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Vehicular Edge Computing (VEC) is a crucial component of Intelligent Transportation Systems (ITS), 

enabling low-latency and energy-efficient services by offloading computation to the network edge. 

However, optimizing system performance in such environments requires careful edge server placement, 

especially in dynamic vehicular contexts characterized by high mobility and unpredictability. Achieving 

optimal performance under the constraints of latency, energy consumption, and mobility remains a 

significant challenge. This research proposes a comprehensive framework for optimizing deep learning 

architectures in VEC, utilizing advanced evolutionary algorithms. Building on real-world vehicular 

mobility traces, the framework employs the Synergistic Fibroblast Optimized Efficient Deep Neural 

Network (SFO-Eff-DNN) to identify optimal configurations and edge server placements. The dataset 

includes details about task offloading under different mobility levels, the data was preprocessed using 

Min-Max normalization to ensure smooth learning. Among the algorithms evaluated, Synergistic 

Fibroblast Optimization (SFO) consistently produces well-distributed Pareto-optimal solutions and 

effectively handles trade-offs between competing objectives. The DNN is utilized to learn complex patterns 

in vehicular mobility and network conditions, which helps predict the best configurations for edge server 

placements. The proposed system efficiently minimizes latency and energy consumption while ensuring 

scalability and adaptability to real-world scenarios. Results demonstrate that SFO-Eff-DNN achieves 

superior convergence speed and energy efficiency, making it well-suited for time-sensitive deployments. 

Comparative simulations validate that this approach outperforms traditional methods, providing valuable 

insights for deploying efficient and robust edge intelligence architectures in next-generation intelligent 

transportation systems. 

Povzetek: Ta raziskava se osredotoča na področje robnega računalništva v vozilih (VEC), kar je ključno 

za zagotavljanje nizke zakasnitve v inteligentnih transportnih sistemih. Vsebina prispevka predstavlja 

hibridni okvir SFO-Eff-DNN, ki združuje globoko učenje in evolucijsko optimizacijo za reševanje 

kompleksnega problema postavitve robnih strežnikov in prilagajanja arhitekture nevronske mreže. Glavni 

dosežki vključujejo rešitev večciljne optimizacijske naloge, ki uspešno minimizira zakasnitev in porabo 

energije v dinamičnem voznem okolju. 

 

1  Introduction  

An ITS enhances the safety of moving vehicles and 

hikers within the vicinity. In recent times, problems 

regarding road traffic safety have increased and accidents 

continue to occur regularly (Wan et al., 2020). Fortunately, 

a growing number of related technologies have been 

applied to the transportation industry as wireless 

communication and sensor technologies have developed 

and matured in recent years. The increased need for road 

efficiency and safety in intricately linked road systems has 

drawn a lot of attention to ITS in recent years (Boukerche 

et al., 2020). The exponential growth in ITS has resulted in 

an increased demand for responsive, energy-efficient, and 

intelligent processing solutions that can manage the 

dynamic vehicular environment (Elassy et al., 2024). VEC 

is a pattern that brings the cloud computing capacities 

closer to the network edge and is a likely solution to 

service demands for low-latency services, such as auto-

corrective driving support, real-time traffic management, 

and location-based services (Alhilal et al., 2024). 

Connected vehicles benefit from VEC by shortening the 

response time of their systems and helping them save 

power by assigning tasks to local servers (Chougule et al., 

mailto:xiuming_cheng@hotmail.com


346   Informatica 49 (2025) 345–360                                                                                                                                L. Wang et al. 

 

2024). Greater safety, dependability, efficiency in 

transportation, fast action and network reach make smart 

and sustainable driving networks possible (Talpur and 

Gurusamy, 2021). To minimize the time for data exchanges 

and energy used in vehicles, VEC allows vehicles to 

perform certain tasks on edge servers nearby. As a result, 

connected vehicles receive a much better level of service 

(Zaki et al., 2024). Due to their speed and patches of 

unpredictability, the movement of vehicles complicates 

VEC systems (Zhao et al., 2023). The greatest aspect to 

focus on is the best locations and times for edge servers so 

that moving vehicles can be handled efficiently (Shen et 

al., 2021). With many vehicles moving, topology shifts 

taking place and numerous demands for services, generic 

or manual placements are not usually enough. Similarly, 

managing various goals, including keeping reaction times 

quick, using as little energy as possible, maintaining 

flexibility, and scaling up, remained prominent in network 

research (Peyman et al., 2023). As simulation traces were 

used, working with many nodes and requiring some 

attention to used parameters, this approach might face 

issues when put to practical use. 

