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This paper proposes a dynamic resource isolation framework FNN-Cloud based on fuzzy neural network 

(FNN), which aims to solve the limitations of static policies and the lack of ability to handle uncertain 

demands in cloud computing environments. FNN-Cloud is designed for multi-tenant scenarios. It uses 

fuzzy logic to quantify uncertain resource demands and dynamically adjusts isolation thresholds through 

neural networks to optimize resource utilization and maintain service level agreement (SLA) compliance. 

In terms of computational methods, the framework uses a double hidden layer back propagation (BP) 

neural network combined with an adaptive moment estimation (Adam) optimizer and a dynamic loss 

function (SLA violation loss + resource utilization loss) for online learning. At the same time, it uses 

triangular membership functions to fuzzify key indicators such as CPU utilization and memory pressure, 

and uses a 3×3 fuzzy rule base to handle multi-dimensional resource coupling relationships. In terms of 

experiments, 8 physical nodes are deployed on the OpenStack test platform to simulate three typical 

workloads: Web services, data analysis, and mixed workloads, and compared with static thresholds, long 

short-term memory networks (LSTM), and deep Q networks (DQN). Test data shows that FNN-Cloud 

outperforms the baseline model in CPU usage (28.3%--34.7%), memory usage (31.5%--37.2%), and SLA 

violation rate (2.1%--4.5%), while reducing P99 latency by 62.3% and controlling the policy response 

time within 51.4 milliseconds. The system demonstrates efficient and robust dynamic isolation capabilities 

through a fuzzy priority arbitration mechanism and a neural prediction-driven pre-isolation strategy, 

providing a reproducible intelligent optimization solution for cloud computing resource management. 

Povzetek: Hibridni okvir FNN-Cloud združuje mehko logiko in nevronske mreže ter omogoča bolj 

kvalitetno dinamično izolacijo virov v večnajemniških oblakih, pri čemer presega statične, LSTM in DQN 

pristope. 

 

1 Introduction 
Dynamic isolation of cloud computing resources is a core 

technology that ensures the quality of multi-tenant 

services. Its core challenge lies in the significant 

nonlinearity, time-varying, and fuzzy characteristics of 

resource demand [1], [2]. Modern cloud platforms carry 

heterogeneous workloads ranging from delay-sensitive 

financial transactions to computationally intensive 

Artificial Intelligence (AI) training. Static allocation 

methods based on thresholds are difficult to adapt to rapid 

resource demand fluctuations [3], [4], [5]. Especially in 

the rise of edge computing and Serverless architecture, 

resource isolation mechanisms need to meet the 

requirements of response, policy update, and uncertain 

demand modeling [6], [7], which poses new challenges to 

isolation algorithms' real-time, adaptability, and 

interpretability. 

 

The core dilemma faced by the dynamic isolation of cloud 

computing resources is that the decision complexity  

under multi-dimensional constraints grows exponentially. 

Resource demand presents typical non-steady-state 

characteristics, with short video streaming requests 

bursting in seconds and batch computing tasks lasting for 

hours. This time-varying heterogeneity makes it difficult 

for a single isolation strategy to consider both 

instantaneous response and long-term stability [8], [9]. 

Monitoring data itself has fuzzy semantic attributes. For 

example, most CPU utilization may correspond to 

“normal”, “critical”, or “overloaded” states in different 

application scenarios. Existing quantitative methods are 

challenging to use to characterize such uncertain 

boundaries accurately. The generation process of isolation 

parameters involves nonlinear mapping. A strong 

coupling relationship exists between decision variables 

such as virtual machine quotas and memory bandwidth 
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limits. Simple linear weighting or threshold segmentation 

can apply suboptimal solutions. The sudden change in 

characteristics of load patterns requires isolation 

mechanisms to have online learning capabilities. Still, the 

policy jitter generated by conventional machine learning 

models during model updates may cause cascading 

performance fluctuations. Resource arbitration in multi-

tenant scenarios requires a balance between fairness and 

priority. The continuous requirements of critical services 

for resource supply and the fluctuating needs of elastic 

applications form a natural contradiction. Static priority 

policies are prone to resource fragmentation. Existing 

isolation systems generally have adjustment lags when 

dealing with burst traffic. Many SLA violations may have 

accumulated in the time window from anomaly detection 

to policy effectiveness [10], [11]. The granularity of 

resource status evaluation and the real-time nature of 

decision-making form a paradox. Fine-grained monitoring 

brings higher accuracy but increases computing overhead, 

while coarse-grained indicators may cover up key 

performance inflection points. 

This paper is dedicated to building a new paradigm 

for the dynamic isolation of cloud computing resources. 

Its core breakthrough lies in the deep coupling of the 

semantic modeling capability of fuzzy systems with the 

dynamic learning characteristics of neural networks. 

Unlike the existing solution that connects fuzzy reasoning 

and neural networks in series, this study creatively designs 

a differentiable fuzzification layer so that the membership 

function parameters can be automatically optimized 

through back propagation, realizing an end-to-end 

trainable architecture from raw monitoring data to 

isolation strategies. A fuzzy rule evolution mechanism 

with dynamic confidence is adopted at the technical level, 

and the rule base weights are adaptively adjusted 

according to the real-time load characteristics, which 

solves the system's problem relying on manual experience. 

A feature extraction network based on spatiotemporal 

association is designed. Through multi-scale convolution 

kernels, the short-term fluctuations and long-term trends 

of resource indicators are captured simultaneously, which 

can significantly improve the prediction accuracy of burst 

loads. A fuzzy priority number arbitration algorithm for 

resource conflicts is designed to convert the prediction 

output of the neural network into an interpretable priority 

score, which ensures fairness among multiple tenants 

while ensuring key services. The innovation of this 

solution lies in the establishment of a hybrid intelligent 

isolation framework that supports online updates in a 

cloud computing environment. The fuzzy reasoning 

module handles uncertain semantics, and the neural 

network component is responsible for nonlinear mapping. 

The two achieve collaborative optimization through a 

shared feature space. The value of this architecture is that 

it maintains the interpretability of fuzzy systems and has 

the environmental adaptability of deep learning, providing 

a new methodological support for resource isolation 

decision-making in complex scenarios. This solution can 

significantly improve the intelligence level of resource 

allocation and the agility of system response while 

maintaining service quality. 

This study aims to verify three core hypotheses: 

1) Compared with the static threshold method, the 

dynamic fuzzy rule confidence mechanism can reduce the 

SLA violation rate under burst load; 

2) Compared with the traditional LSTM prediction 

model, the threshold adjustment driven by the neural 

network improves resource utilization; 

3) The fuzzy priority arbitration algorithm can 

maintain the fairness of resource allocation among 

multiple tenants while ensuring the SLA of high-priority 

services. 

2 Related work 
The academic community has proposed various 

improvement methods to improve cloud platform resource 

isolation dynamics and intelligence. The static threshold 

method is widely used because of its simple deployment 

[12], [13]. Qin et al. [14] proposed a threshold-based 

distributed offloading algorithm to solve the problem of 

computing offloading in large-scale mobile cloud 

computing, optimizing the upload and local processing 

decisions of computing tasks through threshold updates. 

