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To tackle the risk of visual content privacy leaks during video calls, the study proposes a two-layer 

protection method combining differential privacy with variational autoencoder-based face replacement. 

The first layer uses a 3D convolutional structure based on optical flow to extract temporal features. It 

also applies a block-level cropping perturbation to sensitive areas, ensuring frame consistency and 

effective privacy masking. In the second layer, a variational autoencoder is uses to replace faces, 

achieving natural transitions via semantic generation and boundary fusion. Experiments on the Celeb-

DF dataset show the method achieves a 96.9% privacy protection success rate, 3.7% false negative rate, 

and 96.8% misdirection success rate against attacks. In simulated platform attack tests, the protection 

success rates against cross-site scripting injection and forged request attacks were 99.2% and 98.9%, 

respectively. In 95.1% of the test video frames, the system processing rate reached 30 frames per second, 

with a minimum CPU usage of 0.9% during processing. The results indicate that the method ensures 

visual privacy security while maintaining good real-time performance and deployment adaptability. 

Povzetek: Razvita je DPV-VPP dvoslojna zaščita videoklicev: optični tok + 3D konvolucije z blokovnimi 

DP-motnjami ter VAE zamenjava obraza. Na Celeb-DF doseže dobre rezultate, je nizka poraba, visoka 

odpornost na XSS/CSRF. 

 

1 Introduction 
With the rapid development of mobile communication and 

Internet technologies, various network attacks are also 

evolving. Traditional privacy protection methods can no 

longer resist these advanced attacks, putting video call 

content at risk of being monitored, stolen, or tampered 

with [1–2]. Conventional privacy protection systems show 

limitations when facing these upgraded threats [3]. 

Therefore, there is an urgent need for a privacy protection 

method tailored to video calls that can counter new forms 

of network attacks. Differential Privacy (DP) protects 

private data by adding random noise that distorts the 

original data and prevents attackers from inferring 

sensitive information [4]. Encoder-decoder frameworks 

can encrypt data by converting its structure [5]. Based on 

this, this paper designs a visual content privacy protection 

algorithm using the disturbance capability of DP and the 

optical flow estimation technique. A face replacement 

method is also designed using a variational autoencoder to 

protect sensitive information. Finally, the disturbance 

algorithm and face replacement method are integrated into 

a visual content data privacy protection model for video 

calls named DP and Variational Visual Privacy Protection 

(DPV-VPP). This model provides dual-layer protection 

for both sensitive and global data, enhancing overall 

privacy protection. The study aims to construct a dual-

layer visual privacy protection model that integrates DP  

 

and VAE to protect sensitive information in video call 

scenarios. The goal is to ensure the privacy and security of  

key areas of video data while balancing the system's real-

time processing capabilities and computing resource 

consumption, thereby improving the model's practicality 

and adaptability in complex communication 

environments. 

2 Related works 
DP has been a reliable method for protecting privacy and 

promoting data sharing. Many researchers domestically 

and internationally have conducted extensive studies on 

DP. For example, in response to the issue where attackers 

use different classifiers to bypass defenses, leading to poor 

protection performance, Zhang et al. put forward a 

statistical privacy method by using the statistical analysis 

capability of DP. They validated its effectiveness in 

improving privacy protection success through 

experiments and evaluations [6]. Zhang’s team also 

applied DP to optimize the performance of federated 

learning, aiming to provide strong privacy protection for 

users and to overcome the limitations of traditional 

methods. Their final experimental results confirmed the 

effectiveness of this method [7]. Encoder-decoder models 

can re-encode various types of data to support later 

processing. Because of their advantages in data handling, 

many scholars have studied encoder-decoder frameworks 
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in different applications. For instance, García’s team 

applied encoder-decoder models to medical language 

processing. They used the framework to translate global 

languages into Spanish and solved the gap in Spanish 

electronic health records. Clinical tests across 17 datasets 

demonstrated the feasibility of this approach [8]. To 

address diagnostic errors caused by blurry chest X-ray 

images, Ukwuoma et al. integrated convolutional neural 

networks with transformer encoders and proposed a 

learning model with strong feature extraction capabilities. 

