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With the booming development of the global tourism industry, the increase in tourists has gradually
made the safety management of tourist attractions more important. Monitoring abnormal behavior in
tourist attractions is crucial in the safety management. To improve the accuracy of monitoring abnormal
behavior in tourist attractions, this study combines convolutional neural networks with autoencoder
network structures to reduce the learning generalization ability of convolutional neural networks.
Attention mechanism is incorporated to improve sensitivity and recognition accuracy of abnormal
behavior in complex environments. The method was experimentally validated using the CUHK Avenue
and UCSD datasets, and compared with existing baseline methods. The results showed that the mixed
multi-input feature clustering algorithm based on deep convolutional autoencoder had better detection
performance than traditional methods on these two datasets. On the CUHK Avenue dataset, the AUC
value was 91.9%, which was 27.1%, 10.6%, 15.0%, and 2.8% higher than that of the Adam, MDT, SF,
and SRC methods, respectively. On the UCSD dataset, the AUC value reached 94.7%, which was 31.0%
higher than that of the other four methods. In addition, the precision on the CUHK Avenue dataset was
94.5%, the recall rate was 95.6%, and the error rate was 12.6%. On the UCSD dataset, the precision
was 95.2%, the recall rate was 94.8%, and the error rate was 10.9%. Overall, the research on the
detection method of abnormal behavior in tourist attraction monitoring videos based on mixed
multi-input feature clustering algorithm has high detection accuracy and can provide more effective
technical support for the safety management of tourist attractions.

Povzetek: DCAMMFCA zdruzi SSD, pozornostno izboljSan konvolucijski avtoenkoder z GAN ter
K-means grucenje mesanih casovno-prostorskih znacilk za odkrivanje anomalij v turisticnem nadzoru.

1 Introduction

As the economy and culture rapidly develop and the
global tourism industry prospers, tourism has become an
important venue for economic and cultural exchanges.
Meanwhile, as modern cities continue to advance, the
requirements for safety supervision in the public sector
are also increasing. The monitoring system, as a key
technology for security monitoring, has seen an
increasing demand for its intelligence and information
security [1-2]. Tourism Scenic Area (TSA) often faces
challenges such as high pedestrian traffic and complex
terrain, and traditional manual monitoring technologies
often encounter high false positive rates [3]. Traditional
video surveillance mainly relies on simple motion
detection or algorithms with specific rules, such as fixed
area intrusion detection and trajectory anomaly analysis.
These monitoring technologies are effective enough in
simple environments, but their effectiveness is limited
when faced with dynamic and complex tourism scenes

[4]. For example, factors such as fluctuations in crowd
density, environmental obstructions, and changes in
lighting conditions can affect the accuracy of video
detection [5]. In addition, due to the lack of intelligent
factors, traditional video surveillance technology cannot
effectively classify and store recorded data, resulting in
huge data processing time and difficulty in obtaining all
information. Therefore, an innovative approach based on
the Mixed Multi-input Feature Clustering Algorithm
(MMFCA) is proposed for abnormal behavior detection
on surveillance videos to address the low detection
accuracy in video frame prediction and reconstruction in
complex environments. Meanwhile, the optimized
autoencoder based on attention mechanism is used as a
Generative Adversarial Network (GAN) for feature

extraction to improve sensitivity and recognition
accuracy for abnormal behavior in  complex
environments.

The core question of the research is: "Can the

combination of SSD-based spatial feature extraction and
Time GAN attention autoencoder improve the accuracy
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of abnormal behavior detection in TSA scenarios?” To
verify this hypothesis, corresponding experiments are
designed and various baseline methods are compared.
The research hypothesis suggests that the Mixed
Multi-input Feature Clustering Algorithm based on Deep
Convolutional ~ Autoencoder (DCAMMFCA) can
effectively improve the abnormal behavior detection in
scenic surveillance videos, especially when dealing with
small object detection in complex environments.

The research is divided into six sections. The first section
is the introduction. The second section reviews the
current research status of intelligent monitoring systems
and abnormal behavior detection both domestically and
internationally. Next, the third section introduces a
monitoring video anomaly detection method based on the
DCAMMEFCA. The fourth section analyzes the abnormal
behavior detection results based on this algorithm and
compares them with existing methods. The fifth section
is discussion. The sixth section is the conclusion.

2 Related works

As an important research direction in computer vision,
intelligent monitoring systems have received attention
from many experts and scholars and have achieved many
results. Jenssen et al. proposed an automatic vision-based
power line inspection and monitoring system to monitor
power lines. This system utilized deep learning
technology for network construction and utilized deep
residual network structure for damage monitoring of
power line components. These results confirmed that the
method had high monitoring accuracy [6]. Yousefi et al.
proposed a monitoring system that combined sensor
systems for real-time monitoring of food in the
production chain. This design utilized biosensors for
monitoring production environment humidity,
temperature, and gases. These results confirmed that this
method monitored food quality and ensured food
production safety [7]. Pimenov et al. combined artificial
intelligence technology with sensors to design a
monitoring system for real-time monitoring during tool
processing. This system could monitor the real-time
status of cutting tools during machining operations and
utilize machining responses to monitor the surface
roughness of the tools. These results confirmed that this
method effectively improved dimensional accuracy and
production efficiency during the machining process [8].
Liu combined machine learning technology with data
mining technology for real-time monitoring of abnormal
advertisements to maintain the integrity and efficiency of
advertising campaigns. The results showed that this
method could monitor various measures of advertising
activities in a vigilant manner and was feasible [9].
Mattera et al. developed a line arc additive
manufacturing program using artificial intelligence
technology to monitor the production process of arc
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additive manufacturing. The program included a defect
detection module that could monitor the production
process of arc additive manufacturing. The results
showed that this method was helpful for parameter
control in the manufacturing process [10].