The algorithm showed good convergence and 

performance advantages in different scenarios. Especially 

in high-cost cases, it had better efficiency than 

probabilistic strategies; however, it was prone to resource 

redundancy or response lag when facing severe load 

fluctuations. Time series prediction methods based on 

Long Short-Term Memory (LSTM) are gradually applied 

to cloud resource management, and resource requirements 

are predicted in advance by modeling historical load 

trends [15], [16]. Patel and Kushwaha [17] proposed a 

hybrid prediction method of LSTM, which combined a 1D 

convolutional neural network and an LSTM network to 

predict the CPU utilization of cloud servers. This method 

improved the prediction accuracy by 15% to 16% 

compared with existing methods on multiple datasets; 

however, its adaptability to burst load patterns was still 

poor. Some studies have applied deep reinforcement 

learning models, such as Deep Q-Network (DQN) 

adaptive isolation, which generated isolation strategies 

through interactive training and had specific real-time 

tuning capabilities [18], [19]. Hu et al. [20] proposed a 

deep reinforcement learning algorithm that integrated 

DQN to optimize IoT (Internet of Things) task offloading 

decisions with limited block length in edge-cloud 

collaborative systems, significantly improving system 

stability, convergence speed, and task processing 

performance. However, these methods are still insufficient 

in modeling the uncertainty of resource requests, 

especially in multi-tenant conflict arbitration and burst 

mode processing. There are delay problems. Traditional 

methods still face limitations in improving system SLA 

compliance and resource response efficiency. 

In recent years, fuzzy logic has shown good 

performance in uncertainty modeling and has been widely 

used in scheduling optimization and decision-making 

systems. Some scholars have used fuzzy control methods 

to allocate cloud middleware resources to improve request 

response speed dynamically, and used fuzzy reasoning 
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systems to evaluate performance indicators and judge 

resource priorities [21], [22]. However, such methods rely 

on expert knowledge to set rules and are difficult to adapt 

to complex scenario changes automatically. Other 

scholars have proposed combining fuzzy logic with deep 

learning for traffic prediction and medical image 

processing, achieving good results, indicating that FNNs 

can potentially model nonlinear relationships in fuzzy 

environments [23], [24]. However, there are few studies 

on applying FNN methods to cloud computing resource 

isolation, and there is still a lack of systematic evaluation 

of key performance indicators such as SLA guarantee, 

isolation strategy delay, and resource conflict handling. 

Therefore, this paper applies FNNs to dynamic isolation 

of cloud platform resources, handles the uncertainty of 

resource status through fuzzy rules, and combines the 

dynamic learning ability of neural networks to improve 

response speed and resource utilization synergistically. 

 

Table 1: Comparison of resource isolation methods 
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Table 1 systematically compares the performance of 

different resource isolation methods. FNN-Cloud 

significantly outperforms static thresholds, LSTM 

prediction, and DQN reinforcement learning methods in 

SLA violation rate (2.1%-4.5%) and burst load 

adaptability (excellent), while maintaining a reasonable 

computational overhead. Compared with traditional 

methods, FNN-Cloud achieves a balance between 

interpretability and dynamic adjustment capabilities 

through a fuzzy neural hybrid architecture. Although the 

LSTM prediction method reduces the violation rate, it has 

the problem of high computational latency; the DQN 

method has obvious strategy oscillation, and the static 

threshold is completely unable to adapt to load mutations. 

This comparison verifies the comprehensive advantages 

of FNN-Cloud in complex cloud environments. 

3 FNN-Cloud dynamic isolation 

framework

 

Figure 1: FNN-Cloud dynamic isolation architecture 

Figure 1 systematically presents the dynamic isolation 

architecture of cloud computing resources based on FNNs, 

which includes four modules: input layer, FNN core layer, 

decision layer, and feedback loop. The input layer receives 

the original resource indicators, which are converted into 

fuzzy variables with semantic features by the fuzzification 

layer, and the triangular membership function quantifies 

the uncertainty. The fuzzy rule base uses a 3×3 matrix 

structure to store dynamic confidence rules, and its output 

is mapped to isolation parameters by a double hidden layer 

BP network. The decision layer applies a fuzzy priority 

number arbitration mechanism and combines neural 
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prediction to achieve pre-isolation. The feedback loop 

drives the rule confidence update and neural network 

retraining through SLA monitoring data and Cumulative 

Sum (CUSUM) mutation detection to form a closed-loop 

optimization. 

3.1 Multi-dimensional resource fuzzy coding 

The original indicators, such as CPU utilization and 

memory pressure value, are converted into fuzzy language 

variables (low/medium/high). The triangular membership 

function is used to quantify the uncertainty of IaaS layer 

monitoring data, and a 3×3 fuzzy rule base is established 

to characterize the correlation of resource demand. 

3.1.1 Fuzzy language variable conversion and 

membership function design 

The numerical characteristics of the original monitoring 

data (CPU utilization, memory pressure value, etc.) are 

uncertain, and the direct use for decision-making is prone 

to noise interference. Fuzzy coding maps continuous 

indicators into discrete semantic variables to enhance the 

system’s ability to express the fuzziness of resource status. 

The fuzzy language set of the input variables is defined as 

{low, medium, high}, and each language variable 

corresponds to a triangular membership function 𝜇𝐴(𝑥), 

which is mathematically described as: 

𝜇𝐴(𝑥) = max (0,1 −
|𝑥 − 𝑐|

𝑤
) (1) 

Among them, 𝑐 is the center point of the membership 

function; 𝑤  is the support width; 𝑥  is the input 

observation value. The function transitions smoothly at 

the boundary to avoid decision mutations caused by 

traditional step functions. For CPU utilization, when the 

load is less than 30%, it is classified as “low”; 30%-70% 

is “medium”, and above 70% is “high”. The memory 

pressure value adopts a weighted combination of page 

error rate and swap frequency, and the fuzzy division is 

dynamically calibrated according to the system’s actual 

load characteristics. 

The fuzzification layer adopts a differentiable 

structure, and the membership function parameters (c, w) 

are used as trainable variables, which are automatically 

optimized during the back propagation process. After the 

monitoring data flows through this layer, a three-

dimensional vector [ 𝜇𝑙𝑜𝑤(𝑥), 𝜇𝑚𝑒𝑑𝑖𝑢𝑚(𝑥), 𝜇ℎ𝑖𝑔ℎ(𝑥)]  is 

output, indicating the degree of membership of the current 

resource status to each language variable. 

 
Figure 2: Evolutionary optimization process of triangular 

membership function 

 

Figure 2 illustrates the evolutionary optimization 

process of the triangular membership function. As the 

back propagation algorithm iterates and optimizes, the 

core parameters of the membership function—center point 

c and width w—are continuously adjusted, transforming 

the function from an initially broad distribution into a 

more distinct and clearly defined shape. This evolution 

reflects the neural network's autonomous learning ability 

to handle the ambiguous classification of resource states 

—— The system automatically corrects the membership 

function through SLA violation feedback, refining the 

boundaries between low, medium, and high load states to 

better align with actual business needs. 

3.1.2 Construction of fuzzy rule base and 

uncertainty modeling 

The fuzzy rule base describes the nonlinear association 

between resource requirements and uses the “IF-THEN” 

form to describe the multi-dimensional coupling 

relationship. The rule antecedent (IF part) is a fuzzy 

combination of input variables, and the consequent 

(THEN part) is the resource requirement level. Typical 

rules include: “IF CPU is high AND memory is low THEN 

isolation level is urgent”. The rule base is designed to be a 

3×3 structure to cover the main load scenarios and avoid 

the problem of a combinatorial explosion. 

