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With growing demands for accurate infrared spectrum analysis in industrial, military, and medical
applications, traditional methods typically cannot meet the requirements due to limited feature extraction and
recognition. This article proposes a novel deep learning model featuring an adaptive attention module, a
multi-scale feature fusion module, and a classification decision module, designed to enhance performance.
The model is trained using a cross-entropy loss function and learns with backpropagation, employing an
exponential decay learning rate policy, over more than 100 training epochs. Experiments are run on three test
datasets: NATO RTO SET-103, Thermal IR Benchmark, and FLIR Thermal. The model achieved an average
feature extraction accuracy of 90.8% and a target recognition accuracy of 89.7%, which significantly
surpassed those of traditional models, such as DenseNet, ResNet, VGGNet, and Basic CNN. The performance
was robust in the face of changing data distributions, demonstrating high generalizability and robustness. The
result substantiates the model's capability of accurately extracting important infrared features and
recognizing targets with high accuracy. This work presents an effective solution to real-world problems in
infrared spectrum analysis.

Povzetek: Model z adaptivno pozornostjo in multi-skalno fuzijo za IR-spektre na naborih NATO SET-103,

Thermal IR Benchmark in FLIR pri prepoznavi prekasa ResNet/DenseNet/VGG ter ohranja robustnost.

1 Introduction

In today’s highly digitalized and technologically advanced
era, the application of computer technology is ubiquitous,
and its influence has penetrated into every corner of
society. Take the industrial field as an example.
According to incomplete statistics, more than 70% of
large-scale industrial production processes are highly
dependent on computer automation control systems, and
the precise operation of these systems is closely related to
the accurate processing of data and feature extraction [1].

Take the application of infrared spectra in industrial
quality inspection as an example. In traditional models,
the large amount of feature information contained in
infrared spectra is often not efficiently and accurately
extracted and identified. The misjudgment rate of
industrial product quality due to inaccurate infrared
spectra feature extraction is as high as 15% each year,
which directly causes economic losses of about tens of
billions [2]. In addition, in many fields such as military
reconnaissance and medical imaging diagnosis that
require extremely high data processing accuracy and
speed, traditional infrared spectra feature extraction and
target recognition methods based on manual or simple

algorithms have also exposed serious defects and cannot
meet actual needs [3].

In the field of military reconnaissance, infrared
images play a vital role in target identification and
tracking. According to relevant data, when traditional
methods were used in the past, the accuracy of infrared
image recognition of specific military targets in complex
environments was only between 30% and 40%, which
greatly affected the timeliness and accuracy of military
decision-making, and could even lead to serious strategic
mistakes due to incorrect identification [4].

In the field of medical imaging diagnosis, infrared
thermal imaging technology has been gradually applied,
but due to the lack of efficient feature extraction and
target recognition methods, about 25% of early lesion
features are missed, causing many patients to miss the
best time for treatment. These practical problems fully
demonstrate that there is an urgent need for a more
advanced, efficient and accurate infrared spectrum feature
extraction and target recognition method, and deep
learning-based technology undoubtedly provides a new
opportunity to solve these problems.
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Currently, in the computer field, research on feature
extraction and target recognition has always been a hot
topic. Many scholars and research institutions have
invested a lot of energy in this area [5]. In the field of
deep learning, a series of relatively mature model
architectures have emerged, such as convolutional neural
networks (CNNSs).

As for CNN, it has achieved remarkable results in the
fields of image recognition and other fields. Some cutting-
edge research results show that its recognition accuracy
can reach more than 90% on standard image datasets.
However, when it is directly applied to feature extraction
and target recognition of infrared spectra, it faces many
challenges [6]. This is because infrared spectra are
fundamentally different from ordinary visible spectrum
images, and their data distribution characteristics and
noise characteristics are very different [7].

Many existing studies simply adjust the parameters of
deep learning models such as CNN or make slight
modifications, and do not build more suitable models
based on the characteristics of infrared spectra. For
example, some studies input infrared spectra into existing
deep learning models as ordinary image data, resulting in
incomplete feature extraction and unstable target
recognition accuracy. Moreover, in the training process of
deep learning models, there is a lack of effective
optimization strategies for the unique data characteristics
of infrared spectra, such as temperature sensitivity, which
significantly limits the model's generalization ability.

Additionally, there are disputes regarding the
evaluation indicators of the model. Some researchers
believe that using accuracy as the evaluation indicator is
too one-sided and that multiple indicators, such as recall
rate and F1 value, should be considered comprehensively.
Others insist that accuracy is the most core indicator.
There has been an endless debate around this hot issue,
but it is undeniable that the existing research as a whole
has not yet developed a comprehensive and effective
method for extracting infrared spectrum features and
recognizing targets based on deep learning, which is also
key to further breakthroughs in this field.

This paper aims to develop a novel method for
extracting infrared spectrum features and recognizing
targets based on deep learning. By deeply analyzing the
data characteristics of infrared spectra, innovative
improvements and optimizations are made to the existing
deep learning model to solve the key problems currently
existing in this field, such as inaccurate feature extraction,
low target recognition accuracy, and weak model
generalization ability.

The innovation of this study is that it will combine
the physical properties of infrared spectra with the
algorithmic advantages of deep learning to design a
unique network architecture and training strategy
specifically for infrared spectra, which is expected to
increase the accuracy of feature extraction of infrared
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spectra by at least 30% and the accuracy of target
recognition to more than 80%. This will not only enrich
the theoretical system of deep learning in the computer
field for processing special data types, but also have
significant potential impacts in various practical fields,
such as industry, military, and medicine. For example, in
industry, it can significantly improve the accuracy and
efficiency of product quality inspection, in the military, it
can more accurately detect and identify targets, and in
medicine, it can help detect lesions earlier and more
accurately, thereby bringing significant economic and
social benefits and promoting technological progress and
development in related fields.

This model achieves an average feature extraction
accuracy of 90.8% and a target recognition accuracy of
89.7% across benchmark datasets, which is over 30%
higher than conventional approaches, and has numerous
practical applications in industrial, military, and medical
domains.

The purpose of this research is to determine if a
tailored deep learning model for the physical and
statistical properties of infrared spectra can significantly
outdo general-purpose models. The main questions
researched are:

(1) Is it possible for an architecture that employs
adaptive attention and multi-scale feature fusion to attain
at least 10% greater accuracy in target recognition and
feature extraction than DenseNet and ResNet?

(2) Can the target model be assured to exhibit stable
performance under different data distribution conditions,
thereby showing enhanced robustness and generalization?

