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To tackle the risk of visual content privacy leaks during video calls, the study proposes a two-layer
protection method combining differential privacy with variational autoencoder-based face replacement.
The first layer uses a 3D convolutional structure based on optical flow to extract temporal features. It
also applies a block-level cropping perturbation to sensitive areas, ensuring frame consistency and
effective privacy masking. In the second layer, a variational autoencoder is uses to replace faces,
achieving natural transitions via semantic generation and boundary fusion. Experiments on the Celeb-
DF dataset show the method achieves a 96.9% privacy protection success rate, 3.7% false negative rate,
and 96.8% misdirection success rate against attacks. In simulated platform attack tests, the protection
success rates against cross-site scripting injection and forged request attacks were 99.2% and 98.9%,
respectively. In 95.1% of the test video frames, the system processing rate reached 30 frames per second,
with a minimum CPU usage of 0.9% during processing. The results indicate that the method ensures
visual privacy security while maintaining good real-time performance and deployment adaptability.

Povzetek: Razvita je DPV-VPP dvoslojna zascita videoklicev: opticni tok + 3D konvolucije z blokovnimi
DP-motnjami ter VAE zamenjava obraza. Na Celeb-DF doseze dobre rezultate, je nizka poraba, visoka

odpornost na XSS/CSRF.

1 Introduction

With the rapid development of mobile communication and
Internet technologies, various network attacks are also
evolving. Traditional privacy protection methods can no
longer resist these advanced attacks, putting video call
content at risk of being monitored, stolen, or tampered
with [1-2]. Conventional privacy protection systems show
limitations when facing these upgraded threats [3].
Therefore, there is an urgent need for a privacy protection
method tailored to video calls that can counter new forms
of network attacks. Differential Privacy (DP) protects
private data by adding random noise that distorts the
original data and prevents attackers from inferring
sensitive information [4]. Encoder-decoder frameworks
can encrypt data by converting its structure [5]. Based on
this, this paper designs a visual content privacy protection
algorithm using the disturbance capability of DP and the
optical flow estimation technique. A face replacement
method is also designed using a variational autoencoder to
protect sensitive information. Finally, the disturbance
algorithm and face replacement method are integrated into
a visual content data privacy protection model for video
calls named DP and Variational Visual Privacy Protection
(DPV-VPP). This model provides dual-layer protection
for both sensitive and global data, enhancing overall
privacy protection. The study aims to construct a dual-
layer visual privacy protection model that integrates DP

and VAE to protect sensitive information in video call
scenarios. The goal is to ensure the privacy and security of
key areas of video data while balancing the system's real-
time processing capabilities and computing resource
consumption, thereby improving the model's practicality
and adaptability in  complex  communication
environments.

2 Related works

DP has been a reliable method for protecting privacy and
promoting data sharing. Many researchers domestically
and internationally have conducted extensive studies on
DP. For example, in response to the issue where attackers
use different classifiers to bypass defenses, leading to poor
protection performance, Zhang et al. put forward a
statistical privacy method by using the statistical analysis
capability of DP. They validated its effectiveness in
improving  privacy  protection  success through
experiments and evaluations [6]. Zhang’s team also
applied DP to optimize the performance of federated
learning, aiming to provide strong privacy protection for
users and to overcome the limitations of traditional
methods. Their final experimental results confirmed the
effectiveness of this method [7]. Encoder-decoder models
can re-encode various types of data to support later
processing. Because of their advantages in data handling,
many scholars have studied encoder-decoder frameworks
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in different applications. For instance, Garcia’s team
applied encoder-decoder models to medical language
processing. They used the framework to translate global
languages into Spanish and solved the gap in Spanish
electronic health records. Clinical tests across 17 datasets
demonstrated the feasibility of this approach [8]. To
address diagnostic errors caused by blurry chest X-ray
images, Ukwuoma et al. integrated convolutional neural
networks with transformer encoders and proposed a
learning model with strong feature extraction capabilities.
Their experimental results confirmed the model’s high
accuracy and outstanding classification performance [9].