Their experimental results confirmed the model’s high 

accuracy and outstanding classification performance [9]. 

Faced with growing concerns over privacy leaks, 

many researchers have worked on methods to achieve 

high success rates in privacy protection. For example, to 

reduce privacy exposure caused by recommendation 

systems, Chen et al. put forward a privacy-preserving 

federated collaborative filtering scheme. Simulation 

results showed the scheme achieved high accuracy while 

also reducing communication overhead [10]. Liang et al. 

designed a personal data protection method using 

consortium blockchain. By combining blockchain with 

distributed private cluster storage, they encrypted and 

protected private data. Simulation tests confirmed the 

strong practicality of this method [11]. To solve the 

problem of communication data leakage between patients 

and hospitals caused by centralized artificial intelligence 

training, Ali et al. discussed how federated learning could 

be used to address the issue. They also explored strategies 

for protecting private data in future smart healthcare 

systems [12]. In order to avoid the negative impact of 

privacy leaks on data sharing among network users, Li’s 

team built a secure data sharing scheme for the Internet of 

Things based on blockchain. Simulation results 

demonstrated that the scheme was both secure and 

efficient [13]. Facing potential privacy leaks at the edge of 

6G networks, Mao et al. analyzed the strengths and 

weaknesses of various countermeasures. Their findings 

offered useful guidance for future research on privacy 

protection in 6G communication systems and supported 

the development of safer 6G networks [14]. Larriba et al. 

addressed the issue of low trust in electronic voting 

systems by proposing the introduction of political parties 

as active partners in elections and using blockchain 

technology to build a voting system that is open and 

auditable by third parties, thereby enhancing the 

credibility of the voting system [15]. 

In summary, current privacy protection methods in 

various fields can defend against some types of attacks but 

still show limited performance and poor generalization 

against more advanced threats. DP offers a way to disrupt 

data and achieve global protection. Face replacement 

based on variational autoencoder can replace sensitive 

information, thereby safeguarding key content. Most 

current research focuses on privacy protection for 

structured data or static images, lacking dynamic 

protection mechanisms for visually sensitive information 

such as faces in video sequences. Therefore, the proposed 

DPV-VPP model simultaneously applies data perturbation 

and face replacement to protect video communication 

data. This dual-layer approach is expected to enhance user 

communication security across various scenarios. Table 1 

summarises the details of the comparison between the 

existing methods and the proposed method. 

3 Construction of visual content data 

privacy protection model for video 

calls 

3.1 Design of visual content privacy 

protection algorithm based on DP 

Facing the privacy protection of video content, most 

methods convert video into a set of images, thereby 

reducing the problem to image-level privacy protection. 

However, since video data are continuous, adjacent frames 

often share high similarity [16]. Attackers may exploit 

complementary information from these frames to restore 

video content. To address this issue, this study introduces 

an optical flow estimation algorithm. The optical flow 

estimation identifies the position of perturbation noise 

based on pixel motion to ensure consistency between 

adjacent processed frames and preventing attackers from 

inferring video content [17-18]. The structure of the 

optical flow estimation algorithm is shown in Figure 1. 

Table 1: Comparison of different methods. 

Method Mechanism Target domain Methodological limitations 

Zhang et al. [6] DP Traffic data protection 
Applies noise only to static traffic packets; lacks 

modeling of continuous data streams 

Zhang et al. [7] DP + federated learning Federated learning 
Focused on parameter perturbation; not applicable to 
multimodal or visual content 

García et al. [8] Encoder-decoder architecture Medical language processing 
Designed for text vector transformation; not 

transferable to image/video scenarios 

Ukwuoma et al. 
[9] 

CNN + Transformer Medical image recognition 
Operates on static images; lacks temporal modeling for 
video content 

Chen et al. [10] 
Federated collaborative 

filtering 
Recommender systems 

No support for visual input; unsuitable for image/video 

privacy protection 

Liang et al. [11] 
Blockchain + distributed 
storage 

Personal data encryption 
Focuses on data encryption and storage; lacks content 
disturbance or replacement mechanisms 