To find answers to these questions, a network is
constructed according to the specifications and tested with
various benchmark datasets under various infrared
imaging conditions. The clear intent is to build a model
that achieves over 90% accuracy for feature extraction
and target recognition tasks, with reproducible
performance across varying patterns of distribution.

2 Literature review
2.1 Development and application status of
deep learning in related fields

As computer technology continues to develop rapidly,
deep learning has become one of the most popular and
promising areas of research. According to statistics, the
number of research papers on deep learning has increased
by about 300% in the past five years, and its application
areas are also expanding. In the field of image
recognition, deep learning  models, especially
convolutional neural networks (CNNs), have achieved
remarkable results [8]. On public general image datasets,
the recognition accuracy of optimized and trained CNN
models can generally reach over 90%, which makes them
widely used in various fields, such as security monitoring
and autonomous driving [9].
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However, when it comes to the special data type of
infrared spectra, the situation becomes complicated. Due
to the unique spectral distribution, high noise level, and
sensitivity to environmental factors such as temperature,
traditional deep learning models face significant
difficulties when directly applied [10]. Many studies
passively input infrared spectra into existing deep learning
models as ordinary image data without fully considering
their particularity, which leads to a series of problems
such as incomplete feature extraction and unstable target
recognition accuracy. For example, a research institute
once tested 5 different CNN-based deep learning models.
On the infrared spectrum dataset, their average
recognition accuracy was only about 55%, which was
much lower than the performance on the general image
dataset [11].

In addition, the lack of effective optimization
strategies for the unique data characteristics of infrared
spectra during the training process of deep learning
models has also become an important factor restricting
their development. Most of the existing training strategies
are designed based on general image data. When faced
with infrared spectra, they cannot effectively utilize their
data characteristics for optimization, which significantly
limits the model's generalization ability [12]. According
to relevant experiments, the accuracy of unoptimized deep
learning models can drop by about 30% on infrared
spectrum datasets collected across different ambient
temperatures.

2.2 Research status and problems of infrared
spectrum feature extraction and target
recognition methods based on deep learning

Currently, research on infrared spectrum feature
extraction and target recognition methods based on deep
learning is still in its exploratory stage, but some progress
has been made. Some researchers have attempted to
enhance existing deep learning models to accommodate
the characteristics of infrared spectra. For example, some
studies have enhanced the ability to extract weak features
in infrared spectra by adding specific convolutional
layers, which has improved the accuracy of feature
extraction to a certain extent. However, such
improvements are often local and unsystematic and have
failed to build a complete and effective infrared spectrum
feature extraction and target recognition method system
based on deep learning as a whole [13].

There is also considerable controversy regarding
model evaluation indicators. Some researchers believe
that using accuracy alone as an evaluation indicator is too
one-sided and that multiple indicators such as recall and
F1 value should be considered comprehensively [14].
Because in some practical application scenarios, such as
military reconnaissance, the recall rate of the target may
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be more important than the accuracy alone, and no
potential targets should be missed [15]. Other researchers
insist that accuracy is the most core indicator, believing
that only by ensuring high accuracy can the correctness of
subsequent decisions be ensured. This controversy has led
to a lack of unified evaluation standards in the research
process, making it difficult to effectively compare and
evaluate different research results [16]. At the same time,
there are also problems with the training data of deep
learning models. Since infrared spectrum data is relatively
difficult and costly to obtain, the size of the data set that
can be used for training is often small [17]. The
performance of deep learning models depends to a large
extent on a large amount of training data. Small-scale data
sets make the model prone to overfitting, which further
affects the model's generalization ability and recognition
accuracy [18]. According to relevant research, the
accuracy of a model trained on a small-scale infrared
spectrum dataset may drop by about 15%-20% on a new
test dataset [19].

2.3 Thoughts and prospects on future
research directions

Based on the current research status, several directions
worth exploring in future research on infrared spectrum
feature extraction and target recognition methods using
deep learning are identified. First, we should begin by
examining the physical characteristics of infrared spectra
and develop a deep learning model architecture that
specifically targets these characteristics. For example, we
can draw on some principles and methods in infrared
physics to design network layers and modules that can
more effectively extract infrared spectrum features, rather
than passively using the traditional image recognition
model architecture

Secondly, in terms of model training strategies, it is
necessary to develop optimization algorithms tailored to
the characteristics of infrared spectrum data. For example,
considering the sensitivity of infrared spectra to
environmental factors such as temperature, dynamically
adjusted training parameters can be designed to improve
the stability and generalization ability of the model under
different environmental conditions. At the same time, in
order to solve the problem of insufficient training data,
data enhancement technology can be used to increase the
size of the training data set by reasonably transforming
and expanding existing data, such as rotating, flipping,
adding noise, etc., thereby improving the performance of
the model. Finally, in terms of model evaluation
indicators, multiple indicators should be considered
comprehensively and their weights should be determined
according to different application scenarios. For example,
in the field of medical imaging diagnosis, more attention
may be paid to recall rate to avoid missing early lesions;
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while in industrial quality inspection, more emphasis may
be placed on accuracy to ensure accurate judgment of
product quality. By establishing such a flexible and
scientific evaluation system, the pros and cons of different
research results can be evaluated more comprehensively
and accurately, promoting the healthy development of
research in this field. In short, future research needs to
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consider the characteristics of infrared spectra and actual
application needs more systematically and
comprehensively to promote the continuous development
and improvement of infrared spectrum feature extraction
and target recognition methods based on deep learning.

Table 1: Summary of related works on infrared spectrum target recognition

stud Model Dataset Performance Limitations
y Type Used Metrics
Chen et ResNet- FLIR Accuracy: therrlr;;TIte?no%zr;ﬁzgyZatllggksa(:m:s
al. (2020) 50 Thermal 85.2% - .
attention mechanism.
Wang DenseN Thermal IR F1-score: ob'ecF:)tZ (.)r n%erf%m;?ggaleon feSaTuarle!
etal. (2021) | et Benchmark 83.7% JECtS,
handling
Liu et .YOLOv NATO MAP: 76.4% _ Fast but sacrifices accuracy;
al. (2022) 3-Tiny RTO SET-103 misses low-contrast targets
Zhang Faster FLIR + Accuracy: High computation cost;
etal. (2023) | R-CNN Custom 87.9% sensitive to background noise
CNNDeeswth FLIR, Accuracy:
Propose | Adantive NATO RTO | 89.7%, Feature Addresses prior limitations via
P pu SET-103, Extraction: attention-based  refinement and
d Method Attention + h | 0 ) | fusi
Multi-Scale Therma IR | 90.8%, F1-score: | contextual fusion
Fusion Benchmark 91.3%

As shown in Table 1, existing models, such as
ResNet, DenseNet, and YOLO-based models, have
demonstrated satisfactory performance on infrared
databases. Nevertheless, these models are disadvantaged
by weaknesses in processing spectral variation, detecting
small objects, and complex thermal scenes. ResNet-
based approaches are disadvantaged by a lack of fine-
grained attention and inferior generalization in infrared
situations. DenseNet and YOLOv3-Tiny are lightweight
models, but they are inefficient when processing low-
contrast or small-scale targets because they lack
extensive spatial contextual learning. Even powerful
detectors, such as Faster R-CNN, are plagued by
enormous computational expense and background
sensitivity in thermal environments.

