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With growing demands for accurate infrared spectrum analysis in industrial, military, and medical 

applications, traditional methods typically cannot meet the requirements due to limited feature extraction and 

recognition. This article proposes a novel deep learning model featuring an adaptive attention module, a 

multi-scale feature fusion module, and a classification decision module, designed to enhance performance. 

The model is trained using a cross-entropy loss function and learns with backpropagation, employing an 

exponential decay learning rate policy, over more than 100 training epochs. Experiments are run on three test 

datasets: NATO RTO SET-103, Thermal IR Benchmark, and FLIR Thermal. The model achieved an average 

feature extraction accuracy of 90.8% and a target recognition accuracy of 89.7%, which significantly 

surpassed those of traditional models, such as DenseNet, ResNet, VGGNet, and Basic CNN. The performance 

was robust in the face of changing data distributions, demonstrating high generalizability and robustness. The 

result substantiates the model's capability of accurately extracting important infrared features and 

recognizing targets with high accuracy. This work presents an effective solution to real-world problems in 

infrared spectrum analysis. 

Povzetek: Model z adaptivno pozornostjo in multi-skalno fuzijo za IR-spektre na naborih NATO SET-103, 

Thermal IR Benchmark in FLIR pri prepoznavi prekaša ResNet/DenseNet/VGG ter ohranja robustnost. 

 

1  Introduction 
In today’s highly digitalized and technologically advanced 

era, the application of computer technology is ubiquitous, 

and its influence has penetrated into every corner of 

society. Take the industrial field as an example. 

According to incomplete statistics, more than 70% of 

large-scale industrial production processes are highly 

dependent on computer automation control systems, and 

the precise operation of these systems is closely related to 

the accurate processing of data and feature extraction [1]. 

Take the application of infrared spectra in industrial 

quality inspection as an example. In traditional models, 

the large amount of feature information contained in 

infrared spectra is often not efficiently and accurately 

extracted and identified. The misjudgment rate of 

industrial product quality due to inaccurate infrared 

spectra feature extraction is as high as 15% each year, 

which directly causes economic losses of about tens of 

billions [2]. In addition, in many fields such as military 

reconnaissance and medical imaging diagnosis that 

require extremely high data processing accuracy and 

speed, traditional infrared spectra feature extraction and 

target recognition methods based on manual or simple 

algorithms have also exposed serious defects and cannot 

meet actual needs [3]. 

In the field of military reconnaissance, infrared 

images play a vital role in target identification and 

tracking. According to relevant data, when traditional 

methods were used in the past, the accuracy of infrared 

image recognition of specific military targets in complex 

environments was only between 30% and 40%, which 

greatly affected the timeliness and accuracy of military 

decision-making, and could even lead to serious strategic 

mistakes due to incorrect identification [4]. 

In the field of medical imaging diagnosis, infrared 

thermal imaging technology has been gradually applied, 

but due to the lack of efficient feature extraction and 

target recognition methods, about 25% of early lesion 

features are missed, causing many patients to miss the 

best time for treatment. These practical problems fully 

demonstrate that there is an urgent need for a more 

advanced, efficient and accurate infrared spectrum feature 

extraction and target recognition method, and deep 

learning-based technology undoubtedly provides a new 

opportunity to solve these problems. 
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Currently, in the computer field, research on feature 

extraction and target recognition has always been a hot 

topic. Many scholars and research institutions have 

invested a lot of energy in this area [5]. In the field of 

deep learning, a series of relatively mature model 

architectures have emerged, such as convolutional neural 

networks (CNNs). 

As for CNN, it has achieved remarkable results in the 

fields of image recognition and other fields. Some cutting-

edge research results show that its recognition accuracy 

can reach more than 90% on standard image datasets. 

However, when it is directly applied to feature extraction 

and target recognition of infrared spectra, it faces many 

challenges [6]. This is because infrared spectra are 

fundamentally different from ordinary visible spectrum 

images, and their data distribution characteristics and 

noise characteristics are very different [7]. 

Many existing studies simply adjust the parameters of 

deep learning models such as CNN or make slight 

modifications, and do not build more suitable models 

based on the characteristics of infrared spectra. For 

example, some studies input infrared spectra into existing 

deep learning models as ordinary image data, resulting in 

incomplete feature extraction and unstable target 

recognition accuracy. Moreover, in the training process of 

deep learning models, there is a lack of effective 

optimization strategies for the unique data characteristics 

of infrared spectra, such as temperature sensitivity, which 

significantly limits the model's generalization ability. 

Additionally, there are disputes regarding the 

evaluation indicators of the model. Some researchers 

believe that using accuracy as the evaluation indicator is 

too one-sided and that multiple indicators, such as recall 

rate and F1 value, should be considered comprehensively. 

Others insist that accuracy is the most core indicator. 

There has been an endless debate around this hot issue, 

but it is undeniable that the existing research as a whole 

has not yet developed a comprehensive and effective 

method for extracting infrared spectrum features and 

recognizing targets based on deep learning, which is also 

key to further breakthroughs in this field. 

This paper aims to develop a novel method for 

extracting infrared spectrum features and recognizing 

targets based on deep learning. By deeply analyzing the 

data characteristics of infrared spectra, innovative 

improvements and optimizations are made to the existing 

deep learning model to solve the key problems currently 

existing in this field, such as inaccurate feature extraction, 

low target recognition accuracy, and weak model 

generalization ability. 

The innovation of this study is that it will combine 

the physical properties of infrared spectra with the 

algorithmic advantages of deep learning to design a 

unique network architecture and training strategy 

specifically for infrared spectra, which is expected to 

increase the accuracy of feature extraction of infrared 

spectra by at least 30% and the accuracy of target 

recognition to more than 80%. This will not only enrich 

the theoretical system of deep learning in the computer 

field for processing special data types, but also have 

significant potential impacts in various practical fields, 

such as industry, military, and medicine. For example, in 

industry, it can significantly improve the accuracy and 

efficiency of product quality inspection, in the military, it 

can more accurately detect and identify targets, and in 

medicine, it can help detect lesions earlier and more 

accurately, thereby bringing significant economic and 

social benefits and promoting technological progress and 

development in related fields. 

This model achieves an average feature extraction 

accuracy of 90.8% and a target recognition accuracy of 

89.7% across benchmark datasets, which is over 30% 

higher than conventional approaches, and has numerous 

practical applications in industrial, military, and medical 

domains. 

The purpose of this research is to determine if a 

tailored deep learning model for the physical and 

statistical properties of infrared spectra can significantly 

outdo general-purpose models. The main questions 

researched are: 

(1) Is it possible for an architecture that employs 

adaptive attention and multi-scale feature fusion to attain 

at least 10% greater accuracy in target recognition and 

feature extraction than DenseNet and ResNet? 

(2) Can the target model be assured to exhibit stable 

performance under different data distribution conditions, 

thereby showing enhanced robustness and generalization? 

To find answers to these questions, a network is 

constructed according to the specifications and tested with 

various benchmark datasets under various infrared 

imaging conditions. The clear intent is to build a model 

that achieves over 90% accuracy for feature extraction 

and target recognition tasks, with reproducible 

performance across varying patterns of distribution. 

