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With the booming development of the global tourism industry, the increase in tourists has gradually 

made the safety management of tourist attractions more important. Monitoring abnormal behavior in 

tourist attractions is crucial in the safety management. To improve the accuracy of monitoring abnormal 

behavior in tourist attractions, this study combines convolutional neural networks with autoencoder 

network structures to reduce the learning generalization ability of convolutional neural networks. 

Attention mechanism is incorporated to improve sensitivity and recognition accuracy of abnormal 

behavior in complex environments. The method was experimentally validated using the CUHK Avenue 

and UCSD datasets, and compared with existing baseline methods. The results showed that the mixed 

multi-input feature clustering algorithm based on deep convolutional autoencoder had better detection 

performance than traditional methods on these two datasets. On the CUHK Avenue dataset, the AUC 

value was 91.9%, which was 27.1%, 10.6%, 15.0%, and 2.8% higher than that of the Adam, MDT, SF, 

and SRC methods, respectively. On the UCSD dataset, the AUC value reached 94.7%, which was 31.0% 

higher than that of the other four methods. In addition, the precision on the CUHK Avenue dataset was 

94.5%, the recall rate was 95.6%, and the error rate was 12.6%. On the UCSD dataset, the precision 

was 95.2%, the recall rate was 94.8%, and the error rate was 10.9%. Overall, the research on the 

detection method of abnormal behavior in tourist attraction monitoring videos based on mixed 

multi-input feature clustering algorithm has high detection accuracy and can provide more effective 

technical support for the safety management of tourist attractions. 

Povzetek: DCAMMFCA združi SSD, pozornostno izboljšan konvolucijski avtoenkoder z GAN ter 

K-means gručenje mešanih časovno-prostorskih značilk za odkrivanje anomalij v turističnem nadzoru. 

 

1 Introduction 
As the economy and culture rapidly develop and the 

global tourism industry prospers, tourism has become an 

important venue for economic and cultural exchanges. 

Meanwhile, as modern cities continue to advance, the 

requirements for safety supervision in the public sector 

are also increasing. The monitoring system, as a key 

technology for security monitoring, has seen an 

increasing demand for its intelligence and information 

security [1-2]. Tourism Scenic Area (TSA) often faces 

challenges such as high pedestrian traffic and complex 

terrain, and traditional manual monitoring technologies 

often encounter high false positive rates [3]. Traditional 

video surveillance mainly relies on simple motion 

detection or algorithms with specific rules, such as fixed 

area intrusion detection and trajectory anomaly analysis. 

These monitoring technologies are effective enough in 

simple environments, but their effectiveness is limited 

when faced with dynamic and complex tourism scenes 

[4]. For example, factors such as fluctuations in crowd 

density, environmental obstructions, and changes in 

lighting conditions can affect the accuracy of video 

detection [5]. In addition, due to the lack of intelligent 

factors, traditional video surveillance technology cannot 

effectively classify and store recorded data, resulting in 

huge data processing time and difficulty in obtaining all 

information. Therefore, an innovative approach based on 

the Mixed Multi-input Feature Clustering Algorithm 

(MMFCA) is proposed for abnormal behavior detection 

on surveillance videos to address the low detection 

accuracy in video frame prediction and reconstruction in 

complex environments. Meanwhile, the optimized 

autoencoder based on attention mechanism is used as a 

Generative Adversarial Network (GAN) for feature 

extraction to improve sensitivity and recognition 

accuracy for abnormal behavior in complex 

environments. 

The core question of the research is: "Can the 

combination of SSD-based spatial feature extraction and 

Time GAN attention autoencoder improve the accuracy 
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of abnormal behavior detection in TSA scenarios?” To 

verify this hypothesis, corresponding experiments are 

designed and various baseline methods are compared. 

The research hypothesis suggests that the Mixed 

Multi-input Feature Clustering Algorithm based on Deep 

Convolutional Autoencoder (DCAMMFCA) can 

effectively improve the abnormal behavior detection in 

scenic surveillance videos, especially when dealing with 

small object detection in complex environments. 

The research is divided into six sections. The first section 

is the introduction. The second section reviews the 

current research status of intelligent monitoring systems 

and abnormal behavior detection both domestically and 

internationally. Next, the third section introduces a 

monitoring video anomaly detection method based on the 

DCAMMFCA. The fourth section analyzes the abnormal 

behavior detection results based on this algorithm and 

compares them with existing methods. The fifth section 

is discussion. The sixth section is the conclusion. 

2 Related works 
As an important research direction in computer vision, 

intelligent monitoring systems have received attention 

from many experts and scholars and have achieved many 

results. Jenssen et al. proposed an automatic vision-based 

power line inspection and monitoring system to monitor 

power lines. This system utilized deep learning 

technology for network construction and utilized deep 

residual network structure for damage monitoring of 

power line components. These results confirmed that the 

method had high monitoring accuracy [6]. Yousefi et al. 

proposed a monitoring system that combined sensor 

systems for real-time monitoring of food in the 

production chain. This design utilized biosensors for 

monitoring production environment humidity, 

temperature, and gases. These results confirmed that this 

method monitored food quality and ensured food 

production safety [7]. Pimenov et al. combined artificial 

intelligence technology with sensors to design a 

monitoring system for real-time monitoring during tool 

processing. This system could monitor the real-time 

status of cutting tools during machining operations and 

utilize machining responses to monitor the surface 

roughness of the tools. These results confirmed that this 

method effectively improved dimensional accuracy and 

production efficiency during the machining process [8]. 

Liu combined machine learning technology with data 

mining technology for real-time monitoring of abnormal 

advertisements to maintain the integrity and efficiency of 

advertising campaigns. The results showed that this 

method could monitor various measures of advertising 

activities in a vigilant manner and was feasible [9]. 