Ali et al. [12] Federated learning 
Smart healthcare 

communication 

Emphasizes secure parameter updates; neglects facial 

privacy in video frames 

Li et al. [13] Blockchain IoT data sharing 
No design for visual content protection; limited 
applicability to video-based scenarios 

Mao et al. [14] Survey of Security Strategies 6G Edge Communication 
Provides strategic overview without concrete 

algorithmic implementation 
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Larriba et al. [15] 
Blockchain + Multi-party 
voting 

Electronic Voting Privacy 
Highly application-specific; lacks generalizability to 
video communication privacy 

This paper 
DP + VAE-based face 

replacement 
Video call privacy protection - 
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Figure 1: Structure diagram of optical flow estimation algorithm. 

As shown in Figure 1, after receiving adjacent video 

frames from the image input module, the algorithm 

extracts feature through a feature encoder and a context 

network. Then, the image similarity calculation module 

divides the images into multiple regions and assigns 

relevance factors to each one. The relevance of other 

regions is determined based on the position of pixel 

values. The relationship between two adjacent frames is 

calculated as shown in Equation (1). 
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In Equation (1), A  and B  represent region indexes, 

( )J   indicates the mapping between regions, 
k  is an 

adaptive relevance factor within the range [0, 1], 

( )region   and   refer to the dot product between image 

regions and feature maps, and 
VC  represents the 

computed correlation. Multiple convolutional kernels then 

extract four-dimensional relational features. This 

preserves high resolution and enables the computation of 

subtle motions. The optical flow sequence is updated 

iteratively to complete the estimation, as shown in 

Equation (2). 

1k k kf f f+ = +                                 (2) 

In Equation (2), the current optical flow 
1kf +

 is 

updated by adding 
kf  to obtain 

kf , and after k  

iterations, the sequence  1 2, , , nf f f    is formed. For 

current optical flow displacement, three parallel small 

convolutional kernels are used, as shown in Equation (3). 
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In Equation (3), ( 1,2,3)i

flowF i =  denotes the extracted 

features, i  is the number of kernels, ( )cat   represents the 

concatenation of 1

flow
F , 2

flow
F , and 3

flow
F , and 

exportF  is the 

final result. This process ensures accurate optical flow 

estimation. Effective video content feature extraction 

requires both spatial and temporal features. 3D 

convolution captures features across both dimensions 

[19]. Therefore, this study uses 3D convolution to extract 

temporal features and enhance feature completeness. 

However, after applying optical flow and 3D convolution, 

the feature maps become large and increase the burden on 

mobile devices. Based on the difference between feature 

maps and video frames, this study adjusts the perturbation 

degree: no processing for minor differences and stronger 

perturbation for significant differences. A convolutional 

kernel feature analysis is added to 3D convolution to 

classify feature maps, as shown in Figure 2. 
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Figure 2: Schematic diagram of the feature analysis 3D convolution operation process. 
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Figure 3: DP-VPM mechanism structure diagram. 

Figure 2 shows that the 3D convolution first 

normalizes the video frames in size and pixel values. The 

normalized frames are passed through convolutional 

layers to capture spatial-temporal relationships. Then, 3D 

max pooling is used to reduce the dimensions of the 

feature maps. A fully connected layer converts the map 

into a 1D vector. Finally, similarity with the original video 

determines the perturbation level. Structural similarity is 

used to measure this, considering brightness, contrast, and 

structure. A higher score indicates higher similarity. The 

brightness similarity function is shown in Equation (4). 
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In Equation (4), 
f  and 

g  represent the brightness 

means of the feature and original images. The contrast 

similarity function is shown in Equation (5). 
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In Equation (5), 
f  and 

g  are the standard 

deviations of the feature and original images. The 

structural similarity function is shown in Equation (6). 
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In Equation (6), ( , )s f g  is the calculated similarity 

value. 
1C , 

2C , and 
3C  in Equations (4), (5), and (6) are 

constants used to prevent zero denominators. The final 

similarity score is calculated as shown in Equation (7). 