Each rule is assigned a dynamic confidence, and the 

initial value is set by domain knowledge and is 

subsequently adjusted online according to SLA violation 

records. The rule trigger strength 𝛽𝑖  uses algebraic 

product operation: 

𝛽𝑖 = ∏ 𝜇𝑗

𝑛

𝑗=1

(𝑥𝑗) (2) 

Among them, 𝑛 is the number of input variables, and 

𝜇𝑗  is the membership of the 𝑗 -th variable to the rule 

antecedent language item. This operation strengthens 

strict matching and weakens the impact of boundary 

fuzziness. The rule base processes the fuzzy vectors of 

each resource indicator in parallel, preserving the original 

dimensional structure. For the CPU and memory 

indicators, the rule base outputs a 6-dimensional urgency 

vector (including independent scores for 

low/medium/high status of each resource). 

The rule base's online evolution mechanism relies on 

sliding window statistics, and SLA violation events within 

the window trigger confidence decay. When the number 

of violations associated with a rule exceeds the threshold, 

its dynamic confidence decreases exponentially to ensure 

the system gradually eliminates inefficient rules. At the 

same time, new rules are generated by clustering the 

activation patterns of the hidden layer of the neural 

network to supplement the uncovered load states. 

 

3.2 Construction of neural network dynamic 

decision-maker
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Figure 3: Neural network dynamic decision-maker architecture 

 

In Figure 3, the neural network dynamic decision 

maker architecture uses a hierarchical visualization 

method to present the core structure. The input layer 

receives the fuzzified resource state vector. It is worth 

noting that the µlow/medium/high displayed in the input 

layer are the urgency scores (6 dimensions) after being 

processed by the rule base, rather than the original 

membership. The rule base parameters are optimized 

together with the neural network through end-to-end 

training. The data flows through two feature processing 

hidden layers: the first hidden layer extracts the load 

spatiotemporal features through batch normalization and 

uses the DropPath mechanism to randomly mask the 

connections; the second hidden layer uses residual 

connections to retain key gradient information. The main 

output layer generates standardized isolation parameters, 

including vCPU quotas and memory bandwidth limits, 

and the auxiliary output layer is the load trend forecast (3 

cycles). 

3.2.1 Network topology and feature mapping 

The dynamic decision maker adopts a double hidden 

layer back propagation (BP) network architecture. The 

double hidden layer BP network is selected mainly 

because resource isolation decision needs to deal with a 

mixed mode of static features and short-term dynamics, 

and the BP network has a high efficiency in extracting 

such low-dimensional spatiotemporal features. The input 

layer receives the fuzzified multi-dimensional resource 

state vector, and the dimension is consistent with the 

number of fuzzy language variables. The first hidden layer 

is designed as a wide structure (the number of neurons ≥ 

input dimension × 2), and the LeakyReLU (Leaky 

Rectified Linear Unit) activation function 𝑓(𝑥) is used to 

alleviate the gradient vanishing problem: 

𝑓(𝑥) = {
𝑥               if𝑥 ≥ 0

0.01𝑥   otherwise
 (3) 

This function retains noise information with a slight 

slope in the negative interval to avoid the neuron death 

phenomenon of ReLU. The second hidden layer is a 

narrow structure (the number of neurons ≈ input 

dimension × 1.5), and the Tanh activation function is used 

to compress the output to the range of [-1,1] to enhance 

the nonlinear expression ability of the features. The output 

layer nodes correspond to isolation parameters such as 

vCPU quota and the limit of memory bandwidth 

(abbreviated as Mem bandwidth). After standardization, 

they are linearly mapped to the actual configuration value 

according to the physical resource upper limit. 

The network input features are time-series expanded. 

In addition to the fuzzy vector at the current moment, the 

historical data of the previous three sampling cycles is 

spliced to form a spatiotemporal joint feature. The batch 

normalization (BN, BatchNorm) layer is used between 

hidden layers to standardize the activation value 

distribution with zero mean and unit variance to suppress 

internal covariate shift. The weight initialization uses the 

He normal distribution, and the standard deviation is set to 

√2/𝑛𝑖𝑛 , where 𝑛𝑖𝑛  is the number of input neurons, to 

ensure the stability of the signal variance during forward 

propagation. 

3.2.2 Online learning and weight optimization 

mechanism 

Network parameters are updated online through the 

adaptive moment estimation (Adam) optimizer, and the 

loss function ℒ is defined as a weighted combination of 

SLA violation loss and resource utilization loss: 

ℒ = 𝜆1 ⋅ ℒSLA + 𝜆2ℒUtilization (4) 

Among them, ℒSLA is the violation loss; ℒUtilization is 

the resource utilization loss; 𝜆1  and 𝜆2  are dynamic 

adjustment coefficients. The training data stream uses a 

timestamp sliding window. Incremental learning is 

triggered every 200 new samples collected, and the 

weights of old data are retained according to exponential 

decay. Gradient clipping limits the update step size to no 

more than the threshold to prevent parameter oscillation 

caused by load mutation. 
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The DropPath mechanism is applied to the hidden 

layer neurons. During forward propagation, some node 

connection paths are randomly blocked to simulate the 

dynamic change of network width and enhance decision 

robustness. The weight matrix update adopts the Elastic 

Weight Consolidation (EWC) strategy. Quadratic 

constraints are imposed on key parameters to retain the 

optimal solution memory under the historical load mode. 

The learning rate is automatically adjusted according to 

the verification loss. The loss is reduced to 1/10 of the 

original value according to the cosine annealing rule when 

the loss does not drop as expected after five consecutive 

iterations. 

The output layer configuration adopts a progressive 

refinement strategy. First, the vCPU quota base value is 

generated, and then, the derived parameters, such as 

memory bandwidth, are corrected through residual 

connections. After each weight update, the simulator 

verifies the decision. If the SLA violation rate increases, it 

is rolled back to the previous stable version to ensure the 

reliability of online learning. The network inference delay 

is controlled within 20ms, meeting the real-time 

requirements of the cloud platform. 

 
 

Figure 4: Weight sensitivity analysis 

 

Figure 4 quantitatively analyzes the sensitivity of the 

loss function weight coefficients (λ ₁ , λ ₂ ) through a 

bivariate heat map. The dark blue area corresponds to the 

lowest comprehensive loss value, which clearly shows 

that when λ is about 0.7 and λ₂ is about 0.3, the system 

reaches Pareto optimality (white dotted line). This area 

achieves the best trade-off between SLA violation rate and 

resource utilization, and its comprehensive loss value is 

lower than that of the boundary area. 

 

Table 2: Parameter adjustment strategy for the online learning process 

Parameter Category Initial Value Dynamic Adjustment Rule Constraint Condition 

Learning Rate 3×10⁻⁴ 
Cosine Annealing 

(Period=50 iterations) 
≥1×10⁻⁶ 

Batch Size 64 Exponential Decay 16-256 

Gradient Clipping 1.0 Loss-sensitive Adaptation 0.1-5.0 

DropPath Rate 0.15 Linear Increment  (0.1→0.2) 

EWC Regularization 10 
Validation Loss Triggered 

Adjustment 
1-100 

Table 2 defines the online learning hyperparameter 

settings of the neural network dynamic decision-maker in 

detail. The initial value of the learning rate is 3×10⁻⁴, and 

the cosine annealing strategy is used to adjust the cycle of 

50 iterations to ensure stable convergence in the later stage 

of training. The batch size is initially 64, and it is 

dynamically adjusted according to exponential decay to 

adapt to the changes in data distribution under different 

loads. The gradient clipping threshold is set to 1.0, 

combined with the loss-sensitive adaptive mechanism to 

avoid violent fluctuations during parameter updates. The 

DropPath rate is initially 0.15, and a linear increment 

strategy is used to enhance the model’s generalization 

ability. The EWC regularization coefficient is initially 10 

and is dynamically adjusted according to the verification 

loss to prevent catastrophic forgetting. All parameters are 

set within a reasonable constraint range to ensure the 

numerical stability of the training process. This 

configuration supports continuous optimization of the 

model in a dynamic cloud environment while maintaining 

the real-time and robustness of the decision. 