Abnormal behavior detection plays an important
role in intelligent monitoring. ALDHAMARI et al. put
forward a high-performance structure to design a smart
monitoring system with human behavior detection and
classification. This framework utilized foreground optical
flow energy to extract descriptive spatiotemporal features
from surveillance videos. The orthogonal matching
tracking algorithm was used to recover high-dimensional
sparse features. These results confirmed that the method
effectively improved the behavior detecting and
classifying accuracy [11]. Hu et al. proposed a deep
learning-based driver abnormal behavior detection
system to effectively identify abnormal driver behavior.
The system utilized stacked sparse autoencoders to learn
driving behavior features, and then used greedy layering
for training. These results confirmed that the method had
high detection accuracy in detecting abnormal driving
behavior [12]. Feizi et al. proposed a new normal
behavior estimation model to accurately define abnormal
behavior. This design utilized the histogram of
directional optical flow as the basic local feature and
utilized spectral clustering for similar feature clustering.
These results confirmed that this method could
effectively distinguish different behaviors [13]. Zhang et
al. proposed a cloud platform virtual machine abnormal
behavior monitoring system to improve the security and
reliability of virtual machines. This system utilized
incremental clustering algorithm for load information
monitoring and local outlier factor algorithm for online
anomaly detection. These results confirmed that this
method could meet the real-time monitoring
requirements [14]. Gao et al. used wireless sensors and
discrete-time Markov chains to construct a user activity
monitoring model connected to the medical Internet of
Things for detecting abnormal behavior in patients with
Alzheimer's disease. This model classified users' daily
behaviors using probability calculation tree logic. The
results showed that this method was feasible [15]. To
monitor Ethereum fraud, Tan et al. proposed a method for
mining Ethereum transaction records to monitor
fraudulent transactions. This method used web crawling
technology to obtain Ethereum addresses with fraud tags,
and then used network embedding algorithms to extract
node features for subsequent fraud transaction
recognition. Finally, a graph Convolutional Neural
Network (CNN) was used to classify the identified
addresses. The results showed that the accuracy of
Ethereum fraud transaction monitoring was as high as
96% [16]. The summary of relevant work is shown in
Table 1.
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Table 1: Summary of related work
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Feature
Method Dataset extraction Accuracy Advantages Limitations
method
Jenssen Power line Deep residual . High monitoring Only gpp_llcable to power line
High accuracy . monitoring, not suitable for
etal. dataset network precision .
general scenarios
. Food Real-time Limited by environmental
Yousefi - . No clear o
production Biosensors monitoring of sensors, cannot handle
etal. accuracy data . A .
dataset environmental data | dynamic behavioral changes
Improves - .
Pimenov | Manufacturing No clear production Specific to certain tools apd
Sensors + Al L processes, cannot generalize
etal. dataset accuracy data efficiency and -
to other fields
accuracy
. Machine Real-time Cannot handle large-scale
. Advertising - No clear o o .
Liu et al. learning + data monitoring of advertising data and rapidly
dataset 2. accuracy data L L . .
mining advertising activities | changing behavioral patterns
. Good monitoring Focused on additive
Mattera Arc additive No clear capabilities for manufacturing, cannot be
manufacturing | Al + Sensors P . ring,
etal. accuracy data manufacturing generalized to other
dataset . .
processes industries
Optical flow
feature
ALDHA . extraction + Improves behavior Only suitable for video
Surveillance No clear e : .
MARI et . Orthogonal classification surveillance, not applicable to
video dataset - accuracy data
al. Matching accuracy other types of data
Pursuit
Algorithm
. Limited to driving behavior,
. Sparse . Detects driver
Huetal. | Driver dataset High accuracy . not adaptable to other types
autoencoder abnormal behavior .
of anomaly detection
Directional Effectivel
Feizi et Unknown optical flow + No clear distin uish)és Possibly limited by specific
al. dataset spectral accuracy data . g - behavior estimations
. different behaviors
clustering
Virtual Increm_ental Meets real-time Specific to virtual machine
Zhang et - clustering + . L
machine g High accuracy monitoring data, cannot handle other
al. local outlier .
dataset requirements types of data
factor
Alzheimer's Wireless Real-time Only applicable to specific
Gao et : No clear o .
al patients sensors + accuracy data monitoring of patient groups, cannot
' dataset Markov chain patient behavior generalize
Network
Ethereum embedding
Tan et . algorithm + : Only applicable to Ethereum
transaction 96% High accuracy L
al. Graph fraud monitoring
records .
Convolutional
Network

As shown in Table 1, these methods have failed to
achieve their goals in the TSA context. For example, the
power line monitoring method proposed by Jenssen et al.
only focuses on a single domain and cannot cope with
the changing monitoring scenarios. The proposed
solution in this study has strong adaptability and can
handle video surveillance in various environments. In
addition, the food production chain monitoring method
proposed by Yousefi et al. does not consider behavioral
patterns and dynamic detection. The solution proposed in

this article, combined with deep learning technology, can
dynamically identify and analyze abnormal behaviors.