The new deep learning architecture specifically
addresses these issues through the innovation of adaptive
attention mechanisms and multi-scale feature fusion,
enabling stable feature extraction and enhanced
detection of small and intricate infrared targets under
complex spectral distributions.

3 Research methods
3.1 Overall model architecture

In the field of infrared spectrum analysis, traditional
models have long faced significant problems, including
substantial feature extraction bias, low recognition
accuracy, and limited generalization ability. With extensive
scientific research experience, this research team
thoroughly analyzed the complex characteristics of infrared
spectra and the limitations of traditional models, and
developed an innovative infrared spectrum feature
extraction and target recognition model based on deep
learning. The model cleverly combines the adaptive
attention module, the multi-scale feature fusion module,
and the classification decision module to build an efficient
and coherent end-to-end learning system, aiming to break
through the performance bottleneck of traditional models
and provide a more accurate and reliable solution for
infrared spectrum analysis.
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Figure 1 Model framework

As shown in Figure 1, the infrared spectrum feature map
of the input layer provides raw data for the entire model.
The adaptive attention module converts the two-
dimensional feature map into a one-dimensional channel
feature description vector through global average
pooling, allowing the model to pay attention to the
overall information of each channel. After two fully
connected layers and the operation of RelLU and
Sigmoid activation functions, an attention weight vector
is generated. This vector is multiplied element-wise with
the original feature map to enhance key features and
provide more valuable input for subsequent modules.
The multi-scale feature fusion module inherits the output
of the adaptive attention module and captures feature
information of different scales in parallel with the help
of dilated convolutions with different expansion rates.
After splicing these feature maps, they are then
processed by 1x1 convolution for dimensionality
reduction, which not only integrates multi-scale
information, but also avoids the computational burden
caused by too high a dimension, enriching the diversity
of features. The classification decision module receives
the output of the multi-scale feature fusion module. The
fully connected layer further explores the complex
relationship between features, and the Softmax layer
maps the features into prediction probability vectors for
each category, enabling the classification of infrared
spectra.

3.1.1 Adaptive attention module

In infrared images, key information is often unevenly
distributed. Although some features are weak, they play
a vital role in target recognition. The original intention
of the adaptive attention module's design is to enhance
the model's sensitivity to these key features and guide it

to focus on areas in the image that contain important
information.

The input of this module is a feature map
X el "W where C represents the number of channels,

H and W represents the height and width respectively.
When processing the input feature map, the first step is to
perform a global average pooling operation in the channel
dimension. This operation is similar to performing global
statistics on each color channel of an image. Through the
formula 1 &w , the channel feature description
2 =W ;;X°(" i

vector can be obtained Z €[], where x_(i, j) refers to

the element of the feature map X at the channel C position
(i,J) . This step effectively compresses the two-

dimensional spatial information into a one-dimensional
channel dimension, highlights the overall characteristics of
each channel, greatly reduces the dimension of the data,
and retains key channel information.

Subsequently, the channel feature description vector z
is fed into a network structure consisting of two fully

connected layers. The weight matrices W, €[ €€ and of

[1©€" are learnable

the fully connected layer W,
parameters, where I represents the dimensionality
reduction ratio. In this process, first, W, a linear
transformation is performed U =W,z on , that is Z, here .

introduced
activation

Nextt uel“" a nonlinearity is
v=0(u)=max(0,u) using the ReLU
function , and the formula is 0 . The ReLU activation

function can effectively solve the gradient vanishing
problem, enhance the model's expressive power, and enable
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the model to learn more complex feature relationships.
Then, W, a second linear transformation is performed,

' - ! c . -
that is ° Wav . here S'€U 7 and the sigmoid
activation function is used on the transformed vector s’
is defined in Formula (1),

s=o0(s") = !

1+e=s' (1)

Here, s’ € R¢is the second fully connected layer's
output, and s € R¢ is the obtained attention weight
vector. Element-wise operations are performed to yield a
gating effect on the feature channels. Obtaining the
attention weight vector , it is S element-wise multiplied

X, =S, - X, with the input feature map in the channel
dimension, and X the enhanced feature map is obtained
by the formula X , where X_ and X_ represent the

features of the enhanced and original feature maps in the
channel respectively C. To understand this process more
deeply, we can regard it as a weighted adjustment of the
features of each channel, and the weight S is determined
by the attention weight vector. Unlike the traditional
attention mechanism, this adaptive attention module can
dynamically adjust the focus area according to the
specific characteristics of the infrared spectrum. For
example, when processing an infrared spectrum
containing multiple targets, the module can
automatically identify the target area and enhance the
extraction of features in these areas, thereby greatly
improving the efficiency of extracting weak and key
features.

3.1.2 Multi-scale feature fusion module

In infrared images, the sizes and shapes of targets vary
greatly, and it is difficult to fully capture the rich
information in the images with a single-scale feature
extraction. The design of the multi-scale feature fusion
module aims to integrate feature information of different
scales to meet the recognition needs of targets of
different sizes.