Mattera et al. developed a line arc additive 

manufacturing program using artificial intelligence 

technology to monitor the production process of arc 

additive manufacturing. The program included a defect 

detection module that could monitor the production 

process of arc additive manufacturing. The results 

showed that this method was helpful for parameter 

control in the manufacturing process [10]. 

Abnormal behavior detection plays an important 

role in intelligent monitoring. ALDHAMARI et al. put 

forward a high-performance structure to design a smart 

monitoring system with human behavior detection and 

classification. This framework utilized foreground optical 

flow energy to extract descriptive spatiotemporal features 

from surveillance videos. The orthogonal matching 

tracking algorithm was used to recover high-dimensional 

sparse features. These results confirmed that the method 

effectively improved the behavior detecting and 

classifying accuracy [11]. Hu et al. proposed a deep 

learning-based driver abnormal behavior detection 

system to effectively identify abnormal driver behavior. 

The system utilized stacked sparse autoencoders to learn 

driving behavior features, and then used greedy layering 

for training. These results confirmed that the method had 

high detection accuracy in detecting abnormal driving 

behavior [12]. Feizi et al. proposed a new normal 

behavior estimation model to accurately define abnormal 

behavior. This design utilized the histogram of 

directional optical flow as the basic local feature and 

utilized spectral clustering for similar feature clustering. 

These results confirmed that this method could 

effectively distinguish different behaviors [13]. Zhang et 

al. proposed a cloud platform virtual machine abnormal 

behavior monitoring system to improve the security and 

reliability of virtual machines. This system utilized 

incremental clustering algorithm for load information 

monitoring and local outlier factor algorithm for online 

anomaly detection. These results confirmed that this 

method could meet the real-time monitoring 

requirements [14]. Gao et al. used wireless sensors and 

discrete-time Markov chains to construct a user activity 

monitoring model connected to the medical Internet of 

Things for detecting abnormal behavior in patients with 

Alzheimer's disease. This model classified users' daily 

behaviors using probability calculation tree logic. The 

results showed that this method was feasible [15]. To 

monitor Ethereum fraud, Tan et al. proposed a method for 

mining Ethereum transaction records to monitor 

fraudulent transactions. This method used web crawling 

technology to obtain Ethereum addresses with fraud tags, 

and then used network embedding algorithms to extract 

node features for subsequent fraud transaction 

recognition. Finally, a graph Convolutional Neural 

Network (CNN) was used to classify the identified 

addresses. The results showed that the accuracy of 

Ethereum fraud transaction monitoring was as high as 

96% [16]. The summary of relevant work is shown in 

Table 1.
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Table 1: Summary of related work 

Method Dataset 

Feature 

extraction 

method 

Accuracy Advantages Limitations 

Jenssen 

et al. 

Power line 

dataset 

Deep residual 

network 
High accuracy 

High monitoring 

precision 

Only applicable to power line 

monitoring, not suitable for 

general scenarios 

Yousefi 

et al. 

Food 

production 

dataset 

Biosensors 
No clear 

accuracy data 

Real-time 

monitoring of 

environmental data 

Limited by environmental 

sensors, cannot handle 

dynamic behavioral changes 

Pimenov 

et al. 

Manufacturing 

dataset 
Sensors + AI 

No clear 

accuracy data 

Improves 

production 

efficiency and 

accuracy 

Specific to certain tools and 

processes, cannot generalize 

to other fields 

Liu et al. 
Advertising 

dataset 

Machine 

learning + data 

mining 

No clear 

accuracy data 

Real-time 

monitoring of 

advertising activities 

Cannot handle large-scale 

advertising data and rapidly 

changing behavioral patterns 

Mattera 

et al. 

Arc additive 

manufacturing 

dataset 

AI + Sensors 
No clear 

accuracy data 

Good monitoring 

capabilities for 

manufacturing 

processes 

Focused on additive 

manufacturing, cannot be 

generalized to other 

industries 

ALDHA

MARI et 

al. 

Surveillance 

video dataset 

Optical flow 

feature 

extraction + 

Orthogonal 

Matching 

Pursuit 

Algorithm 

No clear 

accuracy data 

Improves behavior 

classification 

accuracy 

Only suitable for video 

surveillance, not applicable to 

other types of data 

Hu et al. Driver dataset 
Sparse 

autoencoder 
High accuracy 

Detects driver 

abnormal behavior 

Limited to driving behavior, 

not adaptable to other types 

of anomaly detection 

Feizi et 

al. 

Unknown 

dataset 

Directional 

optical flow + 

spectral 

clustering 

No clear 

accuracy data 

Effectively 

distinguishes 

different behaviors 

Possibly limited by specific 

behavior estimations 

Zhang et 

al. 

Virtual 

machine 

dataset 

Incremental 

clustering + 

local outlier 

factor 

High accuracy 

Meets real-time 

monitoring 

requirements 

Specific to virtual machine 

data, cannot handle other 

types of data 

Gao et 

al. 

Alzheimer's 

patients 

dataset 

Wireless 

sensors + 

Markov chain 

No clear 

accuracy data 

Real-time 

monitoring of 

patient behavior 

Only applicable to specific 

patient groups, cannot 

generalize 

Tan et 

al. 

Ethereum 

transaction 

records 

Network 

embedding 

algorithm + 

Graph 

Convolutional 

Network 

96% High accuracy 
Only applicable to Ethereum 

fraud monitoring 

 

As shown in Table 1, these methods have failed to 

achieve their goals in the TSA context. For example, the 

power line monitoring method proposed by Jenssen et al. 

only focuses on a single domain and cannot cope with 

the changing monitoring scenarios. The proposed 

solution in this study has strong adaptability and can 

handle video surveillance in various environments. In 

addition, the food production chain monitoring method 

proposed by Yousefi et al. does not consider behavioral 

patterns and dynamic detection. The solution proposed in 

this article, combined with deep learning technology, can 

dynamically identify and analyze abnormal behaviors. 