( , ) ( , ) ( , ) ( , )SSIM f g l f g c f g s f g=            (7) 

In Equation (7), ( , )SSIM f g  is the comprehensive 

similarity score. To clearly distinguish between “minor 

differences” and “significant differences” in feature maps, 

the study classified each region based on the structural 

similarity index. The specific classification criteria are as 

follows: if the structural similarity index is greater than 

0.85, the region is classified as having minor difference 

region and mild perturbation is applied. When the score is 

<0.65, it is classified as a significant difference region and 

strong perturbation is applied. Traditional perturbation 

methods based on DP suffer from low data usability and 

insufficient protection [20]. To address this, this study 

combines pixel-level noise with a block-level mosaic 

approach to propose a novel block-cutting perturbation 

mechanism. It first generates a matrix to determine the 

center of the region to be perturbed, converting pixel-wise 

noise into block-wise perturbation. Then, the pooling 

operation in the mosaic is replaced by pixel zeroing. 

Combining this with video feature extraction forms a DP-

based visual content protection mechanism named DP-

VPM. Its structure is shown in Figure 3. 
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As shown in Figure 3, the DP-VPM mechanism 

follows these steps: first, convert the target video into 

image frames. Second, extract spatial and temporal 

features via optical flow and 3D convolution modules. 

Third, analyze feature maps using kernel-based 

classification to assign appropriate perturbation levels. 

Fourth, apply block-cutting perturbation to finalize 

protection. The perturbation mechanism consists of three 

closely connected stages: optical flow estimation, 

structural similarity analysis, and block-level perturbation 

execution. The optical flow estimation algorithm analyzes 

pixel motion between adjacent video frames and generates 

a map of motion intensity. Subsequently, the structural 

similarity index analysis is introduced within the 

candidate regions to measure the visual consistency 

between each region and the original frame. Based on the 

values of the structural similarity index, the perturbation 

intensity is categorized into different levels. Regions with 

high similarity do not require perturbation, those with 

moderate similarity are subjected to light perturbation, and 

regions with low similarity receive strong perturbation. 

This adaptive approach allows for precise control of 

perturbation levels based on visual similarity. Finally, the 

system executes the block-based perturbation mechanism 

according to the positions identified by optical flow and 

the intensity levels determined by the structural similarity 

index. For light perturbation, pixel-level Gaussian noise is 

applied, while strong perturbation involves setting entire 

pixel blocks to zero. The study sets the encoder and 

context network in the optical flow estimation module to 

include four layers of convolution operations, with a 3×3 

kernel size, a stride of 1, padding of 1, and channel 

numbers of 64, 128, 128, and 256 for each layer, 

respectively. In the structural similarity assessment, the 

brightness, contrast, and structural constants are 0.01, 

0.03, and 0.015, respectively, and the structural similarity 

threshold is 0.85. In the DP-VPM module, the disturbance 

noise is sampled from a Gaussian distribution 2(0, )Ν  , 

and the variance 
2  is dynamically adjusted according to 

the scene. In low-motion scenes, 
2  is 0.04, and in high-

motion scenes, it is 0.08. This noise is initially applied at 

the pixel level. It is then transformed into block-level zero-

value masks using a regional occlusion mechanism, which 

enhances privacy protection while preserving visual 

continuity. 

3.2 Construction of Visual Content 

Privacy Protection Model for Video 

Calls 

Although the VPM mechanism protects overall video 

content, attackers may still recover critical details like 

faces, compromising privacy [21]. Therefore, this study 

builds a face replacement model using the Variational 

Autoencoder (VAE), which models latent features of 

video frames probabilistically. The structure is shown in 

Figure 4. 

As shown in Figure 4, the VAE consists of an encoder 

and decoder. The encoder analyzes the input image to 

obtain the probability values of facial features. The 

decoder reconstructs the encoded values into a new 

arrangement for output. To enhance the expressive 

capability of facial information reconstruction, the VAE 

designed by the research institute adopts a symmetric 

structure, with the encoder and decoder each consisting of 

four convolutional layers and two fully connected layers. 