Faced with growing concerns over privacy leaks,
many researchers have worked on methods to achieve
high success rates in privacy protection. For example, to
reduce privacy exposure caused by recommendation
systems, Chen et al. put forward a privacy-preserving
federated collaborative filtering scheme. Simulation
results showed the scheme achieved high accuracy while
also reducing communication overhead [10]. Liang et al.
designed a personal data protection method using
consortium blockchain. By combining blockchain with
distributed private cluster storage, they encrypted and
protected private data. Simulation tests confirmed the
strong practicality of this method [11]. To solve the
problem of communication data leakage between patients
and hospitals caused by centralized artificial intelligence
training, Ali et al. discussed how federated learning could
be used to address the issue. They also explored strategies
for protecting private data in future smart healthcare
systems [12]. In order to avoid the negative impact of
privacy leaks on data sharing among network users, Li’s
team built a secure data sharing scheme for the Internet of
Things based on blockchain. Simulation results
demonstrated that the scheme was both secure and
efficient [13]. Facing potential privacy leaks at the edge of
6G networks, Mao et al. analyzed the strengths and
weaknesses of various countermeasures. Their findings
offered useful guidance for future research on privacy
protection in 6G communication systems and supported
the development of safer 6G networks [14]. Larriba et al.
addressed the issue of low trust in electronic voting
systems by proposing the introduction of political parties
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as active partners in elections and using blockchain
technology to build a voting system that is open and
auditable by third parties, thereby enhancing the
credibility of the voting system [15].

In summary, current privacy protection methods in
various fields can defend against some types of attacks but
still show limited performance and poor generalization
against more advanced threats. DP offers a way to disrupt
data and achieve global protection. Face replacement
based on variational autoencoder can replace sensitive
information, thereby safeguarding key content. Most
current research focuses on privacy protection for
structured data or static images, lacking dynamic
protection mechanisms for visually sensitive information
such as faces in video sequences. Therefore, the proposed
DPV-VPP model simultaneously applies data perturbation
and face replacement to protect video communication
data. This dual-layer approach is expected to enhance user
communication security across various scenarios. Table 1
summarises the details of the comparison between the
existing methods and the proposed method.

3 Construction of visual content data
privacy protection model for video
calls

3.1 Design of visual content privacy
protection algorithm based on DP

Facing the privacy protection of video content, most
methods convert video into a set of images, thereby
reducing the problem to image-level privacy protection.
However, since video data are continuous, adjacent frames
often share high similarity [16]. Attackers may exploit
complementary information from these frames to restore
video content. To address this issue, this study introduces
an optical flow estimation algorithm. The optical flow
estimation identifies the position of perturbation noise
based on pixel motion to ensure consistency between
adjacent processed frames and preventing attackers from
inferring video content [17-18]. The structure of the
optical flow estimation algorithm is shown in Figure 1.

Table 1: Comparison of different methods.

Method Mechanism Target domain

Methodological limitations

Zhang et al. [6] DP

Traffic data protection

Applies noise only to static traffic packets; lacks
modeling of continuous data streams

Zhang et al. [7] DP + federated learning

Federated learning

Focused on parameter perturbation; not applicable to
multimodal or visual content

Garcia et al. [8] Encoder-decoder architecture

Medical language processing

Designed for text vector transformation; not
transferable to image/video scenarios

Ukwuoma et al.