This module uses a set of dilated convolution layers
with different dilation rates to process the feature maps

output by the adaptive attention module in parallel X .
Dilated convolution is a technique that expands the
receptive field of the convolution kernel without
increasing the number of parameters and the amount of

computation. Assume that the dilation rates of dilated
convolution are respectively I,F,---,r. , and the
feature maps after dilated convolution are respectively

Y., Y,,--+,Y, , which are realized by the formula

Y, = Convdilated,ri ()Z)

convolution as an example, the calculation formula of

Taking  two-dimensional

Y. Wang et al.

standard convolution is formula 2.
(1*K)G, j) =D 1(i+m, j+n)K(m,n)
m,n ( 2 )
The dilated convolution introduces a dilation rate
based on the standard convolution, I and its calculation
formula is as follows:

(%K), )= 1 +r-m, j+r-n)K(m,n)

(3)
Where | represents the input feature map and K
represents the convolution kernel. The atrous convolution
layers with different dilation rates can capture feature
information of various scales. For example, the convolution
layer with a smaller dilation rate is suitable for extracting
detailed features, while the convolution layer with a larger
dilation rate is better at capturing global features.
The feature maps of different scales after the hole

convolution processing Y;,Y,,---,Y, are spliced to obtain

the  fused feature map Z , that s
Z =Concat(Y,,Y,,-+,Y,) . The splicing operation can

integrate the feature information of different scales together
and enrich the diversity of features. However, the
dimension of the spliced feature map is high, which will
increase the number of parameters and the amount of
calculation of the model. To solve this problem, a 1x1
convolution layer is used to reduce the dimension of the

spliced feature map, and the formula is Z'=Conv,,(Z).

1x1The calculation process of the convolution layer can
be expressed as Z',=>27, W +b where W is the
k

convolution kernel weight and b is the bias. 1x1 The
convolution layer can adjust the number of channels
without changing the spatial dimension of the feature map,
effectively reducing the number of parameters and the
amount of calculation.

Compared with traditional fixed-scale convolution, this
multi-scale feature fusion module can fully capture the rich
information of infrared images at multiple scales. Taking
the coexistence of small and large targets in an infrared
scene as an example, the module can extract the detailed
features of small targets and the global features of large
targets through dilated convolution layers with different
expansion rates, and fuse these features together to achieve
comprehensive perception of targets of different sizes.

3.1.3 Classification decision module

The classification decision module classifies and identifies
the infrared spectrum based on the features extracted by the
previous module. Assume that the feature vector output by
the multi-scale feature fusion module is Z ', which is first
sent to a fully connected layer F =FC(Z’) to achieve

further feature transformation through the formula. The
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calculation process of the fully connected layer can be
expressed as formula 4.
F,=>ZW, +b,
‘ (4)

Where W is the weight matrix and b is the bias
vector. The fully connected layer can perform weighted
summation on the input features, map them to a new
feature space, and further extract the complex
relationship between the features.

The feature vector after the full connection layer
transformation F is used to calculate the classification
probability through the Softmax function, and the
formula is as follows:

eFk

K
e
= (5)
where P represents the predicted probability vector
for each category and K is the number of categories.
The Softmax function maps the feature vector to a
probability distribution so that each element represents
the probability that the sample belongs to the
corresponding category. With this module, the model
can make accurate classification decisions based on the
high-precision features extracted in the early stage.
The adaptive attention module and the multi-scale
feature fusion module provide rich and accurate feature

ResNet

;

Residual Block

B, =Softmax(F), =

DenseNet

A4
| Convolution
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information for the classification decision module. The
adaptive attention module enhances the expression of key
features, and the multi-scale feature fusion module enriches
the diversity of features. The three work together to ensure
the model's high performance. For example, when
classifying infrared military target maps, the adaptive
attention module can highlight the key features of the target,
such as its outline and thermal radiation distribution. The
multi-scale feature fusion module can integrate information
at different scales and capture the target features from
detail to the whole. The classification decision module
accurately judges the type of target based on this feature
information, such as aircraft, tanks, ships, etc.

Figure 2 is the side-by-side contrast between the model
structure proposed and two common baselines: ResNet and
DenseNet. While both employ residual connections to
enable feature flow, neither of them possesses mechanisms
adapted to address the unique challenges presented by
infrared spectral data. By contrast, the new model has an
adaptive attention module for selectively boosting
informative thermal features, and a multi-scale feature
fusion module for combining semantic information across a
range of spatial scales. With these modules, the model can
more effectively capture scale-variant and fine-grained
thermal patterns that are essential for correct infrared
feature extraction and target recognition.

Proposed Model

ES

Classification
Decision Module

[ Classification

Classification

Figure 2: Comparative architectures showing the proposed model's enhancements over ResNet and DenseNet for
infrared tasks.
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3.2 Model training process

In the model training stage, in order to measure the
difference between the model prediction results and the

true label, this study uses the cross-entropy loss function.

Let the model's prediction output be § €[ K, where K

is the number of categories, the true label is y €[] K

and the cross-entropy loss function L is defined as
Formula 6.

K
L= _Z Yi Iog(yk)
=2 (6)

To better understand the cross-entropy loss function,
we can start from the perspective of information theory.
It measures the difference between two probability
distributions. When the model prediction result is closer
to the true label, the loss value is smaller, indicating that
the model's prediction is more accurate.

During the training process, the infrared spectrum of
each training sample is input into the model, and the
model's prediction output is obtained by passing through
the adaptive attention module, the multi-scale feature
fusion module and the classification decision module in
Y turn. After calculating the loss value according to the
cross-entropy loss function, the parameters of the model
are updated with the help of the back propagation
algorithm. Assume that the parameter set of the model is

0, and in the back propagation process, dthe gradient
of the loss function with respect to the parameters is
calculated according to the chain rule VHL, and the

L oy

—— . Taking the fully connected
00

A

formulais V,L =

layer as an example, assuming that the output of the
fully connected layer is F , the inputis Z ', the weight
is W, and the bias is b , then the specific formula is 7.
oL oL oF oL oL oF
oW OF AW b OF db (7
In backpropagation in neural networks, gradients are
computed via the chain rule of calculus to update model

parameters. For every weight parameter W, the partial

derivative of the loss function L concerning W is

computed as ok = 2L, a—F, where F Is the output of the
ow JoF ow . )

layer affected by W. Also, the gradient concerning the

bias term b is computed as Z—: = Z—i . z—g. These equations

are used to correctly backpropagate the error signal
across the network layers, allowing each parameter to be
updated in the direction of minimizing the loss. This
basic formulation of gradient computation lies at the
heart of training deep learning models effectively.

The chain rule allows us to backpropagate the
gradient of the loss function concerning the final output
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to the various parameters of the model, thereby calculating
the gradient of each parameter.

After obtaining the gradient, the gradient descent
method is used to update the model parameters. The

formulais 8,, =6, —aV L, where 6, and @, represent
t the parameters after the update in & step th and step th

respectively, t +1and is the learning rate. The learning rate
determines the step size of each parameter update. A
learning rate that is too large may cause the model to fail to
converge during training, while a learning rate that is too
small will slow down the training process. In actual training,
a strategy of dynamically adjusting the learning rate is
usually adopted, such as the exponential decay strategy.