The input image size is 256×256×3, which is compressed 

into a latent variable vector with a dimension of 128 after 

encoding. The decoder reconstructs the image from this 

latent space. All convolutional layers use a 3 × 3 

convolutional kernel with a stride of 2, padding of 1, and 

the ReLU activation function. During training, the total 

loss function of the VAE consists of two parts, with a 

balancing coefficient of 0.1 for the loss weights. The first 

is the pixel-level mean squared error loss between the 

input image and the reconstructed image, and the second 

is the Kullback-Leibler divergence between the encoder 

output distribution and the standard normal distribution. 

Additionally, the model is trained for 120 epochs using the 

Adam optimizer with a learning rate of 0.0002 and a batch 

size of 32. During reconstruction, latent vectors are 

obtained from inputs as described in Equation (8). 

( )Z q z x                                 (8) 

In Equation (8), Z  is the latent vector,   denotes 

encoder weights, x  is the data sample, and Z  is the 

output latent vector. Then, the image set is reconstructed 

from the latent vector, as shown in Equation (9). 

( ) ( )X p z p x z 
                          (9) 

In Equation (9), X   is the reconstructed image,   

denotes decoder weights, and x  is a data sample. The 

encoder’s posterior distribution is expected to be ( )p z x , 

which is approximated using ( )p z x  instead of ( )q z x . 

To minimize the difference between q  and p , the KL 

divergence between q  and p  is minimized, as shown in 

Equation (10). 

min ( ( ) ( ))KL q z x p z x                  (10) 

Equation (10) ensures consistency between q  and p

, allowing accurate inference of complex distributions. 

Using VAE, it is possible to generate realistic fake faces 

that resemble the original and capture multiple angles. 

Based on this, the study proposes a face replacement 

method named VA-FR, shown in Figure 5. 
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Figure 4: Schematic diagram of the VAE. 
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Figure 5: Flowchart of VA-FR face replacement method. 

As shown in Figure 5, the first stage of face detection 

uses the RetinaFace model based on the ResNet-50 

backbone network. After detection, the faces are 

geometrically aligned using a five-point affine 

transformation to standardize the face scale and improve 

the accuracy of subsequent reconstruction. In the face 

segmentation stage, a supervised semantic segmentation 

model based on the U-Net architecture is used to extract 

the foreground face region. In the experiment, the frame 

discard rate due to segmentation failure was 

approximately 2.1%, mainly concentrated in overexposed 

or blurred frames. Therefore, in terms of feature modeling, 

the VAE structure is symmetrically composed of an 

encoder and a decoder, each containing four convolutional 

layers and two fully connected layers, with the latent 

variable dimension set to 128. In the final output stage, the 

system uses a Poisson fusion algorithm to perform edge 

smoothing and lighting adjustment on the replaced face, 

and completes frame rate synchronization to ensure the 

naturalness and continuity of the generated video in terms 

of visual perception. The content smoothing is described 

in Equation (11). 
2

min
f

f v  −                           (11) 

In Equation (11),   is the foreground region of the 

synthesized image, and f  is the pixel representation 

function in the merged image  . To improve the natural 

transition of synthetic images at the boundaries, a 

boundary smoothing mechanism was introduced in this 

study. First, a Poisson mixture algorithm is used to 

gradientally blend the foreground region with the 

background image, ensuring consistency in brightness and 

texture at the boundary. Specifically, the pixel values in 

boundary region   are not directly taken from values 

outside the image but are adjusted based on the solution of 

the Laplace operator in the Poisson equation, thereby 

constructing a smooth transition of pixel value distribution 

in the boundary region. This process is illustrated in 

Equation (12). 

in

on

s

t

f f

f f





 =  


= 
                      (12) 

In Equation (12),   is the boundary of  , and f   

is the pixel representation function outside the boundary. 

tf  represents the gradient information of the source 

image. 
sf  represents the boundary value of the target 

background image;   represents the Laplace operator. 

The VA-FR method replaces key facial information in 

video content to further protect privacy. Finally, this study 

combines the VA-FR and VPM mechanisms to build the 

DPV-VPP model. Its structure is shown in Figure 6. 
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Figure 6: DPV-VPP model structure diagram. 