Deep learning and evolutionary optimization are used 

in the design to choose the best locations for edge servers. 

Specifically, the SFO-Eff-DNN approach allows the 

system to recognize patterns using a DNN and search 

globally using an SFO algorithm. This framework 

processes actual data from vehicle movement to 

understand vehicle movements and the state of the network, 

as well as select the best position for the servers. The key 

contribution of the research is as follows.  

In extremely dynamic vehicle contexts, it was best to 

formulate the edge server placement problem as a multi-

objective optimization task that simultaneously reduces 

the latency and energy consumption. 

To create the SFO-Eff-DNN framework, which 

combines biologically inspired optimization with effective 

deep learning to deliver scalable and flexible placement 

solutions. 

To compare the system against traditional techniques 

and perform comprehensive simulations using genuine 

mobility datasets, showcasing notable advances in 

placement accuracy, energy economy, and convergence 

speed. 

The remainder of this research is separated into the 

following sections: the literature review on edge server 

placement and the intelligent optimization techniques in 

VEC are reviewed. The phrasing of the problem and the 

system model are then given in detail, as well as the 

description of the proposed SFO-Eff-DNN framework. 

The next section will discuss the experimental settings and 

performance evaluations, and the results and insights will 

then be discussed. Lastly, the research is concluded with 

directions for further research. 

The introduction highlights the significant importance 

of edge servers' placement efficiency in the VEC for 

improving ITS performance. The literature review reveals 

the weaknesses of existing methods, especially their 

inability to handle the dynamism of vehicular mobility 

effectively in the process of optimizing latency and energy 

consumption. 

 

2  Related work 
This section discusses the positioning of border 

servers within the VEC, including the traditional heuristics, 

deep learning (DL), evolutionary algorithms, the 

challenges in dynamic vehicular environments, and the 

recent data-driven and optimization-based developments 

of this space for better adaptability and performance. To 

fix the issue of resource assignment in cloud computing 

Infrastructure as a Service (IaaS), an Equilibrium 

Optimization (EO)-based evolutionary Recurrent Neural 

Network (RNN) was presented (Ebrahimi Mood et al., 

2025). This model was designed to give virtual machines 

an optimal number of physical machines by improving 

how they work in general and by reducing their complexity. 

The simulations were faster and more reliable than the 

conventional ones. 

The significance of edge computing topics such as 

selecting the right tasks for offloading, allocating resources, 

and ensuring good Quality-of-Service and Quality-of-

Experience (Vijayakumar et al., 2021). The challenges in 

optimizing and scheduling were solved with models and 

DL techniques based on evolution. This approach helps to 

make better decisions and effectively manage resources in 

environments at the edges of a network. Yang et al., (2021) 

introduced a method that can manage both accuracy and 

the speed of neural networks on edge devices. An estimate 

of resource use latency created from the profiling model 

and the Pareto Bayesian search was driven by constraints 

on accuracy and latency. Without sacrificing accuracy, the 

inference process was 94.71% faster and the search 

process became 18.18% more efficient. 

An energy-efficient DNN offloading was developed 

under deadline and budget constraints in edge-cloud 

environments; this optimization modeling was performed 

using an Enabled Hybrid Chaotic Evolutionary Algorithm 

Dynamic Voltage Frequency Scaling (HCEA-DVFS) (Li et 

al., 2024). The Archimedes Optimization and Simulated 

Annealing were applied for global exploration, and local 

search improvement based on the Genetic Algorithm (GA) 

chaotic strategy. Experiments proved that HCEA-DVFS 

decreased energy consumption by 7.93% to 19.38% 

relative to baseline techniques on a variety of DNN-based 

apps. A suitable deep learning model and a proper method 

for training the effective training scheme for the deep 

neural network (ETS-DNN) were created to allow real-

time monitoring in an Internet of Medical Things (IoMT) 

system that used edge computing (Pustokhina et al., 2020). 

Optimization of the neural network with autoencoders and 

softmax layers was achieved by using a Hybrid Modified 

Water Wave Optimization (HMWWO) algorithm. 

Examination of simulation results indicated that ETS-

DNN performed better when processing prompts and 

making accurate diagnoses. Table 1 demonstrates the 

summary of the literature review.   
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Table 1: Related work VEC optimization methods and outcomes 
Methods Aim Outcome Challenge Author/Ref. 