In summary, many achievements have been made in
research related to intelligent monitoring systems and
abnormal behavior detection. However, there is still
relatively little research on using feature storage
autoencoders as network architectures for feature
extraction and integrating multiple input features for
clustering analysis to detect abnormal behavior in videos.
The feature storage module, as an innovative method, is
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introduced into the generator of the GAN for more
efficient extraction and storage of multidimensional
features. Therefore, the feature storage module optimizes
the feature extraction process of the generator in
abnormal behavior detection by storing and matching
feature vectors to effectively improve the accuracy and
sensitivity of detection.

3 Detection of abnormal behavior in
monitoring videos based on deep

convolutional autoencoder mixed
multi-input  feature clustering
algorithm

A deep convolutional autoencoder network is used for
abnormal behavior detection, and a clustering algorithm
with mixed multi-input features is combined to improve
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the detection performance of small targets. To reduce the
impact of complex environments on feature extraction,
the study further utilizes SSD object detection models to
extract foreground targets in monitoring video images.

3.1 Abnormal behavior detection algorithm
based on deep convolutional autoencoder

network structure

CNN is a powerful tool specifically designed for
analyzing visual images in deep learning. Through
multi-level structural design, it can automatically and
effectively learn spatial level features from image data
[17-18]. In computer monitoring video analysis, since
video images are essentially digital information having
many pixels, it is particularly crucial to utilize CNN to
extract the features of these images. The overall
architecture of the research method is shown in Figure 1.
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input features
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)
—
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Figure 1: Overall architecture diagram of the research method

As shown in Figure 1, the research method
combines the SSD object detection model with the
K-means clustering algorithm to construct a MMFCA for
foreground targets in complex environments. This
algorithm can extract foreground targets from
surveillance video images, classify the extracted features
using the K-means clustering algorithm, and finally
obtain the temporal and spatial features of the
surveillance image. Next, the time and spatial features
extracted from the foreground target are input into the
CNN for abnormal behavior recognition. To address the
strong generalization ability of CNN, this study
combines CNN with autoencoder models and optimizes
the model using attention mechanisms to improve the

accuracy of distinguishing normal and abnormal behavior.

There are three main basic structures of CNN. The input
layer processes the original pixel data and converts it into

a form that the network can process. The feature
extraction layer is usually composed of multiple
alternating convolutional and pooling layers. The
convolutional layer is responsible for extracting local
features from the image. The pooling layer is responsible
for down-sampling, reducing computational complexity
while maintaining spatial hierarchy of features [19-20].
Finally, the fully connected layer maps the learned
features to the final output. The function of the
convolutional layer is represented by equation (1).

| NS L1 I-1 I
X; = f ;GiJ(kiJ@Xi )+bj 1)

In equation (1), X; represents the input function of

the | -th convolutional layer, ® means the convolution
operation. b refers to the bias parameter. K is the
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convolution kernel [21]. The mathematical expression for
the pooling Ia(ver is represented by equation (2).

X = plx;) @

In equation (2), p(X) refers to pooling operation.

The mathematical expression for the fully connected
layer is represented by equation (3).

X' = f(o'x"*+b') (3)
In equation (3), f(X) refers to the nonlinear

activation function. @ means the weight. Common
nonlinear activation functions include Tanh, Sigmoid,
and ReLu. The study uses the Sigmoid function as the
activating function, represented by equation (4) [22].

1
f(x)= 4
X)=r"5 (4)
Autoencoder is an unsupervised feature learning
algorithm implemented through neural networks, whose
core function is data dimensionality reduction and feature
extraction [23]. Autoencoder learns data by encoding
input data into a low-dimensional space, which is then
decoded back to the original data. In this process, the
autoencoder is to minimize the difference between input
and output, which is also known as reconstruction error
[24]. This structural feature enables the autoencoder to
have the advantage of removing irrelevant noise while
reconstructing input data. Figure 2 shows the structure of
the autoencoder.

Input layer Hidden layer Output layer

64x64
@ Encoder Decoder @
128x128 32x32

Figure 2: Autoencoder structure

In Figure 2, the autoencoder mainly includes an
encoding layer and a decoding layer. When encoding, an
autoencoder can convert high-dimensional input data into
a low-dimensional latent variable for representation [25].
This latent variable encompasses the key features of the
input data and also has a low-level dimension, thereby
reducing data complexity and minimizing the need for
data storage [26]. During decoding, the autoencoder can
remap these low-dimensional latent variable features to
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the high-dimensional space of the original input data [27].
The architecture of the autoencoder is as follows. The
input layer is 128x128x3, which represents an image
resolution of 128x128 and is an RGB image. The
encoder consists of three convolutional layers, with 32,
64, and 128 kernels in the first, second, and third layers,
respectively. The kernel size is 3x3 and the stride is 1.
The first and second layers of the decoder use 64 and 32
convolution kernels, respectively, with a kernel size of
3x3 and a stride of 1. The output layer consists of one
convolutional kernel, with a size of 3x3 and a stride of 1,
and uses the Sigmoid activation function. In addition to
the Sigmoid activation function, the ReLU activation
function is also used in the convolutional layers to handle
nonlinear transformations. To prevent over-fitting,
Dropout layers are added between the convolutional
layers of the encoder, with a dropout probability of 0.2.
Equation (5) is the loss function of the autoencoder.
2

1 .
Lzﬁz:il(xi—xi) (5)

In equation (5), L means the loss function. N

refers to the total datasets. X; represents the I -th

sample in the input dataset.  X; is i-th sample in the
output dataset.