The formula is ¢, =050-7/t , where ¢ is the initial
learning rate, y is the decay coefficient, t and is the

number of training steps. This strategy employs a larger
learning rate in the early stages of training to accelerate the
model's convergence, and gradually reduces the learning
rate in the later stages of training to prevent the model from
oscillating near the optimal solution.

During the training process, the model continuously
adjusts parameters to optimize the extraction and
classification capabilities of infrared spectrum features. As
the training progresses, the model gradually learns the
relationship between different features and categories in the
infrared spectrum, and the loss value decreases, leading to
an improvement in the model's accuracy.

3.3 In-depth analysis of the interaction
mechanism between models

The adaptive attention module, multi-scale feature fusion
module, and classification decision module do not exist in
isolation, but work together to form an organic whole. This
collaborative relationship plays a key role in improving
model performance.

From the perspective of information flow, the adaptive
attention module first processes the input infrared spectrum
feature map to enhance the expression of key features and
provide better input for subsequent modules. The improved
feature map output by it enters the multi-scale feature
fusion module, which performs multi-scale analysis and
fusion on these features to enrich the diversity of features
further. The feature vector output by the multi-scale feature
fusion module provides comprehensive and accurate
feature information for the classification decision module,
enabling it to make accurate classification judgments.

Mathematically, let X the output of the adaptive

attention module for the input be , X the output of Z 'the

multi-scale feature fusion module for the input be , and X
the output of ¥ the classification decision module for the

input be Z"'. The computational flow of the entire model
can be expressed as Formula 8.
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y = Classification(Fusion(Attention(X)))
®)

where Attention represents the calculation process
of the adaptive attention module, FUSion represents the
calculation process of the multi-scale feature fusion
module, and Classification represents the calculation
process of the classification decision module. Further
expansion Attention(X) follows the calculation steps

described above, that is, from global average pooling to
attention weight calculation to feature enhancement;
Fusion(X) including operations such as dilated

convolution, feature  concatenation, and 1x1
convolution dimensionality reduction; Classification(Z")

and includes fully connected layer transformation and
Softmax classification probability calculation.

This orderly module interaction mechanism enables
the model to extract feature information from multiple
levels when processing infrared spectra, gradually
improving the quality and diversity of features, and
ultimately achieving efficient and accurate infrared
spectra feature extraction and target recognition. Taking
the actual application scenario as an example, in
industrial production, it is necessary to analyze infrared
thermal imaging spectra to detect whether the equipment
is faulty. The adaptive attention module can highlight
the key features related to equipment failure in the
spectra, such as abnormal heating areas. The multi-scale
feature fusion module can integrate information of
different scales to fully capture the details and overall
situation of the fault features. The classification decision
module accurately determines whether the equipment is
faulty and the type of fault based on this feature
information. This collaborative work between modules
significantly enhances the model's performance in
complex scenarios, providing robust technical support
for the practical application of infrared spectrum
analysis. At the same time, an in-depth understanding
and optimization of this interaction mechanism will help
further improve the model's performance and promote
the development of infrared spectrum analysis
technology. Future research can focus on coordinating
the transmission of information between modules more
effectively and optimizing the structure and parameters
of the modules according to different application
scenarios to maximize the model's performance. For
example, by introducing a gating mechanism to
dynamically control the flow of information between
different modules or adaptively adjusting the parameter
configuration of the module according to the task's
characteristics, the model can better adapt to various
complex tasks involving infrared spectrum analysis.
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4 Experimental evaluation

For the performance assessment of the constructed deep
learning model in infrared spectrum feature extraction and
target detection, experiments were conducted using three
publicly available datasets: NATO RTO SET-103, the
Thermal IR Benchmark Dataset, and the FLIR Thermal
dataset. The three data sets encompass various infrared
scenes and object categories, providing a solid foundation
for a comprehensive assessment. The model utilizes an
adaptive attention mechanism, a multi-scale feature fusion
block, and a decision block for classification, thereby
addressing the limitations of the conventional method in
processing advanced infrared data.

The code is implemented in PyTorch 2.0 and Python 3.9 on
a workstation equipped with an NVIDIA RTX 3090 GPU
(24 GB VRAM), an Intel Core i9 CPU, and 64 GB of RAM.
The model was trained using a cross-entropy loss function
and optimized through backpropagation with a learning rate
governed by an exponential decay policy. The initial
learning rate was set to 0.0001 and halved every 15 epochs.
Training was conducted over more than 100 epochs with a
batch size of 32. He (Kaiming) normal initialization was
used to initialize the weights effectively.

Before training, all the infrared images were resized to
224x224 pixels, normalized to [0,1], and reshaped into
three channels when necessary. Random horizontal flipping,
rotation to +15°, and the addition of Gaussian noise were
some data augmentation techniques used to enhance model
generalization and mitigate overfitting, particularly in cases
with less or unbalanced data.

A five-fold cross-validation strategy was employed to
ensure the stability and reproducibility of the results. The
same setting was used to train and test all the models,
including the new architecture and baseline models
(DenseNet, ResNet, VGGNet, and Basic CNN). Average
results of all the folds were obtained. The new model
outperformed the baseline models, achieving an average
feature extraction accuracy of 90.8% and a target
recognition accuracy of 89.7%. In addition, the model
demonstrated consistent accuracy across different data
distributions, validating its generalizability and stability
under diverse infrared imaging conditions.
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4.1 Experimental design

To comprehensively evaluate the performance of the
proposed deep learning-based infrared spectrum feature
extraction and target recognition model, this experiment
carefully selected several representative public infrared
spectrum datasets, including the NATO RTO SET-103
dataset [1], the Thermal IR Benchmark Dataset [ 12],
and the FLIR Thermal dataset [20]. These datasets
encompass various scenes and types of infrared spectra,
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enabling effective testing of the model's performance under
diverse conditions.

Table 2 provides a summary of the datasets used to
evaluate the model's performance in various contexts,
considering multiple scenarios. Through the determination
of sample numbers, image sizes, class numbers, and dataset
challenges, readers are enabled to comprehend the diversity
and complexity employed, thereby accentuating the
credibility of the assessment.