As shown in Figure 6, the DPV-VPP model 

preprocesses the target video into frames. Then, the VA-

FR mechanism replaces sensitive face information. 

Finally, the VPM mechanism perturbs the video frames, 

achieving two-layer protection. 

4 Performance evaluation of the 

DPV-VPP model 

4.1 Experimental environment and 

training results of the DPV-VPP model 

After the construction of the DPV-VPP model, in order to 

evaluate its performance in protecting privacy in video 

calls, the study introduced three domain-related models—

K-Anonymity, DP, and Zero-Knowledge Proof (ZKP)—

as comparison models. A Huawei Mate 30 device with a 

Kirin 990 chip was used as the local mobile terminal, 

while the cloud server was equipped with an Intel Xeon 

E5-2682 V4 CPU and an NVIDIA Tesla P4 GPU. The 

programming language used was Python, and the 

operating system was Windows 10. The Celebrity 

Deepfake Detection (Celeb-DF) dataset was used as the 

experimental dataset to provide test samples. Details of the 

Celeb-DF dataset are shown in Table 2. 

As shown in Table 2, the Celeb-DF dataset suffers 

from a significant class imbalance problem, with the 

number of face-swapped videos (5639) far exceeding that 

of real videos (590), resulting in a ratio of real to fake 

samples of approximately 1:10. This severe imbalance 

may cause the model to favour identifying fake samples 

during training while neglecting its ability to distinguish 

real samples, leading to certain generalisation errors in 

real-world applications. To mitigate this bias, the study 

introduced a category weight adjustment mechanism and 

a stratified sampling strategy during training, and also 

adjusted the loss function with category weights. Based on 

the above experimental environment and the Celeb-DF 

dataset, the study first conducted experiments on the 

missed detection rate and privacy protection success rate 

for the four privacy protection models. The missed 

detection rate referred to the proportion of non-sensitive 

information that was incorrectly protected, while the 

privacy protection success rate referred to the proportion 

of sensitive information that was correctly identified and 

protected. The results represent the average value of five 

independent experiments run under the same data set and 

parameter configuration, with error bars representing the 

95% confidence interval. The results are shown in Figure 

7. 

Table 2: Celeb-DF dataset details. 

Parameter Details 

The number of themes 590 

The number of deepfake videos 5639 

Average duration 13s 

Standard frame rate 30 frames per second 

Video format MPEG4.0 
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Figure 7: Results of missed detection rate and privacy protection success rate. 
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Figure 8: Successful deception rate experimental results. 

As shown in Figure 7(a), the missed detection rates of 

the four models decreased steadily as the number of 

training iterations increased. When the number of 

iterations reached 389, 267, 214, and 145 respectively, the 

missed detection rates of ZKP, K-Anonymity, DP, and 

DPV-VPP stabilized at 7.4%, 5.2%, 5.8%, and 3.7%. 

These results showed that DPV-VPP achieved a lower 

missed detection rate compared to the other three models, 

indicating better performance in identifying sensitive 

information. As illustrated in Figure 7(b), after training, 

the privacy protection success rates of ZKP, K-

Anonymity, and DP stabilized at 94.3%, 93.9%, and 

96.1% respectively. The DPV-VPP model achieved a 

success rate of 96.9%, which was higher than the other 

three models. The results in Figure 7(a) and Figure 7(b) 

demonstrate that DPV-VPP achieved favorable 

performance in terms of both missed detection rate and 

privacy protection success rate, providing reliable data 

support for subsequent experiments. Next, the study 

conducted a comparison experiment on the deception 

success rate of the four models. The deception success rate 

referred to the probability that a privacy protection model 

successfully misled and deceived attackers, causing them 

to analyze or attack incorrect information. The study 

tested 50 samples using the ZKP, K-Anonymity, DP, and 

DPV-VPP models. The experimental results are shown in 

Figure 8. 

Figure 8 presents the deception success rates of the 

four models. As shown in Figure 8(a), the K-Anonymity 

model reached a highest deception success rate of 87.5%. 