When using traditional self-coding
structures for monitoring video abnormal behavior
detection, CNN has strong learning and generalization
abilities. This can reconstruct input samples in video data
that contain abnormal behavior, making it difficult for the
model to effectively distinguish between normal and
abnormal behavior [28]. Therefore, the study
incorporates attention mechanism into the autoencoder
for optimization. The attention mechanism can make the
model focus more on the parts of the data that contain
important information. By introducing variance attention
mechanism, autoencoders can adaptively assign higher
weights to features with abnormal behavior [29]. In
addition, the optimized autoencoder is taken as a
generator for GAN to better distinguish between normal
and abnormal behavior. The feature block of the attention
mechanism is represented by equation (6).

#(h,w)= o> x(h,w)+ Attention(x(h, w)) (6)
In equation (6), ¢ represents the feature block sent
by the attention mechanism to the convolutional layer for
decoding. h and W refer to the rows and columns of
the feature map, respectively. Attentior(x(h, W))

represents self-attention mechanism. The normalized
attention map is represented by equation (7).

h,w,d)—
v(h,w)= (hw,d)-u )
In equation (7), v represents the variance of the
normalized attention map. d refers to the depth of the
feature map. u represents the mean of the feature map.
o represents the standard deviation of the feature map.

The matching probability of the feature storage module is
represented by equation (8).
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P = Matching Probabilit y(F,G)
EXp (( F )T th )
> ool Q)

In equation (8), F represents the feature of the
feature storage module. G represents the feature output

Pk,S — (8)

t

Feature storage
module

|

Monitoring

images
Autoencoder optimized
based on attention

mechanism

Fig.3 Basic framework of generative adversarial network

In Figure 3, GAN mainly includes two modules:

generator and discriminator, which are optimized
alternately during the training [30]. The generator is to
capture the distribution of real samples and generate
outputs similar to real input samples by converting input
noise. It can distinguish between real samples and
generator generated samples. The discriminator is to
distinguish between real samples and fake samples.
Using the backpropagation algorithm during training,
these two modules alternate for optimization,
continuously improving their performance.
In this GAN framework, the generator adopts an
optimized deep convolutional autoencoder based on
attention mechanism, responsible for feature extraction
and reconstruction. Inside the generator, the feature
storage module stores key features and participates in
generating data during the generation process. The
discriminator is responsible for distinguishing between
generated data and real data, thereby improving the
performance of the generator through adversarial
training.

The loss function types of GAN are as follows: The
generator loss uses the least squares loss to optimize the
generator. The discriminator loss uses adversarial loss to
train the discriminator to distinguish between generated
images and real images. The training process of this
model takes 100 epochs. Within each epoch, the
generator and discriminator are trained alternately to
ensure training stability. The objective function of GAN
is represented by equation (9).
min mex L(G, D)= E, 5 g D(@)]+E, ., [~ g D(G(2))]

)
L
D

In equation (9),
function. G and

represents the objective
refer to generators and

True

NP % od
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by the generator. P represents the matching probability.
F is the item of the feature storage module. Q, is a

feature of the hidden layer. Figure 3 shows the basic
framework of GAN.

minator True/False

X

discriminators, respectively. a represents the feature

vector of the real monitoring image. Z is a noise vector.
Pa represents the distribution of real samples. P,
refers to the distribution of noise vectors. E

represents the expected distribution vector value.

a

3.2 Clustering algorithm based on mixed

multi-input features

The autoencoder network based on deep convolution can
handle abnormal behavior detection in ordinary scenes,
but there are certain difficulties in accurately detecting
abnormal behavior in complex scenes. TSA has
limitations such as complex environment, high pedestrian
traffic, and multiple foreground targets, all of which can
affect detection accuracy. Therefore, a deep
convolutional autoencoder network is used to extract
feature information from video data based on a Single
Shot MultiBox Detector (SSD). Then K-means is
introduced to cluster these extracted features. Finally, the
distance information of the clustering results and the
reconstruction error of the autoencoder are combined to
make a comprehensive judgment. This clustering
algorithm based on mixed multi-input features helps to
enhance algorithm judgment and improve its detection
accuracy in complex environments. In the anomaly
detection algorithm based on deep convolutional
autoencoder network structure, the SSD model is limited
to the early stage of object detection as part of video data
preprocessing. Its main function is to extract foreground
target information for subsequent feature extraction and
clustering processing. Figure 4 shows the SSD object
detection model.
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Figure 4: SSD object detection model framework

In Figure 4, this model belongs to a single-stage
detection model. It first uses CNN to extract features
from sample data, and generates boundary boxes of
different sizes on the extracted feature maps. These
boundary boxes are used for target classification and
prediction. SSD adopts a pyramid structure, allowing for
object detection on feature maps with multiple different
resolutions. This feature enables the model to have good
detection performance for targets of different sizes, thus
helping to improve small target detection performance in
video surveillance. K-means is an unsupervised learning