DeepMaker 

Framework 

(Multi-

objective 

Evolutionary 

Approach) 

Automatically design 

robust DNN architectures 

for embedded devices 

Achieved up to 26.4x compression on 

CIFAR-10 with only 4% accuracy 

loss; optimized network size and 

accuracy for limited resources 

Designing efficient DNNs 

that fit resource 

constraints while 

maintaining accuracy 

(Loni et al., 2020) 

Internet of 

Things (IoT)-

Defender 

(Modified 

GA)/ Deep 

long-short-

term memory 

(LSTM) 

To detect cyberattacks in 

IoT networks using an 

efficient, lightweight 

edge-based IDS 

Achieved higher accuracy, superior 

detection rate, greater precision, false 

alarm rate, mIoU, and training time 

on BoT-IoT dataset; effective real-

time deployment on Raspberry Pi 

devices 

Addressing IoT security 

with limited resources, 

class imbalance, and low 

hardware security in edge 

computing environments 

(Saheed et al., 2024) 

Genetic 

Simulated 

Annealing-

based Particle 

Swarm 

Optimization 

(GSP) 

To reduce latency and 

energy usage in smart 

mobile devices by 

partially offloading 

Achieved lower energy consumption 

and faster convergence compared to 

three baseline methods using real-life 

data; provided joint optimization of 

offloading ratio, bandwidth, and 

transmission power allocation 

Balancing limited 

resources of SMDs with 

high communication costs 

and maintaining energy-

efficient service 

(Bi et al., 2020)  

Greedy 

Algorithm 

and GA for 

Task 

Scheduling 

Optimizing task 

scheduling in cloud-edge 

systems to reduce the 

average response time of 

DNN-based apps 

Achieved near-optimal scheduling 

performance with reduced average 

response time; GA outperformed 

greedy in accuracy but required more 

computation time. 

Reducing excessive 

delays during DNN task 

offloading to enhance the 

vehicle experience 

(Chen et al., 2020) 

Particle 

Swarm 

Optimization 

(PSO) 

to efficiently and quickly 

transfer activities from 

resource-constrained edge 

devices to MEC servers in 

IIoT contexts 

Reduced MEC server delay, balanced 

energy consumption, and enabled 

effective resource allocation 

compared to GA and SA methods 

Designing a low-delay 

and energy-efficient 

offloading technique in a 

system with several 

vehicles and MECs 

(You et al., 2021) 

Differential 

Evolution 

(DE) 

To maximize IoT edge 

computing task clustering 

and scheduling 

Outperformed the Firefly Algorithm 

and PSO in reducing execution time 

and improving system efficiency and 

stability under heavyweight 

workloads 

Clustering and scheduling 

tasks effectively in 

heterogeneous IoT edge 

environments 

(Yousif, et al., 2024) 

Greedy 

Algorithm + 

Lagrangian 

Dual + 

Adaptive 

Harmony 

Search in 

federated 

learning (FL) 

To minimize the worst-

case cost of FL in VEC by 

optimizing computation, 

transmission, and local 

model accuracy 

Achieved convergence and effective 

trade-off between cost and fairness 

through dynamic vehicle selection 

and resource allocation optimization 

Heterogeneous 

capabilities and data 

quality among vehicles; 

energy and time 

constraints in VEC 

(Xiao et al., 2021) 

VECMAN 

(Resource 

Selector + 

Energy 

Manager 

Algorithms) 

To improve energy 

efficiency in VEC 

systems by managing 

resource sharing among 

EVs 

Achieved 7–18% energy savings vs. 

local execution and ~13% vs. RSU 

offloading by selecting participating 

vehicles and optimizing sharing 

durations 

Uncertainty in future 

vehicle locations; 

difficulty in determining 

optimal resource sharing 

and energy management 

(Bahreini et al., 2021) 

VaCo 

(Vehicle-

assisted 

Collaborative 

Caching 

System 

To enhance intelligent 

service deployment in 

VEC by using vehicles' 

storage for collaborative 

caching 

VaCo effectively utilizes vehicle 

resources, reducing the service failure 

rate and cost. Real-world dataset 

evaluation confirms its ability to 

balance benefits for all. 

real-time scheduling of 

vehicle storage; benefit 

evaluation under dynamic 

load 

(Jiang et al., 2025) 

HSCoNAS 

(Hardware-

aware 

Evolutionary 

NAS 

Framework) 

Optimize DNN 

architecture for accuracy 

and latency on edge 

devices 

Achieved strong accuracy–latency 

trade-offs on ImageNet across CPU, 

GPU, edge 

High search overhead and 

runtime approximation 

challenges 

(Luo et al., 2021) 

LENS 

(Latency-

aware NAS 

for Edge–

Incorporate wireless 

communication into NAS 

for hierarchical systems 

Improved Pareto front performance 

by 76.47% (energy) and 75% 

(latency) 