According to Figures 8(b) and 8(c), the highest deception 

success rates of the DP and ZKP models were 88.1% and 

91.2%, respectively. Figure 8(d) shows that the DPV-VPP 

model achieved the highest deception success rate of 

96.8%, surpassing the other three models. These results 

indicated that the DPV-VPP model successfully disturbed 

the original call data and effectively misled attackers, 

thereby reducing the attack success rate. 

4.2 Practical performance evaluation of 

the DPV-VPP model 

After verifying the training performance of the DPV-VPP 

model, the study further evaluated its practical 

applicability. The experimental environment and dataset 

remained consistent with the training experiments. The 

study first conducted experiments on the number of video 

frames processed per second for the four models. This 

metric measured whether the privacy protection model 

affected the smoothness of terminal usage. If the number 

of frames processed per second exceeded 30 fps, it 

indicated that the model did not cause noticeable latency. 

The results are presented in Figure 9. 
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Figure 9: Experimental results of processing video frames per second. 

In Figure 9, the average frame rate of the DPV-VPP 

model is approximately 34.0 fps, the DP model is 

approximately 32.0 fps, the ZKP model is approximately 

30.5 fps, and the K-Anonymity model is approximately 

29.0 fps. Based on the calculation of intra-sample 

variance, the 95% Confidence Intervals (CI) for the frame 

rates of all models are controlled within ±1.5-2.2 fps, 

indicating that the models exhibit strong real-time 

stability. As shown in Figure 9(a), the K-Anonymity 

model processed more than 30 frames per second in 75.1% 

of the samples, which was relatively low and could affect 

the smooth performance of the terminal. According to 

Figures 9(b) and 9(c), the proportions for the DP model 

were 84.4% and 91.1%, indicating a certain degree of 

impact on performance. Figure 9(d) shows that the DPV-

VPP model achieved processing speeds above 30 frames 

per second in 95.1% of the cases, suggesting minimal 

impact on device smoothness. These results demonstrated 

the practicality and reliability of the DPV-VPP model in 

real-world applications. Subsequently, the study 

conducted experiments on the attack protection success 

rate of the four models. Two types of attacks were 

simulated: Cross-Site Scripting (XSS) and Cross-Site 

Request Forgery (CSRF), representing different levels of 

attack intensity. Although XSS and CSRF attacks 

typically target the platform logic layer, in actual video 

call systems, attackers can bypass video desensitisation 

modules by forging application programming interface 

requests or injecting scripts, thereby submitting 

unprotected raw image frames and causing user privacy 

leaks. The study deployed the DPV-VPP module in the 

front-end video capture process, using structural 

perturbation and face replacement mechanisms to ensure 

that even if the interface is tampered with, the system 

cannot access the original visual content. Therefore, 

XSS/CSRF attack simulations were introduced to verify 

the proposed method's indirect protective capabilities 

against potential visual content leakage attacks. In the 

simulated XSS and CSRF attack experiments, the study 

used a black-box attack method to test the protection 

capabilities of different visual privacy protection models. 

Attackers could not access model parameters and were 

only able to submit video frames embedded with attack 

payloads via standard HTTP interfaces. The results are 

shown in Figure 10. 
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Figure 10: Protection success rate against XSS attacks and CSRF attacks. 
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Figure 11: CPU and memory usage experimental results. 

As shown in Figure 10(a), after 50 minutes of XSS 

attacks, the protection success rates of ZKP, K-

Anonymity, DP, and DPV-VPP were 97.8%, 96.5%, 

97.4%, and 99.2%, respectively. The DPV-VPP model 

achieved the highest success rate among the four. 

According to Figure 10(b), after 50 minutes of CSRF 

attacks, the protection success rates of ZKP, K-

Anonymity, DP, and DPV-VPP were 97.9%, 96.8%, 

96.6%, and 98.9%, respectively. Again, DPV-VPP 

outperformed the other models. These results indicated 

that DPV-VPP consistently provided effective protection 

under attacks of varying complexity, demonstrating strong 

generalization capabilities. Finally, to further verify the 

practical applicability of the DPV-VPP model, the study 

evaluated CPU and memory usage while each of the four 

models processed seven test samples. The results are 

shown in Figure 11. 