 

2  Literature review 
2.1 Development and application status of 

deep learning in related fields 

As computer technology continues to develop rapidly, 

deep learning has become one of the most popular and 

promising areas of research. According to statistics, the 

number of research papers on deep learning has increased 

by about 300% in the past five years, and its application 

areas are also expanding. In the field of image 

recognition, deep learning models, especially 

convolutional neural networks (CNNs), have achieved 

remarkable results [8]. On public general image datasets, 

the recognition accuracy of optimized and trained CNN 

models can generally reach over 90%, which makes them 

widely used in various fields, such as security monitoring 

and autonomous driving [9]. 
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However, when it comes to the special data type of 

infrared spectra, the situation becomes complicated. Due 

to the unique spectral distribution, high noise level, and 

sensitivity to environmental factors such as temperature, 

traditional deep learning models face significant 

difficulties when directly applied [10]. Many studies 

passively input infrared spectra into existing deep learning 

models as ordinary image data without fully considering 

their particularity, which leads to a series of problems 

such as incomplete feature extraction and unstable target 

recognition accuracy. For example, a research institute 

once tested 5 different CNN-based deep learning models. 

On the infrared spectrum dataset, their average 

recognition accuracy was only about 55%, which was 

much lower than the performance on the general image 

dataset [11]. 

In addition, the lack of effective optimization 

strategies for the unique data characteristics of infrared 

spectra during the training process of deep learning 

models has also become an important factor restricting 

their development. Most of the existing training strategies 

are designed based on general image data. When faced 

with infrared spectra, they cannot effectively utilize their 

data characteristics for optimization, which significantly 

limits the model's generalization ability [12]. According 

to relevant experiments, the accuracy of unoptimized deep 

learning models can drop by about 30% on infrared 

spectrum datasets collected across different ambient 

temperatures. 

 

2.2 Research status and problems of infrared 

spectrum feature extraction and target 

recognition methods based on deep learning 

Currently, research on infrared spectrum feature 

extraction and target recognition methods based on deep 

learning is still in its exploratory stage, but some progress 

has been made. Some researchers have attempted to 

enhance existing deep learning models to accommodate 

the characteristics of infrared spectra. For example, some 

studies have enhanced the ability to extract weak features 

in infrared spectra by adding specific convolutional 

layers, which has improved the accuracy of feature 

extraction to a certain extent. However, such 

improvements are often local and unsystematic and have 

failed to build a complete and effective infrared spectrum 

feature extraction and target recognition method system 

based on deep learning as a whole [13]. 

There is also considerable controversy regarding 

model evaluation indicators. Some researchers believe 

that using accuracy alone as an evaluation indicator is too 

one-sided and that multiple indicators such as recall and 

F1 value should be considered comprehensively [14]. 

Because in some practical application scenarios, such as 

military reconnaissance, the recall rate of the target may 

be more important than the accuracy alone, and no 

potential targets should be missed [15]. Other researchers 

insist that accuracy is the most core indicator, believing 

that only by ensuring high accuracy can the correctness of 

subsequent decisions be ensured. This controversy has led 

to a lack of unified evaluation standards in the research 

process, making it difficult to effectively compare and 

evaluate different research results [16]. At the same time, 

there are also problems with the training data of deep 

learning models. Since infrared spectrum data is relatively 

difficult and costly to obtain, the size of the data set that 

can be used for training is often small [17]. The 

performance of deep learning models depends to a large 

extent on a large amount of training data. Small-scale data 

sets make the model prone to overfitting, which further 

affects the model's generalization ability and recognition 

accuracy [18]. According to relevant research, the 

accuracy of a model trained on a small-scale infrared 

spectrum dataset may drop by about 15%-20% on a new 

test dataset [19]. 

 

2.3 Thoughts and prospects on future 

research directions 

Based on the current research status, several directions 

worth exploring in future research on infrared spectrum 

feature extraction and target recognition methods using 

deep learning are identified. First, we should begin by 

examining the physical characteristics of infrared spectra 

and develop a deep learning model architecture that 

specifically targets these characteristics. For example, we 

can draw on some principles and methods in infrared 

physics to design network layers and modules that can 

more effectively extract infrared spectrum features, rather 

than passively using the traditional image recognition 

model architecture  

Secondly, in terms of model training strategies, it is 

necessary to develop optimization algorithms tailored to 

the characteristics of infrared spectrum data. For example, 

considering the sensitivity of infrared spectra to 

environmental factors such as temperature, dynamically 

adjusted training parameters can be designed to improve 

the stability and generalization ability of the model under 

different environmental conditions. At the same time, in 

order to solve the problem of insufficient training data, 

data enhancement technology can be used to increase the 

size of the training data set by reasonably transforming 

and expanding existing data, such as rotating, flipping, 

adding noise, etc., thereby improving the performance of 

the model. Finally, in terms of model evaluation 

indicators, multiple indicators should be considered 

comprehensively and their weights should be determined 

according to different application scenarios. For example, 

in the field of medical imaging diagnosis, more attention 

may be paid to recall rate to avoid missing early lesions; 
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while in industrial quality inspection, more emphasis may 

be placed on accuracy to ensure accurate judgment of 

product quality. By establishing such a flexible and 

scientific evaluation system, the pros and cons of different 

research results can be evaluated more comprehensively 

and accurately, promoting the healthy development of 

research in this field. In short, future research needs to 

consider the characteristics of infrared spectra and actual 

application needs more systematically and 

comprehensively to promote the continuous development 

and improvement of infrared spectrum feature extraction 

and target recognition methods based on deep learning. 

 

 

Table 1: Summary of related works on infrared spectrum target recognition 

Study 
Model 

Type 

Dataset 

Used 

Performance 

Metrics 
Limitations 

Chen et 

al. (2020) 

ResNet-

50 

FLIR 

Thermal 

Accuracy: 

85.2% 

Limited generalization across 

thermal modalities lacks an 

attention mechanism. 

Wang 

et al. (2021) 

DenseN

et 

Thermal IR 

Benchmark 

F1-score: 

83.7% 

Poor performance on small 

objects; no multi-scale feature 

handling 

Liu et 

al. (2022) 

YOLOv

3-Tiny 

NATO 

RTO SET-103 
mAP: 76.4% 

Fast but sacrifices accuracy; 

misses low-contrast targets 

Zhang 

et al. (2023) 

Faster 

R-CNN 

FLIR + 

Custom 

Accuracy: 

87.9% 

High computation cost; 

sensitive to background noise 

Propose

d Method 

Deep 

CNN with 

Adaptive 

Attention + 

Multi-Scale 

Fusion 

FLIR, 

NATO RTO 

SET-103, 

Thermal IR 

Benchmark 

Accuracy: 

89.7%, Feature 

Extraction: 

90.8%, F1-score: 

91.3% 

Addresses prior limitations via 

attention-based refinement and 

contextual fusion 

 

As shown in Table 1, existing models, such as 

ResNet, DenseNet, and YOLO-based models, have 

demonstrated satisfactory performance on infrared 

databases. Nevertheless, these models are disadvantaged 

by weaknesses in processing spectral variation, detecting 

small objects, and complex thermal scenes. ResNet-

based approaches are disadvantaged by a lack of fine-

grained attention and inferior generalization in infrared 

situations. DenseNet and YOLOv3-Tiny are lightweight 

models, but they are inefficient when processing low-

contrast or small-scale targets because they lack 

extensive spatial contextual learning. Even powerful 

detectors, such as Faster R-CNN, are plagued by 

enormous computational expense and background 

sensitivity in thermal environments. 