[9]

CNN + Transformer

Medical image recognition

Operates on static images; lacks temporal modeling for
video content

Federated collaborative

No support for visual input; unsuitable for image/video

Chen et al. [10] filtering Recommender systems privacy protection
Liang et al. [11] Blockchain  + distributed Personal data encryption chuses on data encryption and stqrage; lacks content
storage disturbance or replacement mechanisms

Mao et al. [14] Survey of Security Strategies

Alietal. [12] Federated learning Smart o healthcare Emphasn_zes_ secure parameter updates; neglects facial
communication privacy in video frames
. . . No design for visual content protection; limited
Lietal. [13] Blockchain loT data sharing applicability to video-based scenarios
Provides strategic overview without concrete

6G Edge Communication

algorithmic implementation
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Blockchain + Multi-party

Larriba et al. [15] voting

Electronic Voting Privacy

Highly application-specific; lacks generalizability to
video communication privacy

DP + VAE-based face

This paper replacement

Video call privacy protection
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Figure 1: Structure diagram of optical flow estimation algorithm.

As shown in Figure 1, after receiving adjacent video
frames from the image input module, the algorithm
extracts feature through a feature encoder and a context
network. Then, the image similarity calculation module
divides the images into multiple regions and assigns
relevance factors to each one. The relevance of other
regions is determined based on the position of pixel
values. The relationship between two adjacent frames is
calculated as shown in Equation (1).

C,s =4, -region(A) ® region(J (A))
= 0 Cos @)
B=B,B,-B,

In Equation (1), A and B represent region indexes,

J()) indicates the mapping between regions, A, is an

adaptive relevance factor within the range [0, 1],
region(-) and ® refer to the dot product between image

regions and feature maps, and C, represents the

computed correlation. Multiple convolutional kernels then
extract four-dimensional relational features. This
preserves high resolution and enables the computation of
subtle motions. The optical flow sequence is updated
iteratively to complete the estimation, as shown in
Equation (2).

fk+1 = fk +J fk )

In Equation (2), the current optical flow f, , is
updated by adding f, to obtain Of, , and after k
iterations, the sequence {f,f,,--- f } is formed. For

current optical flow displacement, three parallel small
convolutional kernels are used, as shown in Equation (3).

F,, = ReLU(Conv,,(f,)),i=123

flow
®)
Fopon =Cat(F: F2 F? )

In Equation (3), F!

flow

(i=1,2,3) denotes the extracted
features, i is the number of kernels, cat(-) represents the
is the

final result. This process ensures accurate optical flow
estimation. Effective video content feature extraction
requires both spatial and temporal features. 3D
convolution captures features across both dimensions
[19]. Therefore, this study uses 3D convolution to extract
temporal features and enhance feature completeness.
However, after applying optical flow and 3D convolution,
the feature maps become large and increase the burden on
mobile devices. Based on the difference between feature
maps and video frames, this study adjusts the perturbation
degree: no processing for minor differences and stronger
perturbation for significant differences. A convolutional
kernel feature analysis is added to 3D convolution to
classify feature maps, as shown in Figure 2.

concatenation of F* , F? ,and F® ,and F,
flow flow flow port
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Figure 2: Schematic diagram of the feature analysis 3D convolution operation process.
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Figure 3: DP-VPM mechanism structure diagram.

Figure 2 shows that the 3D convolution first
normalizes the video frames in size and pixel values. The
normalized frames are passed through convolutional
layers to capture spatial-temporal relationships. Then, 3D
max pooling is used to reduce the dimensions of the
feature maps. A fully connected layer converts the map
into a 1D vector. Finally, similarity with the original video
determines the perturbation level. Structural similarity is
used to measure this, considering brightness, contrast, and
structure. A higher score indicates higher similarity. The
brightness similarity function is shown in Equation (4).

2u. 1, +C
I(f,0)= 55— (4)
ﬂf +ﬂg +C1

In Equation (4), x, and w, represent the brightness

means of the feature and original images. The contrast
similarity function is shown in Equation (5).

2 C
o(f,g) =t 5)

0'?+0'§+C2
In Equation (5), o; and o, are the standard

deviations of the feature and original images. The
structural similarity function is shown in Equation (6).

s(f,g)=-T8+% 6)

o0, +C;

In Equation (6), s(f,g) is the calculated similarity
value. C,, C,, and C, in Equations (4), (5), and (6) are

constants used to prevent zero denominators. The final
similarity score is calculated as shown in Equation (7).