SSD object
detection network

[
[
|
Time |
characteristics |

algorithm that can measure the similarity between data
features by calculating Euclidean distance [31].
Therefore, based on the SSD object detection model and
combined with K-means, a clustering algorithm based on
mixed multi-input features is designed. This algorithm
comprehensively utilizes the feature extraction ability of
SSD object detection model and the clustering effect of
K-means to achieve more accurate data feature analysis.
Figure 5 is a clustering algorithm based on mixed
multi-input features.
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Figure 5: Clustering algorithm structure based on mixed multi-input features

In Figure 5, target n represents the spatiotemporal
and temporal features of different foreground targets
extracted from video frames. The "reconstruction score™
shown in the figure is used to measure the quality of
feature reconstruction, which is a key indicator for
evaluating abnormal behavior. This score is combined
with clustering results to improve the accuracy of
detecting abnormal behavior through comprehensive
judgment. The clustering algorithm based on mixed
multi-input features first utilizes the SSD object detection
model to extract foreground target features from multiple
input targets. The extractive feature is divided into
temporal and spatial features. The time feature
information is fed into the feature extraction network as
input data for similarity constraints to enhance the

model's recognition ability of time series data. The
spatial feature information is constrained by spatial
similarity using reconstruction errors to calculate the
reconstruction score of information reconstruction quality.
Then, the time feature information trained with similarity
constraints is input into the clustering module for
clustering operations. Based on feature similarity, cluster
scores are calculated to evaluate the correlation between
targets. In the abnormal behavior detection of scenic area
monitoring videos, the motion trajectory of the target
object serves as the key basis for determining whether its
behavior is abnormal. The SSD configuration is as
follows: The resolution of the input image for the SSD
model is 300x300. To handle targets of different sizes,
SSD utilizes multiple anchor boxes of different sizes. The
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size of the small anchor frame is 32x32, while the size of
the middle anchor frame and the large anchor frame are
64x64 and 128x128, respectively. The study adopts the
k-means++ initialization method to improve the
clustering quality and the convergence speed of the
algorithm. In the K-means clustering algorithm, based on
the characteristics of the dataset, K=10 is set to cluster
the data into 10 categories. To effectively capture its
motion trajectory, the study uses the RGB difference map
to analyze the color changes between consecutive frames
and map the changes in the motion trajectory. The
reconstructed RGB difference map obtained based on
behavioral feature transformation is shown in equation
(10).

% . nRGB
Xroe = 77(ZRG|37 0, ) (10)
In  equation  (10), RRGB represents  the

reconstructed RGB difference map obtained based on
behavioral feature transformation. 77 refers to decoding

output. Z,., means the behavioral feature generated

by the encoder. HdRGB is the decoder’s parameter set.

The loss function during the behavioral feature
transformation is represented by equation (11).
A 2
Lres = ”XRGB - XRGB” (11)

In equation (11), L,gp represents the loss function
in converting the RGB difference map into behavioral
features. Xpgg represents the original RGB difference

map of the input. The mathematical expression for
clustering score is represented by equation (12).

H. Li et al.

In equation (12), S represents the clustering score.

I; refers to the i -th feature point extracted from the

network. N means the quantity of cluster centers. Cy
is the K -th cluster center. o represents the weight of

clustering scores. The mathematical expression for the
reconstruction score is represented by equation (13).

S =[50 %, @)
In equation (13), S,, represents the reconstruction

score. M refers to the quantity of target boxes. The
abnormal behavior score is calculated by adding the
clustering score and reconstruction score with different
weights, represented by equation (14).

st)=aXs(r)+ YN S,

In equation (14), S represents the score for
abnormal behavior. [ refers to the weight of the

(14)

reconstructed score. N(t) represents the number of

features on the t-th frame video image. The score
threshold for abnormal behavior scores in this

experiment is set to standardized [0,1]. The
standardized abnormal behavior score is represented by

equation (15).
' S(t)_s(t)min
/(t)= >
S(t)rmx _S(t)min
In equation (15), S represents the normalized
score of abnormal behaviors. S(t)max and s(t)m.n
represent the maximum and minimum scores of

(15)

N 2 . . . . .
S(r. ) = ze*‘z”“ al (12) abnormal behaviors, respectively. Figure 6 is a clustering
' i1 algorithm based on mixed multi-input features.
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Figure 6: Process of clustering algorithm based on mixed multi-input features

In Figure 6, spatial features are constrained by
reconstruction errors. Specifically, the reconstruction
error is used to guide the optimization of spatial feature
information, thereby improving the sensitivity of the
model to spatial features. Unlike directly using
reconstruction errors as input features, reconstruction

errors affect spatial features through the output of deep
convolutional  autoencoders,  thereby  improving
clustering performance and abnormal behavior scoring.
In the clustering algorithm based on mixed multi-input
features, the SSD object detection model is first used to
extract foreground targets from monitoring video images,
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thereby reducing the impact of complex environments on
extracting effective features. The RGB difference map
corresponding to the extracted foreground target is taken
as input for CNN, and the temporal feature information
of this difference map is extracted. Then, after encoding
and decoding by a deep convolutional autoencoder
network, these temporal features are constrained to
enhance its robustness. The network utilizes
reconstruction errors to constrain spatial feature
information, ensuring that the output image has effective
feature information. K-means is used to classify this
constrained feature information and calculate the
abnormal behavior score. Finally, the calculated
abnormal behavior score is compared with the preset
threshold. If the score exceeds the threshold, it is
considered abnormal behavior.