The new deep learning architecture specifically 

addresses these issues through the innovation of adaptive 

attention mechanisms and multi-scale feature fusion, 

enabling stable feature extraction and enhanced  

detection of small and intricate infrared targets under 

complex spectral distributions. 

 

3   Research methods 
3.1 Overall model architecture 

In the field of infrared spectrum analysis, traditional 

models have long faced significant problems, including 

substantial feature extraction bias, low recognition 

accuracy, and limited generalization ability. With extensive 

scientific research experience, this research team 

thoroughly analyzed the complex characteristics of infrared 

spectra and the limitations of traditional models, and 

developed an innovative infrared spectrum feature 

extraction and target recognition model based on deep 

learning. The model cleverly combines the adaptive 

attention module, the multi-scale feature fusion module, 

and the classification decision module to build an efficient 

and coherent end-to-end learning system, aiming to break 

through the performance bottleneck of traditional models 

and provide a more accurate and reliable solution for 

infrared spectrum analysis. 
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Figure 1 Model framework 

 

 

As shown in Figure 1, the infrared spectrum feature map 

of the input layer provides raw data for the entire model. 

The adaptive attention module converts the two-

dimensional feature map into a one-dimensional channel 

feature description vector through global average 

pooling, allowing the model to pay attention to the 

overall information of each channel. After two fully 

connected layers and the operation of ReLU and 

Sigmoid activation functions, an attention weight vector 

is generated. This vector is multiplied element-wise with 

the original feature map to enhance key features and 

provide more valuable input for subsequent modules. 

The multi-scale feature fusion module inherits the output 

of the adaptive attention module and captures feature 

information of different scales in parallel with the help 

of dilated convolutions with different expansion rates. 

After splicing these feature maps, they are then 

processed by 1×1 convolution for dimensionality 

reduction, which not only integrates multi-scale 

information, but also avoids the computational burden 

caused by too high a dimension, enriching the diversity 

of features. The classification decision module receives 

the output of the multi-scale feature fusion module. The 

fully connected layer further explores the complex 

relationship between features, and the Softmax layer 

maps the features into prediction probability vectors for 

each category, enabling the classification of infrared 

spectra. 

 

3.1.1 Adaptive attention module 

In infrared images, key information is often unevenly 

distributed. Although some features are weak, they play 

a vital role in target recognition. The original intention 

of the adaptive attention module's design is to enhance 

the model's sensitivity to these key features and guide it  

 

 

to focus on areas in the image that contain important 

information. 

 

The input of this module is a feature map 
C H WX   , where C represents the number of channels, 

H and W represents the height and width respectively. 

When processing the input feature map, the first step is to 

perform a global average pooling operation in the channel 

dimension. This operation is similar to performing global 

statistics on each color channel of an image. Through the 

formula 

1 1

1
( , )

H W

c c

i j

z x i j
H W = =

=



, the channel feature description 

vector can be obtained 
Cz , where ( , )cx i j refers to 

the element of the feature map X at the channel c position 

( , )i j . This step effectively compresses the two-

dimensional spatial information into a one-dimensional 

channel dimension, highlights the overall characteristics of 

each channel, greatly reduces the dimension of the data, 

and retains key channel information. 

Subsequently, the channel feature description vector z
is fed into a network structure consisting of two fully 

connected layers. The weight matrices 
/

1

C r CW  and of 

the fully connected layer 
/

2

C C rW  are learnable 

parameters, where r represents the dimensionality 

reduction ratio. In this process, first, 
1W a linear 

transformation is performed 
1u zW= on , that is z , here . 

Next, 
/C ru a nonlinearity is introduced 

( ) max(0, )u uv  == using the ReLU activation 

function , and the formula is  . The ReLU activation 

function can effectively solve the gradient vanishing 

problem, enhance the model's expressive power, and enable 



330 Informatica 49 (2025) 325–342 Y. Wang et al. 

 

the model to learn more complex feature relationships. 

Then, 
2W a second linear transformation is performed, 

that is 2's vW=
, here ' Cs  , and the sigmoid 

activation function is used on the transformed vector 𝑠′ 

is defined in Formula (1), 

𝑠 = 𝜎(𝑠′) =
1

1+𝑒−𝑠′    (1) 

Here, 𝑠′ ∈ ℝ𝐶 is the second fully connected layer's 

output, and 𝑠 ∈ ℝ𝐶  is the obtained attention weight 

vector. Element-wise operations are performed to yield a 

gating effect on the feature channels. Obtaining the 

attention weight vector , it is s element-wise multiplied 

c c cX s X=  with the input feature map in the channel 

dimension, and X the enhanced feature map is obtained 

by the formula X , where 
cX and 

cX represent the 

features of the enhanced and original feature maps in the 

channel respectively c . To understand this process more 

deeply, we can regard it as a weighted adjustment of the 

features of each channel, and the weight s is determined 

by the attention weight vector. Unlike the traditional 

attention mechanism, this adaptive attention module can 

dynamically adjust the focus area according to the 

specific characteristics of the infrared spectrum. For 

example, when processing an infrared spectrum 

containing multiple targets, the module can 

automatically identify the target area and enhance the 

extraction of features in these areas, thereby greatly 

improving the efficiency of extracting weak and key 

features. 

 

3.1.2 Multi-scale feature fusion module 

In infrared images, the sizes and shapes of targets vary 

greatly, and it is difficult to fully capture the rich 

information in the images with a single-scale feature 

extraction. The design of the multi-scale feature fusion 

module aims to integrate feature information of different 

scales to meet the recognition needs of targets of 

different sizes. 

This module uses a set of dilated convolution layers 

with different dilation rates to process the feature maps 

output by the adaptive attention module in parallel X . 

Dilated convolution is a technique that expands the 

receptive field of the convolution kernel without 

increasing the number of parameters and the amount of 

computation. Assume that the dilation rates of dilated 

convolution are respectively 
1 2, , , nr r r , and the 

feature maps after dilated convolution are respectively 

1 2, , , nY Y Y , which are realized by the formula 

dilated,Conv ( )
ii r XY = . Taking two-dimensional 

convolution as an example, the calculation formula of 

standard convolution is formula 2.