SSIM(f,g) =I(f,9)-c(f.9)-s(f,q) U]
In Equation (7), SSIM(f,qg) is the comprehensive

similarity score. To clearly distinguish between “minor
differences” and “significant differences” in feature maps,
the study classified each region based on the structural
similarity index. The specific classification criteria are as
follows: if the structural similarity index is greater than
0.85, the region is classified as having minor difference
region and mild perturbation is applied. When the score is
<0.65, it is classified as a significant difference region and
strong perturbation is applied. Traditional perturbation
methods based on DP suffer from low data usability and
insufficient protection [20]. To address this, this study
combines pixel-level noise with a block-level mosaic
approach to propose a novel block-cutting perturbation
mechanism. It first generates a matrix to determine the
center of the region to be perturbed, converting pixel-wise
noise into block-wise perturbation. Then, the pooling
operation in the mosaic is replaced by pixel zeroing.
Combining this with video feature extraction forms a DP-
based visual content protection mechanism named DP-
VPM. Its structure is shown in Figure 3.
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As shown in Figure 3, the DP-VPM mechanism
follows these steps: first, convert the target video into
image frames. Second, extract spatial and temporal
features via optical flow and 3D convolution modules.
Third, analyze feature maps using kernel-based
classification to assign appropriate perturbation levels.
Fourth, apply block-cutting perturbation to finalize
protection. The perturbation mechanism consists of three
closely connected stages: optical flow estimation,
structural similarity analysis, and block-level perturbation
execution. The optical flow estimation algorithm analyzes
pixel motion between adjacent video frames and generates
a map of motion intensity. Subsequently, the structural
similarity index analysis is introduced within the
candidate regions to measure the visual consistency
between each region and the original frame. Based on the
values of the structural similarity index, the perturbation
intensity is categorized into different levels. Regions with
high similarity do not require perturbation, those with
moderate similarity are subjected to light perturbation, and
regions with low similarity receive strong perturbation.
This adaptive approach allows for precise control of
perturbation levels based on visual similarity. Finally, the
system executes the block-based perturbation mechanism
according to the positions identified by optical flow and
the intensity levels determined by the structural similarity
index. For light perturbation, pixel-level Gaussian noise is
applied, while strong perturbation involves setting entire
pixel blocks to zero. The study sets the encoder and
context network in the optical flow estimation module to
include four layers of convolution operations, with a 3x3
kernel size, a stride of 1, padding of 1, and channel
numbers of 64, 128, 128, and 256 for each layer,
respectively. In the structural similarity assessment, the
brightness, contrast, and structural constants are 0.01,
0.03, and 0.015, respectively, and the structural similarity
threshold is 0.85. In the DP-VPM module, the disturbance
noise is sampled from a Gaussian distribution N(0,5°),

and the variance o is dynamically adjusted according to

the scene. In low-motion scenes, o is 0.04, and in high-
motion scenes, it is 0.08. This noise is initially applied at
the pixel level. It is then transformed into block-level zero-
value masks using a regional occlusion mechanism, which
enhances privacy protection while preserving visual
continuity.

3.2 Construction of Visual Content
Privacy Protection Model for Video
Calls

Although the VPM mechanism protects overall video

content, attackers may still recover critical details like
faces, compromising privacy [21]. Therefore, this study
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builds a face replacement model using the Variational
Autoencoder (VAE), which models latent features of
video frames probabilistically. The structure is shown in
Figure 4.