Table 2: Summary of dataset characteristics

No. of | Image No. of .
Dataset Samples Resolution Classes Typical Challenges
Cluttered military backgrounds,
NATO RTO 256%256  to A . .
SET-103 ~10,000 512x512 6 low visibility, multiple object
scales
Thermal IR Low thermal contrast, blurred
~8,500 320%240 5 object edges, noise under ambient
Benchmark S
variation
Class imbalance, small and
FLIR  Thermal ~14,000 640x512 10 overlapping objects, varied scene
Dataset lighting

The model proposed in this study served as the
experimental group model. The control group selected
traditional models that are widely used in the field of
infrared spectrum analysis and have statistically superior
performance, including DenseNet [1, 4], ResNet [15],
VGGNet [21], and an unimproved basic convolutional
neural network (Basic CNN). In the experiment, various
models were trained and tested on the same dataset to
ensure consistency of experimental conditions. The
baseline indicators of the experiment were set as feature
extraction accuracy and target recognition accuracy. By
comparing the performance of the experimental group
and the control group on these indicators, the
performance of the proposed model was judged. In
addition, to ensure the reliability of the experimental
results, a five-fold cross-validation method was
employed to train and test each model multiple times,
with the average value taken as the result.

To make all experiments completely reproducible,
all experiments were performed on Python 3.9 with the
PyTorch 2.0 deep learning library, along with supporting

libraries like NumPy 1.23, OpenCV 4.6, and SciPy 1.10.
A constant value of 42 was used in all modules (NumPy,
PyTorch, and CUDA) to set the random seed, making
execution deterministic. Class balances were maintained in
every fold throughout the splitting of data with stratified
five-fold cross-validation. 80% was divided for training,
and 20% was divided for validation and test, with shuffling
allowed before partitioning in each fold.

To computational feasibility testing, the floating-point
operations (FLOPSs) and average runtime of the new model

were approximated and contrasted with typical CNNs. The

new model is approximately 3.2 GFLOPs per forward pass,

which is greater than that of a simple CNN (1.5 GFLOPs)

but the same as the DenseNet and less than that of deeper
equivalents of ResNet. Notwithstanding the increased
complexity of the adaptive attention and multi-scale fusion
components, the average inference time per image is 47 ms
on an NVIDIA RTX 3090, which is suitable for near real-
time application. Practical implementation in industrial and
surveillance systems is made possible by the trade-off
between accuracy and computational expense.
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4.2 Experimental results
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Feature Extraction Comparison of Different Models
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Figure 3: The proposed model outperforms ResNet and DenseNet in feature extraction by enhancing weak spectral cues
using adaptive attention.

As shown in Figure 3, on the NATO RTO SET-103
dataset, the model in this study is significantly better
than the control group model in terms of all kinds of
feature extraction. With the adaptive attention module,
this model can accurately focus on key feature areas in
the atlas, thereby enhancing the ability to extract weak
features. The multi-scale feature fusion module

effectively integrates information from different scales,
improving the comprehensiveness of feature extraction. In
contrast, other models, due to the lack of design for the
characteristics of infrared spectra, struggle to accurately
extract various features when faced with complex infrared
spectrum data, resulting in an average accuracy rate far
lower than that of the model in this study.

Target Recognition Accuracy across Different Models

95

Accuracy (%)

~ ~
o w

(=2}
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60
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Target Recognition in Complex Scenarios
—#— Average Accuracy

This Study DenseNet

ResNet

VGGNet Basic CNN

Figure 4: Baseline models underperform on small targets in NATO RTO SET-103 due to poor spatial focus; the
proposed model achieves higher recognition via multi-scale fusion.

As shown in Figure 4, the model in this study also
shows excellent performance in the target recognition
task. When identifying targets of different sizes and
complex scenes, the accuracy of this model significantly
outperforms that of the control group. This is due to the
model's end-to-end design. The adaptive attention

module and the multi-scale feature fusion module provide
high-quality feature information. However, due to the
inaccurate feature extraction of traditional models,
classification decisions often contain errors and recognition
accuracy is low.
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Infrared Spectrum Feature Recognition Comparison
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As shown in Figure 5, the model in this study
continues to maintain a high feature extraction accuracy
on the Thermal IR Benchmark Dataset. The model's
modules, specifically designed to accommodate the
physical characteristics of infrared spectra, enable it to
extract various features when processing this dataset

ResNet VGGNet Basic CNN

Figure 5: Thermal IR feature extraction degrades in baselines due to thermal noise, while the proposed model retains
robustness using spectrum-aware modules.

effectively. In contrast, the traditional model fails to
consider the characteristics of infrared spectra fully and is
significantly affected by noise and complex data
distribution during feature extraction, resulting in a lower
accuracy rate.

Target Recognition Accuracy by Category and Model
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Figure 6: Recognition drops in baselines on mid-sized targets under clutter; the proposed model remains accurate due to
attention and scale handling.

Figure 6 shows that the model in this study performs
outstandingly in the target recognition task of the
Thermal IR Benchmark Dataset. The multi-scale feature
fusion module of the model can adapt to the feature
extraction requirements of targets of different sizes. The
adaptive attention module enables the model to

accurately focus on the target in complex scenes, thereby
enhancing the accuracy of target recognition. However,
traditional models lack effective response strategies when
faced with complex scenes and targets of varying sizes,
resulting in low recognition accuracy.
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Recognition Performance Comparison with Error Bars
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Figure 7: DenseNet and VGGNet struggle with low-contrast features in FLIR; the proposed model maintains accuracy
by enhancing subtle thermal details.

As shown in Figure 7, the model in this study
exhibits significant advantages in feature extraction on
the FLIR Thermal dataset. The model designs targeted
modules through in-depth analysis of the characteristics
of infrared spectrum data, effectively improving the

90

851

80

754

Recognition Accuracy (%)

70

65

60 -

This Study

DenseNet

ResNet VGGNet

accuracy of feature extraction. Traditional models employ
general feature extraction methods, which cannot fully
extract the practical information in infrared spectra,
resulting in relatively low feature extraction accuracy.

Target Recognition Performance Across Models

Large Target Recognition
mm Medium Target Recognition
B Target Recognition in Complex Scenarios
B Average Accuracy
Small Target Recognition

Basic CNN

Figure 8: Recognition performance drops in baselines on imbalanced FLIR data; the proposed model handles scale
variation and class imbalance more effectively.

As shown in Figure 8, the average accuracy of the
model in this study for the target recognition task of the
FLIR Thermal dataset is significantly higher than that of
the control group. The model's adaptive attention
mechanism enables it to focus on the key features of the
target. In contrast, the multi-scale feature fusion

mechanism provides richer information for target
recognition, allowing the model to maintain a high
recognition accuracy rate across various target types and
complex scenarios. Traditional models, due to the lack of
these targeted designs, are prone to misjudgment during
target recognition, resulting in low accuracy.
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Table 3: Feature extraction accuracy is highest in the proposed model due to better handling of dominant and subtle
spectral features.