  
 ,

)( ( , )) ( ,* ( , )
m n

I iK i I m j n K m nj += +
( 2 ) 

The dilated convolution introduces a dilation rate 

based on the standard convolution, r and its calculation 

formula is as follows: 

,

)( * )( , ) ( , ) ( ,r

m n

K i j I i r m j r n K m nI = +  + 
 

( 3 ) 

Where I represents the input feature map and K
represents the convolution kernel. The atrous convolution 

layers with different dilation rates can capture feature 

information of various scales. For example, the convolution 

layer with a smaller dilation rate is suitable for extracting 

detailed features, while the convolution layer with a larger 

dilation rate is better at capturing global features. 

The feature maps of different scales after the hole 

convolution processing 
1 2, , , nY Y Y are spliced to obtain 

the fused feature map Z , that is 

1 2Concat( , , , )nY YZ Y= . The splicing operation can 

integrate the feature information of different scales together 

and enrich the diversity of features. However, the 

dimension of the spliced feature map is high, which will 

increase the number of parameters and the amount of 

calculation of the model. To solve this problem, a 1 1
convolution layer is used to reduce the dimension of the 

spliced feature map, and the formula is 
1 1Conv ( )' ZZ = . 

1 1 The calculation process of the convolution layer can 

be expressed as 
, , ,'i j i j k k

k

Z W bZ = + , where W is the 

convolution kernel weight and b is the bias. 1 1 The 

convolution layer can adjust the number of channels 

without changing the spatial dimension of the feature map, 

effectively reducing the number of parameters and the 

amount of calculation. 

Compared with traditional fixed-scale convolution, this 

multi-scale feature fusion module can fully capture the rich 

information of infrared images at multiple scales. Taking 

the coexistence of small and large targets in an infrared 

scene as an example, the module can extract the detailed 

features of small targets and the global features of large 

targets through dilated convolution layers with different 

expansion rates, and fuse these features together to achieve 

comprehensive perception of targets of different sizes. 

 

3.1.3 Classification decision module 

The classification decision module classifies and identifies 

the infrared spectrum based on the features extracted by the 

previous module. Assume that the feature vector output by 

the multi-scale feature fusion module is 'Z , which is first 

sent to a fully connected layer FC( )F Z=  to achieve 

further feature transformation through the formula. The 
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calculation process of the fully connected layer can be 

expressed as formula 4. 

 
j i ij j

i

F Z W b= +
 ( 4 ) 

Where W is the weight matrix and b is the bias 

vector. The fully connected layer can perform weighted 

summation on the input features, map them to a new 

feature space, and further extract the complex 

relationship between the features. 

The feature vector after the full connection layer 

transformation F is used to calculate the classification 

probability through the Softmax function, and the 

formula is as follows: 

 1

Softmax( )
k

j

F

k k K
F

j

P
e

F

e
=

= =


 ( 5 ) 

where P represents the predicted probability vector 

for each category and K is the number of categories. 

The Softmax function maps the feature vector to a 

probability distribution so that each element represents 

the probability that the sample belongs to the 

corresponding category. With this module, the model 

can make accurate classification decisions based on the 

high-precision features extracted in the early stage. 

The adaptive attention module and the multi-scale 

feature fusion module provide rich and accurate feature 

information for the classification decision module. The 

adaptive attention module enhances the expression of key 

features, and the multi-scale feature fusion module enriches 

the diversity of features. The three work together to ensure 

the model's high performance. For example, when 

classifying infrared military target maps, the adaptive 

attention module can highlight the key features of the target, 

such as its outline and thermal radiation distribution. The 

multi-scale feature fusion module can integrate information 

at different scales and capture the target features from 

detail to the whole. The classification decision module 

accurately judges the type of target based on this feature 

information, such as aircraft, tanks, ships, etc. 

Figure 2 is the side-by-side contrast between the model 

structure proposed and two common baselines: ResNet and 

DenseNet. While both employ residual connections to 

enable feature flow, neither of them possesses mechanisms 

adapted to address the unique challenges presented by 

infrared spectral data. By contrast, the new model has an 

adaptive attention module for selectively boosting 

informative thermal features, and a multi-scale feature 

fusion module for combining semantic information across a 

range of spatial scales. With these modules, the model can 

more effectively capture scale-variant and fine-grained 

thermal patterns that are essential for correct infrared 

feature extraction and target recognition. 

 

 

Figure 2: Comparative architectures showing the proposed model's enhancements over ResNet and DenseNet for 

infrared tasks. 
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3.2 Model training process 

In the model training stage, in order to measure the 

difference between the model prediction results and the 

true label, this study uses the cross-entropy loss function. 

Let the model's prediction output be ˆ Ky , where K

is the number of categories, the true label is 
Ky , 

and the cross-entropy loss function L is defined as 

Formula 6. 

 1

ˆlog( )
K

k k

k

L y y
=

= −
 ( 6 ) 

To better understand the cross-entropy loss function, 

we can start from the perspective of information theory. 

It measures the difference between two probability 

distributions. When the model prediction result is closer 

to the true label, the loss value is smaller, indicating that 

the model's prediction is more accurate. 

During the training process, the infrared spectrum of 

each training sample is input into the model, and the 

model's prediction output is obtained by passing through 

the adaptive attention module, the multi-scale feature 

fusion module and the classification decision module in 

ŷ turn. After calculating the loss value according to the 

cross-entropy loss function, the parameters of the model 

are updated with the help of the back propagation 

algorithm. Assume that the parameter set of the model is 

 , and in the back propagation process,  the gradient 

of the loss function with respect to the parameters is 

calculated according to the chain rule L , and the 

formula is 
ˆ

ˆ

L y
L

y




 
 =

 
. Taking the fully connected 

layer as an example, assuming that the output of the 

fully connected layer is F , the input is 'Z , the weight 

is W , and the bias is b , then the specific formula is 7. 

 

L L F

W F W

  
=

  
, 

L L F

b F b

  
=

    ( 7 ) 

In backpropagation in neural networks, gradients are 

computed via the chain rule of calculus to update model 

parameters. For every weight parameter W, the partial 

derivative of the loss function 𝐿  concerning 𝑊  is 

computed as 
𝜕𝐿

𝜕𝑊
=

𝜕𝐿

𝜕𝐹
⋅

𝜕𝐹

𝜕𝑊
, where 𝐹 Is the output of the 

layer affected by 𝑊. Also, the gradient concerning the 

bias term 𝑏 is computed as 
𝜕𝐿

𝜕𝑏
=

𝜕𝐿

𝜕𝐹
⋅

𝜕𝐹

𝜕𝑏
. These equations 

are used to correctly backpropagate the error signal 

across the network layers, allowing each parameter to be 

updated in the direction of minimizing the loss. This 

basic formulation of gradient computation lies at the 

heart of training deep learning models effectively. 

The chain rule allows us to backpropagate the 

gradient of the loss function concerning the final output 

to the various parameters of the model, thereby calculating 

the gradient of each parameter. 

After obtaining the gradient, the gradient descent 

method is used to update the model parameters. The 

formula is 
1t t L  + = −  , where 

t and 
1t +

represent 

t the parameters after the update in  step th and step th 

respectively, 1t + and is the learning rate. The learning rate 

determines the step size of each parameter update. A 

learning rate that is too large may cause the model to fail to 

converge during training, while a learning rate that is too 

small will slow down the training process. In actual training, 

a strategy of dynamically adjusting the learning rate is 

usually adopted, such as the exponential decay strategy. 