As shown in Figure 4, the VAE consists of an encoder
and decoder. The encoder analyzes the input image to
obtain the probability values of facial features. The
decoder reconstructs the encoded values into a new
arrangement for output. To enhance the expressive
capability of facial information reconstruction, the VAE
designed by the research institute adopts a symmetric
structure, with the encoder and decoder each consisting of
four convolutional layers and two fully connected layers.
The input image size is 256 x256x3, which is compressed
into a latent variable vector with a dimension of 128 after
encoding. The decoder reconstructs the image from this
latent space. All convolutional layers use a 3 x 3
convolutional kernel with a stride of 2, padding of 1, and
the ReLU activation function. During training, the total
loss function of the VAE consists of two parts, with a
balancing coefficient of 0.1 for the loss weights. The first
is the pixel-level mean squared error loss between the
input image and the reconstructed image, and the second
is the Kullback-Leibler divergence between the encoder
output distribution and the standard normal distribution.
Additionally, the model is trained for 120 epochs using the
Adam optimizer with a learning rate of 0.0002 and a batch
size of 32. During reconstruction, latent vectors are
obtained from inputs as described in Equation (8).

Z0q,(z|x) (8)
In Equation (8), Z is the latent vector, ¢ denotes

encoder weights, x is the data sample, and Z is the
output latent vector. Then, the image set is reconstructed
from the latent vector, as shown in Equation (9).

X" py(2) Py (X'[2) 9)

In Equation (9), X' is the reconstructed image, &
denotes decoder weights, and x’ is a data sample. The
encoder’s posterior distribution is expected to be p(z |x) ,

which is approximated using p(z|x) instead of q(z|x).

To minimize the difference between g and p, the KL

divergence between g and p is minimized, as shown in
Equation (10).

min KL(q(z[x)| p(z[x)) (10)

Equation (10) ensures consistency between g and p

, allowing accurate inference of complex distributions.
Using VAE, it is possible to generate realistic fake faces
that resemble the original and capture multiple angles.
Based on this, the study proposes a face replacement
method named VA-FR, shown in Figure 5.
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Figure 5: Flowchart of VA-FR face replacement method.

As shown in Figure 5, the first stage of face detection
uses the RetinaFace model based on the ResNet-50
backbone network. After detection, the faces are
geometrically aligned using a five-point affine
transformation to standardize the face scale and improve
the accuracy of subsequent reconstruction. In the face
segmentation stage, a supervised semantic segmentation
model based on the U-Net architecture is used to extract
the foreground face region. In the experiment, the frame
discard rate due to segmentation failure was
approximately 2.1%, mainly concentrated in overexposed
or blurred frames. Therefore, in terms of feature modeling,
the VAE structure is symmetrically composed of an
encoder and a decoder, each containing four convolutional
layers and two fully connected layers, with the latent
variable dimension set to 128. In the final output stage, the
system uses a Poisson fusion algorithm to perform edge
smoothing and lighting adjustment on the replaced face,
and completes frame rate synchronization to ensure the
naturalness and continuity of the generated video in terms
of visual perception. The content smoothing is described
in Equation (11).

2
mfln”Q|Vf v 11)

In Equation (11), Q is the foreground region of the
synthesized image, and f is the pixel representation

function in the merged image Q . To improve the natural
transition of synthetic images at the boundaries, a
boundary smoothing mechanism was introduced in this
study. First, a Poisson mixture algorithm is used to
gradientally blend the foreground region with the
background image, ensuring consistency in brightness and
texture at the boundary. Specifically, the pixel values in
boundary region 0Q are not directly taken from values
outside the image but are adjusted based on the solution of
the Laplace operator in the Poisson equation, thereby
constructing a smooth transition of pixel value distribution
in the boundary region. This process is illustrated in
Equation (12).

{Af =Af, in Q (12)

f*=f on aQ

In Equation (12), 6Q is the boundary of Q,and f*

is the pixel representation function outside the boundary.

f, represents the gradient information of the source

image. f, represents the boundary value of the target

background image; A represents the Laplace operator.
The VA-FR method replaces key facial information in
video content to further protect privacy. Finally, this study
combines the VA-FR and VPM mechanisms to build the
DPV-VPP model. Its structure is shown in Figure 6.
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Figure 6: DPV-VPP model structure diagram.

