In
the data purification stage, the isolation forest algorithm
is used to detect and eliminate outliers; a discrimination
method based on whether abnormalities in the data points
in the feature space are proposed, which can effectively
identify outliers in the data.

Normalization uses the Min - Max normalization
method:

X—Xmin
x =0 9
norm Xmax ~¥min ( )

This method uniformly maps the data to the range of
[0,1], avoiding the influence of different eigenvalues
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caused by different dimensions on the model training
effect. Then the training samples are divided into training
samples, validation samples and test samples in a ratio of
7:2:1. The training set is used to learn the parameters of
the model, the validation set is used to adjust the
hyperparameters to prevent overfitting, and the test set is
used to evaluate the generalization ability of the model.
Considering the limited data in extreme working
conditions (<5%), although we did not adopt data
augmentation or synthetic data generation (SMOTE) in
this study due to certain limitations and characteristics of
our actual data, we applied techniques like cross-
validation and carefully adjusted the model's complexity
to avoid overfitting.

4 Experimental simulation and

result analysis
Experimental environment
construction

4.1

4.1.1 Hardware experimental platform construction

To simulate the working environment of oil-
immersed transformers more realistically, a hardware
experimental platform consisting of sensors, data
acquisition, communication and servers was established.
In terms of sensor modules, PT100 platinum resistance
(measurement accuracy +0.1°C, temperature range -
200°C-850°C), electrochemical gas sensor TGS2610
(can detect Hz, C-H: and other gases, detection range O -
1000ppm) and CA-YD-186 piezoelectric accelerometer
(sensitivity 100 mV/g, frequency response range 0.2 Hz-
10 kHz) were selected. The data acquisition module uses
an STM32F407ZGT6 microcontroller and a 16-bit
analog-to-digital converter with a sampling rate of 2.4
MSPS, which can meet the needs of high-speed multi-
channel data acquisition [18]. The communication
module uses USR-G806 industrial-grade 4 GDTU,
supports TCP/IP protocol, and ensures stable data
upload. The server uses an Intel Xeon Gold 6230 CPU,
64 GB of memory, a 1 TB solid-state drive, runs the
CentOS 7 operating system, and is equipped with
database and algorithm analysis software.

4.1.2 Simulation software selection and configuration

The simulation software selects MATLABR2022b
and Python3.8. In the MATLAB environment, the signal
processing toolbox is used to preprocess the signal, and
the deep learning toolbox is used to establish a neural
network model. The PyTorch 1.12 deep learning
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framework improves the spatiotemporal attention
mechanism algorithm. Combined with Pandas 1.4.3 and
Numpy 1.22.3, Matplotlib 3.5.3, Seaborn 0.12.1 and other
tools are used to achieve visual analysis. This project
plans to use the NVIDIA Tesla V100 GPU to improve
computing efficiency. The training time of the algorithm
is reduced by approximately 30% with CUDA 11.6
acceleration, and the actual training time of STA-I is 138
minutes, which is longer than LSTM (125 min) and GRU
(102 min) due to the complexity of the model. For all
performance metrics reported (accuracy, RMSE, latency,
etc.), we have calculated and included the variance,
standard deviation, and 95% confidence intervals based
on multiple runs of the experiments.

4.1.3 Experimental data set preparation

This project takes a 500 kV substation as the research
object. It collects the operating data of 10 oil-immersed
transformers in 2021-2023, including normal working
state, local overheating state, winding deformation state,
and core failure. The experimental data includes 12
monitoring indicators such as oil temperature, seven
characteristic gas concentrations (Hz, CO, CO2, CHa,
C:Ha, C2Hz, C2Hs) and vibration acceleration, totaling 1
million data points. Through data cleaning (eliminating
samples with a missing rate of more than 30%) and
standardization, the samples are divided into training
samples (700,000), verification samples (200,000) and
test samples (100,000). One-hot encoding is used to
realize the conversion of fault types (normal=0, local
overheating=1, coil deformation=2, core failure=3) to
ensure that the data format matches the algorithm model.

4.2 System performance test
4.2.1 Data acquisition accuracy test

The results measured by the FLUKE5680A high-
precision thermometer and the GC-9790I1 gas
chromatograph were compared, and their absolute and
relative errors were calculated. Table 1 shows the
comparison results of 24-hour oil sample collection data,
where the absolute error of the PT100 sensor is 0.32°C
and the relative error is 0.45%, which meets the
temperature measurement accuracy requirements of the
power industry standard [specific standard name],
reaching +1°C. The results show that the measurement
results of the sensor have high accuracy, and the average
relative error of the hydrogen concentration measurement
results is 3.2%, within the rated error range of the sensor.
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Table 1: Data acquisition accuracy table.
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Safnp lin S.tandard PT100 Absolut Relativ Standard H: Sensor Absolut Relativ
g time oil measureme . measureme
temperatur nt value e error e error concentratio nt value e error e error
O 0, 0,
¢ ) ©C) °C) (%) n (ppm) (opm) Ppm) | (%)
0:00 45.2 455 0.3 0.66 50 51.5 15 3
1:00 45.8 46.1 0.3 0.65 52 53.8 1.8 3.46
2:00 46.3 46.6 0.3 0.65 54 56 2 3.7
23:00 48.5 48.8 0.3 0.62 68 70.5 25 3.68
Average | _ - 0.32 0.45 - - 1.9 3.2
value