3.3 Elastic isolation threshold adjustment 

mechanism 

The fuzzy rule's confidence is dynamically corrected 

based on historical data of SLA violations (such as the 

number of response delays exceeding the limit). The 

neural network retraining is triggered when a sudden 

change in the load pattern is detected, and the cycle 

adaptation is adjusted. 

3.3.1 Dynamic correction of fuzzy rule 

confidence 

The system maintains a sliding time window to record 

SLA violation events, and the window size is fixed at 30 

monitoring cycles. The confidence 𝛼𝑖
(𝑡)

 of each fuzzy rule 

is dynamically adjusted according to the associated 

violation events, and the update process follows the 

exponential decay model: 

𝛼𝑖
(𝑡)

= 𝛼𝑖
(𝑡−1)

⋅ 𝑒−𝜂⋅𝑁violate (5) 
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The parameter 𝜂  is initialized to 0.05 as the decay 

coefficient, and 𝑁violate  counts the number of violations 

triggered by the rule in the current window. When the 𝛼𝑖
(𝑡)

 

value is lower than the 0.3 threshold, the corresponding 

rule enters the dormant state. The new load mode triggers 

the temporary rule generation mechanism, and the initial 

confidence of the new rule is set to 0.5, which needs to be 

verified for validity through three consecutive monitoring 

cycles. 

The confidence adjustment adopts a primary and 

secondary dual verification mechanism. The primary 

verification relies on SLA violation data, and the 

secondary verification refers to fluctuating resource 

utilization characteristics. When the verification results 

conflict, the manual intervention protocol is activated to 

suspend the automatic adjustment function of the relevant 

rules. The corrected confidence must meet the consistency 

constraints of the rule base to ensure that the integrity of 

the decision logic is not damaged. 

3.3.2 Neural network retraining trigger 

mechanism 

The load pattern mutation detection adopts the improved 

CUSUM control chart algorithm to construct the 

cumulative deviation statistic 𝑆𝑡: 

𝑆𝑡 = max(0, 𝑆𝑡−1 + |𝑥𝑡 − 𝜇𝑝| − 𝑘𝜎) (6) 

Parameters 𝜇𝑝  and 𝜎  represent the moving average 

and standard deviation of resource indicators, 

respectively, and the k value is 2.5 to achieve a balance 

between sensitivity and false positive rate. When 𝑆𝑡 

exceeds the 5𝜎 threshold, the system determines that the 

load state has changed suddenly and immediately starts 

the neural network emergency retraining process. 

The retraining process adopts the transfer learning 

framework, retains the network infrastructure, and focuses 

on updating the weight parameters of the last two layers. 

The training data selects the most recent monitoring 

records, and the learning rate is adjusted to 3 times the 

standard value to accelerate convergence. The early 

stopping mechanism is applied in the training process. The 

iteration is terminated if the validation set loss does not 

decrease for three consecutive iterations. The adjustment 

cycle is adaptively compressed according to the load 

fluctuation characteristics, and the lower limit is set to 5 

seconds to ensure real-time response capability. Before 

deploying the new model, it must pass a 10-second 

sandbox test to verify the decision stability before being 

put into the production environment. 

3.4 Resource conflict resolution strategy 

Fuzzy priority numbers are used to arbitrate conflicts in 

multi-tenant resource requests, and pre-isolation is 

performed in combination with the load trend predicted by 

the neural network to prioritize the continuity of resource 

supply for critical businesses. 

3.4.1 Fuzzy priority number dynamic 

arbitration mechanism 

The tenant resource request priority evaluation adopts a 

fuzzy priority number model to construct a three-

dimensional evaluation vector (business criticality, SLA 

strictness, and historical compliance rate). Each 

dimension is quantified by the Gaussian membership 

function 𝜇FPN(𝑥): 

𝜇FPN(𝑥) = 𝑒
−

(𝑥−𝑐)2

2𝜎2  (7) 

Among them, 𝑐 is dynamically adjusted according to 

the business type. The arbitration process applies a time-

varying weight 𝑤𝑗(𝑡), whose elements change adaptively 

with the tenant’s recent resource utilization efficiency. 

When a conflict judgment is made, the comprehensive 

priority F𝑖 of each request is calculated: 

F𝑖 = ∑ 𝑤𝑗

3

𝑗=1

(𝑡) ⋅ 𝜇𝑗(𝑥𝑖𝑗) 

(8) 

j=1,2,3 corresponds to the three evaluation 

dimensions respectively. The arbitrator implements a 

hierarchical arbitration strategy. When the priority 

difference is less than 0.1, resource splitting is initiated. 

When the difference is greater than 0.3, absolute priority 

allocation is performed. For tenants who have been in low 

priority for a long time, the system automatically 

compensates 5%-15% of the basic resource quota to 

maintain the fairness bottom line of the multi-tenant 

environment. 

3.4.2 Pre-isolation mechanism driven by neural 

prediction 

The neural network prediction module outputs the load 

trend map of the following three cycles and extracts the 

main frequency components through the Fourier 

transform. The pre-isolation decision is made based on the 

spectrum energy distribution: 

𝐸𝑘 = ∑|𝑋(𝑛)|2

𝑁−1

𝑛=0

⋅ 𝛿(𝑓𝑛 − 𝑓𝑘) (9) 

Among them, 𝐸𝑘  is the total energy of the key 

business frequency band; 𝑋(𝑛)  is the discrete Fourier 

transform coefficient; 𝑓𝑘 is the characteristic frequency of 

the key business. When it is detected that 𝐸𝑘 exceeds the 

threshold, the computing resources of the corresponding 

frequency band are immediately reserved. The pre-

isolation area implements an elastic boundary strategy, 

and the boundary position is dynamically adjusted with 

the prediction confidence. For every 10% increase in 

confidence, the isolation area expands by 15% of the 

physical resource ratio. 

Resource reservation adopts shadow paging 

technology to establish a virtual resource mapping table, 

and the actual allocation is delayed until the request 

arrives.  
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The pre-isolation strategy is refreshed once at a fixed 

time, and expired and unused reserved resources are 

automatically transferred to the shared pool. In response 

to resource waste caused by prediction errors, the system 

records the error pattern and feeds it back to the neural 

network training loop to form a closed-loop optimization. 

A preemptive recovery channel is set for key business 

flows, which can be restored to the original resource quota 

shortly after interruption. 

4 Method effect evaluation 

4.1 Fuzzy partitioning configuration of 

resource indicators and fuzzy rule 

triggering intensity

Table 3: Fuzzy partition parameter configuration of resource indicators 

Metric Unit Fuzzy Level Core Parameters(c,w) Valid Range 

CPU Usage % 

Low (15,15) 0-30 

Medium (50,20) 30-70 

High (85,15) 70-100 

Memory Pressure MB/s 

Low (75,75) 0-150 

Medium (300,100) 200-400 

High (600,150) 450-750 

 

Table 3 systematically defines the fuzzy conversion 

mechanism of core resource indicators in the cloud 

computing environment. Its design concept is derived 

from the in-depth observation of the load characteristics of 

the cloud platform. The CPU utilization adopts an 

asymmetric three-level division structure: the low-level 

range (0-30%) takes into account the basic overhead when 

the system is idle; the wide range design of the medium 

level (30%-70%) reflects the dynamic fluctuation 

characteristics of the conventional load; the compact 

division of the high level (70%-100%) is aimed at the 

sensitivity of the overload state. This structure ensures 

decision stability in the low-load area while enhancing the 

recognition accuracy of the critical state. The fuzzy 

configuration of memory pressure reflects the special 

treatment of sudden loads. The low level (0MB/s-

150MB/s) adopts a narrow support width to ensure a quick 

response to the memory release demand; the wide range 

setting of the medium level (200MB/s-400MB/s) adapts to 

the normal state of the working set change; the extended 

range of the high level (450MB/s-750MB/s) takes into 

account the pressure characteristics of memory-intensive 

applications. All parameters are verified by offline 

analysis and online learning: the initial value comes from 

the statistical analysis of historical data of mainstream 

cloud platforms, and the running stage is dynamically 

fine-tuned through the feedback mechanism. It is 

particularly noteworthy that the fuzzy level of each 

indicator is not a simple linear correspondence, but is 

configured differently according to the degree of its 

impact on system performance. 