The formula is 
0

t

t  =  , where 
0 is the initial 

learning rate,  is the decay coefficient, t and is the 

number of training steps. This strategy employs a larger 

learning rate in the early stages of training to accelerate the 

model's convergence, and gradually reduces the learning 

rate in the later stages of training to prevent the model from 

oscillating near the optimal solution. 

During the training process, the model continuously 

adjusts parameters to optimize the extraction and 

classification capabilities of infrared spectrum features. As 

the training progresses, the model gradually learns the 

relationship between different features and categories in the 

infrared spectrum, and the loss value decreases, leading to 

an improvement in the model's accuracy. 

 

3.3 In-depth analysis of the interaction 

mechanism between models 

The adaptive attention module, multi-scale feature fusion 

module, and classification decision module do not exist in 

isolation, but work together to form an organic whole. This 

collaborative relationship plays a key role in improving 

model performance. 

From the perspective of information flow, the adaptive 

attention module first processes the input infrared spectrum 

feature map to enhance the expression of key features and 

provide better input for subsequent modules. The improved 

feature map output by it enters the multi-scale feature 

fusion module, which performs multi-scale analysis and 

fusion on these features to enrich the diversity of features 

further. The feature vector output by the multi-scale feature 

fusion module provides comprehensive and accurate 

feature information for the classification decision module, 

enabling it to make accurate classification judgments. 

Mathematically, let X the output of the adaptive 

attention module for the input be , X the output of 'Z the 

multi-scale feature fusion module for the input be , and X
the output of ŷ the classification decision module for the 

input be 'Z . The computational flow of the entire model 

can be expressed as Formula 8. 
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ˆ Classification(Fusion(Attention( )))y X=

  
 (8) 

where Attention represents the calculation process 

of the adaptive attention module, Fusion represents the 

calculation process of the multi-scale feature fusion 

module, and Classification represents the calculation 

process of the classification decision module. Further 

expansion Attention( )X follows the calculation steps 

described above, that is, from global average pooling to 

attention weight calculation to feature enhancement; 

Fusion( )X including operations such as dilated 

convolution, feature concatenation, and 1 1
convolution dimensionality reduction; Classification( )Z

and includes fully connected layer transformation and 

Softmax classification probability calculation. 

This orderly module interaction mechanism enables 

the model to extract feature information from multiple 

levels when processing infrared spectra, gradually 

improving the quality and diversity of features, and 

ultimately achieving efficient and accurate infrared 

spectra feature extraction and target recognition. Taking 

the actual application scenario as an example, in 

industrial production, it is necessary to analyze infrared 

thermal imaging spectra to detect whether the equipment 

is faulty. The adaptive attention module can highlight 

the key features related to equipment failure in the 

spectra, such as abnormal heating areas. The multi-scale 

feature fusion module can integrate information of 

different scales to fully capture the details and overall 

situation of the fault features. The classification decision 

module accurately determines whether the equipment is 

faulty and the type of fault based on this feature 

information. This collaborative work between modules 

significantly enhances the model's performance in 

complex scenarios, providing robust technical support 

for the practical application of infrared spectrum 

analysis. At the same time, an in-depth understanding 

and optimization of this interaction mechanism will help 

further improve the model's performance and promote 

the development of infrared spectrum analysis 

technology. Future research can focus on coordinating 

the transmission of information between modules more 

effectively and optimizing the structure and parameters 

of the modules according to different application 

scenarios to maximize the model's performance. For 

example, by introducing a gating mechanism to 

dynamically control the flow of information between 

different modules or adaptively adjusting the parameter 

configuration of the module according to the task's 

characteristics, the model can better adapt to various 

complex tasks involving infrared spectrum analysis. 

4   Experimental evaluation 
For the performance assessment of the constructed deep 

learning model in infrared spectrum feature extraction and 

target detection, experiments were conducted using three 

publicly available datasets: NATO RTO SET-103, the 

Thermal IR Benchmark Dataset, and the FLIR Thermal 

dataset. The three data sets encompass various infrared 

scenes and object categories, providing a solid foundation 

for a comprehensive assessment. The model utilizes an 

adaptive attention mechanism, a multi-scale feature fusion 

block, and a decision block for classification, thereby 

addressing the limitations of the conventional method in 

processing advanced infrared data. 

The code is implemented in PyTorch 2.0 and Python 3.9 on 

a workstation equipped with an NVIDIA RTX 3090 GPU 

(24 GB VRAM), an Intel Core i9 CPU, and 64 GB of RAM. 

The model was trained using a cross-entropy loss function 

and optimized through backpropagation with a learning rate 

governed by an exponential decay policy. The initial 

learning rate was set to 0.0001 and halved every 15 epochs. 

Training was conducted over more than 100 epochs with a 

batch size of 32. He (Kaiming) normal initialization was 

used to initialize the weights effectively. 

Before training, all the infrared images were resized to 

224×224 pixels, normalized to [0,1], and reshaped into 

three channels when necessary. Random horizontal flipping, 

rotation to ±15°, and the addition of Gaussian noise were 

some data augmentation techniques used to enhance model 

generalization and mitigate overfitting, particularly in cases 

with less or unbalanced data. 

A five-fold cross-validation strategy was employed to 

ensure the stability and reproducibility of the results. The 

same setting was used to train and test all the models, 

including the new architecture and baseline models 

(DenseNet, ResNet, VGGNet, and Basic CNN). Average 

results of all the folds were obtained. The new model 

outperformed the baseline models, achieving an average 

feature extraction accuracy of 90.8% and a target 

recognition accuracy of 89.7%. In addition, the model 

demonstrated consistent accuracy across different data 

distributions, validating its generalizability and stability 

under diverse infrared imaging conditions. 
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4.1 Experimental design 

To comprehensively evaluate the performance of the 

proposed deep learning-based infrared spectrum feature 

extraction and target recognition model, this experiment 

carefully selected several representative public infrared 

spectrum datasets, including the NATO RTO SET-103 

dataset [1], the Thermal IR Benchmark Dataset [ 12], 

and the FLIR Thermal dataset [20]. These datasets 

encompass various scenes and types of infrared spectra, 

enabling effective testing of the model's performance under 

diverse conditions. 

Table 2 provides a summary of the datasets used to 

evaluate the model's performance in various contexts, 

considering multiple scenarios. Through the determination 

of sample numbers, image sizes, class numbers, and dataset 

challenges, readers are enabled to comprehend the diversity 

and complexity employed, thereby accentuating the 

credibility of the assessment. 