As shown in Figure 11(a), the K-Anonymity model 

exhibited high CPU usage, exceeding 10% in every test 

sample. For the ZKP and DP models, the highest CPU 

usage rates were 7.8% and 4.9%, while the lowest were 

4.8% and 2.5%, respectively. In contrast, the DPV-VPP 

model achieved significantly better performance, with a 

maximum CPU usage of only 3.8% and a minimum of 

0.9%. As shown in Figure 11(b), the DPV-VPP model 

consistently maintained memory usage below 405 MB 

across all test samples, significantly outperforming other 

models and demonstrating better resource stability and 

deployment adaptability. These results demonstrated that 

the DPV-VPP model did not interfere with normal call 

operations, further validating its excellent performance in 

practical scenarios. 

5 Discussion 
Compared with traditional differential privacy methods, 

DPV-VPP integrates two layers of protection mechanisms 

into its structural design. Compared with References [7] 

and [10], DPV-VPP combines a dynamic perturbation 

algorithm based on optical flow estimation and structural 

similarity analysis to adaptively adjust the perturbation 

intensity, effectively addressing privacy-sensitive areas of 

varying degrees in videos. Additionally, the VA-FR face 

replacement strategy based on VAE achieves deep 

semantic replacement and smooth boundary fusion in the 

target face region, addressing the limitations of traditional 

occlusion or blurring methods in terms of visual 

deceptiveness. Experiments show that DPV-VPP 

outperforms existing ZKP models, K-Anonymity 

processing methods, and GAN-based disguise generation 

techniques, particularly in terms of false detection rate 

(3.7%) and deception success rate (96.8%). 

Furthermore, in terms of system resource control, the 

DPV-VPP model also demonstrates excellent real-time 

processing capabilities and terminal adaptability. In 

95.1% of video frames, the frame rate exceeds 30fps, 

meeting the smoothness requirements for video call 

applications. In video tests on seven samples, CPU usage 

dropped as low as 0.9%, and memory usage remained 

under 406MB, with resource overhead significantly better 

than the multi-stage convolution-based face blurring 

processing methods proposed in References [11] and [14]. 

In terms of platform security testing, DPV-VPP achieved 

interception rates of 99.2% and 98.9% in evaluations 

against XSS and CSRF forgery attacks, respectively. 

However, running dynamic perturbation and VAE 

replacement in parallel causes slightly higher memory 

usage when processing high-resolution videos. Future 

research will explore lightweight network architectures or 

model pruning optimisation strategies. Additionally, XSS 

and CSRF attacks primarily target platform interfaces and 

transmission processes. The protection provided by this 

method is primarily manifested in the irreversibility of 

content after front-end data perturbation and face 

replacement, representing an ‘indirect protective effect ’ 

rather than a core design objective of the method itself. 

Therefore, the experiments in this section serve primarily 

as a reference for usability and compatibility verification 

in a system integration context. Future research will 

further focus on the portability and resource adaptation 

capabilities of DPV-VPP on mobile devices and edge 

computing platforms to enhance its engineering 

practicality. 

6 Conclusion 
Facing the continuous evolution of cyberattacks, 

traditional privacy protection methods have become 

increasingly ineffective in safeguarding users' call 

privacy. Therefore, this study put forward a dual-layer 
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privacy protection model, DPV-VPP, by combining a 

perturbation mechanism based on DP with face 

replacement using a VAE. Experimental results showed 

that DPV-VPP not only provided reliable privacy 

protection but also offered strong practical performance, 

meeting the demands of modern communication for 

privacy protection. 

Although this study validated the privacy protection 

performance and practical applicability of the DPV-VPP 

model, there are still certain limitations. The study has not 

yet been deployed and validated in a real remote 

presentation system architecture platform, and there is a 

lack of testing of generalisation capabilities under 

complex facial expressions or lighting conditions. In the 

future, we will expand the adaptability of multi-person 

interaction scenarios, enhance adversarial robustness, and 

strengthen lightweight deployment capabilities. 
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