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Soliton graphs are studied in the context of a reduction procedure that simplifies the structure of graphs
without affecting the deterministic property of the corresponding automata. It is shown that an elementary
soliton graph defines a deterministic automaton iff it reduces to a graph not containing even-length cycles.
Based on this result, a general characterization is given for deterministic soliton graphs using chestnut
graphs, generalized trees, and graphs having a unique perfect matching.

Povzetek: Članek obravnava grafe brez lihih ciklov.

1 Introduction

One of the most ambitious goals of research1 in modern
bioelectronics is to develop a molecular computer. The in-
troduction of the concept “soliton automaton” in [5] has
been inspired by this research, with the intention to cap-
ture the phenomenon called soliton waves [4] through an
appropriate graph model.

Soliton graphs and automata have been systematically
studied by the authors on the grounds of matching theory
in a number of papers. Perhaps the most significant contri-
bution among these is [2], where soliton graphs have been
decomposed into elementary components, and these com-
ponents have been grouped into pairwise disjoint families
based on how they can be reached by alternating paths start-
ing from external vertices. This paper can also serve as a
source of further references on soliton automata for the in-
terested reader.

Since soliton automata are proposed as switching de-
vices, deterministic automata are in the center of investi-
gations. The results reported in this paper are aimed at pro-
viding a complete characterization of deterministic soliton
automata. The two major aspects of this characterization
are:

1. Describing elementary deterministic soliton graphs.
2. Recognizing that deterministic soliton graphs hav-

ing an alternating cycle follow a simple hierarchical pattern
called a chestnut.

1Partially supported by Natural Science and Engineering Research
Council of Canada, Discovery Grant #170493-03

An important tool in the study of both aspects is a
reduction procedure, which might be of interest by itself.
It allows elementary deterministic soliton graphs to be
reduced to generalized trees, and it can also be used to
reduce chestnut graphs to really straightforward ones,
called baby chestnuts.

2 Soliton graphs and automata

By a graph G = (V (G), E(G)) we mean an undirected
graph with multiple edges and loops allowed. A vertex v ∈
V (G) is called external if its degree is one, and internal if
the degree of v is at least two. An internal vertex is base if
it is adjacent to an external one. External edges are those of
E(G) that are incident with at least one external vertex, and
internal edges are those connecting two internal vertices.
Graph G is called open if it has at least one external vertex.

A walk in a graph is an alternating sequence of ver-
tices and edges, which starts and ends with a vertex, and
in which each edge is incident with the vertex immediately
preceding it and the vertex immediately following it. The
length of a walk is the number of occurrences of edges in
it. A trail is a walk in which all edges are distinct and a
path is a walk in which all vertices are distinct. A cycle is
a trail which can be decomposed into a path and an edge
connecting the endpoints of the path. If α = ve1 . . . enw is
a walk from v to w and β = wf1 . . . fkz is a walk from
w to z, then the concatenation of α and β is the walk
α ‖ β = ve1 . . . enwf1 . . . fkz from v to z.

A matching M of graph G is a subset of E(G) such that
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no vertex of G occurs more than once as an endpoint of
some edge in M . It is understood by this definition that
loops cannot participate in any matching. The endpoints
of the edges contained in M are said to be covered by
M . A perfect internal matching is a matching that cov-
ers all of the internal vertices. An edge e ∈ E(G) is al-
lowed (mandatory) if e is contained in some (respectively,
all) perfect internal matching(s) of G. Forbidden edges are
those that are not allowed. We shall also use the term con-
stant edge to identify an edge that is either forbidden or
mandatory. An open graph having a perfect internal match-
ing is called a soliton graph. A soliton graph G is elemen-
tary if its allowed edges form a connected subgraph cover-
ing all the external vertices. Observe that if G is elemen-
tary, then it cannot contain a mandatory edge, unless G is
a mandatory edge by itself with a number of loops incident
with one of its endpoints.

Let G be an elementary soliton graph, and define the re-
lation ∼ on Int(G) as follows: v1 ∼ v2 if an extra edge
e connecting v1 with v2 becomes forbidden in G + e. It is
known, cf. [6, 2], that ∼ is an equivalence relation, which
determines the so called canonical partition of (the internal
vertices of) G. The reader is referred to [6] for more infor-
mation on canonical equivalence, and on matching theory
in general.