4  Verification of abnormal behavior

detection in monitoring videos
based on deep convolutional
autoencoder mixed multi-input

feature clustering algorithm

After setting up the experimental environment, the
performance of the clustering algorithm was first
validated. Then, the effectiveness of the abnormal
behavior detection method was verified using methods
such as abnormal behavior score detection, ablation
experiments, and comparative experiments.

4.1 Experimental environment construction and
algorithm performance experiments

To validate the effectiveness of the monitoring video
abnormal behavior detection method using multi-input
feature clustering, an experimental environment was
constructed using the Pytorch framework. A
high-performance NVIDIA GeForce RTX 3080 Ti GPU
was taken as the cloud host for model training.
Meanwhile, an 8-core Intel Xeon CPU was configured
for the Windows 10 system to support large-scale data
processing. Before conducting the experiment, this input
data image was preprocessed and the pixel intensity of
monitoring video frames was normalized within [-1, 1].
The learning rates of the model generator and
discriminator were 0.01 and 0.001, respectively. These
datasets used in this experiment are CUHK Avenue and
UCSD, which contain monitoring video images collected
in natural scenes to distinguish between normal and
abnormal behaviors. The CUHK Avenue dataset includes
16 training videos from different scenarios and 21 testing
videos, covering various daily activities. These videos
include scenes of pedestrians walking normally, while
also annotating abnormal behaviors such as running,
jumping, and discarding items, providing diverse
behaviors in typical urban street environments. The
UCSD dataset has two subsets, Pedl and Ped2, which
mainly focus on pedestrian behavior patterns. Pedl
focuses on shooting wider pedestrian areas, while Ped2
focuses more on narrower scenes. These datasets provide
video instances of standard walking behavior and various
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abnormal behaviors such as cycling and driving. In
abnormal behavior detection, key input features include
but are not limited to motion trajectories of moving
targets, including dynamic parameters such as speed and
direction. The appearance features of static parameters
such as shape, size, and color extracted using image
processing techniques. Table 2 shows the specific
experimental environment configuration.

Table 2; Specific experimental environment
configurations

Exp_erlmental Configuration

environment

Operating system Windows 10

The Pytorch Pytorch1.8.1

framework

CPU 8 x Intel(R) Xeon(R) CPU E5-2686 v4 @
2.30GHz

GPU NVIDIA GeForce RTX 3080 Ti

Memory 64GB

Graphics memory 6G

To verify the performance of DCAMMFCA-based
algorithm, a comparison was made between the ordinary
clustering algorithm and the anomaly behavior detection
algorithm based on the deep convolutional autoencoder.
The study sets the training batch to 100 times. Figure 7
presents the accuracy change on the test set. The
accuracy based on DCAMMFCA was always higher than
that of the other two algorithms. When the training round
reached 100, the accuracy of the ordinary clustering
algorithm only reached 59.7%. The accuracy of the
anomaly  detection algorithm based on deep
convolutional autoencoder network reached 72.4%. The
accuracy of DCAMMFCA reached 89.6%, with an
increase of 29.9% and 17.2%, respectively. Therefore,
DCAMMFCA, as an independent ensemble algorithm,

effectively improves the recognition accuracy of
abnormal behavior detection.
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Figure 7: The accuracy variation of different algorithms
on the test set
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4.2 Performance verification of mixed

multi-input feature clustering algorithm
MMFCA, as a fundamental clustering algorithm
framework, is used for abnormal behavior detection in
video surveillance. The algorithm based on MMFCA has
been optimized to DCAMMFCA, which introduces deep
convolutional autoencoder and attention mechanism to
improve the accuracy of anomaly behavior detection. To
verify the performance based on MMFCA, a comparative
analysis was conducted between MMFCA and Rough
K-Means (RKM), Improved K-Means (IKM), and Fuzzy
C-Means (FCM) [32]. The study combined the CUHK
Avenue dataset as new data with the UCSD dataset to
form an artificial training dataset. Figure 8 shows the
distribution of the manually trained dataset, where the
data points and clustering centers have undergone
preliminary clustering processing. This dataset combines
the CUHK Avenue dataset and UCSD dataset for training
and testing clustering algorithms. The red data points in
the figure represent the clustering of large targets, the
blue data points represent the clustering of small targets,
the green data points represent the newly added CUHK
Avenue dataset data points, and the black data points
represent the clustering centers generated by the
clustering algorithm. The clustering ratio of large and
small targets in artificial datasets is roughly 3:1.
MMFCA was compared with RKM, IKM, and FCM
in the artificial training dataset. Figure 9 shows the
clustering performance of four algorithms. In Figure 9 (a),
RKM failed to identify the newly added data and divided
it into small target clusters, resulting in a corresponding
shift in the cluster center. In Figure 9 (b), IKM divided
the newly added data into large target clusters, causing a
shift in the cluster center. In Figure 9 (c), FCM also
divided the newly added data into two imbalanced
clusters without correctly identifying the new data. In
Figure 9 (d), MMFCA effectively identified the newly
added data points, and the position of the cluster center
was also in the ideal position, showing a high similarity
with the distribution of the manually trained dataset.
Overall, MMFCA can correctly identify small target data
and newly added data, with high recognition accuracy.
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Figure 8: The distribution of artificial training datasets