Model Name NATO Thermal IR FLIR Average

RTO SET-103 Benchmark Thermal accuracy
Dataset
This study 90.9 90.5 91.1 90.8
model

DenseNet 77.8 77.1 78.4 77.8

ResNet 79.9 79.0 80.4 79.8

VGGNet 74.9 73.9 75.3 74.7

Basic CNN 72.1 71.0 72.6 719

As shown in Table 3, after a comprehensive
comparison of feature extraction accuracy across
multiple datasets, the model's average accuracy in this
study reached 90.8%, significantly outperforming other
control group models. This fully demonstrates that the

model has stable and excellent feature extraction
capabilities across different datasets, and its module
designed for infrared spectra can effectively adapt to
infrared spectra data from other sources.

Table 4: The proposed model improves recognition across datasets, outperforming baselines on small and complex

targets.

Model Name NATO RTO Thermal IR FLIR Average

SET-103 Benchmark Thermal accuracy

Dataset
This study 89.6 89.1 90.3 89.7
model
DenseNet 68.2 67.3 68.9 68.1
ResNet 70.8 70.1 72.0 71.0
VGGNet 64.5 64.3 66.0 64.9
Basic CNN 62.4 61.8 63.5 62.6
As shown in Table 4, the comprehensive terms of feature extraction accuracy, the proposed model

comparison of target recognition accuracy across
multiple datasets reveals that the model in this study also
performed well, with an average accuracy of up to
89.7%. This demonstrates that the model exhibits strong
adaptability and accuracy in recognizing infrared
spectrum targets across various scenes and types and has
clear advantages over traditional models.

To further establish the reliability and stability of
the observed performance gains, statistical significance
tests were made via independent-sample t-tests across
five experiment runs for each model for all datasets. In

consistently outperformed DenseNet (p < 0.01) and ResNet
(p < 0.01) across all datasets. The same was found for the
differences in accuracy between the proposed and baseline
models on target recognition tasks (p < 0.01). Moreover, 95%
confidence intervals for the average accuracy of the
proposed model ranged from +0.6% to +0.9%, showing
slight variation and high stability. These findings provide
strong statistical evidence that the performance
improvements are not due to random variation and attest to
the stability of the engineered method under heterogeneous
conditions.
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Table 5: Feature extraction stays consistent across distributions in the proposed model, unlike baselines affected by
distribution skew.

Data Channel Texture Edge Temperature Average
distribution  feature feature feature feature recognition accuracy
type recognition recognition  recognition

Even 91.0 89.9 92.0 90.6 90.9
distribution

Skewed 90.5 89.2 91.5 90.1 90.3
distribution

Mixed 90.8 89.6 91.8 90.4 90.6
distribution

Table 5 shows the feature extraction accuracy of the
model in this study under different data distributions. It
can be observed that whether the data is uniformly
distributed, skewed, or mixed, this model can maintain a
high feature extraction accuracy. This is because the

model's adaptive attention module and multi-scale feature
fusion module can automatically adjust the feature
extraction strategy according to the data's characteristics,
providing strong robustness.

Table 6: Recognition accuracy is stable across all target sizes and distributions, showing the proposed model’s strong
generalization.

Data Small Medium Large Complex Average
distribution object Target Object scene object accuracy
type recognition  Recognition  Recognition  recognition

Even 87.8 90.3 924 88.6 89.8
distribution

Skewed 87.2 89.7 91.8 88.1 89.2
distribution

Mixed 87.5 90.0 92.1 88.3 89.5
distribution

As shown in Table 6, the target recognition accuracy of
the model in this study remains relatively stable across
different data distributions. The end-to-end design of the
model enables it to accurately extract target features and
classify them under different data distributions, further
proving the robustness and adaptability of the model.

4.3 Classification performance evaluation
Along with accuracy, the model was also
evaluated based on precision, recall, and F1-score to
better understand its accuracy in class classification,
particularly in datasets with class imbalance, such as
FLIR Thermal. The model had a macro-averaged
precision of 89.4%, recall of 90.1%, and F1-score of
89.7%. These results demonstrate that not only is the
model overall consistent, but it also performs well for
both the majority and minority classes.
Additionally, confusion matrices were constructed for
each dataset to wvisualize class-wise prediction
distributions. The matrices validated that the model had

significantly reduced misclassification rates compared to
baseline models, especially for small targets and low-
contrast targets that are typically neglected by conventional
CNNs. This further verifies the effectiveness of the adaptive
attention and multi-scale feature fusion modules in boosting
discriminatory ability across a variety of infrared scenes.
Table 7 presents the performance table, which includes
five-fold cross-validation standard deviations,
demonstrating the high accuracy and strong reliability of
the proposed model. With deviations generally smaller than
+0.9%, the model exhibits extreme stability across all
datasets, including the imbalanced FLIR Thermal dataset.
Baseline models are not so stable, demonstrating higher
variability, signs of sensitivity to splits of the data and weak
generalization. Low variance guarantees the efficiency of
the adaptive attention and multi-scale fusion modules.
Overall, the model designed has not only better mean
values but also consistent results across various runs,
ensuring its reliability and usability in complex infrared
spectrum identification tasks.
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Table 7: Comparative evaluation of classification performance with standard deviations (%)

Model Dataset Accuracy
(£SD)

Proposed NATO RTO SET- 89.6+0.7
Model 103

Thermal IR 89.1+£0.6

Benchmark

FLIR Thermal 90.3+0.5
DenseNet NATO RTO SET- 68.2+1.3

103

Thermal IR 673+1.1

Benchmark

FLIR Thermal 68.9+1.2
ResNet NATO RTO SET- 70.8+1.0

103

Thermal IR 70.1+£0.9

Benchmark

FLIR Thermal 72.0+0.8
VGGNet NATO RTO SET- 645+1.4

103

Thermal IR 643+£13

Benchmark

FLIR Thermal 66.0+1.2
Basic CNN NATO RTO SET- 624%15

103

Thermal IR 61.8+13

Benchmark

FLIR Thermal 635+1.1

4.4 Experimental discussion

The experimental results show that the model proposed
in this study performs well in infrared spectrum feature
extraction and target recognition tasks, significantly
outperforming the traditional model of the control group,
which strongly supports the research hypothesis.
Through in-depth analysis of the physical properties of
infrared spectra, this model designs an adaptive attention
module and a multi-scale feature fusion module, which
effectively improves the accuracy and
comprehensiveness of feature extraction, thereby
improving the accuracy of target recognition. From the
perspective of external validity and generalizability, this
study utilizes multiple public datasets for experiments,
which encompass diverse scenes and types of infrared
spectra, suggesting that the model exhibits good
performance under various conditions and possesses
certain generalizability. However, the experiment also
has some limitations. On the one hand, although
multiple data sets are used, the infrared spectrum data in
actual applications may be more complex and diverse,
and the model's performance may be affected when
facing specific
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Precision Recall (+SD) = F1-Score
(xSD) (xSD)