Let G be a graph and M be a matching of G. An edge
e ∈ E(G) is said to be M -positive (M -negative) if e ∈ M
(respectively, e 6∈ M ). An M -alternating path (cycle) in
G is a path (respectively, even-length cycle) stepping on
M -positive and M -negative edges in an alternating fash-
ion. An M -alternating loop is an odd-length cycle having
the same alternating pattern of edges, except that exactly
one vertex has two negative edges incident with it. Let us
agree that, if the matching M is understood or irrelevant in
a particular context, then it will not be explicitly indicated
in these terms. An external alternating path is one that has
an external endpoint. If both endpoints of the path are ex-
ternal, then it is called a crossing. An alternating path is
positive if it is such at its internal endpoints, meaning that
the edges incident with those endpoints are positive.

Let G be a soliton graph, fixed for the rest of this sec-
tion, and let M be a perfect internal matching of G. An
M -alternating unit is either a crossing or an alternating cy-
cle with respect to M . Switching on an alternating unit
amounts to changing the sign of each edge along the unit.
It is easy to see that the operation of switching on an M -
alternating unit α creates a new perfect internal matching
S(M, α) for G. Moreover, as it was proved in [1], every
perfect internal matching M of G can be transformed into
any other perfect internal matching M ′ by switching on
a collection of pairwise disjoint alternating units. Conse-
quently, an edge e of G is constant iff there is no alternat-
ing unit passing through e with respect to any perfect in-
ternal matching of G. A collection of pairwise disjoint M -
alternating units will be called an M -alternating network,
and the network transforming one perfect internal matching
M into another M ′ will be denoted by N(M, M ′). Clearly,

a) c-trail b) l-trail

Figure 1: Soliton trails.

N(M, M ′) is unique.
Now we generalize the alternating property to trails and

walks. An alternating trail is a trail α stepping on positive
and negative edges in such a way that α is either a path, or
it returns to itself only in the last step, traversing a negative
edge. The trail α is a c-trail (l-trail) if it does return to
itself, closing up an even-length (respectively, odd-length)
cycle. That is, α = α1 ‖ α2, where α1 is a path and α2 is
a cycle. These two components of α are called the handle
and circuit, in notation, h(α) and c(α). The joint vertex
on h(α) and c(α) is called the center of α. An external
alternating trail is one starting out from an external vertex,
and a soliton trail is a proper external alternating trail, that
is, either a c-trail or an l-trail. See Fig. 1.

The collection of external alternating walks in G with
respect to some perfect internal matching M , and the con-
cept of switching on such walks are defined recursively as
follows.

(i) The walk α = v0ev1, where e = (v0, v1) with v0 being
external, is an external M -alternating walk, and switching
on α results in the set S(M,α) = M∆{e}. (The operation
∆ is symmetric difference of sets.)

(ii) If α = v0e1 . . . envn is an external M -alternating walk
ending at an internal vertex vn, and en+1 = (vn, vn+1)
is such that en+1 ∈ S(M, α) iff en ∈ S(M, α), then
α′ = αen+1vn+1 is an external M -alternating walk and

S(M, α′) = S(M,α)∆{en+1}.

It is required, however, that en+1 6= en, unless en ∈
S(M,α) is a loop.

It is clear by the above definition that S(M, α) is a perfect
internal matching iff the endpoint vn of α is external, too.
In this case we say that α is a soliton walk.

EXAMPLE Consider the graph G of Fig. 2, and let
M = {e, h1, h2}. A possible soliton walk from u to v
with respect to M is α = uewgz1h1z2l2z3h2z4l1z1gwfv.
Switching on α then results in S(M, α) = {f, l1, l2}.

Graph G gives rise to a soliton automatonAG, the states
of which are the perfect internal matchings of G. The input
alphabet for AG is the set of all (ordered) pairs of external
vertices in G, and the state transition function δ is defined
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Figure 2: Example soliton graph G

by

δ(M, (v, w)) = {S(M, α)|α is a soliton walk, v to w}.

Graph G is called deterministic if AG is such in the usual
sense, that is, if for every state M and input (v, w),

|δ(M, (v, w))| ≤ 1.

EXAMPLE (Continued) Observe that the soliton au-
tomaton defined by the graph of Fig. 2 is non-deterministic,
as α′ = uewfv is also a soliton walk from u to v with re-
spect to state M such that S(M, α) 6= S(M,α′).

Let α be a soliton c-trail with respect to M . It is easy to see
that the walk

s(α) = h(α) ‖ c(α) ‖ h(α)R

is a soliton walk, and the effect of switching on s(α) is the
same as switching on the cycle c(α) alone. (For any walk
β, βR denotes the reverse of β.) If α is a soliton l-trail, then
s(α) is defined as the soliton walk

s(α) = h(α) ‖ c(α) ‖ c(α) ‖ h(α)R.