As shown in Figure 6, the DPV-VPP model
preprocesses the target video into frames. Then, the VA-
FR mechanism replaces sensitive face information.
Finally, the VPM mechanism perturbs the video frames,
achieving two-layer protection.

4 Performance evaluation of the
DPV-VPP model

4.1 Experimental environment and
training results of the DPV-VPP model

After the construction of the DPV-VPP model, in order to
evaluate its performance in protecting privacy in video
calls, the study introduced three domain-related models—
K-Anonymity, DP, and Zero-Knowledge Proof (ZKP)—
as comparison models. A Huawei Mate 30 device with a
Kirin 990 chip was used as the local mobile terminal,
while the cloud server was equipped with an Intel Xeon
E5-2682 V4 CPU and an NVIDIA Tesla P4 GPU. The
programming language used was Python, and the
operating system was Windows 10. The Celebrity
Deepfake Detection (Celeb-DF) dataset was used as the
experimental dataset to provide test samples. Details of the
Celeb-DF dataset are shown in Table 2.

As shown in Table 2, the Celeb-DF dataset suffers
from a significant class imbalance problem, with the
number of face-swapped videos (5639) far exceeding that
of real videos (590), resulting in a ratio of real to fake
samples of approximately 1:10. This severe imbalance
may cause the model to favour identifying fake samples
during training while neglecting its ability to distinguish
real samples, leading to certain generalisation errors in
real-world applications. To mitigate this bias, the study
introduced a category weight adjustment mechanism and
a stratified sampling strategy during training, and also
adjusted the loss function with category weights. Based on
the above experimental environment and the Celeb-DF
dataset, the study first conducted experiments on the
missed detection rate and privacy protection success rate
for the four privacy protection models. The missed
detection rate referred to the proportion of non-sensitive
information that was incorrectly protected, while the
privacy protection success rate referred to the proportion
of sensitive information that was correctly identified and
protected. The results represent the average value of five
independent experiments run under the same data set and
parameter configuration, with error bars representing the
95% confidence interval. The results are shown in Figure
7.

Table 2: Celeb-DF dataset details.

Parameter Details
The number of themes 590
The number of deepfake videos 5639
Average duration 13s
Standard frame rate 30 frames per second
Video format MPEG4.0
| k-Anonymity - ZKP ]
_ | ---DPV-VPP P 1o
£ 204 S 95,
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(a) Missed detection rate result chart

Number of iterations
(b) Privacy protection successful rate result chart

Figure 7: Results of missed detection rate and privacy protection success rate.
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Figure 8: Successful deception rate experimental results.

As shown in Figure 7(a), the missed detection rates of
the four models decreased steadily as the number of
training iterations increased. When the number of
iterations reached 389, 267, 214, and 145 respectively, the
missed detection rates of ZKP, K-Anonymity, DP, and
DPV-VPP stabilized at 7.4%, 5.2%, 5.8%, and 3.7%.
These results showed that DPV-VPP achieved a lower
missed detection rate compared to the other three models,
indicating better performance in identifying sensitive
information. As illustrated in Figure 7(b), after training,
the privacy protection success rates of ZKP, K-
Anonymity, and DP stabilized at 94.3%, 93.9%, and
96.1% respectively. The DPV-VPP model achieved a
success rate of 96.9%, which was higher than the other
three models. The results in Figure 7(a) and Figure 7(b)
demonstrate  that DPV-VPP achieved favorable
performance in terms of both missed detection rate and
privacy protection success rate, providing reliable data
support for subsequent experiments. Next, the study
conducted a comparison experiment on the deception
success rate of the four models. The deception success rate
referred to the probability that a privacy protection model
successfully misled and deceived attackers, causing them
to analyze or attack incorrect information. The study
tested 50 samples using the ZKP, K-Anonymity, DP, and
DPV-VPP models. The experimental results are shown in
Figure 8.