In summary, many achievements have been made in 

research related to intelligent monitoring systems and 

abnormal behavior detection. However, there is still 

relatively little research on using feature storage 

autoencoders as network architectures for feature 

extraction and integrating multiple input features for 

clustering analysis to detect abnormal behavior in videos. 

The feature storage module, as an innovative method, is 
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introduced into the generator of the GAN for more 

efficient extraction and storage of multidimensional 

features. Therefore, the feature storage module optimizes 

the feature extraction process of the generator in 

abnormal behavior detection by storing and matching 

feature vectors to effectively improve the accuracy and 

sensitivity of detection. 

3 Detection of abnormal behavior in 

monitoring videos based on deep 

convolutional autoencoder mixed 

multi-input feature clustering 

algorithm 
A deep convolutional autoencoder network is used for 

abnormal behavior detection, and a clustering algorithm 

with mixed multi-input features is combined to improve 

the detection performance of small targets. To reduce the 

impact of complex environments on feature extraction, 

the study further utilizes SSD object detection models to 

extract foreground targets in monitoring video images. 

 

3.1 Abnormal behavior detection algorithm 

based on deep convolutional autoencoder 

network structure 
CNN is a powerful tool specifically designed for 

analyzing visual images in deep learning. Through 

multi-level structural design, it can automatically and 

effectively learn spatial level features from image data 

[17-18]. In computer monitoring video analysis, since 

video images are essentially digital information having 

many pixels, it is particularly crucial to utilize CNN to 

extract the features of these images. The overall 

architecture of the research method is shown in Figure 1. 
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model

K-means 

clustering

Clustering algorithm 

based on mixed multi 

input features

Spatial 
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Time 
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Prospect 

Objectives
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Autoencoder
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attention mechanism

Distinguishing between 

normal/abnormal 

behavior
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behavior

 
Figure 1: Overall architecture diagram of the research method 

 

As shown in Figure 1, the research method 

combines the SSD object detection model with the 

K-means clustering algorithm to construct a MMFCA for 

foreground targets in complex environments. This 

algorithm can extract foreground targets from 

surveillance video images, classify the extracted features 

using the K-means clustering algorithm, and finally 

obtain the temporal and spatial features of the 

surveillance image. Next, the time and spatial features 

extracted from the foreground target are input into the 

CNN for abnormal behavior recognition. To address the 

strong generalization ability of CNN, this study 

combines CNN with autoencoder models and optimizes 

the model using attention mechanisms to improve the 

accuracy of distinguishing normal and abnormal behavior. 

There are three main basic structures of CNN. The input 

layer processes the original pixel data and converts it into 

a form that the network can process. The feature 

extraction layer is usually composed of multiple 

alternating convolutional and pooling layers. The 

convolutional layer is responsible for extracting local 

features from the image. The pooling layer is responsible 

for down-sampling, reducing computational complexity 

while maintaining spatial hierarchy of features [19-20]. 

Finally, the fully connected layer maps the learned 

features to the final output. The function of the 

convolutional layer is represented by equation (1). 
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In equation (1), 
l

jx  represents the input function of 

the l -th convolutional layer,   means the convolution 

operation. b  refers to the bias parameter. k  is the 
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convolution kernel [21]. The mathematical expression for 

the pooling layer is represented by equation (2). 

( )1−= l

j

l

j xpx                             (2) 

In equation (2), ( )xp  refers to pooling operation. 

The mathematical expression for the fully connected 

layer is represented by equation (3). 

( )llll bxfx += −1                    (3) 

In equation (3), ( )xf  refers to the nonlinear 

activation function.   means the weight. Common 

nonlinear activation functions include Tanh, Sigmoid, 

and ReLu. The study uses the Sigmoid function as the 

activating function, represented by equation (4) [22]. 

( )
xe

xf
−+

=
1

1
                        (4) 

Autoencoder is an unsupervised feature learning 

algorithm implemented through neural networks, whose 

core function is data dimensionality reduction and feature 

extraction [23]. Autoencoder learns data by encoding 

input data into a low-dimensional space, which is then 

decoded back to the original data. In this process, the 

autoencoder is to minimize the difference between input 

and output, which is also known as reconstruction error 

[24]. This structural feature enables the autoencoder to 

have the advantage of removing irrelevant noise while 

reconstructing input data. Figure 2 shows the structure of 

the autoencoder. 
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Figure 2: Autoencoder structure 

 

In Figure 2, the autoencoder mainly includes an 

encoding layer and a decoding layer. When encoding, an 

autoencoder can convert high-dimensional input data into 

a low-dimensional latent variable for representation [25]. 

This latent variable encompasses the key features of the 

input data and also has a low-level dimension, thereby 

reducing data complexity and minimizing the need for 

data storage [26]. During decoding, the autoencoder can 

remap these low-dimensional latent variable features to 

the high-dimensional space of the original input data [27]. 

The architecture of the autoencoder is as follows. The 

input layer is 128×128×3, which represents an image 

resolution of 128×128 and is an RGB image. The 

encoder consists of three convolutional layers, with 32, 

64, and 128 kernels in the first, second, and third layers, 

respectively. The kernel size is 3×3 and the stride is 1. 

The first and second layers of the decoder use 64 and 32 

convolution kernels, respectively, with a kernel size of 

3×3 and a stride of 1. The output layer consists of one 

convolutional kernel, with a size of 3×3 and a stride of 1, 

and uses the Sigmoid activation function. In addition to 

the Sigmoid activation function, the ReLU activation 

function is also used in the convolutional layers to handle 

nonlinear transformations. To prevent over-fitting, 

Dropout layers are added between the convolutional 

layers of the encoder, with a dropout probability of 0.2. 