Clearly, this walk induces a self-transition ofAG, that is, no
state change is observed. In the sequel, all perfect internal
matchings of G will simply be called states for obvious
reasons.

Recall from [5] that an edge e of G is impervious if there
is no soliton walk passing through e in any state of G. Edge
e is viable if it is not impervious. See Fig. 2, edge h for an
example of an impervious edge.

We are going to give a simpler characterization of imper-
vious edges in terms of alternating paths, rather than walks.
To this end, we need the following lemma.

Lemma 2.1. If α is an external M -alternating walk from
v to u, then there exists an M -alternating network Γ and
an external M -alternating trail β from v to u such that
1. Γ consists of cycles only, and it is disjoint from β;
2. S(M, α) = S(S(M, Γ), β).

Proof. Easy induction on the length of α, left to the
reader. 2

An internal vertex v ∈ V (G) is called accessible with

respect to state M if there exists a positive external M -
alternating path leading to v. It is easy to see, cf. [2], that
vertex v is accessible with respect to some state M iff v is
accessible with respect to all states of G.

Proposition 2.2. For every edge e ∈ E(G), e is impervious
iff both endpoints of e are inaccessible.

Proof. If either endpoint of e is accessible, then e is
clearly viable. Assume therefore that both endpoints u1

and u2 of e are inaccessible, and let α be an arbitrary
external M -alternating walk from v ∈ Ext(G) to either
u1 or u2, say u1. By Lemma 2.1, there exists a suitable
external M -alternating trail β from v to u1. Each internal
edge lying on β has an accessible endpoint, so that e is not
among them. Moreover, the edge of h(β) incident with u1

must be positive with respect to S(M, α), otherwise h(β)
would be a positive external alternating path with respect
to state S(M, Γ). (Recall that h(β) is the handle of β, and
take h(β) = β if β is just a path.) But then e must be
negative with respect to S(M, α), or else h(β)eu2 would
be a positive external alternating path leading to u2 (with
respect to S(M, Γ), or even M , since Γ is disjoint from
β). We conclude that the walk α cannot continue on e,
because it must take the two positive edges incident with
u1 before and after hitting that vertex. Thus, every time an
external alternating walk reaches either endpoint of e, it
will miss e as a possible continuation. In other words, e is
impervious. 2

3 Elementary decomposition of
soliton graphs

Again, let us fix a soliton graph G for the entire section.
In general, the subgraph of G determined by its allowed
edges has several connected components, which are called
the elementary components of G. Notice that an elemen-
tary component can be as small as a single external ver-
tex of G. Such elementary components are called degener-
ate, and they are the only exception from the general rule
that each elementary component is an elementary graph.
A mandatory elementary component is a single mandatory
edge e ∈ E(G), which might have a loop around one or
both of its endpoints.

The structure of elementary components in a soliton
graph G has been analysed in [2]. To summarize the main
results of this analysis, we first need to review some of the
key concepts introduced in that paper. Elementary compo-
nents are classified as external or internal, depending on
whether or not they contain an external vertex. An ele-
mentary component of G is viable if it does not contain
impervious allowed edges. A viable internal elementary
component C is one-way if all external alternating paths
(with respect to any state M ) enter C in vertices belonging
to the same canonical class of C. This unique class, as well
as the vertices belonging to this class, are called principal.
Furthermore, every external elementary component is con-
sidered a priori one-way (with no principal canonical class,
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Figure 3: Elementary components in a soliton graph

of course). A viable elementary component is two-way if
it is not one-way. An impervious elementary component is
one that is not viable.

EXAMPLE The graph of Fig. 3 has five elementary
components, among which C1 and D are external, while
C2, C3 and C4 are internal. Component C3 is one-way
with the canonical class {u, v} being principal, while C2 is
two-way and C4 is impervious.