 

Table 2: Summary of dataset characteristics 

Dataset 
No. of 

Samples 

Image 

Resolution 

No. of 

Classes 
Typical Challenges 

NATO RTO 

SET-103 
~10,000 

256×256 to 

512×512 
6 

Cluttered military backgrounds, 

low visibility, multiple object 

scales 

Thermal IR 

Benchmark 
~8,500 320×240 5 

Low thermal contrast, blurred 

object edges, noise under ambient 

variation 

FLIR Thermal 

Dataset 
~14,000 640×512 10 

Class imbalance, small and 

overlapping objects, varied scene 

lighting 

 

The model proposed in this study served as the 

experimental group model. The control group selected 

traditional models that are widely used in the field of 

infrared spectrum analysis and have statistically superior 

performance, including DenseNet [1, 4], ResNet [15], 

VGGNet [21], and an unimproved basic convolutional 

neural network (Basic CNN). In the experiment, various 

models were trained and tested on the same dataset to 

ensure consistency of experimental conditions. The 

baseline indicators of the experiment were set as feature 

extraction accuracy and target recognition accuracy. By 

comparing the performance of the experimental group 

and the control group on these indicators, the 

performance of the proposed model was judged. In 

addition, to ensure the reliability of the experimental 

results, a five-fold cross-validation method was 

employed to train and test each model multiple times, 

with the average value taken as the result. 

To make all experiments completely reproducible, 

all experiments were performed on Python 3.9 with the 

PyTorch 2.0 deep learning library, along with supporting  

 

libraries like NumPy 1.23, OpenCV 4.6, and SciPy 1.10.  

A constant value of 42 was used in all modules (NumPy, 

PyTorch, and CUDA) to set the random seed, making 

execution deterministic. Class balances were maintained in 

every fold throughout the splitting of data with stratified 

five-fold cross-validation. 80% was divided for training, 

and 20% was divided for validation and test, with shuffling 

allowed before partitioning in each fold. 

To computational feasibility testing, the floating-point 

operations (FLOPs) and average runtime of the new model 

were approximated and contrasted with typical CNNs. The 

new model is approximately 3.2 GFLOPs per forward pass, 

which is greater than that of a simple CNN (1.5 GFLOPs) 

but the same as the DenseNet and less than that of deeper 

equivalents of ResNet. Notwithstanding the increased 

complexity of the adaptive attention and multi-scale fusion 

components, the average inference time per image is 47 ms 

on an NVIDIA RTX 3090, which is suitable for near real-

time application. Practical implementation in industrial and 

surveillance systems is made possible by the trade-off 

between accuracy and computational expense.
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4.2 Experimental results  

 

 
Figure 3: The proposed model outperforms ResNet and DenseNet in feature extraction by enhancing weak spectral cues 

using adaptive attention. 

 

As shown in Figure 3, on the NATO RTO SET-103 

dataset, the model in this study is significantly better 

than the control group model in terms of all kinds of 

feature extraction. With the adaptive attention module, 

this model can accurately focus on key feature areas in 

the atlas, thereby enhancing the ability to extract weak 

features. The multi-scale feature fusion module 

effectively integrates information from different scales, 

improving the comprehensiveness of feature extraction. In 

contrast, other models, due to the lack of design for the 

characteristics of infrared spectra, struggle to accurately 

extract various features when faced with complex infrared 

spectrum data, resulting in an average accuracy rate far 

lower than that of the model in this study. 

 

 
Figure 4: Baseline models underperform on small targets in NATO RTO SET-103 due to poor spatial focus; the 

proposed model achieves higher recognition via multi-scale fusion. 

 

As shown in Figure 4, the model in this study also 

shows excellent performance in the target recognition 

task. When identifying targets of different sizes and 

complex scenes, the accuracy of this model significantly 

outperforms that of the control group. This is due to the 

model's end-to-end design. The adaptive attention 

module and the multi-scale feature fusion module provide 

high-quality feature information. However, due to the 

inaccurate feature extraction of traditional models, 

classification decisions often contain errors and recognition 

accuracy is low.  
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Figure 5: Thermal IR feature extraction degrades in baselines due to thermal noise, while the proposed model retains 

robustness using spectrum-aware modules. 

 

As shown in Figure 5, the model in this study 

continues to maintain a high feature extraction accuracy 

on the Thermal IR Benchmark Dataset. The model's 

modules, specifically designed to accommodate the 

physical characteristics of infrared spectra, enable it to 

extract various features when processing this dataset 

effectively. In contrast, the traditional model fails to 

consider the characteristics of infrared spectra fully and is 

significantly affected by noise and complex data 

distribution during feature extraction, resulting in a lower 

accuracy rate.  

 

 
Figure 6: Recognition drops in baselines on mid-sized targets under clutter; the proposed model remains accurate due to 

attention and scale handling. 

 

Figure 6 shows that the model in this study performs 

outstandingly in the target recognition task of the 

Thermal IR Benchmark Dataset. The multi-scale feature 

fusion module of the model can adapt to the feature 

extraction requirements of targets of different sizes. The 

adaptive attention module enables the model to 

accurately focus on the target in complex scenes, thereby 

enhancing the accuracy of target recognition. However, 

traditional models lack effective response strategies when 

faced with complex scenes and targets of varying sizes, 

resulting in low recognition accuracy. 
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Figure 7: DenseNet and VGGNet struggle with low-contrast features in FLIR; the proposed model maintains accuracy 

by enhancing subtle thermal details. 

 

As shown in Figure 7, the model in this study 

exhibits significant advantages in feature extraction on 

the FLIR Thermal dataset. The model designs targeted 

modules through in-depth analysis of the characteristics 

of infrared spectrum data, effectively improving the 

accuracy of feature extraction. Traditional models employ 

general feature extraction methods, which cannot fully 

extract the practical information in infrared spectra, 

resulting in relatively low feature extraction accuracy. 

 

 
Figure 8: Recognition performance drops in baselines on imbalanced FLIR data; the proposed model handles scale 

variation and class imbalance more effectively. 

 

As shown in Figure 8, the average accuracy of the 

model in this study for the target recognition task of the 

FLIR Thermal dataset is significantly higher than that of 

the control group. The model's adaptive attention 

mechanism enables it to focus on the key features of the 

target. In contrast, the multi-scale feature fusion 

mechanism provides richer information for target 

recognition, allowing the model to maintain a high 

recognition accuracy rate across various target types and 

complex scenarios. Traditional models, due to the lack of 

these targeted designs, are prone to misjudgment during 

target recognition, resulting in low accuracy.  
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Table 3: Feature extraction accuracy is highest in the proposed model due to better handling of dominant and subtle 

spectral features. 

Model Name NATO 

RTO SET-103 

Thermal IR 

Benchmark 

Dataset 

FLIR 

Thermal 

Average 

accuracy 

This study 

model 

90.9 90.5 91.1 90.8 

DenseNet 77.8 77.1 78.4 77.8 

ResNet 79.9 79.0 80.4 79.8 

VGGNet 74.9 73.9 75.3 74.7 

Basic CNN 72.1 71.0 72.6 71.9 

 

As shown in Table 3, after a comprehensive 

comparison of feature extraction accuracy across 

multiple datasets, the model's average accuracy in this 

study reached 90.8%, significantly outperforming other 

control group models. This fully demonstrates that the 

model has stable and excellent feature extraction 

capabilities across different datasets, and its module 

designed for infrared spectra can effectively adapt to 

infrared spectra data from other sources. 