To further validate the effectiveness of MMFCA,
performance indicators such as the Adjusted Rand Index
(ARI), Silhouette Coefficient (Sil), and clustering time
were compared among these four clustering algorithms.
ARI can measure the fitting of clustering algorithms. An
ARI close to 1 indicates that its clustering effect is more
accurate. Sil can determine the clustering effectiveness.
An Sil approaches 1 indicates that the clustering effect is
more reasonable. Table 3 presents the performance
comparison results of four clustering algorithms. The
ARI and Sil of MMFCA were closer to 1, indicating that
its clustering effect was closer to the real situation. The
ARI was 0.894, which was 142%, 28.8%, and 234%
higher than that of RKM, IKM, and FCM, respectively.
The Sil of MMFCA was 0.906, which was 116.7%, 50%,
and 131.7% higher than that of the other three algorithms,
respectively. MMFCA had the shortest clustering time of
0.216s, which was 62.03%, 28.94%, and 27.27% shorter
than that of the other three algorithms, respectively. From
the F1 score, the research method scored 0.912, while
other algorithms all scored over 0.8. In addition, for
confusion matrix, the error rate of the research method
was the lowest, only at 8%, further proving its superiority.
In  summary, MMFCA had excellent clustering
performance.
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Figure 9: The clustering effect of four algorithms

Table 3: Comparison of performance indicators of four clustering algorithms

Clustering algorithm ARI | Sil Cluster time/s | F1 score | Confusion matrix (TP, FN, FP, and TN)
RKM 0.369 | 0.418 | 0.569 0.352 (142, 258, 308, and 292)

IKM 0.694 | 0.604 | 0.304 0.721 (367, 133, 143, and 357)

FCM 0.267 | 0.391 | 0.297 0.288 (121, 279, 302, and 298)

Mixed multi-input feature clustering | 0.894 | 0.906 | 0.216 0.912 (458, 42, 38, and 462)

4.3 Performance verification of abnormal
behavior  detection based on deep
convolutional autoencoder mixed

multi-input feature clustering algorithm

To validate the abnormal behavior detection performance,
this study compared this detection method with abnormal
behavior detection methods such as Adam, MDT, SF, and
SRC [33]. To further validate the stability of the model
performance, a 95% confidence interval was added when
calculating the ROC curve. All AUC values were the
average based on five-fold cross-validation. Figure 10
presents the Receiver Operating Characteristic (ROC)
curves using different abnormal behavior detection

methods. In Figure 10 (a), on the CUHK Avenue data,
the AUC value of the abnormal behavior detection
method based on DCAMMFCA was 91.9%, which was
41.8%, 13.0%, 19.5%, and 3.1% higher than the AUC
values of the Adam, MDT, SF, and SRC anomaly
detection methods, respectively. In Figure 10 (b), on the
UCSD dataset, the AUC value of the abnormal behavior
detection method based on DCAMMFCA was 94.7%,
which was 48.6%, 10.6%, 38.2%, and 4.7% higher than
that of the other four abnormal behavior detection
methods, respectively. Overall, the abnormal behavior
detection method based on DCAMMFCA had high
detection accuracy.
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Figure 10: The ROC curve of different abnormal behavior detection methods

To observe the performance of different detection
methods more intuitively, the performance of different
abnormal behavior detection methods on different
datasets was compared. Table 4 shows the comparison
results of performance indicators for different abnormal
behavior detection methods. The abnormal behavior
detection method based on DCAMMFCA achieved better
performance on different datasets. On the CUHK Avenue

dataset, the precision, recall, and error rate of this method
were 94.5%, 95.6%, and 12.6%, respectively. On the
UCSD dataset, the precision, recall, and error rate of this
method were 95.2%, 94.8%, and 10.9%, respectively.
Overall, the detection precision of the abnormal behavior
detection method based on DCAMMFCA was superior to
that of the other four abnormal behavior detection
methods.

Table 4: Comparison of different abnormal behavior detection methods’ performance indicators

Test method CUHK Avenue dataset UCSD dataset

Precision/% Recall/% Error rate/% | Precision/% Recall/% Error rate/%
Adam 53.4 64.2 39.1 55.3 66.3 41.9
MDT 73.1 72.6 25.6 70.6 74.0 25.2
SF 60.4 68.6 30.5 61.6 69.1 41.7
SRC 88.4 82.1 19.6 87.5 83.1 15.6
Proposed method 94.5 95.6 12.6 95.2 94.8 10.9

4.4 Abnormal behavior score detection and

ablation experiment

To validate the abnormal behavior detection effectiveness
in practical applications, this study compared it with
different abnormal behavior detection methods for
abnormal behavior score detection, as shown in Figure 11.
The abnormal behavior score was calculated through
K-means clustering and reconstruction score. The
abnormal behavior score of each video frame was
compared with the normal behavior score, from which
the difference value between the frame and the normal
behavior score was calculated. In actual monitoring
videos, the difference in abnormal scores of the abnormal
behavior detection method based on DCAMMFCA was
0.297, which was 34.38%, 16.93%, 22.22%, and 16.01%
higher than the difference in abnormal scores of
abnormal behavior detection methods such as Adam,
MDT, SF, and SRC, respectively. The abnormal behavior
detection method based on DCAMMFCA had high
accuracy in identifying abnormal behaviors.