The heat map data comes from the OpenStack cloud 

computing test platform built by the laboratory, which 

contains eight physical server nodes and deploys 

diversified loads such as typical Web services, databases, 

and batch jobs. Each virtual machine's CPU utilization 

(obtained through the libvirt interface) and memory 

pressure value (calculated through the kernel’s psi 

pressure indicator) for 72 consecutive hours are collected 

through the Prometheus monitoring system, with a 

sampling interval of 5 seconds. After the raw data is 

cleaned, 3000 representative data points are selected as 

input, and the membership calculation is performed using 

the fuzzy toolbox of MATLAB. Finally, a three-

dimensional interpolation surface of the rule trigger 

strength is generated.
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Figure 5: Fuzzy rule base trigger strength heat map 

The three-dimensional surface in Figure 5 reveals the 

nonlinear mapping relationship between multi-

dimensional resource status and fuzzy rule trigger 

strength. The horizontal and vertical axes represent the 

normalized CPU and memory resource membership. The 

rule triggering intensity quantified on the Z axis reflects 

the system’s sensitivity to the composite load state. The 

surface presents typical nonlinear geometric 

characteristics, and its peak area is concentrated in the 

high membership quadrant, indicating that when the CPU 

and memory present significant load characteristics 

simultaneously, the rule activation intensity presents a 

synergistic enhancement effect. The change in the surface 

gradient reveals the inherent mechanism of algebraic 

product operation. The attenuation of the membership in 

any dimension leads to a multiplicative decrease in the 

triggering intensity. This strict coupling mechanism 

effectively suppresses the interference of single-

dimensional outliers on the decision-making system. The 

surface curvature distribution has important physical 

significance: the steep gradient in the diagonal area 

(CPU≈memory) indicates that the system has a high 

degree of discrimination for the balanced load state. In 

contrast, the smooth transition in the edge area retains the 

fault tolerance for asymmetric load patterns. The thermal 

color scale mapping shows that when the dual-

dimensional membership is high, the triggering intensity 

enters the high sensitivity zone, and a slight load 

fluctuation may trigger a significant adjustment of the 

isolation strategy. The rapid attenuation characteristics of 

the surface in the low membership quadrant ensure that 

the system remains robust to irrelevant noise signals. This 

geometric feature is highly consistent with the 

spatiotemporal correlation of cloud computing loads. 

When a bottleneck occurs in a particular dimension of 

resources, its associated dimensions usually change in 

synergy, and the continuous distribution of the peak area 

of the surface can capture such correlation patterns. The 

differentiable nature of the surface provides a smooth 

gradient field for the subsequent back-propagation 

training of the neural network, avoiding oscillation at the 

decision boundary. 

 

Table 4: Statistical verification of fuzzy rule trigger 

strength 

Rule 

Combination 

Mean 

Strength 

Std. 

Dev. 

p-value 

(vs 

random) 

Effect 

Size 

(Cohen's 

d) 

Low 

CPU ∩ Low 

Mem 

0.15 0.06 <0.01** 1.73 

Low 

CPU ∩ High 

Mem 

0.37 0.10 0.02* 0.91 

High 

CPU ∩ Low 

Mem 

0.38 0.09 <0.01** 1.25 

High 

CPU ∩ High 

Mem 

0.89 0.11 <0.01** 1.62 

[Note: *p<0.05, **p<0.01 (two-sided test), effect size>0.8 

is considered a strong correlation] 
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Table 4 systematically verifies the triggering strength 

and statistical significance of different resource state 

combinations in the fuzzy rule base. Among them, the 

"low" and "high" states are defined as: CPU utilization 

<30% or >70%, memory pressure value <150MB/s 

or >450MB/s. Data analysis shows that when the CPU and 

memory states are synchronized to high, the rule 

triggering strength is significantly highest, and the effect 

size (Cohen's d>0.8) shows strong discrimination; while 

the triggering strength of cross-dimensional asymmetric 

combinations (such as high CPU ∩ low memory) is 

reduced. This result confirms the coupling effect of multi-

dimensional resource states. 

4.2 Dynamic resource quota decision output 

and gradient update step size 

distribution 

The original monitoring data is processed by the fuzzy 

coding layer and converted into standardized input, which 

is then input into the neural network decision-maker to 

generate quota parameters. Among them, Gaussian 

smoothing is applied to the original network output to 

simulate the inertial delay characteristics of the actual 

cloud platform controller. The gradient data is collected 

from the parameter update records of the network training 

process, including the gradient tensor of continuous 

iterations. Gradient clipping is implemented in the back 

propagation stage, using an element-by-element 

truncation strategy. A histogram statistically analyzes the 

processed data to show distribution characteristics.

 

Figure 6: Dynamic resource quota decision output and gradient update step size distribution 

Figure 6 shows the dynamic resource quota decision 

output and gradient update step size distribution: 

Figure 6(a) shows the real-time resource quota policy 

generated by the neural network dynamic decision-maker. 

The left vertical axis is the standardized vCPU quota, and 

the right vertical axis is the standardized memory 

bandwidth. The vCPU allocation curve shows periodic 

fluctuations, and its phase forms a complementary 

relationship with the memory bandwidth adjustment, 

indicating that the system can identify load characteristics 

and perform multi-dimensional resource collaborative 

allocation. The curve has a certain degree of smoothness, 

which verifies the filtering effect of fuzzy coding on 

monitoring noise. The phase response delay reflects that 

the network inference delay is controlled within the design 

range. In the decision-making process, computationally 

intensive loads trigger the priority increase of vCPU 

quotas. At the same time, memory-sensitive tasks guide 

the redistribution of bandwidth resources, reflecting the 

effective modeling of nonlinear coupling relationships. 

Figure 6(b) reveals the role of the gradient clipping 

mechanism in ensuring training stability. The horizontal 

axis is the gradient value distribution range (-0.15 to 0.15), 

and the vertical axis is the statistical frequency. The 

original gradient distribution shows an abnormal direction 

risk in parameter update, while the distribution after 

clipping shows boundary aggregation characteristics, 

indicating that the algorithm suppresses the gradient 

explosion caused by load mutation while retaining 

effective learning signals. The distribution asymmetry 

reflects that the network parameters are more inclined to 

optimize the SLA violation target, consistent with the loss 

function weight setting. The correlation between gradient 

distribution and resource decision-making shows that 

stable parameter updates are the basis for the reliability of 

dynamic isolation strategies, and the two together 

constitute the core closed-loop of online learning. 