 

Table 4: The proposed model improves recognition across datasets, outperforming baselines on small and complex 

targets. 

Model Name NATO RTO 

SET-103 

Thermal IR 

Benchmark 

Dataset 

FLIR 

Thermal 

Average 

accuracy 

This study 

model 

89.6 89.1 90.3 89.7 

DenseNet 68.2 67.3 68.9 68.1 

ResNet 70.8 70.1 72.0 71.0 

VGGNet 64.5 64.3 66.0 64.9 

Basic CNN 62.4 61.8 63.5 62.6 

 

As shown in Table 4, the comprehensive 

comparison of target recognition accuracy across 

multiple datasets reveals that the model in this study also 

performed well, with an average accuracy of up to 

89.7%. This demonstrates that the model exhibits strong 

adaptability and accuracy in recognizing infrared 

spectrum targets across various scenes and types and has 

clear advantages over traditional models.  

To further establish the reliability and stability of 

the observed performance gains, statistical significance 

tests were made via independent-sample t-tests across 

five experiment runs for each model for all datasets. In 

terms of feature extraction accuracy, the proposed model 

consistently outperformed DenseNet (p < 0.01) and ResNet 

(p < 0.01) across all datasets. The same was found for the 

differences in accuracy between the proposed and baseline 

models on target recognition tasks (p < 0.01). Moreover, 95% 

confidence intervals for the average accuracy of the 

proposed model ranged from ±0.6% to ±0.9%, showing 

slight variation and high stability. These findings provide 

strong statistical evidence that the performance 

improvements are not due to random variation and attest to 

the stability of the engineered method under heterogeneous 

conditions. 
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Table 5: Feature extraction stays consistent across distributions in the proposed model, unlike baselines affected by 

distribution skew. 

Data 

distribution 

type 

Channel 

feature 

recognition 

Texture 

feature 

recognition 

Edge 

feature 

recognition 

Temperature 

feature recognition 

Average 

accuracy 

Even 

distribution 

91.0 89.9 92.0 90.6 90.9 

Skewed 

distribution 

90.5 89.2 91.5 90.1 90.3 

Mixed 

distribution 

90.8 89.6 91.8 90.4 90.6 

Table 5 shows the feature extraction accuracy of the 

model in this study under different data distributions. It 

can be observed that whether the data is uniformly 

distributed, skewed, or mixed, this model can maintain a 

high feature extraction accuracy. This is because the 

model's adaptive attention module and multi-scale feature 

fusion module can automatically adjust the feature 

extraction strategy according to the data's characteristics, 

providing strong robustness.

 

Table 6: Recognition accuracy is stable across all target sizes and distributions, showing the proposed model’s strong 

generalization. 

Data 

distribution 

type 

Small 

object 

recognition 

Medium 

Target 

Recognition 

Large 

Object 

Recognition 

Complex 

scene object 

recognition 

Average 

accuracy 

Even 

distribution 

87.8 90.3 92.4 88.6 89.8 

Skewed 

distribution 

87.2 89.7 91.8 88.1 89.2 

Mixed 

distribution 

87.5 90.0 92.1 88.3 89.5 

 

As shown in Table 6, the target recognition accuracy of 

the model in this study remains relatively stable across 

different data distributions. The end-to-end design of the 

model enables it to accurately extract target features and 

classify them under different data distributions, further 

proving the robustness and adaptability of the model.  

 

4.3 Classification performance evaluation 
Along with accuracy, the model was also 

evaluated based on precision, recall, and F1-score to 

better understand its accuracy in class classification, 

particularly in datasets with class imbalance, such as 

FLIR Thermal. The model had a macro-averaged 

precision of 89.4%, recall of 90.1%, and F1-score of 

89.7%. These results demonstrate that not only is the 

model overall consistent, but it also performs well for 

both the majority and minority classes. 

Additionally, confusion matrices were constructed for 

each dataset to visualize class-wise prediction 

distributions. The matrices validated that the model had  

 

significantly reduced misclassification rates compared to 

baseline models, especially for small targets and low-

contrast targets that are typically neglected by conventional 

CNNs. This further verifies the effectiveness of the adaptive 

attention and multi-scale feature fusion modules in boosting 

discriminatory ability across a variety of infrared scenes. 

Table 7 presents the performance table, which includes 

five-fold cross-validation standard deviations, 

demonstrating the high accuracy and strong reliability of 

the proposed model. With deviations generally smaller than 

±0.9%, the model exhibits extreme stability across all 

datasets, including the imbalanced FLIR Thermal dataset. 

Baseline models are not so stable, demonstrating higher 

variability, signs of sensitivity to splits of the data and weak 

generalization. Low variance guarantees the efficiency of 

the adaptive attention and multi-scale fusion modules. 

Overall, the model designed has not only better mean 

values but also consistent results across various runs, 

ensuring its reliability and usability in complex infrared 

spectrum identification tasks.
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Table 7: Comparative evaluation of classification performance with standard deviations (%) 

Model Dataset Accuracy 

(±SD) 

Precision 

(±SD) 

Recall (±SD) F1-Score 

(±SD) 

Proposed 

Model 

NATO RTO SET-

103 

89.6 ± 0.7 89.3 ± 0.9 89.9 ± 0.8 89.6 ± 0.7 

 Thermal IR 

Benchmark 

89.1 ± 0.6 88.7 ± 0.7 89.5 ± 0.9 89.1 ± 0.6 

 FLIR Thermal 90.3 ± 0.5 90.1 ± 0.6 90.8 ± 0.7 90.4 ± 0.6 

DenseNet NATO RTO SET-

103 

68.2 ± 1.3 67.9 ± 1.5 66.8 ± 1.4 67.3 ± 1.3 

 Thermal IR 

Benchmark 

67.3 ± 1.1 66.5 ± 1.2 66.1 ± 1.0 66.3 ± 1.1 

 FLIR Thermal 68.9 ± 1.2 68.2 ± 1.4 67.7 ± 1.3 67.9 ± 1.2 

ResNet NATO RTO SET-

103 

70.8 ± 1.0 70.1 ± 1.1 70.5 ± 1.0 70.3 ± 1.0 

 Thermal IR 

Benchmark 

70.1 ± 0.9 69.4 ± 1.0 69.9 ± 0.9 69.6 ± 0.9 

 FLIR Thermal 72.0 ± 0.8 71.2 ± 0.9 71.5 ± 1.1 71.3 ± 0.9 

VGGNet NATO RTO SET-

103 

64.5 ± 1.4 63.9 ± 1.6 64.1 ± 1.5 64.0 ± 1.5 

 Thermal IR 

Benchmark 

64.3 ± 1.3 63.5 ± 1.4 63.6 ± 1.3 63.5 ± 1.3 

 FLIR Thermal 66.0 ± 1.2 65.3 ± 1.2 65.6 ± 1.4 65.4 ± 1.2 

Basic CNN NATO RTO SET-

103 

62.4 ± 1.5 61.8 ± 1.4 62.1 ± 1.6 61.9 ± 1.5 

 Thermal IR 

Benchmark 

61.8 ± 1.3 61.0 ± 1.3 60.7 ± 1.5 60.8 ± 1.4 

 FLIR Thermal 63.5 ± 1.1 63.0 ± 1.2 63.1 ± 1.3 63.0 ± 1.2 

 

4.4 Experimental discussion 

The experimental results show that the model proposed 

in this study performs well in infrared spectrum feature 

extraction and target recognition tasks, significantly 

outperforming the traditional model of the control group, 

which strongly supports the research hypothesis. 