Let C be an elementary component of G, and M be a
state. An M -alternating C-ear is a negative M -alternating
path or loop having its two endpoints, but no other vertices,
in C. The endpoints of the ear will necessarily be in the
same canonical class of C. We say that elementary com-
ponent C ′ is two-way accessible from component C with
respect to any (or all) state(s) M , in notation CρC ′, if C ′ is
covered by an M -alternating C-ear. It is required, though,
that if C is one-way and internal, then the endpoints of this
ear not be in the principal canonical class of C. As it was
shown in [2], the two-way accessible relationship is match-
ing invariant. A family of elementary components in G is a
block of the partition induced by the smallest equivalence
relation containing ρ. A family F is called external if it
contains an external elementary component, otherwise F
is internal. A degenerate family is one that consists of a
single degenerate external elementary component. Family
F is viable if every elementary component in F is such,
and F is impervious if it is not viable. As it turns out eas-
ily, the elementary components of an impervious family are
all impervious. Soliton graph G is viable if all of its fami-
lies are such.

EXAMPLE (CONTINUED) Our example graph in Fig.
3 has four families: F1 = {C1, C2},F2 = {D},F3 =
{C3},F4 = {C4}. FamilyF1 is external,F2 is degenerate,
and F3 is internal. These families are all viable, whereas
family F4 is impervious.

The first group of results obtained in [2] on the structure of
elementary components of G can now be stated as follows.

Theorem 3.1. Each viable family of G contains a unique

one-way elementary component, called the root of the fam-
ily. Each vertex in every member of the family, except for
the principal vertices of the root, is accessible. The princi-
pal vertices themselves are inaccessible, but all other ver-
tices are only accessible through them.

A family F is called near-external if each forbidden vi-
able edge incident with any principal vertex of its root is
external. For two distinct viable families F1 and F2, F2 is
said to follow F1, in notation F1 7→ F2, if there exists an
edge in G connecting any non-principal vertex in F1 with
a principal vertex of the root of F2. The reflexive and tran-
sitive closure of 7→ is denoted by ∗7→. The second group of
results in [2] characterizes the edge connections between
members inside one viable family, and those between two
different families.

Theorem 3.2. The following four statements hold for the
families of G.

1. An edge e inside a viable family F is impervious
iff both endpoints of e are in the principal canonical
class of the root. Every forbidden edge e connecting
two different elementary components in F is part of
an ear to some member C ∈ F .

2. For every edge e connecting a viable family F1 to
any other family (viable or not) F2, at least one end-
point of e is principal in F1 or F2. If the endpoint of e
in F1 is not principal, then F2 is viable and it follows
F1.

3 The relation ∗7→ is a partial order between viable fam-
ilies, by which the external families are minimal ele-
ments.

4 If F and G are families such that F ∗7→ G, then
each non-principal vertex u of G is accessible from F ,
meaning that for every state M there exists a positive
M -alternating path to u either from a suitable exter-
nal vertex of F , if F is external, or from an arbitrary
principal vertex ofF , ifF is internal. The path α runs
entirely in the families between F and G according to
∗7→.

For convenience, the inverse of the partial order ∗7→ will
be referred to as ≤G. Theorems 3.1 and 3.2 are funda-
mental regarding the structural decomposition of soliton
graphs, and they will be applied liberally throughout the
forthcoming sections (especially in Section 4). There will
be no explicit reference made, however, to these theorems
whenever they apply.

4 Chestnuts
Chestnuts have been introduced in [5] as a group of de-
terministic soliton graphs having a very simple and easily
recognizable structure.

Definition 1. A connected graph G is called a chestnut if it
has a representation in the form G = γ + α1 + . . . + αk

with k ≥ 1, where γ is a cycle of even length and each αi

(i ∈ [k]) is a tree subject to the following conditions:
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Figure 4: A chestnut.

(i) V (αi) ∩ V (αj) = ∅ for 1 ≤ i 6= j ≤ k;
(ii) V (αi) ∩ V (γ) consists of a unique vertex – denoted

by vi – for each i ∈ [k];
(iii) vi and vj are at even distance on γ for any distinct

i, j ∈ [k];
(iv) any vertex wi ∈ V (αi) with d(wi) > 2 is at even

distance from vi in αi for each i ∈ [k].
See Fig. 4 for an example chestnut.
Our first observation regarding chestnuts is that they are

bipartite graphs. Let us call a vertex of a chestnut G outer
if its distance from any of the vi’s is even, and inner if this
distance is odd. Then the inner and outer vertices indeed
define a bipartition of G. Moreover, the degree of each
inner vertex is at most 2. It is easy to come up with a per-
fect internal matching for G: just mark the cycle γ in an
alternating fashion, then the continuation is uniquely deter-
mined by the structure of the trees αi. Thus, G has exactly
two states. It is also easy to see that the inner internal ver-
tices are accessible, while the outer ones are inaccessible.
Thus, the cycle γ forms an internal elementary component
with its outer vertices constituting the principal canonical
class of this component. Moreover, γ forms a stand-alone
internal family in G. The rest of G’s families are all single
mandatory edges along the trees αi, or they are degener-
ate ones consisting of a single inner external vertex. Their
rank in the partial order ≤G is consistent with their posi-
tion in the respective trees αi, following a decreasing order
from the leafs to the root. The family {γ} is the minimum
element of ≤G, and G has no impervious edges.