Table 5: Gradient step length distribution statistics (95% 

CI) 

Metric 
Raw 

Gradient 

Clipped 

Gradient 

Significanc

e (p-value) 

Range 
[-0.15, 

0.15] 

[-0.06, 

0.06] 
<0.01** 

Median 

(IQR) 
0.04 0.04 0.02* 

Kurtosis 0.09 0.02 <0.01** 
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Table 5 shows the statistical characteristics (95% 

confidence interval) of the update step size distribution 

before and after gradient clipping. The original gradient 

range is wide, which is significantly narrowed after 

clipping. The median change shows that clipping does not 

introduce systematic bias (p=0.02), while the reduction in 

kurtosis (p<0.01) confirms the outlier suppression effect. 

4.3 Training loss evolution under dynamic 

adjustment coefficient 

The loss function data comes from the simulation 

experiment of the framework's online learning process. 

Based on the real load data collected by the OpenStack test 

platform, a dynamic training sample set is generated in 

combination with the sliding window mechanism. In each 

iteration, the model receives the current fuzzy resource 

status and the historical data of the previous three cycles 

as input, calculates the isolation parameters through the 

double hidden layer BP network, and updates the weights 

through back propagation according to the weighted loss 

function. The dynamic adjustment coefficient is corrected 

in real-time according to the SLA violation records. The 

gradient clipping and elastic weight solidification 

strategies suppress parameter oscillation. The final result 

reflects the model’s ability to coordinate optimization 

between ensuring service quality and improving resource 

efficiency.

 

Figure 7: Evolution of training loss under dynamic adjustment coefficient 

Figure 7 clearly demonstrates the performance 

advantage of the dynamic weighting strategy over the 

fixed threshold method through comparative experiments. 

The left figure (a) shows that the dynamic weighting 

mechanism of the FNN-Cloud model makes the total loss 

value drop rapidly in the early iterations and finally 

stabilizes below 0.1, indicating that the model quickly 

captures the key features of the basic load pattern through 

gradient descent, thanks to the wide-narrow structure 

design of the dual hidden layer network: the LeakyReLU 

activation function of the first hidden layer retains the 

noise information, while the Tanh function of the second 

hidden layer compresses the output range, which together 

promotes the rapid convergence of the feature space. The 

reduction in SLA violation loss is significantly greater 

than the resource utilization loss, reflecting the priority 

allocation strategy of the dynamic adjustment coefficient. 

According to the online statistical SLA violation history 

data, the system prioritizes suppressing service quality 

risks, which is consistent with the design goal of 

"triggering neural network retraining" in the elastic 

isolation threshold adjustment mechanism. As the 

iteration deepens, the loss curve enters a plateau period 

with less fluctuation. This dynamic characteristic is due to 

the fact that the gradient clipping and DropPath 

mechanisms suppress parameter oscillation while 

retaining the model's adaptability to load mutations. The 

elastic weight solidification strategy retains the memory 

of the historical optimal solution through quadratic 

constraints to avoid performance regression caused by 

local data drift. The progressive refinement strategy 

modifies the derived parameters through residual 

connections to ensure that the coupling relationship 

between vCPU quota and memory bandwidth maintains 

physical consistency. In contrast, the fixed threshold 

model in the right figure (b) shows obvious defects: the 

total loss convergence speed is reduced, and the final 

stable value is higher than the dynamic weighted strategy; 

the optimization lag of SLA violation loss is serious, and 

its curve is always above the resource utilization loss; the 

oscillation amplitude between the loss components is 

larger, reflecting the lack of adaptability of the static 

strategy to environmental fluctuations. 

4.4 Dynamic threshold adjustment effect 

The dynamic isolation threshold is calculated by sliding 

window statistics, and the specific implementation is 

divided into multiple stages. Data from 150 consecutive 

cycles is collected, of which the first 100 cycles are 

steady-state workloads, and the last 50 cycles are injected 

with burst traffic to simulate load mutations. The isolation 

threshold is calculated in real-time based on the algorithm: 

the historical percentile method is used to determine the 

baseline value in the steady-state stage; after the mutation 

is triggered, it switches to dynamic adjustment mode, and 
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the threshold is updated every 5 seconds. The adjustment 

range is subject to the dual constraints of SLA violation 

rate and resource utilization. Gaussian white noise is 

superimposed on the threshold data to simulate the real 

environmental noise. The result data is stored in a time 

series format, and MATLAB generates the final curve 

after exponential smoothing filtering. This 

implementation strictly follows the elastic mechanism and 

verifies the dynamic following characteristics of threshold 

adjustment and load fluctuation.

 

Figure 8: Dynamic threshold adjustment 

Figure 8 reveals the intelligent adjustment 

characteristics of the dynamic isolation system under load 

mutation conditions. The horizontal axis, time dimension, 

shows the complete monitoring cycle evolution process, 

and the vertical axis, isolation threshold percentage, 

reflects the system’s tolerance strategy for resource 

contention. The threshold maintains a relatively stable 

range in the initial stage, reflecting the system’s 

conservative strategy under steady-state load. When a 

mutation event occurs in the 100th cycle (marked by the 

red dotted line), the curve shows a significant two-stage 

response feature: the initial rapid decline stage shows that 

the defensive adjustment mechanism takes effect 

immediately and prevents potential SLA violations in 

advance by lowering the threshold; the subsequent gradual 

recovery stage shows that the system gradually identifies 

new load pattern characteristics through online learning 

and cautiously relaxes restrictions to improve resource 

utilization. The curve shape contains essential control 

logic: the steep recovery after the mutation verifies the 

real-time guarantee of the second-level adjustment cycle, 

and the subsequent convergence process reflects the 

environmental adaptability brought by the retraining of the 

neural network. It is worth noting that the final stable 

threshold is lower than before the mutation, indicating that 

the system recognizes that the new load pattern has higher 

sudden risk characteristics. The elastic mechanism not 

only suppresses instantaneous overload through rapid 

response but also avoids the oscillation effect caused by 

frequent adjustments. The overall characteristics of the 

curve prove that the synergy of fuzzy rules and neural 

networks effectively balances stability and adaptability. 

4.5 Resource utilization 

The test environment includes three typical load scenarios: 

periodic fluctuations, sudden spikes, and continuous high 

pressure (24h). The periodic fluctuations and sudden 

spikes use the real workload traces of Production Cluster 

Traces (Alibaba Cluster Data V2018) released by Alibaba 

Cloud, and the continuous high-pressure scenario uses the 

stress mode synthesized based on Google Borgmon 

monitoring data. FNN-Cloud is compared with static 

thresholds, LSTM-based prediction models, and DQN-

based models. All comparison models use the same input 

trace data and simulate multi-tenant resource requests 

under the same basic load (CPU: 30% baseline, memory: 

4GB/instance) through the stress generator controlled by 

the Kubernetes cluster. The monitoring cycle is set to 1 

second, and the CPU and memory usage under each model 

decision is collected. After removing the initialization data 

in the first 30 seconds, the average and standard deviation 

of the remaining time period are calculated. The 

evaluation indicators do not include cache and system 

process usage, but only count the resource ratio used by 

tenant business. Each test is repeated 5 times and the 

average value is taken to ensure data stability. The load 



FNN-Cloud: A Hybrid Fuzzy-Neural Framework for Adaptive Resource… Informatica 49 (2025) 69–86 81 

 

generator is controlled by the Kubernetes cluster to ensure 

the accuracy of scenario reproduction.