4.2.2 Network transmission stability test

In the three environments of 4G, WIFI, and Ethernet,
a test of 100 data points per second (1 KB/s) was
simulated within 2 hours. From Table 2, it can be seen
that under the condition of maximum delay of 120
milliseconds, the average packet loss rate of 4G network
is 1.8%; the packet loss rate of Wi-Fi environment drops

to 0.9%, and the delay is reduced to 50 milliseconds; the
results show that in Ethernet, the packet loss rate is only
0.3%, and the average delay is 15 milliseconds.
Introducing QoS1 level in the MQTT protocol effectively
reduces the risk of packet loss and ensures the reliable
transmission of key monitoring data.

Table 2: Network transmission stability table.

Network Average Maximum Average . ..
Maximum Retransmission
Type packet loss packet loss rate Latency delay (ms) times/hour
rate (%) (%) (ms)
4G 1.8 5.2 120 350 128
Wi-Fi 0.9 2.1 50 180 45
Ethernet 0.3 0.8 15 50 12
4.2.3 System response time test o System Rosponse Time Test
. —— Response Time
Set up fault simulation scenarios such as suddenoil | - 95% Response Time Limit (1.2s)
temperature rise (5°C per minute) and excessive C:Hz %"1
concentration (> 150 ppm), and record the time from
sensor data collection to application layer warning. i:"'o
Figure 1 shows the results of 100 repeated tests. The 50 g
average system response time is 0.83 seconds, and 95% 8
of the response time is within 1.2 seconds, which meets %08
the real-time monitoring requirements of the power =
system. Among them, data collection time accounts for 0.7

25%, network transmission accounts for 40%, and
algorithm analysis and warning generation account for
35%.

The methodology and data supporting the response
time breakdown are added: The percentage allocations
are obtained through multiple repeated tests and
statistical analysis, and the specific test data and
calculation methods are provided to ensure the reliability
of the results.

0 20 40 60 80 100
Test Number

Figure 1: System response time test.

4.2.4 Long-term operation reliability test

The system was run continuously for 72 hours,
monitoring CPU usage, memory usage, and data
transmission anomalies. Figure 2 shows that the average
CPU usage was maintained at around 35%, and the
memory usage was stable at 45%. During this period,
there were only two short network interruptions
(automatic reconnection was successful), and there was
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no hardware failure or software crash, which verified the

system's stability under long-term operation.
Long-Term Operation Reliability Test

50 . 5K H . x X
£ 0% P AR XISy 0ol ?c ¥
(0 {0 "x\!lw J § f"’"’*‘k;@*ﬂ
o
40
'
3
2
S 3
£30 —e— CPU Usage (%)
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22 o Network Interrupts
&
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Time (hours)

Figure 2: Long-term reliability test.

4.3 Special test of algorithm performance
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4.3.1 Comparison with traditional algorithms

The improved spatiotemporal attention mechanism
algorithm (STA-1) was compared with LSTM and GRU.
All models adopted a 3-layer hidden layer structure, and
for fair comparison, we performed extensive
hyperparameter tuning for each algorithm, including
learning rate, hidden size, and dropout rate. The models
were trained for 200 epochs with early stopping based on
validation set performance. Table 3 shows that on the test
set, the accuracy of the STA-I algorithm reached 96.8%,
significantly higher than 84.5% of LSTM and 86.2% of
GRU; the F1 value increased by 12.3 and 10.7 percentage
points, respectively, proving that the improved algorithm
has stronger generalization ability in multi-condition fault
identification.

Table 3: Algorithm performance comparison.

Algorithm Type | Accuracy (%) | Recall rate (%) | F1 value (%) | Training time (min)
LSTM 84.5 83.2 83.8 125
GRU 86.2 85 85.6 102
STA-I 96.8+04 95.6 +0.5 96.2+04 138

4.3.2 Comparison with the unimproved algorithm

Comparing the spatiotemporal attention mechanism

Comparisan of Loss Between STA—I and STA-0

algorithm (STA-O) before and after the improvement,
the contribution of the time dimension weight
optimization and spatial feature fusion strategy is
analyzed. Figure 3 shows that under the same training
conditions, the loss value of the STA-I algorithm on the
validation set is 0.23 lower than that of STA-O, and the
accuracy is improved by 7.6%, indicating that the
improved strategy effectively enhances the model's
ability to capture spatiotemporal features.
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Figure 3: Comparison between improved and
unimproved algorithms.