Through in-depth analysis of the physical properties of 

infrared spectra, this model designs an adaptive attention 

module and a multi-scale feature fusion module, which 

effectively improves the accuracy and 

comprehensiveness of feature extraction, thereby 

improving the accuracy of target recognition. From the 

perspective of external validity and generalizability, this 

study utilizes multiple public datasets for experiments, 

which encompass diverse scenes and types of infrared 

spectra, suggesting that the model exhibits good 

performance under various conditions and possesses 

certain generalizability. However, the experiment also 

has some limitations. On the one hand, although 

multiple data sets are used, the infrared spectrum data in 

actual applications may be more complex and diverse, 

and the model's performance may be affected when 

facing specific  

 

 

scenes or special types of infrared spectra. On the other 

hand, this study only compares a limited number of 

traditional models, and the comparison range can be further 

expanded in the future to compare with more advanced 

models. In subsequent research, we can further explore how 

to optimize the model and improve its performance in 

complex scenes. For example, more advanced deep 

learning theories can be combined to enhance the model's 

structure; more and richer infrared spectrum data can be 

collected to train the model more thoroughly, thereby 

improving the model's generalization ability and 

adaptability. 

 

4.5 Comparative discussion with related work 
The model demonstrates significant superiority 

over existing state-of-the-art deep models, including 

DenseNet, ResNet, VGGNet, and conventional CNNs, in 

processing infrared spectrum data. The model achieves a 

better average accuracy of 90.8% in feature extraction and 

a higher accuracy of 89.7% in target recognition compared 

to the baselines, by 11–20%. It supports strong 

performance on various data distributions, with accuracy 

fluctuations of no more than 1.5%, and demonstrates 

stronger environmental and temperature adaptation. This is 
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due to its adaptive attention module that strengthens 

temperature-sensitive and spectrally related features, and 

a multi-scale feature fusion module that can well extract 

small and large targets. In contrast to earlier work that 

did not consider distributional variance and spectral 

specificity, the model is comprehensively tested on 

several datasets and conditions. Its accuracy, stability, 

and generalizability are very high, making it very 

suitable for real-world use in industrial, medical, and 

military infrared imaging applications. 

To confirm robustness across different data 

distributions, accuracy and F1-score values achieved on 

even, skewed, and mixed datasets were compared 

through one-way ANOVA and Tukey's HSD post-hoc 

test. No statistically significant differences (p > 0.05) 

were found in all three types of distributions for 

accuracy, as well as for F1-score, indicating similar 

performance. Stratified five-fold cross-validation was 

used in all the experiments, with class balance preserved 

in each of the splits. This compromise between strict 

cross-validation and formal statistical testing ensures the 

robust generalization of the model across different 

distributions of infrared data. 

4.6 Interaction mechanism and ablation 

analysis 

The adaptive attention module enables the multi-

scale feature fusion module and classification decision 

module to collaborate and contribute to the model's 

performance. To exit the conceptual description, ablation 

experiments were done to measure the individual and 

additive contributions of the modules. Four controlled 

models were constructed: (1) without adaptive attention, (2) 

without multi-scale feature fusion, (3) with only a module 

(stripped CNN structure), and (4) the whole model as 

constructed. 

From Table 8, de-adopting the adaptive attention 

module resulted in a significant decline in accuracy on all 

datasets, particularly in low-contrast or small-object 

situations, confirming its role in enhancing poor feature 

representations. De-adopting the multi-scale fusion module 

also lowered performance, mainly on datasets with uneven 

object size, such as FLIR. The complete model performed 

better than all ablated models at all points, ensuring that the 

synergistic interaction of both modules is accountable for 

precise feature extraction and target identification. 

Table 8: Ablation study results – impact of individual modules on recognition accuracy (%) 
Model Variant NATO RTO 

SET-103 

Thermal IR 

Benchmark 

FLIR Thermal Average 

Accuracy 

Full Model (All Modules) 89.6 89.1 90.3 89.7 

Without the Adaptive 

Attention Module 

85.2 84.7 86.3 85.4 

Without the Multi-Scale 

Feature Fusion Module 

84.5 84.2 85.1 84.6 

Only Classification Module 

(Baseline CNN) 

78.4 77.8 79.2 78.5 

 

5  Conclusion 

In today's digital age, infrared spectra are increasingly 

utilized in various fields; however, traditional methods 

often fall short of meeting the needs for high-precision 

analysis. To this end, this study designs a new model based 

on deep learning. Through in-depth analysis of the physical 

properties of infrared spectra, an adaptive attention and 

multi-scale feature fusion module is innovatively 

constructed. During the experiment, the model was 

rigorously tested using multiple public datasets and 

compared with classic traditional models. The data show 

that the average accuracy of feature extraction of this 

model on the NATO RTO SET - 103 dataset is 90.9%, and 

the average accuracy of target recognition is 89.6%; on the 

Thermal IR Benchmark Dataset dataset, the average 

accuracy of feature extraction is 90.5%, and the average 

accuracy of target recognition is 89.1%; on the FLIR 

Thermal dataset, the  

 

average accuracy of feature extraction is 91.1%, and the 

average accuracy of target recognition is 90.3%. In a 

comprehensive comparison of multiple datasets, the 

average accuracy of feature extraction and target 

recognition for this model is 90.8% and 89.7%, 

respectively, which is significantly better than that of the 

traditional model. Additionally, this model demonstrates 

robustness under various data distributions. This research 

not only enriches the theory of deep learning in special 

data processing but also provides practical and effective 

solutions for industrial quality inspection, military 

reconnaissance, medical imaging diagnosis, and other 

fields, which is of great significance to improving the 

technical level of related fields and promoting industrial 

development. In the future, the research will focus on 

model optimization to better address complex and dynamic 

practical application scenarios.  

To promote reproducibility and future research, 

the complete implementation code, configuration files, and 

pre-trained model weights will be provided as 

supplemental materials through a public repository upon 
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publication. This will enable independent verification and 

facilitate application in related infrared analysis tasks. 

The suggested model has immense potential for 

application in military surveillance, factory malfunction 

detection, and medical thermography. However, the issues 

of sensor heterogeneity, real-time computation in 

embedded systems, and model interpretability for decision-

making problems need to be addressed. Hardware-aware 

model optimization, cross-device generalizability, and the 

incorporation of explainable AI methods for better trust, 

adaptability, and deployment in such domain-specific 

problems will be the focus of future work. 
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