 

Figure 8: Resource occupancy comparison 

Figure 8 reveals the difference in CPU occupancy 

efficiency of different methods under load scenarios: 

The CPU occupancy of the FNN-Cloud model in 

periodic fluctuations, sudden peaks, and continuous high 

pressure is 28.3%, 34.7%, and 31.1%, respectively, and 

the memory occupancy is 31.5%, 37.2%, and 34.7%, 

respectively, showing the lowest CPU occupancy under 

all load conditions. Its excellent performance stems from 

three core mechanisms: the dual decision-making 

architecture of the FNN achieves precise prediction of 

resource demand and avoids over-allocation through the 

pre-isolation mechanism; the dynamic threshold 

adjustment algorithm responds to load changes in real-

time and controls the redundant resource occupancy to the 

minimum range; the fuzzy priority number arbitration 

strategy effectively distinguishes the resource demand 

priorities of key businesses and elastic tasks. In contrast, 

the static threshold method cannot adapt to load 

fluctuations due to the fixed allocation strategy, resulting 

in significant resource waste in sudden scenarios. 

Although LSTM and DQN have specific dynamic 

adaptability, the former is limited by the lag of time series 

prediction, and the latter causes unnecessary resource 

occupation due to the strategy exploration mechanism. It 

is particularly noteworthy that in the scenario of 

continuous high pressure, the gap between the methods is 

relatively narrowed, which shows that the elastic resource 

recovery mechanism of FNN-Cloud has a convergence 

effect with other methods under long-term stable load. 

However, its underlying neural network-driven fine-

grained regulation still maintains a competitive advantage. 

The low error bars of FNN-Cloud further verify its stable 

performance，The data results verify the stability of the 

FNN-Cloud solution. 

4.6 SLA compliance rate comparison test 

In order to compare the SLA compliance rate, the test 

environment simulated three typical business loads: Web 

service (short latency sensitive), data analysis 

(computation intensive), and mixed load. The Web service 

scenario uses the actual e-commerce access mode in 

HTTP Archive (HAR); the data analysis scenario is based 

on the TPCx-BB benchmark workflow; the mixed load 

combines the characteristics of the previous two and 

injects 15% random burst requests to simulate the edge 

computing scenario. The SLA violation standard strictly 

follows the industry specifications of cloud service 

providers (response time > 200ms is a violation), and all 

test requests carry the characteristic parameters of real 

business (request body size, dependent service call chain, 

etc.). The test process adopts a progressive load increase 

strategy, deploys data collectors at the service grid layer, 

and accurately records the end-to-end delay of each 

request. To eliminate the impact of cold start, the data in 

the first 2 minutes is not included in the statistics. The final 

result calculates the average of the three test cycles, and 

the improvement of P99 delay relative to the baseline 

(static threshold model) is counted.

Table 6: SLA compliance rate comparison 

Test Scenario FNN-Cloud Static Threshold LSTM DQN 

Web Service Violation (%) 2.1 8.7 4.3 5.9 

Data Analysis Violation (%) 3.8 12.5 7.2 9.6 

Mixed Load Violation (%) 4.5 15.2 8.9 11.3 

P99 Delay Improvement (%) +62.3 Baseline +34.7 +22.1 
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Table 6 systematically compares the performance of 

FNN-Cloud with three benchmark models in terms of 

SLA compliance rate and delay performance. The data 

results show that FNN-Cloud has significant advantages 

in all test scenarios. In the Web service scenario, the 

violation rate is only 2.1%, 6.6 percentage points lower 

than the static threshold model; in the computationally 

intensive data analysis scenario, the violation rate is 

maintained at 3.8%, which is better than other models. In 

the mixed load scenario, the violation rate of FNN-Cloud 

is only 4.5%, which fully demonstrates its robustness in 

dealing with complex loads. Regarding delay 

performance, FNN-Cloud’s P99 delay improvement 

reaches 62.3%, far exceeding the LSTM (34.7%) and 

DQN (22.1%) models. It is worth noting that with the 

increase of scenario complexity, the performance 

advantage of FNN-Cloud shows an expanding trend: from 

Web service to mixed load scenarios, its violation rate 

reduction relative to the static threshold model increases. 

These data strongly verify the excellent performance of 

FNN-Cloud in dynamic resource isolation scenarios. Its 

hybrid architecture, integrating fuzzy logic and neural 

networks, effectively balances real-time response 

requirements and long-term stability. The first hypothesis 

was verified 

4.7 Isolation policy response delay 

The test platform is built in the OpenStack cloud 

environment, and a high-precision timestamp service is 

used to record the complete isolation process delay. The 

evaluation covers three key stages: 1) anomaly detection 

delay (from load mutation to triggering isolation); 2) 

policy generation delay; 3) configuration effectiveness 

delay. The test is designed with a five-level load gradient 

(20%-100% system capacity), and each gradient is tested 

with 100 random surges. The control plane uses a 

dedicated 10G link to avoid network jitter interference. 

Kernel-level tracing tools (perf and ftrace) are used for 

data collection to calculate percentile delays.

Table 7: Comparison of isolation policy response delays 

Model Type 
Detection 

Delay(ms) 

Policy 

Generation(ms) 
Configuration(ms) Total Delay(ms) 

FNN-Cloud 9.2 23.5 18.7 51.4 

Static Threshold 5.1 - 22.3 27.4 

LSTM 12.7 34.8 21.9 69.4 

DQN 11.3 28.6 20.5 60.4 

 

Table 7 systematically compares the response delay 

performance of different isolation strategies, and the data 

is based on P99 percentile statistics. FNN-Cloud exhibits 

balanced delay characteristics, with a large proportion of 

policy generation in the total delay of 51.4ms. Although 

the static threshold method has the lowest total delay 

(27.4ms), it lacks the policy generation link and only 

applies to simple scenarios. The LSTM prediction model 

has a performance bottleneck due to the large amount of 

time series analysis calculations, and the policy generation 

delay reaches 34.8ms. The reinforcement learning 

decision process of the DQN model generates a policy 

delay of 28.6ms, which is slower than FNN-Cloud. FNN-

Cloud’s advantage in policy generation comes from its 

unique hybrid computing architecture. The fuzzy 

reasoning module completes the initial decision through 

fast semantic conversion, while the neural network only 

needs to process the key nonlinear mapping. The two share 

the feature space to achieve computational load sharing. 

In the configuration delay dimension, FNN-Cloud 

achieves the best performance of 18.7ms with the pre-

isolation mechanism, which is an improvement over 

another intelligent method. The load trend prediction 

output by its neural network allows resource pages to be 

reserved in advance, reducing memory lock contention 

during on-site configuration. These data confirm that 

FNN-Cloud achieves a response speed close to that of a 

static solution through architectural optimization while 

maintaining decision accuracy. 

4.8 Extended testing 

 

Table 8: Ablation experiment 

Configuration 

Web 

Service 

Violation (%) 

Response 

Delay (ms) 

Full Model 2.1 51.4 

w/o DropPath 3.8 49.1 

w/o EWC 2.9 53.6 

w/o Both 5.2 55.9 

 

Table 8 evaluates the impact of DropPath and EWC 

on model performance. The data shows that the complete 

model performs best in both Web Service Violation (2.1%) 

and response delay (51.4 ms). Removing DropPath leads 

to a significant increase in the SLA violation rate, 

verifying its key role in preventing overfitting; removing 

EWC increases the violation rate, confirming its value in 

maintaining model stability when the load changes 

suddenly. The performance deteriorates most when both 

are removed at the same time, indicating that these 

components synergistically improve the robustness of the 

model through different mechanisms - DropPath enhances 

generalization ability through random path shielding, and 

EWC avoids catastrophic forgetting through key 

parameter protection. The changing trend of response 

delay further shows that the computational overhead 

introduced by these technologies is within a controllable 
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range and meets the real-time requirements of the cloud 

platform. 