Equation (5) is the loss function of the autoencoder. 

( )
2

1
ˆ

1
 =

−=
N

i ii xx
N

L            (5) 

In equation (5), L  means the loss function. N  

refers to the total datasets. 
ix  represents the i -th 

sample in the input dataset.  
ix̂  is i -th sample in the 

output dataset. When using traditional self-coding 

structures for monitoring video abnormal behavior 

detection, CNN has strong learning and generalization 

abilities. This can reconstruct input samples in video data 

that contain abnormal behavior, making it difficult for the 

model to effectively distinguish between normal and 

abnormal behavior [28]. Therefore, the study 

incorporates attention mechanism into the autoencoder 

for optimization. The attention mechanism can make the 

model focus more on the parts of the data that contain 

important information. By introducing variance attention 

mechanism, autoencoders can adaptively assign higher 

weights to features with abnormal behavior [29]. In 

addition, the optimized autoencoder is taken as a 

generator for GAN to better distinguish between normal 

and abnormal behavior. The feature block of the attention 

mechanism is represented by equation (6). 

( ) ( ) ( )( )whxAttentionwhxwh ,,*, +=  (6) 

In equation (6),   represents the feature block sent 

by the attention mechanism to the convolutional layer for 

decoding. h  and w  refer to the rows and columns of 

the feature map, respectively. ( )( )whxAttention ,  

represents self-attention mechanism. The normalized 

attention map is represented by equation (7). 

( )
( )






−
=

dwh
wh

,,
,                (7) 

In equation (7),   represents the variance of the 

normalized attention map. d  refers to the depth of the 

feature map.   represents the mean of the feature map. 

  represents the standard deviation of the feature map. 

The matching probability of the feature storage module is 

represented by equation (8). 
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In equation (8), F  represents the feature of the 

feature storage module. G  represents the feature output 

by the generator. P  represents the matching probability. 

SF  is the item of the feature storage module. 
tQ  is a 

feature of the hidden layer. Figure 3 shows the basic 

framework of GAN. 

 

Monitoring 

images

Discriminator

True

False

True/False

Autoencoder optimized 

based on attention 

mechanism

Feature storage 

module

 
Fig.3 Basic framework of generative adversarial network 

 

In Figure 3, GAN mainly includes two modules: 

generator and discriminator, which are optimized 

alternately during the training [30]. The generator is to 

capture the distribution of real samples and generate 

outputs similar to real input samples by converting input 

noise. It can distinguish between real samples and 

generator generated samples. The discriminator is to 

distinguish between real samples and fake samples. 

Using the backpropagation algorithm during training, 

these two modules alternate for optimization, 

continuously improving their performance. 

In this GAN framework, the generator adopts an 

optimized deep convolutional autoencoder based on 

attention mechanism, responsible for feature extraction 

and reconstruction. Inside the generator, the feature 

storage module stores key features and participates in 

generating data during the generation process. The 

discriminator is responsible for distinguishing between 

generated data and real data, thereby improving the 

performance of the generator through adversarial 

training. 

The loss function types of GAN are as follows: The 

generator loss uses the least squares loss to optimize the 

generator. The discriminator loss uses adversarial loss to 

train the discriminator to distinguish between generated 

images and real images. The training process of this 

model takes 100 epochs. Within each epoch, the 

generator and discriminator are trained alternately to 

ensure training stability. The objective function of GAN 

is represented by equation (9). 

( ) ( ) ( )  ( ) ( )( ) zGDEaDEDGL zPzaPa
DG za

lg1lg,maxmin ~~ −+=

(9) 

In equation (9), L  represents the objective 

function. G  and D  refer to generators and 

discriminators, respectively. a  represents the feature 

vector of the real monitoring image. z  is a noise vector. 

aP  represents the distribution of real samples. zP  

refers to the distribution of noise vectors. 
aE  

represents the expected distribution vector value. 

 

3.2 Clustering algorithm based on mixed 

multi-input features 
The autoencoder network based on deep convolution can 

handle abnormal behavior detection in ordinary scenes, 

but there are certain difficulties in accurately detecting 

abnormal behavior in complex scenes. TSA has 

limitations such as complex environment, high pedestrian 

traffic, and multiple foreground targets, all of which can 

affect detection accuracy. Therefore, a deep 

convolutional autoencoder network is used to extract 

feature information from video data based on a Single 

Shot MultiBox Detector (SSD). Then K-means is 

introduced to cluster these extracted features. Finally, the 

distance information of the clustering results and the 

reconstruction error of the autoencoder are combined to 

make a comprehensive judgment. This clustering 

algorithm based on mixed multi-input features helps to 

enhance algorithm judgment and improve its detection 

accuracy in complex environments. In the anomaly 

detection algorithm based on deep convolutional 

autoencoder network structure, the SSD model is limited 

to the early stage of object detection as part of video data 

preprocessing. Its main function is to extract foreground 

target information for subsequent feature extraction and 

clustering processing. Figure 4 shows the SSD object 

detection model. 
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Figure 4: SSD object detection model framework 

 

In Figure 4, this model belongs to a single-stage 

detection model. It first uses CNN to extract features 

from sample data, and generates boundary boxes of 

different sizes on the extracted feature maps. These 

boundary boxes are used for target classification and 

prediction. SSD adopts a pyramid structure, allowing for 

object detection on feature maps with multiple different 

resolutions. This feature enables the model to have good 

detection performance for targets of different sizes, thus 

helping to improve small target detection performance in 

video surveillance. K-means is an unsupervised learning 

algorithm that can measure the similarity between data 

features by calculating Euclidean distance [31]. 