By the description above, every chestnut G is a deter-
ministic soliton graph. Moreover, G is strongly determin-
istic [5] in the sense that, for each pair (v1, v2) of external
vertices, there exists at most one soliton walk from v1 to
v2 in each state of G. We are going to show that for ev-
ery connected soliton graph G having no impervious edges,
but possessing a non-mandatory internal elementary com-
ponent, G is deterministic iff G is a chestnut.

Lemma 4.1. Let α be an external M -alternating path of
a soliton graph G leading to a principal vertex v in some
internal family F . Then α can be extended to a soliton
trail, the center of which lies in a family H ≤G F .

Proof. Every possible continuation β of α as an M -
alternating path can only leave the family F by entering
another family G <G F . It is therefore inevitable that,
when β finally returns to itself, this will happen in a family
H ≤G F . The path β must eventually return to itself, since
G is finite. 2

Lemma 4.2. Let β be a soliton c-trail of a deterministic
soliton graph G starting from v ∈ Ext(G) with respect to
state M . Then, starting from v, there exists no soliton trail
with respect to M that is different from β.

Proof. Assume, by contradiction, that an unwanted δ 6=
β exists. Clearly, c(δ) = c(β), otherwise the soliton walks
s(β) and s(δ) would define two different transitions ofAG

in state M on input (v, v). Therefore we have h(β) 6= h(δ).
Starting from v, let z be the first vertex on both h(β) and
h(δ) where these paths split into two different directions (or
just use a pair of parallel edges to reach the same vertex).
Thus, β = γ ‖ β′ and δ = γ ‖ δ′, where γ is a suitable path
from v to z, and β′, δ′ are M -alternating c-trails starting
out from z on different edges. Clearly, the last edge of γ
incident with z is positive, and the first edges of β′ and δ′

incident with z are negative. Therefore the walk

χ = γ ‖ β′ ‖ h(β′)R ‖ δ′ ‖ h(δ′)R ‖ γR

is a soliton walk from v to v, which defines a self-transition
of AG. This transition, however, is different from the one
defined by the walks s(β) and s(γ); a contradiction. 2

Theorem 4.3. Let G be a deterministic soliton graph
with no impervious edges, and assume that G has a non-
mandatory elementary component C lying in an internal
family F . Then C consists of a single even-length cycle,
F = {C} and F is a minimal element with respect to to
the partial order ≤G.

Proof. Let M be an arbitrary state of G, and α be a neg-
ative external M -alternating path from some v ∈ Ext(G)
to a principal vertex z of the root R of F . Furthermore, let
γ be an M -alternating cycle in C. Since C is accessible
through z, we can fix a soliton c-trail β with respect to M
such that β starts out from v and c(β) = γ. We can as-
sume, without loss of generality, that R = C. For, we need
to rule out the only possible scenario that is incompatible
with this assumption, namely when R is a single mandatory
edge e = (z, w). Since in this case there are two-way mem-
bers of the family F (e.g. C), there exists an M -alternating
R-ear (loop) ε around w. The loop ε gives rise to a soliton
l-trail δ = αeε, which, by Lemma 4.2, cannot co-exist with
β.

Now let us assume that R = C has an allowed edge
different from the ones along γ. Clearly, C then has another
M -alternating cycle γ′ 6= γ. As above, it is possible to
extend α to a soliton c-trail β′ with respect to M such that
c(β′) = γ′. Again, this contradicts Lemma 4.2, knowing
that β 6= β′.

We have seen so far that R = C, and C is spanned by
γ. Moreover, the principal and non-principal vertices de-
termine the two classes of C’s canonical partition. No two
principal vertices can be connected in C by an edge, since
such an edge would be impervious in G. Suppose that there
exists an edge e connecting two non-principal vertices u1

and u2 of γ. The edge e divides γ into two M -alternating
loops χ1 and χ2 originating from u1 and u2, respectively.
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Also notice that vertex z on γ lies outside one of χ1 and χ2.
Consequently, α can again be extended to a soliton l-trail δ
such that c(δ) = χ1 or c(δ) = χ2. (Remember that z and
u1(2) are in different canonical classes.) A contradiction
with Lemma 4.2 is reached, showing that C = γ.