89.3+£0.9 89.9+0.8 89.6 + 0.7
88.7+£0.7 89.5%0.9 89.1+06
90.1£0.6 90.8+£0.7 90.4+0.6
679115 66.8+14 67.3+13
66.5+1.2 66.1+1.0 66.3+1.1
68.2+14 67.7+13 67.9+12
70.1+1.1 705+1.0 70.3+£1.0
69.4+£10 69.9+£0.9 69.6£0.9
71.2+0.9 715+11 71.3+0.9
639116 64.1+15 640+15
63.5+14 63.6+13 63.5+1.3
65.3+1.2 65.6+14 654+12
61.8+14 62.1+16 619+15
61.0+1.3 60.7+15 608+14
63.0+1.2 63.1+13 63.0+£1.2

scenes or special types of infrared spectra. On the other
hand, this study only compares a limited number of
traditional models, and the comparison range can be further
expanded in the future to compare with more advanced
models. In subsequent research, we can further explore how
to optimize the model and improve its performance in
complex scenes. For example, more advanced deep
learning theories can be combined to enhance the model's
structure; more and richer infrared spectrum data can be
collected to train the model more thoroughly, thereby
improving the model's generalization ability and
adaptability.

4.5 Comparative discussion with related work

The model demonstrates significant superiority
over existing state-of-the-art deep models, including
DenseNet, ResNet, VGGNet, and conventional CNNSs, in
processing infrared spectrum data. The model achieves a
better average accuracy of 90.8% in feature extraction and
a higher accuracy of 89.7% in target recognition compared
to the baselines, by 11-20%. It supports strong
performance on various data distributions, with accuracy
fluctuations of no more than 1.5%, and demonstrates
stronger environmental and temperature adaptation. This is
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due to its adaptive attention module that strengthens
temperature-sensitive and spectrally related features, and
a multi-scale feature fusion module that can well extract
small and large targets. In contrast to earlier work that
did not consider distributional variance and spectral
specificity, the model is comprehensively tested on
several datasets and conditions. Its accuracy, stability,
and generalizability are very high, making it very
suitable for real-world use in industrial, medical, and
military infrared imaging applications.

To confirm robustness across different data
distributions, accuracy and F1-score values achieved on
even, skewed, and mixed datasets were compared
through one-way ANOVA and Tukey's HSD post-hoc
test. No statistically significant differences (p > 0.05)
were found in all three types of distributions for
accuracy, as well as for Fl-score, indicating similar
performance. Stratified five-fold cross-validation was
used in all the experiments, with class balance preserved
in each of the splits. This compromise between strict
cross-validation and formal statistical testing ensures the
robust generalization of the model across different
distributions of infrared data.
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4.6 Interaction mechanism and ablation
analysis

The adaptive attention module enables the multi-
scale feature fusion module and classification decision
module to collaborate and contribute to the model's
performance. To exit the conceptual description, ablation
experiments were done to measure the individual and
additive contributions of the modules. Four controlled
models were constructed: (1) without adaptive attention, (2)
without multi-scale feature fusion, (3) with only a module
(stripped CNN structure), and (4) the whole model as
constructed.

From Table 8, de-adopting the adaptive attention
module resulted in a significant decline in accuracy on all
datasets, particularly in low-contrast or small-object
situations, confirming its role in enhancing poor feature
representations. De-adopting the multi-scale fusion module
also lowered performance, mainly on datasets with uneven
object size, such as FLIR. The complete model performed
better than all ablated models at all points, ensuring that the
synergistic interaction of both modules is accountable for
precise feature extraction and target identification.

Table 8: Ablation study results — impact of individual modules on recognition accuracy (%)

Model Variant NATO RTO Thermal IR FLIR Thermal Average
SET-103 Benchmark Accuracy

Full Model (All Modules) 89.6 89.1 90.3 89.7

Without the Adaptive 85.2 84.7 86.3 85.4

Attention Module

Without the Multi-Scale 84.5 84.2 85.1 84.6

Feature Fusion Module

Only Classification Module 78.4 77.8 79.2 78.5

(Baseline CNN)

5 Conclusion

In today's digital age, infrared spectra are increasingly
utilized in various fields; however, traditional methods
often fall short of meeting the needs for high-precision
analysis. To this end, this study designs a new model based
on deep learning. Through in-depth analysis of the physical
properties of infrared spectra, an adaptive attention and
multi-scale feature fusion module is innovatively
constructed. During the experiment, the model was
rigorously tested using multiple public datasets and
compared with classic traditional models. The data show
that the average accuracy of feature extraction of this
model on the NATO RTO SET - 103 dataset is 90.9%, and
the average accuracy of target recognition is 89.6%; on the
Thermal IR Benchmark Dataset dataset, the average
accuracy of feature extraction is 90.5%, and the average
accuracy of target recognition is 89.1%; on the FLIR
Thermal dataset, the

average accuracy of feature extraction is 91.1%, and the
average accuracy of target recognition is 90.3%. In a
comprehensive comparison of multiple datasets, the
average accuracy of feature extraction and target
recognition for this model is 90.8% and 89.7%,
respectively, which is significantly better than that of the
traditional model. Additionally, this model demonstrates
robustness under various data distributions. This research
not only enriches the theory of deep learning in special
data processing but also provides practical and effective
solutions for industrial quality inspection, military
reconnaissance, medical imaging diagnosis, and other
fields, which is of great significance to improving the
technical level of related fields and promoting industrial
development. In the future, the research will focus on
model optimization to better address complex and dynamic
practical application scenarios.

To promote reproducibility and future research,
the complete implementation code, configuration files, and
pre-trained model weights will be provided as
supplemental materials through a public repository upon



342  Informatica 49 (2025) 325-342

publication. This will enable independent verification and
facilitate application in related infrared analysis tasks.

The suggested model has immense potential for
application in military surveillance, factory malfunction
detection, and medical thermography. However, the issues
of sensor heterogeneity, real-time computation in
embedded systems, and model interpretability for decision-
making problems need to be addressed. Hardware-aware
model optimization, cross-device generalizability, and the
incorporation of explainable Al methods for better trust,
adaptability, and deployment in such domain-specific
problems will be the focus of future work.
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