Therefore, based on the SSD object detection model and 

combined with K-means, a clustering algorithm based on 

mixed multi-input features is designed. This algorithm 

comprehensively utilizes the feature extraction ability of 

SSD object detection model and the clustering effect of 

K-means to achieve more accurate data feature analysis. 

Figure 5 is a clustering algorithm based on mixed 

multi-input features. 
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Figure 5: Clustering algorithm structure based on mixed multi-input features 

 

In Figure 5, target n represents the spatiotemporal 

and temporal features of different foreground targets 

extracted from video frames. The "reconstruction score" 

shown in the figure is used to measure the quality of 

feature reconstruction, which is a key indicator for 

evaluating abnormal behavior. This score is combined 

with clustering results to improve the accuracy of 

detecting abnormal behavior through comprehensive 

judgment. The clustering algorithm based on mixed 

multi-input features first utilizes the SSD object detection 

model to extract foreground target features from multiple 

input targets. The extractive feature is divided into 

temporal and spatial features. The time feature 

information is fed into the feature extraction network as 

input data for similarity constraints to enhance the 

model's recognition ability of time series data. The 

spatial feature information is constrained by spatial 

similarity using reconstruction errors to calculate the 

reconstruction score of information reconstruction quality. 

Then, the time feature information trained with similarity 

constraints is input into the clustering module for 

clustering operations. Based on feature similarity, cluster 

scores are calculated to evaluate the correlation between 

targets. In the abnormal behavior detection of scenic area 

monitoring videos, the motion trajectory of the target 

object serves as the key basis for determining whether its 

behavior is abnormal. The SSD configuration is as 

follows: The resolution of the input image for the SSD 

model is 300×300. To handle targets of different sizes, 

SSD utilizes multiple anchor boxes of different sizes. The 



212   Informatica 49 (2025) 205–220                                                                 H. Li et al. 

 

size of the small anchor frame is 32×32, while the size of 

the middle anchor frame and the large anchor frame are 

64×64 and 128×128, respectively. The study adopts the 

k-means++ initialization method to improve the 

clustering quality and the convergence speed of the 

algorithm. In the K-means clustering algorithm, based on 

the characteristics of the dataset, K=10 is set to cluster 

the data into 10 categories. To effectively capture its 

motion trajectory, the study uses the RGB difference map 

to analyze the color changes between consecutive frames 

and map the changes in the motion trajectory. The 

reconstructed RGB difference map obtained based on 

behavioral feature transformation is shown in equation 

(10). 

( )RGB

dRGBRGB zx  ;ˆ =                    (10) 

In equation (10), 
RGBx̂  represents the 

reconstructed RGB difference map obtained based on 

behavioral feature transformation.   refers to decoding 

output. 
RGBz  means the behavioral feature generated 

by the encoder. 
RGB

d  is the decoder’s parameter set. 

The loss function during the behavioral feature 

transformation is represented by equation (11). 
2

ˆ
RGBRGBRGB xxL −=                   (11) 

In equation (11), 
RGBL  represents the loss function 

in converting the RGB difference map into behavioral 

features. 
RGBx  represents the original RGB difference 

map of the input. The mathematical expression for 

clustering score is represented by equation (12). 
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kierS

1

2
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             (12) 

In equation (12), S  represents the clustering score. 

ir  refers to the i -th feature point extracted from the 

network. N  means the quantity of cluster centers. 
kc  

is the k -th cluster center.   represents the weight of 

clustering scores. The mathematical expression for the 

reconstruction score is represented by equation (13). 

2
ˆ

mmm xxS −=                      (13) 

In equation (13), 
mS  represents the reconstruction 

score. M  refers to the quantity of target boxes. The 

abnormal behavior score is calculated by adding the 

clustering score and reconstruction score with different 

weights, represented by equation (14). 

( ) ( )
( )

 = =
+=

tN

i

M

m mi SrStS
1 1

      (14) 

In equation (14), S  represents the score for 

abnormal behavior.   refers to the weight of the 

reconstructed score. ( )tN  represents the number of 

features on the t -th frame video image. The score 

threshold for abnormal behavior scores in this 

experiment is set to standardized  1,0 . The 

standardized abnormal behavior score is represented by 

equation (15). 

( )
( ) ( )

( ) ( )minmax

min

tsts

tsts
tS

−

−
=                  (15) 

In equation (15), S  represents the normalized 

score of abnormal behaviors. ( )maxts  and ( )mints  

represent the maximum and minimum scores of 

abnormal behaviors, respectively. Figure 6 is a clustering 

algorithm based on mixed multi-input features.
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Figure 6: Process of clustering algorithm based on mixed multi-input features 

 

In Figure 6, spatial features are constrained by 

reconstruction errors. Specifically, the reconstruction 

error is used to guide the optimization of spatial feature 

information, thereby improving the sensitivity of the 

model to spatial features. Unlike directly using 

reconstruction errors as input features, reconstruction 

errors affect spatial features through the output of deep 

convolutional autoencoders, thereby improving 

clustering performance and abnormal behavior scoring. 

In the clustering algorithm based on mixed multi-input 

features, the SSD object detection model is first used to 

extract foreground targets from monitoring video images, 
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thereby reducing the impact of complex environments on 

extracting effective features. The RGB difference map 

corresponding to the extracted foreground target is taken 

as input for CNN, and the temporal feature information 

of this difference map is extracted. Then, after encoding 

and decoding by a deep convolutional autoencoder 

network, these temporal features are constrained to 

enhance its robustness. The network utilizes 

reconstruction errors to constrain spatial feature 

information, ensuring that the output image has effective 

feature information. K-means is used to classify this 

constrained feature information and calculate the 

abnormal behavior score. Finally, the calculated 

abnormal behavior score is compared with the preset 

threshold. If the score exceeds the threshold, it is 

considered abnormal behavior. 