It remains to be seen that F = {C}, and F is minimal
with respect to ≤G. Any M -alternating C-ear ε originat-
ing from two different non-principal vertices u1 and u2 is
equivalent to an edge connecting u1 directly with u2, and
so need not be considered separately. On the other hand,
if the ear ε was an M -alternating loop, then α could again
be trivially extended to a soliton l-trail δ with c(δ) = ε,
which is impossible. Now assume that there exists a fam-
ily G <G F , and continue α to obtain a negative external
M -alternating path α′ leading to a principal vertex of the
root of G. By Lemma 4.1, α′ can further be extended to a
soliton trail δ having its center in a familyH ≤ G. The trail
δ is therefore different from β, which contradicts Lemma
4.2. The proof is now complete. 2

Theorem 4.4. Let G be a connected deterministic soli-
ton graph having no impervious edges. If G has a non-
mandatory internal elementary component, then G is a
chestnut.

Proof. Induction on the number of non-degenerate ele-
mentary components of G. Assume that a non-mandatory
internal elementary component C exists in G. If C is the
only non-degenerate elementary component in G, then C
is an internal family by itself, and the statement of the the-
orem follows directly from Theorem 4.3. Now let G have
more than one non-degenerate elementary component, and
suppose that the statement is true for all appropriate soli-
ton graphs having fewer non-degenerate elementary com-
ponents than G. Let F denote the family of C. By Theo-
rem 4.3, if F is internal, then F = {C} and F is minimal
with respect to ≤G. Let G be a non-degenerate family such
that F ≤G G, and G is either external or near-external.
Clearly, if F is external, then G = F . Otherwise G can
be found by stepping upwards in the partial order≤G start-
ing from family F , which is a minimal element by The-
orem 4.3. Notice that this search must reject F itself, as
F being near-external would imply that its sole member
C is the only non-degenerate elementary component in G.
Thus, in this case, G 6= F .

Let R be the root of G. We are going to prove that
1. R is mandatory,
2. G = {R}, and
3. there is exactly one forbidden edge incident with R’s

unique non-principal (or non-external) vertex.
Fix a state M for G, and choose an M -alternating cycle

γ in C. Since C is accessible from G, γ can be extended to
a soliton c-trail β from v ∈ Ext(G), where v is either in
R, or it is adjacent to a principal vertex in R.

Proof of Statement 1. Assume, by contradiction, that R
is non-mandatory, and distinguish the following two cases.

Case 1: R is external. Let u be the vertex in R where
the path h(β) finally leaves this elementary component. By

[1], there exists a crossing δ in R from v to another external
vertex z via u with respect to some state M̄R of R. Modify
M , so that its restriction to R is replaced by M̄R, and let
M ′ denote the resulting state. Clearly, the straight crossing
δ between v and z in either direction is a possible transition
ofAG in state M ′. On the other hand, this crossing can also
make a detour to include γ through the appropriate section
of β that starts at u. Notice, however, that this detour is
only available from one direction, depending on whether
the M ′-positive edge incident with u on δ points toward v
or z. Nevertheless, the co-existence of these two different
transitions violates the deterministic property.

Case 2: R is internal. Trivially, there exists a soliton
c-trail δ with respect to M starting from v such that c(δ)
runs entirely in R; a contradiction with Lemma 4.2.

Proof of Statement 2. As in the proof of Theorem 4.3,
the existence of an R-ear as an M -alternating loop would
immediately contradict Lemma 4.2.

Proof of Statement 3. Assume that there is more than
one forbidden edge going out from the non-principal (or
non-external) vertex of G to different internal families of
G. By Lemma 4.1, each of these edges can be made part
of a suitable soliton trail in G with respect to M , starting
from vertex v. Since β is also such a trail, a contradiction
with Lemma 4.2 is inevitable.

Now we are ready to synthesize statements 1, 2, 3, and
finish the proof of Theorem 4.4. It has turned out that the
case F = G is not possible. Detach the mandatory family
G from G, keeping the unique forbidden edge specified in
statement 3 as an external edge in the remainder graph G′.
Notice that, if R is internal, then its principal vertex can
only be adjacent to external vertices, or else G would have
impervious edges. Observe that G′ is also deterministic,
connected, has no impervious edges, and still has the
non-mandatory internal elementary component C in
it. Apply the induction hypothesis to establish G′ as a
chestnut. Finally, conclude that G is also a chestnut by
sticking back the mandatory family G onto G′. The proof
is complete. 2

5 Reducing soliton graphs
A redex r in graph G consists of two adjacent edges e =
(u, z) and f = (z, v) such that u 6= v are both internal
and the degree of z is 2. The vertex z is called the center
of r, while u and v (e and f ) are the two focal vertices
(respectively, focal edges) of r.