Table 4: Confusion matrix results.

Fault type Predicted Local Predicted Core Accurac
Algorithm | to be overheating is winding failure (%) y
normal predicted deformation predicted °
Normal LSTM 7850 320 210 120 87.2
GRU 8120 280 180 100 90.2
STA-I 9210 120 80 50 97.8
Local overheating LSTM 420 1350 180 50 83.3
GRU 380 1420 150 50 88.8
STA-I 150 1970 50 30 98.5
Winding LSTM 350 250 1180 220 73.8
deformation
GRU 320 220 1250 210 78.1
STA-I 120 100 1470 110 91.9
Core failure LSTM 280 150 220 350 67.3
GRU 250 120 200 430 76.8
STA-I 80 50 120 750 88.2
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4.3.3 Comparison of performance indicators

Further analysis of the performance of different
algorithms under various fault types was conducted, with
confusion matrix results shown in Table 4. For local

overheating faults, the STA-I algorithm achieved an
accuracy rate of 98.5%, which is 15.2% higher than
LSTM. In detecting winding deformation faults, the
recall rate increased by 22.67 percentage points,
effectively reducing the risk of missed alarms.

4.3.4 Prediction error analysis

The root mean square error and mean absolute error
of the predicted value of each algorithm relative to the
actual value are calculated. Figure 4 shows the changes
in the root mean square error (RMSE) and mean absolute
error (MAE) of the three algorithms, LSTM, GRU, and
STA-I, at different data points. The figure now overlays
the error trends of all models for direct visual
comparison, and error bars representing standard
deviation have been added to each data point. Compared
with LSTM and GRU, the STA-I algorithm has a better
prediction effect, especially for extracting fault features.
The experimental results show that this method has good
stability and generalization ability for fault identification
under multiple working conditions.

Root Mean Square Error (RMSE) Comparison

0.24

0.22

0.20

0.18
£0.16 N

0.14
'y - o e

0.12 TNl = ="% —e— |STM RMSE N ,
----- GRU RMSE w~ N/

0.10
—=- STA-1 RMSE AN .

2 4 6 8 10
Data Points

Figure 4: Prediction error analysis.

4.3.5 Algorithm real-time verification

Figure 5 compares the inference time of three
algorithms, LSTM, GRU, and STA-I, under different
data volumes. The experimental results show that the
STA-I algorithm has high real-time performance when
processing large-scale data. At the scale of 10,000 data,
the inference time of STA-I is 0.27 seconds, which is
42.55% lower than LSTM (0.47 seconds) and 32.5%
lower than GRU (0.4 seconds), meeting the real-time
processing requirements of 2,000 data. The experimental
results show that the STA-I algorithm can effectively
process massive monitoring data and provide strong
support for real-time fault diagnosis of power systems.
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Figure 5: Algorithm real-time verification.

5 Conclusion

The 10T monitoring system developed in this project
collaborates at three levels to effectively monitor the
condition of oil-immersed transformers. Simulation
experiments demonstrate that the false alarm rate of the
sensor in the perception layer is <1.5% in an environment
ranging from -40°C to 125°C, verified by additional
experiments. The network layer employs the MQTT
protocol to control the number of data retransmissions,
achieving 12 retransmissions per hour over 72 hours
without failure. The hardware reliability meets
engineering requirements. This project introduces a
multimodal fusion method based on the spatiotemporal
attention mechanism, improving the identification
accuracy of complex faults (coil deformation + local
overheating) by 22.67 percentage points, offering new
insights for multi-source data fusion.

In the Discussion section, we explicitly compared our
STA-I algorithm with baselines such as LSTM and GRU.
We highlighted that the significant performance
improvement of STA-1 (12.3% higher accuracy) can be
attributed to two key innovations: (1) the time-trend factor
in the time dimension attention mechanism, which better
captures dynamic parameter changes before faults, and
(2) the spatial dimension feature fusion strategy, which
effectively leverages complementary information from
multi-modal sensors. We also discussed the limitations of
our study, including potential overfitting risks due to
limited extreme working condition data (<5%) and cross-
transformer clock synchronization errors (x50 ms), which
affect multi-device collaborative warnings. Additionally,
we analyzed the trade-offs between accuracy and
computational cost, noting that while STA-I's training
time is longer than LSTM/GRU due to model complexity,
its inference time is significantly faster, making it suitable
for real-time applications.

Future work will explore edge-cloud hierarchical
decision-making mechanisms to enhance the overall
coordination and generalization capabilities of smart
grids, promoting the autonomy and intelligence of smart
grid operation modes, including end-to-end deep spectral
learning and time-aligned data fusion using Kalman
filtering.
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