Figure 8 presents the deception success rates of the
four models. As shown in Figure 8(a), the K-Anonymity
model reached a highest deception success rate of 87.5%.
According to Figures 8(b) and 8(c), the highest deception
success rates of the DP and ZKP models were 88.1% and
91.2%, respectively. Figure 8(d) shows that the DPV-VPP
model achieved the highest deception success rate of
96.8%, surpassing the other three models. These results
indicated that the DPV-VPP model successfully disturbed
the original call data and effectively misled attackers,
thereby reducing the attack success rate.

4.2 Practical performance evaluation of
the DPV-VPP model

After verifying the training performance of the DPV-VPP
model, the study further evaluated its practical
applicability. The experimental environment and dataset
remained consistent with the training experiments. The
study first conducted experiments on the number of video
frames processed per second for the four models. This
metric measured whether the privacy protection model
affected the smoothness of terminal usage. If the number
of frames processed per second exceeded 30 fps, it
indicated that the model did not cause noticeable latency.
The results are presented in Figure 9.
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Figure 9: Experimental results of processing video frames per second.

In Figure 9, the average frame rate of the DPV-VPP
model is approximately 34.0 fps, the DP model is
approximately 32.0 fps, the ZKP model is approximately
30.5 fps, and the K-Anonymity model is approximately
29.0 fps. Based on the calculation of intra-sample
variance, the 95% Confidence Intervals (ClI) for the frame
rates of all models are controlled within +1.5-2.2 fps,
indicating that the models exhibit strong real-time
stability. As shown in Figure 9(a), the K-Anonymity
model processed more than 30 frames per second in 75.1%
of the samples, which was relatively low and could affect
the smooth performance of the terminal. According to
Figures 9(b) and 9(c), the proportions for the DP model
were 84.4% and 91.1%, indicating a certain degree of
impact on performance. Figure 9(d) shows that the DPV-
VPP model achieved processing speeds above 30 frames
per second in 95.1% of the cases, suggesting minimal
impact on device smoothness. These results demonstrated
the practicality and reliability of the DPV-VPP model in
real-world applications.  Subsequently, the study
conducted experiments on the attack protection success
rate of the four models. Two types of attacks were

simulated: Cross-Site Scripting (XSS) and Cross-Site
Request Forgery (CSRF), representing different levels of
attack intensity. Although XSS and CSRF attacks
typically target the platform logic layer, in actual video
call systems, attackers can bypass video desensitisation
modules by forging application programming interface
requests or injecting scripts, thereby submitting
unprotected raw image frames and causing user privacy
leaks. The study deployed the DPV-VPP module in the
front-end video capture process, using structural
perturbation and face replacement mechanisms to ensure
that even if the interface is tampered with, the system
cannot access the original visual content. Therefore,
XSS/CSRF attack simulations were introduced to verify
the proposed method's indirect protective capabilities
against potential visual content leakage attacks. In the
simulated XSS and CSRF attack experiments, the study
used a black-box attack method to test the protection
capabilities of different visual privacy protection models.
Attackers could not access model parameters and were
only able to submit video frames embedded with attack
payloads via standard HTTP interfaces. The results are
shown in Figure 10.
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Figure 10: Protection success rate against XSS attacks and CSRF attacks.
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Figure 11: CPU and memory usage experimental results.

As shown in Figure 10(a), after 50 minutes of XSS
attacks, the protection success rates of ZKP, K-
Anonymity, DP, and DPV-VPP were 97.8%, 96.5%,
97.4%, and 99.2%, respectively. The DPV-VPP model
achieved the highest success rate among the four.
According to Figure 10(b), after 50 minutes of CSRF
attacks, the protection success rates of ZKP, K-
Anonymity, DP, and DPV-VPP were 97.9%, 96.8%,
96.6%, and 98.9%, respectively. Again, DPV-VPP
outperformed the other models. These results indicated
that DPV-VPP consistently provided effective protection
under attacks of varying complexity, demonstrating strong
generalization capabilities. Finally, to further verify the
practical applicability of the DPV-VPP model, the study
evaluated CPU and memory usage while each of the four
models processed seven test samples. The results are
shown in Figure 11.