Let r be a redex in G. Contracting r in G means cre-
ating a new graph Gr from G by deleting the center of r
and merging the two focal vertices of r into one vertex s.
Now suppose that G is a soliton graph. For a state M of G,
let Mr denote the restriction of M to edges in Gr. Clearly,
Mr is a state of Gr. Notice that the state M can be re-
constructed from Mr in a unique way. In other words, the
connection M 7→ Mr is a one-to-one correspondence be-
tween the states of G and those of Gr.

For any walk α in G, let tracer(α) denote the restriction



DETERMINISTIC SOLITON GRAPHS Informatica 30 (2006) 281–288 287

of α to edges in Gr. It is easy to see that if α is a soli-
ton walk in G with respect to M , then so is tracer(α)
in Gr with respect to Mr. Moreover, the soliton walk α
can again be uniquely recovered from tracer(α). Conse-
quently, the connection α 7→ tracer(α) is also a one-to-
one correspondence between soliton walks in G and soli-
ton walks in Gr. Furthermore, M ′ = S(M,α) holds in G
iff (M ′)r = S(Mr, tracer(α)) holds in Gr. We thus have
proved the following statement.

Proposition 5.1. The soliton automata AG and AGr are
isomorphic.

Notice, furthermore, that if an alternating unit goes
through both focal vertices of r, then it must do so along
the center of r. As a consequence we have:

Proposition 5.2. The function tracer establishes a one-to-
one correspondence between the alternating units of G and
those of Gr.

It follows from the previous two propositions that every
edge e of Gr is allowed in Gr iff e is allowed in G. As to
the two focal edges of r, they can either be allowed or not
in G, even when Gr is elementary. This issue is addressed
by Proposition 5.3 below.

Proposition 5.3. Let r be a redex in soliton graph G, and
assume that Gr is elementary. Then G is elementary iff
both focal edges of r are allowed in G, or, equivalently,
each focal vertex of r has at least one allowed edge of Gr

incident with it.

Proof. It is sufficient to note that either focal edge of
r is forbidden in G iff the other focal edge is mandatory.
Moreover, an arbitrary internal edge e of G is mandatory
iff all edges adjacent to e are forbidden. 2

Another natural simplifying operation on graphs is the
removal of a loop from around a vertex v if, after the re-
moval, v still remains internal. Such loops will be called
secondary. Let Gv denote the graph obtained from G by
removing a secondary loop e at vertex v. Clearly, if G is
a soliton graph, then so is Gv , and the states of Gv are ex-
actly the same as those of G. The automata AG and AGv ,
however, need not be isomorphic. This follows from the
fact that any external alternating walk reaching v on a pos-
itive edge can turn back in G after having made the loop
e twice, while this may not be possible for the same walk
without the presence of e. Nevertheless, it is still true that
for every elementary soliton graph G, G is deterministic iff
Gv is such.

There are loops, however, the removal of which pre-
serves isomorphism of soliton automata. These loops are
exactly the ones around the inaccessible vertices of G.
Each such loop is impervious, so that its removal does not
affect the automaton behavior of G.

6 General characterization of
deterministic soliton graphs

Graph G is said to be reduced if it is free from redexes and
secondary loops. A generalized tree is a connected graph
not containing any even-length cycles. By this definition,
the odd-length cycles possibly present in a generalized tree
must be pairwise edge-disjoint, which explains the termi-
nology.

The proof of the following statement is left to the reader
as a simple exercise.

Lemma 6.1. Let α be an alternating cycle with respect to
state M of an elementary soliton graph G. Then G has an
M -alternating cycle α′ and a crossing β that intersects α′.

Proposition 6.2. If G is nondeterministic, then G has an
alternating cycle with respect to some state M . Conversely,
if G is elementary and has an alternating cycle with respect
to some state M , then G is nondeterministic.

Proof. Assume that G is nondeterministic. Then there
exists a state M and soliton walks α, β connecting the same
pair of external vertices in such a way that S(M,α) 6=
S(M,β). Consider the network N(S(M, α), S(M,β)).
This network is not empty, and it consists of alternating
cycles only.