4 Verification of abnormal behavior 

detection in monitoring videos 

based on deep convolutional 

autoencoder mixed multi-input 

feature clustering algorithm 
After setting up the experimental environment, the 

performance of the clustering algorithm was first 

validated. Then, the effectiveness of the abnormal 

behavior detection method was verified using methods 

such as abnormal behavior score detection, ablation 

experiments, and comparative experiments. 

4.1 Experimental environment construction and 

algorithm performance experiments 

To validate the effectiveness of the monitoring video 

abnormal behavior detection method using multi-input 

feature clustering, an experimental environment was 

constructed using the Pytorch framework. A 

high-performance NVIDIA GeForce RTX 3080 Ti GPU 

was taken as the cloud host for model training. 

Meanwhile, an 8-core Intel Xeon CPU was configured 

for the Windows 10 system to support large-scale data 

processing. Before conducting the experiment, this input 

data image was preprocessed and the pixel intensity of 

monitoring video frames was normalized within [-1, 1]. 

The learning rates of the model generator and 

discriminator were 0.01 and 0.001, respectively. These 

datasets used in this experiment are CUHK Avenue and 

UCSD, which contain monitoring video images collected 

in natural scenes to distinguish between normal and 

abnormal behaviors. The CUHK Avenue dataset includes 

16 training videos from different scenarios and 21 testing 

videos, covering various daily activities. These videos 

include scenes of pedestrians walking normally, while 

also annotating abnormal behaviors such as running, 

jumping, and discarding items, providing diverse 

behaviors in typical urban street environments. The 

UCSD dataset has two subsets, Ped1 and Ped2, which 

mainly focus on pedestrian behavior patterns. Ped1 

focuses on shooting wider pedestrian areas, while Ped2 

focuses more on narrower scenes. These datasets provide 

video instances of standard walking behavior and various 

abnormal behaviors such as cycling and driving. In 

abnormal behavior detection, key input features include 

but are not limited to motion trajectories of moving 

targets, including dynamic parameters such as speed and 

direction. The appearance features of static parameters 

such as shape, size, and color extracted using image 

processing techniques. Table 2 shows the specific 

experimental environment configuration. 

 

Table 2: Specific experimental environment 

configurations 
Experimental 

environment 
Configuration 

Operating system Windows 10 

The Pytorch 

framework 
Pytorch1.8.1 

CPU 
8 × Intel(R) Xeon(R) CPU E5-2686 v4 @ 

2.30GHz 

GPU NVIDIA GeForce RTX 3080 Ti 

Memory 64GB 

Graphics memory 6G 

 

To verify the performance of DCAMMFCA-based 

algorithm, a comparison was made between the ordinary 

clustering algorithm and the anomaly behavior detection 

algorithm based on the deep convolutional autoencoder. 

The study sets the training batch to 100 times. Figure 7 

presents the accuracy change on the test set. The 

accuracy based on DCAMMFCA was always higher than 

that of the other two algorithms. When the training round 

reached 100, the accuracy of the ordinary clustering 

algorithm only reached 59.7%. The accuracy of the 

anomaly detection algorithm based on deep 

convolutional autoencoder network reached 72.4%. The 

accuracy of DCAMMFCA reached 89.6%, with an 

increase of 29.9% and 17.2%, respectively. Therefore, 

DCAMMFCA, as an independent ensemble algorithm, 

effectively improves the recognition accuracy of 

abnormal behavior detection. 
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Figure 7: The accuracy variation of different algorithms 

on the test set 
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4.2 Performance verification of mixed 

multi-input feature clustering algorithm 
MMFCA, as a fundamental clustering algorithm 

framework, is used for abnormal behavior detection in 

video surveillance. The algorithm based on MMFCA has 

been optimized to DCAMMFCA, which introduces deep 

convolutional autoencoder and attention mechanism to 

improve the accuracy of anomaly behavior detection. To 

verify the performance based on MMFCA, a comparative 

analysis was conducted between MMFCA and Rough 

K-Means (RKM), Improved K-Means (IKM), and Fuzzy 

C-Means (FCM) [32]. The study combined the CUHK 

Avenue dataset as new data with the UCSD dataset to 

form an artificial training dataset. Figure 8 shows the 

distribution of the manually trained dataset, where the 

data points and clustering centers have undergone 

preliminary clustering processing. This dataset combines 

the CUHK Avenue dataset and UCSD dataset for training 

and testing clustering algorithms. The red data points in 

the figure represent the clustering of large targets, the 

blue data points represent the clustering of small targets, 

the green data points represent the newly added CUHK 

Avenue dataset data points, and the black data points 

represent the clustering centers generated by the 

clustering algorithm. The clustering ratio of large and 

small targets in artificial datasets is roughly 3:1. 

MMFCA was compared with RKM, IKM, and FCM 

in the artificial training dataset. Figure 9 shows the 

clustering performance of four algorithms. In Figure 9 (a), 

RKM failed to identify the newly added data and divided 

it into small target clusters, resulting in a corresponding 

shift in the cluster center. In Figure 9 (b), IKM divided 

the newly added data into large target clusters, causing a 

shift in the cluster center. In Figure 9 (c), FCM also 

divided the newly added data into two imbalanced 

clusters without correctly identifying the new data. In 

Figure 9 (d), MMFCA effectively identified the newly 

added data points, and the position of the cluster center 

was also in the ideal position, showing a high similarity 

with the distribution of the manually trained dataset. 

Overall, MMFCA can correctly identify small target data 

and newly added data, with high recognition accuracy. 
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Figure 8: The distribution of artificial training datasets 

 
To further validate the effectiveness of MMFCA, 

performance indicators such as the Adjusted Rand Index 

(ARI), Silhouette Coefficient (Sil), and clustering time 

were compared among these four clustering algorithms. 