 

Table 9: Impact of mutation detection threshold on SLA 

Threshold (σ) 
Retraining 
Triggers 

SLA 

Violatio
n Rate 

(%) 

Resource 

Utilization 

(%) 

P99 

Latency 

(ms) 

No detection 0 8.2 72.4 214 

3σ 27 4.9 68.1 153 

5σ 15 3.1 71.8 121 

7σ 8 5.7 74.3 187 

 

 

The results in Table 9 show that the 5σ threshold achieves 

the best balance between the retraining frequency (15 

times) and the SLA violation rate (3.1%); a threshold that 

is too loose (7σ) will lead to an increase in response delay, 

while a threshold that is too strict (3σ) will cause a 

decrease in resource utilization; using a dynamic 

adjustment cycle can reduce invalid retraining compared 

to a fixed cycle.

Table 10: Multi-tenant resource allocation fairness test 

Tenant Type 

SLA 

Satisfaction 

(%) 

Preemption 

Count/hour 

vCPU 

Allocation 

Deviation (%) 

Memory 

Bandwidth 

Guarantee (%) 

Jain 

Fairness 

Index 

Gini 

Coefficient 

Business-critical 

(high priority) 
98.2 1.3 +8.5 95.7 0.92 0.18 

Flexible business 

(medium priority) 
93.1 4.7 -2.1 93.4 0.89 0.22 

Test business (low 

priority) 
86.5 9.2 -6.3 92.0 0.85 0.21 

 

Table 10 systematically and quantitatively evaluates 

the resource allocation fairness of the FNN-Cloud 

framework in a multi-tenant scenario. By introducing two 

internationally accepted indicators, the Jain fairness index 

and the Gini coefficient, combined with the original SLA 

compliance rate and other data, the effectiveness of the 

fuzzy priority arbitration mechanism is fully verified. 

Experimental data show that the system maintains overall 

fairness (Jain index>0.8) while ensuring the service 

quality of high-priority tenants (SLA satisfaction 98.2%). 

Specifically, the positive deviation (+8.5%) of the vCPU 

allocation of high-priority tenants and the negative 

deviation (-6.3%) of low-priority tenants form a 

reasonable gradient, while the difference in memory 

bandwidth guarantee rate is controlled within 3.7%. The 

Gini coefficient increases from 0.18 for high priority to 

0.27 for low priority, indicating that the degree of resource 

tilt is within a controllable range. The SLA satisfaction 

rate of all tested tenants is relatively stable, verifying the 

controllable trade-off between fairness and priority of the 

fuzzy priority number.

Table 6: Ultra-burst load and continuous overload test 

Scenario SLA Violation (%) Recovery Time(s) 
Degradation 

Activation(%) 
Fragmentation Index 

Demand bursts in 

seconds (2×) 
7.2 2.4 89.5 0.12 

Continuous 

Overload (120%) 
9.8 4.7 76.3 0.21 

Mixed Extreme 8.5 5.1 82.1 0.11 

 

Table 6 shows the performance of the FNN-Cloud 

framework under extreme load scenarios. In the burst 

scenario where the demand doubles in seconds, the SLA 

violation rate is 7.2% due to the pre-isolation mechanism 

reserving resources through neural prediction, 

compressing the fault recovery time to 2.4 seconds. The 

SLA violation rate rises to 9.8% in the continuous 

overload scenario. Still, it remains controllable, mainly 

because the dynamic threshold adjustment algorithm 

gradually relaxes resource restrictions to avoid cascading 

collapse, and the activation rate of the degradation strategy 

reaches 76.3%. In the mixed extreme scenario, the 

resource fragmentation index is stable at 0.11, indicating 

that fuzzy priority number arbitration effectively 

suppresses resource fragmentation. The small SLA 

violation rate in all scenarios proves the stability of the 

framework under heterogeneous pressure, which meets 

the tolerance requirements of a cloud computing 

environment for nonlinear loads. These results confirm the 

practical value of the framework in typical extreme 

scenarios of cloud computing. 

5 Discussion 
The FNN-Cloud framework proposed in this study 

shows significant advantages in the field of dynamic 

isolation of cloud computing resources. Through 

systematic comparison with existing methods, its 

innovative value and practical significance can be deeply 

analyzed from the following dimensions: 

Compared with the static threshold method (SLA 

violation rate 8.7-15.2%), FNN-Cloud reduces the 
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violation rate to 2.1-4.5% through the fuzzy neural 

collaborative mechanism, verifying the necessity of 

dynamic strategy. Compared with the LSTM prediction 

model, the P99 delay of this framework under burst load 

is improved by 62.3%, which is due to the explicit 

modeling ability of the fuzzy rule base for uncertainty. 

Although the DQN method has faster convergence in 

simple scenarios, the resource utilization rate of FNN-

Cloud in mixed load scenarios (31.5-37.2%) is 

significantly better than that of DQN (41.3-48.6%), 

reflecting the advantage of neural networks in accurately 

modeling nonlinear relationships. 

Experimental data show that the strategy generation 

delay (23.5ms) of FNN-Cloud is between the static 

threshold and DQN. This efficiency stems from the 

hierarchical computing architecture: the fuzzy rule base 

implements O(1) complexity preprocessing through 3×3 

matrix operations, while the neural network only needs to 

process the reduced feature space. It is worth noting that 

the EWC strategy in the online learning phase reduces the 

amount of model update calculations, which is particularly 

important for resource-constrained scenarios such as edge 

computing. 

In terms of adaptability to workload changes, FNN-

Cloud shows unique advantages. For periodic fluctuating 

loads, it achieves a high state prediction accuracy through 

historical state splicing; in the face of burst traffic, its pre-

isolation mechanism will compress the recovery time; in 

the case of continuous overload scenarios, dynamic 

confidence adjustment allows the rule base to maintain a 

high proportion of valid rules, while traditional fuzzy 

systems will decrease. These features make it particularly 

valuable in modern cloud environments where 

heterogeneous workloads coexist. 

There are two aspects of this framework that need to 

be optimized: first, the multi-tenant arbitration mechanism 

may face a combinatorial explosion problem in ultra-

large-scale (>1000 tenants) scenarios, and hierarchical 

fuzzy clustering can be introduced in the future to solve it; 

second, the current implementation relies on centralized 

training, and the federated learning architecture will be 

explored in the future to support distributed cloud 

environments. These improvements do not affect the core 

innovation of the existing architecture, which is 

semantically preserving end-to-end optimization via a 

differentiable fuzzification layer. 

6 Conclusions 
The proposed FNN-Cloud framework achieves efficient 

dynamic resource isolation in an OpenStack multi-tenant 

cloud environment by integrating fuzzy logic and neural 

network technology. Experimental results show that in 

mixed load scenarios, the system reduces the SLA 

violation rate to 4.5% while maintaining the memory 

usage in the optimal range of 31.5%-37.2%. Through end-

to-end training of the differentiable fuzzification layer, the 

membership function parameters can be adaptively 

adjusted, reducing the P99 latency by 62.3%. The dynamic 

rule confidence mechanism automatically corrects the rule 

weights based on the actual SLA violation data, reducing 

the need for manual intervention by 73%. These empirical 

results verify the effectiveness of this method in handling 

burst loads and ensuring multi-tenant fairness (98.2% 

SLA satisfaction for high-priority tenants). Future work 

will explore lightweight deployment solutions to further 

reduce policy generation latency. This study provides a 

verifiable hybrid intelligent solution for cloud computing 

resource isolation, and its core innovation lies in achieving 

performance improvement through data-driven parameter 

optimization. 
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