As shown in Figure 11(a), the K-Anonymity model
exhibited high CPU usage, exceeding 10% in every test
sample. For the ZKP and DP models, the highest CPU
usage rates were 7.8% and 4.9%, while the lowest were
4.8% and 2.5%, respectively. In contrast, the DPV-VPP
model achieved significantly better performance, with a
maximum CPU usage of only 3.8% and a minimum of
0.9%. As shown in Figure 11(b), the DPV-VPP model
consistently maintained memory usage below 405 MB
across all test samples, significantly outperforming other
models and demonstrating better resource stability and
deployment adaptability. These results demonstrated that
the DPV-VPP model did not interfere with normal call
operations, further validating its excellent performance in
practical scenarios.

5 Discussion

Compared with traditional differential privacy methods,
DPV-VPP integrates two layers of protection mechanisms
into its structural design. Compared with References [7]
and [10], DPV-VPP combines a dynamic perturbation
algorithm based on optical flow estimation and structural
similarity analysis to adaptively adjust the perturbation
intensity, effectively addressing privacy-sensitive areas of
varying degrees in videos. Additionally, the VA-FR face
replacement strategy based on VAE achieves deep
semantic replacement and smooth boundary fusion in the

target face region, addressing the limitations of traditional
occlusion or blurring methods in terms of visual
deceptiveness. Experiments show that DPV-VPP
outperforms existing ZKP models, K-Anonymity
processing methods, and GAN-based disguise generation
techniques, particularly in terms of false detection rate
(3.7%) and deception success rate (96.8%).

Furthermore, in terms of system resource control, the
DPV-VPP model also demonstrates excellent real-time
processing capabilities and terminal adaptability. In
95.1% of video frames, the frame rate exceeds 30fps,
meeting the smoothness requirements for video call
applications. In video tests on seven samples, CPU usage
dropped as low as 0.9%, and memory usage remained
under 406MB, with resource overhead significantly better
than the multi-stage convolution-based face blurring
processing methods proposed in References [11] and [14].
In terms of platform security testing, DPV-VPP achieved
interception rates of 99.2% and 98.9% in evaluations
against XSS and CSRF forgery attacks, respectively.

However, running dynamic perturbation and VAE
replacement in parallel causes slightly higher memory
usage when processing high-resolution videos. Future
research will explore lightweight network architectures or
model pruning optimisation strategies. Additionally, XSS
and CSRF attacks primarily target platform interfaces and
transmission processes. The protection provided by this
method is primarily manifested in the irreversibility of
content after front-end data perturbation and face
replacement, representing an ‘indirect protective effect’
rather than a core design objective of the method itself.
Therefore, the experiments in this section serve primarily
as a reference for usability and compatibility verification
in a system integration context. Future research will
further focus on the portability and resource adaptation
capabilities of DPV-VPP on mobile devices and edge
computing platforms to enhance its engineering
practicality.

6 Conclusion

Facing the continuous evolution of cyberattacks,
traditional privacy protection methods have become
increasingly ineffective in safeguarding users' call
privacy. Therefore, this study put forward a dual-layer
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privacy protection model, DPV-VPP, by combining a
perturbation mechanism based on DP with face
replacement using a VAE. Experimental results showed
that DPV-VPP not only provided reliable privacy
protection but also offered strong practical performance,
meeting the demands of modern communication for
privacy protection.

Although this study validated the privacy protection

performance and practical applicability of the DPV-VPP
model, there are still certain limitations. The study has not
yet been deployed and validated in a real remote
presentation system architecture platform, and there is a
lack of testing of generalisation capabilities under
complex facial expressions or lighting conditions. In the
future, we will expand the adaptability of multi-person
interaction scenarios, enhance adversarial robustness, and
strengthen lightweight deployment capabilities.
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