The training set in the experiment contains 5,000 samples,
and the testing set contains 1,000 samples. The training
and testing sets were randomly selected from the UCSD

and Avenue datasets, ensuring the diversity and
representativeness of the experimental data. To further
verify the role of different modules in the abnormal
behavior detection method, the study added each module
to the network for ablation experiments. "\" indicates the
presence of the module, and "/" indicates the absence.
Table 5 shows the ablation experiment. After optimizing
the autoencoder using attention mechanism, the accuracy
improved by 3.2%. After introducing GAN, the accuracy
improved by 13.5%. When the algorithm was added to
the SSD object detection model, the accuracy improved
by 8.6%. After adding K-means, the accuracy improved
by 5.8%. In addition, to evaluate the stability of the
model, a five-fold cross-validation was conducted to
calculate the standard deviation of the results. After
adding various modules, the standard deviation gradually
decreased from * 1.5 to + 0.8, demonstrating the stability
of the model under different experimental configurations.
In summary, the added modules brought benefits to the
abnormal behavior detection, indicating that the proposed
method effectively improved the abnormal behavior
detection performance.
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Table 5: Ablation experiment

Autoencoder | Attention mechanism | GAN SSD object detection | K-means Accuracy/% j;?/?ggg?]
v / / / / 59.4 +15
v v / / / 62.6 +1.2
v v v / / 76.1 +1.0
v v v v / 84.7 +0.9
v v v v v 90.5 +0.8

5 Discussion

To improve the detection accuracy of tourist attraction
monitoring, the DCAMMFCA method for detecting
abnormal behavior in monitoring videos of tourist
attractions is proposed. Compared with the existing
state-of-the-art methods for detecting abnormal behaviors
[32-33], the research method has shown significant
advantages in multiple indicators. The method based on
DCAMMFCA showed significantly higher detection
accuracy on both the CUHK Avenue and UCSD datasets.
For example, on the CUHK Avenue dataset, the accuracy
of DCAMMFCA was 94.5%, which was approximately
41.8%, 13.0%, 19.5%, and 3.1% higher that other
methods. This is because DCAMMFCA combined with
GAN and attention mechanism can significantly improve
the performance of abnormal behavior detection,
especially in complex environments and small object
detection. In terms of computational efficiency, the
DCAMMFCA method had an average computation time
of 0.216 seconds on the CUHK Avenue dataset, which
was significantly lower than other algorithms. Especially
compared with clustering algorithms such as RKM, IKM,
and FCM, the efficiency was improved by 62.03%. This
method introduces GAN and attention mechanism, which
can maintain high robustness in constantly changing
environments and have high computational efficiency,
making it suitable for real-time monitoring applications.
In terms of the reliability of abnormal behavior
classification, this method achieved a recognition
accuracy of 89.6% for small targets, and the clustering

effect was highly consistent with the real situation. The
ARI and Sil were 0.894 and 0.906, respectively, close to
1, indicating the superiority of clustering effect.

6 Conclusion

To improve the public safety of TSA, a self-encoder
structure GAN optimized by attention mechanism was
built, and the SSD object detection model combined with
multi-input feature clustering algorithm was used to
improve the accuracy of small object detection. These
results confirmed that the accuracy of DCAMMFCA
reached 89.6%. The ARI and Sil reached 0.894 and 0.906,
respectively, which were close to 1, indicating that its
clustering effect was close to the real situation. In terms
of computation time, MMFCA took 0.216 seconds, which
was 62.03%, 28.94%, and 27.27% shorter than that of
RKM, IKM, and FCM, respectively. On the datasets
CUHK Avenue and UCSD, the AUC values of the
abnormal behavior detection method based on
DCAMMEFCA reached 91.9% and 94.7%, respectively,
far higher than that of the other four behavioral anomaly
detection methods. On the CUHK Avenue dataset, the
precision, recall, and error rate of this method were
94.5%, 95.6%, and 12.6%, respectively. On the UCSD
dataset, the precision, recall, and error rate of this method
were 95.2%, 94.8%, and 10.9%, respectively. The
abnormal score difference was 0.297, which was 25.58%,
14.47%, 18.18%, and 13.80% higher than that of Adam,
MDT, SF, and SRC, respectively. In summary, the
research on TSA monitoring video abnormal behavior
detection based on MMFCA had effectively improved the
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accuracy of abnormal behavior detection.

However, there are still some limitations in the research,
such as the lack of interpretability layers, failure to test on
real TSA datasets, domain adaptation/generalization
issues, and insufficient evaluation under adversarial and
occlusion conditions. In response to these limitations,
future work can further classify the types of abnormal
behaviors detected to take different measures to deal with
different types of abnormal behaviors. In addition, to
adapt to different scenarios and data distributions,
transfer learning methods can be explored in the future to
quickly adapt to new monitoring environments with a
small amount of annotated data. In addition, methods for
multi-modal data fusion can be explored, such as
combining the thermal imaging and RGB images to
improve the accuracy and robustness of abnormal
behavior detection.
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