Now let G be elementary, having an M -alternating cycle
α. By Lemma 6.1 we can assume that G also has a crossing
β with respect to the same state M that intersects α. Con-
sider the network N(S(M,β), S(M, α)). This network
will contain a crossing β′ different from β, yet connecting
the same two external vertices v1, v2. Thus, for the state
M ′ = S(M, β), AG has two different transitions on input
(v1, v2) resulting in states S(M ′, β′) and S(M ′, β) = M ,
respectively. 2

The key step to our results in this section is Theorem 6.3 be-
low. The proof of this theorem is rather complex, therefore
we do not present it here. The interested reader is referred
to [3] for a complete proof.

Theorem 6.3. Let G be a reduced elementary soliton
graph. If G contains an even-length cycle, then it also has
an alternating cycle with respect to some state of G.

For an arbitrary graph G, contract all redexes and re-
move all secondary loops in an iterative manner to obtain
a reduced graph r(G). Observe that this reduction proce-
dure has the so called Church-Rosser property, that is, if
G admits two different one-step reductions to graphs G1

and G2, then either G1 is isomorphic to G2, or G1 and G2

can further be reduced to a common graph G1,2. In this
context, one reduction step means contracting a redex or
removing a single secondary loop. As an immediate con-
sequence of the Church-Rosser property, the graph r(G)
above is unique up to graph isomorphism. In a similar fash-
ion, the process of contracting all redexes and removing
all impervious secondary loops is called i-reduction, and
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the graph obtained from G after i-reduction is denoted by
ri(G).

Theorem 6.4. For any graph G, if r(G) is a generalized
tree, then G is a deterministic soliton graph. Conversely, if
G is a deterministic elementary soliton graph, then r(G) is
a generalized tree.

Proof. Clearly, G is a soliton graph iff r(G) is such.
By Proposition 5.2, if r(G) is a generalized tree, then G
does not contain alternating cycles with respect to any of
its states. Proposition 6.2 then implies that G is determin-
istic. Conversely, if G is a deterministic elementary soli-
ton graph, then so is r(G), containing no alternating cycles
with respect to any of its states. (See again Propositions 5.2
and 6.2.) Thus, by Theorem 6.3, r(G) is a generalized tree.
2

Corollary 6.5. An elementary soliton graph is determinis-
tic iff it reduces to a generalized tree.

Definition 2. A baby chestnut is a chestnut γ+α1+. . .+
αk such that γ is a pair of parallel edges and each tree αi

(1 ≤ i ≤ k) consists of one edge or two adjacent edges.

Theorem 6.6. let G be a viable connected soliton graph
possessing a non-mandatory internal elementary compo-
nent. Then G is deterministic iff ri(G) is a baby chestnut.

Proof. ‘Only if’ By Theorem 4.4, G is a chestnut aug-
mented by some impervious edges connecting the outer in-
ternal vertices with each other. Since each internal inner
vertex, different from the base ones, is the center of a re-
dex, we can eliminate all of these vertices using reduction,
except of course the last inner vertex in γ, which will no
longer identify a redex. After removing the secondary im-
pervious loops generated during redex elimination, ri(G)
becomes a baby chestnut.

‘If’ Blowing up γ by inverse redex elimination, or
stretching the trees αi in this manner preserves the property
of being a chestnut, and any impervious loops added dur-
ing this procedure may only stretch into impervious edges.
Thus, the graph resulting from a baby chestnut after any
number of blow-ups and stretches is still a chestnut with
some additional impervious edges. 2

Now we are ready to state the main result of this paper.

Theorem 6.7. Let G be a connected viable soliton graph.
Then G is deterministic iff it satisfies one of the following
two conditions.
1. G i-reduces to a baby chestnut.
2. Each external component of G reduces to a general-
ized tree, and the subgraph of G determined by its internal
components has a unique perfect matching.

Proof. Immediate by Theorems 4.4, 6.6, and Corol-
lary 6.5. 2

7 Conclusion
We have presented a detailed analysis of deterministic
soliton graphs. First we proved that every connected
deterministic soliton graph having no impervious edges,
but possessing a non-mandatory internal elementary
component is a chestnut. Then we introduced a simple
reduction procedure on graphs, and showed that an
elementary soliton graph is deterministic iff it reduces to
a generalized tree. Using i-reduction, we could provide
a yet simpler description of chestnut graphs, and gave a
characterization of deterministic soliton graphs in general.
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