ARI can measure the fitting of clustering algorithms. An 

ARI close to 1 indicates that its clustering effect is more 

accurate. Sil can determine the clustering effectiveness. 

An Sil approaches 1 indicates that the clustering effect is 

more reasonable. Table 3 presents the performance 

comparison results of four clustering algorithms. The 

ARI and Sil of MMFCA were closer to 1, indicating that 

its clustering effect was closer to the real situation. The 

ARI was 0.894, which was 142%, 28.8%, and 234% 

higher than that of RKM, IKM, and FCM, respectively. 

The Sil of MMFCA was 0.906, which was 116.7%, 50%, 

and 131.7% higher than that of the other three algorithms, 

respectively. MMFCA had the shortest clustering time of 

0.216s, which was 62.03%, 28.94%, and 27.27% shorter 

than that of the other three algorithms, respectively. From 

the F1 score, the research method scored 0.912, while 

other algorithms all scored over 0.8. In addition, for 

confusion matrix, the error rate of the research method 

was the lowest, only at 8%, further proving its superiority. 

In summary, MMFCA had excellent clustering 

performance. 
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Figure 9: The clustering effect of four algorithms 

 
Table 3: Comparison of performance indicators of four clustering algorithms 

Clustering algorithm ARI Sil Cluster time/s F1 score Confusion matrix (TP, FN, FP, and TN) 

RKM 0.369 0.418 0.569 0.352 (142, 258, 308, and 292) 

IKM 0.694 0.604 0.304 0.721 (367, 133, 143, and 357) 

FCM 0.267 0.391 0.297 0.288 (121, 279, 302, and 298) 

Mixed multi-input feature clustering 0.894 0.906 0.216 0.912 (458, 42, 38, and 462) 

 

4.3 Performance verification of abnormal 

behavior detection based on deep 

convolutional autoencoder mixed 

multi-input feature clustering algorithm 
To validate the abnormal behavior detection performance, 

this study compared this detection method with abnormal 

behavior detection methods such as Adam, MDT, SF, and 

SRC [33]. To further validate the stability of the model 

performance, a 95% confidence interval was added when 

calculating the ROC curve. All AUC values were the 

average based on five-fold cross-validation. Figure 10 

presents the Receiver Operating Characteristic (ROC) 

curves using different abnormal behavior detection 

methods. In Figure 10 (a), on the CUHK Avenue data, 

the AUC value of the abnormal behavior detection 

method based on DCAMMFCA was 91.9%, which was 

41.8%, 13.0%, 19.5%, and 3.1% higher than the AUC 

values of the Adam, MDT, SF, and SRC anomaly 

detection methods, respectively. In Figure 10 (b), on the 

UCSD dataset, the AUC value of the abnormal behavior 

detection method based on DCAMMFCA was 94.7%, 

which was 48.6%, 10.6%, 38.2%, and 4.7% higher than 

that of the other four abnormal behavior detection 

methods, respectively. Overall, the abnormal behavior 

detection method based on DCAMMFCA had high 

detection accuracy. 

 



216   Informatica 49 (2025) 205–220                                                                 H. Li et al. 

 

False Positive Rate/%

0 20 40 60 80 100
0

20

40

60

80

100

(a) ROC curves of different methods on the 

CUHK Avenue dataset

(b) ROC curves of different methods on the 

UCSD dataset

T
ru

e
 P

o
si

ti
v

e 
R

a
te

/%

10 30 50 70 90

10

30

50

90

70

False Positive Rate/%

0 20 40 60 80 100
0

20

40

60

80

100

T
ru

e
 P

o
si

ti
v

e 
R

a
te

/%

10 30 50 70 90

10

30

50

90

70

Adam  method AUC=64.8%

SF method AUC=76.9%

MDF method AUC=81.3%

SRC method AUC=89.1%

Proposed method AUC=91.9%

Adam  method AUC=63.7%

SF method AUC=68.5%

MDF method AUC=85.6%

SRC method AUC=90.4%

Proposed method AUC=94.7%

 
Figure 10: The ROC curve of different abnormal behavior detection methods 

 

To observe the performance of different detection 

methods more intuitively, the performance of different 

abnormal behavior detection methods on different 

datasets was compared. Table 4 shows the comparison 

results of performance indicators for different abnormal 

behavior detection methods. The abnormal behavior 

detection method based on DCAMMFCA achieved better 

performance on different datasets. On the CUHK Avenue 

dataset, the precision, recall, and error rate of this method 

were 94.5%, 95.6%, and 12.6%, respectively. On the 

UCSD dataset, the precision, recall, and error rate of this 

method were 95.2%, 94.8%, and 10.9%, respectively. 

Overall, the detection precision of the abnormal behavior 

detection method based on DCAMMFCA was superior to 

that of the other four abnormal behavior detection 

methods. 

 

Table 4: Comparison of different abnormal behavior detection methods’ performance indicators 

Test method 
CUHK Avenue dataset UCSD dataset 

Precision/% Recall/% Error rate/% Precision/% Recall/% Error rate/% 

Adam 53.4 64.2 39.1 55.3 66.3 41.9 

MDT 73.1 72.6 25.6 70.6 74.0 25.2 

SF 60.4 68.6 30.5 61.6 69.1 41.7 

SRC 88.4 82.1 19.6 87.5 83.1 15.6 

Proposed method 94.5 95.6 12.6 95.2 94.8 10.9 

 

4.4 Abnormal behavior score detection and 

ablation experiment 
To validate the abnormal behavior detection effectiveness 

in practical applications, this study compared it with 

different abnormal behavior detection methods for 

abnormal behavior score detection, as shown in Figure 11. 

The abnormal behavior score was calculated through 

K-means clustering and reconstruction score. The 

abnormal behavior score of each video frame was 

compared with the normal behavior score, from which 

the difference value between the frame and the normal 

behavior score was calculated. In actual monitoring 

videos, the difference in abnormal scores of the abnormal 

behavior detection method based on DCAMMFCA was 

0.297, which was 34.38%, 16.93%, 22.22%, and 16.01% 

higher than the difference in abnormal scores of 

abnormal behavior detection methods such as Adam, 

MDT, SF, and SRC, respectively. The abnormal behavior 

detection method based on DCAMMFCA had high 

accuracy in identifying abnormal behaviors. 

The training set in the experiment contains 5,000 samples, 

and the testing set contains 1,000 samples. The training 

and testing sets were randomly selected from the UCSD 

and Avenue datasets, ensuring the diversity and 

representativeness of the experimental data. To further 

verify the role of different modules in the abnormal 

behavior detection method, the study added each module 

to the network for ablation experiments. "√" indicates the 

presence of the module, and "/" indicates the absence. 

Table 5 shows the ablation experiment. After optimizing 

the autoencoder using attention mechanism, the accuracy 

improved by 3.2%. After introducing GAN, the accuracy 

improved by 13.5%. When the algorithm was added to 

the SSD object detection model, the accuracy improved 

by 8.6%. After adding K-means, the accuracy improved 

by 5.8%. In addition, to evaluate the stability of the 

model, a five-fold cross-validation was conducted to 

calculate the standard deviation of the results. After 

adding various modules, the standard deviation gradually 

decreased from ± 1.5 to ± 0.8, demonstrating the stability 

of the model under different experimental configurations. 

In summary, the added modules brought benefits to the 

abnormal behavior detection, indicating that the proposed 

method effectively improved the abnormal behavior 

detection performance.
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Table 5: Ablation experiment 

Autoencoder Attention mechanism GAN SSD object detection K-means Accuracy/% 
Standard 

deviation 

√ / / / / 59.4 ±1.5 

√ √ / / / 62.6 ±1.2 

√ √ √ / / 76.1 ±1.0 

√ √ √ √ / 84.7 ±0.9 

√ √ √ √ √ 90.5 ±0.8 

 

5 Discussion 
To improve the detection accuracy of tourist attraction 

monitoring, the DCAMMFCA method for detecting 

abnormal behavior in monitoring videos of tourist 

attractions is proposed. Compared with the existing 

state-of-the-art methods for detecting abnormal behaviors 

[32-33], the research method has shown significant 

advantages in multiple indicators. The method based on 

DCAMMFCA showed significantly higher detection 

accuracy on both the CUHK Avenue and UCSD datasets. 

For example, on the CUHK Avenue dataset, the accuracy 

of DCAMMFCA was 94.5%, which was approximately 

41.8%, 13.0%, 19.5%, and 3.1% higher that other 

methods. This is because DCAMMFCA combined with 

GAN and attention mechanism can significantly improve 

the performance of abnormal behavior detection, 

especially in complex environments and small object 

detection. In terms of computational efficiency, the 

DCAMMFCA method had an average computation time 

of 0.216 seconds on the CUHK Avenue dataset, which 

was significantly lower than other algorithms. Especially 

compared with clustering algorithms such as RKM, IKM, 

and FCM, the efficiency was improved by 62.03%. This 

method introduces GAN and attention mechanism, which 

can maintain high robustness in constantly changing 

environments and have high computational efficiency, 

making it suitable for real-time monitoring applications. 

In terms of the reliability of abnormal behavior 

classification, this method achieved a recognition 

accuracy of 89.6% for small targets, and the clustering 

effect was highly consistent with the real situation. The 

ARI and Sil were 0.894 and 0.906, respectively, close to 

1, indicating the superiority of clustering effect. 

6 Conclusion 
To improve the public safety of TSA, a self-encoder 

structure GAN optimized by attention mechanism was 

built, and the SSD object detection model combined with 

multi-input feature clustering algorithm was used to 

improve the accuracy of small object detection. These 

results confirmed that the accuracy of DCAMMFCA 

reached 89.6%. The ARI and Sil reached 0.894 and 0.906, 

respectively, which were close to 1, indicating that its 

clustering effect was close to the real situation. In terms 

of computation time, MMFCA took 0.216 seconds, which 

was 62.03%, 28.94%, and 27.27% shorter than that of 

RKM, IKM, and FCM, respectively. On the datasets 

CUHK Avenue and UCSD, the AUC values of the 

abnormal behavior detection method based on 

DCAMMFCA reached 91.9% and 94.7%, respectively, 

far higher than that of the other four behavioral anomaly 

detection methods. On the CUHK Avenue dataset, the 

precision, recall, and error rate of this method were 

94.5%, 95.6%, and 12.6%, respectively. On the UCSD 

dataset, the precision, recall, and error rate of this method 

were 95.2%, 94.8%, and 10.9%, respectively. The 

abnormal score difference was 0.297, which was 25.58%, 

14.47%, 18.18%, and 13.80% higher than that of Adam, 

MDT, SF, and SRC, respectively. In summary, the 

research on TSA monitoring video abnormal behavior 

detection based on MMFCA had effectively improved the 
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accuracy of abnormal behavior detection.  

However, there are still some limitations in the research, 

such as the lack of interpretability layers, failure to test on 

real TSA datasets, domain adaptation/generalization 

issues, and insufficient evaluation under adversarial and 

occlusion conditions. In response to these limitations, 

future work can further classify the types of abnormal 

behaviors detected to take different measures to deal with 

different types of abnormal behaviors. In addition, to 

adapt to different scenarios and data distributions, 

transfer learning methods can be explored in the future to 

quickly adapt to new monitoring environments with a 

small amount of annotated data. In addition, methods for 

multi-modal data fusion can be explored, such as 

combining the thermal imaging and RGB images to 

improve the accuracy and robustness of abnormal 

behavior detection. 
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