Scalability issues and 

fixed-tier constraints 
(Odema et al., 2021) 
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Cloud 

Systems) 

Federated 

Learning in 

Edge 

Computing 

(Survey) 

Review implementation, 

taxonomy, and challenges 

of FL in EC 

Classified FL methods, hardware 

constraints, and case studies; 

identified open issues 

Synchronization delays, 

hardware resource limits 
(Abreha et al., 2022) 

RL-Dynamic 

(Reinforcement 

Learning 

Framework) 

To optimize service 

placement in vehicular 

networks by considering 

mobility and dynamic 

service demands 

Reduced delay and improved edge 

server utilization compared to static 

placement; fairness trade-offs 

demonstrated 

Model complexity and 

vehicle mobility 

unpredictability 

(Talpur and Gurusamy, 

2021) 

 

2.1  Problem statement  
Optimizing resources and edge server placement in 

VEC as a result of high mobility, variable networks, and 

few resources was hard. Usually, greedy algorithms and 

other traditional methods do not work well in 

environments that change dynamically (Chen et al., 2020). 

PSO faces the issues of early convergence and fixation 

when working with multiple vehicles (You et al., 2021). 

DE was not suitable for clustering tasks in real time on 

heterogeneous edge systems due to its issues with 

scalability and computation (Yousif et al., 2024). 

Therefore, the proposed framework SFO-Eff-DNN was 

used to learn how devices move and decide on offloading. 

It minimizes delays and uses less power, all while offering 

adaptability, scalability, and fast convergence in changing 

VEC networks. 

 

3  Methods  
3.1 Architectural overview and problem 

formulation 
The VEC would feature wireless connection, 

permanent edge servers, and mobility vehicles. The 

simulation's rise can be increased by using vehicles to 

carry out new missions on surrounding servers. As 

individuals move around and the network evolves, it is 

important to find these servers with practical jobs and 

make sure they supply energy. The problem is solved by 

optimizing multiple objectives, with the main variables 

being the location of servers and the way vehicles connect 

to them throughout the day. 

 

A) Architectural components 

The architecture of the VEC system consists of three 

main layers, such cloud, VEC, and vehicle, Cloud storage 

allows for convenient processing and provides a backup 

system. Figure 1 illustrates the architecture of VEC. The 

VEC layer includes a network of Roadside Units (RSUs) 

with edge servers, allowing local computing and rapid 

exchanges of data. Intelligent vehicles make up the vehicle, 

layer and handle task generation and offloading depending 

on the current network and mobility issues. Environmental 

sensors like Global Positioning System (GPS) and cameras 

in vehicles provide live data that is key for improved traffic 

management and safety. They enable Vehicle-to-Vehicle 

(V2V) and Vehicle-to-RSU (V2R) communication and 

were able to process or offload tasks according to resource 

availability. Vehicles also allow for caching of data in 

memory, which makes the system work more responsively. 
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Figure 1: The architecture of the VEC 

Vehicle Definition: The vehicle 𝑉  defined as a six-

tuple is expressed in equation (1). 

𝑽 = {𝑽𝒋𝒅, 𝑽𝒔𝒕, 𝒗𝑲, 𝑮, 𝑱[ 𝒓]} (1) 

Each vehicle 𝑉 is identified by its 𝑉𝑗𝑑, can be activated 

or deactivated (𝑉𝑠𝑡), has a type of task (𝑣𝑗,), is located by 

Simulation of Urban Mobility (SUMO’s) data 𝐾 =

{𝑘𝑤 , 𝑘𝑧, 𝑘𝑦,𝑠𝑡}, is equipped with certain hardware (𝐺), and 

is running several active instances of applications 𝐽[ 𝑟]. 
Vehicle Hardware Specifications and Role of RSU: a 

vehicle’s hardware specifications 𝐺are represented as a set 

in equation (2).  

𝑮 = {𝑶,𝑵[ 𝒓], 𝑨, 𝑻, 𝒅, 𝒆}         (2) 

Each vehicle’s hardware profile 𝐺 includes processor 

specs ( 𝑂 ), memory configuration 𝑁[ 𝑟]  distinguishing 

central processing unit (CPU)/Graphics processing unit 

(GPU usage, battery capacity (𝐴 ), installed sensors (𝑇 ), 

communication interfaces (𝑑) such as Wi-Fi, Long Term 

Evolution (LTE), or 5G New Radio (NR), and 

communication frequency range (𝑒 ). These parameters 

influence the vehicle’s ability to process or offload 

computational tasks. 

RSUs were placed along roadways that help to process 

and store data close to the network. RSUs were better at 

processing and managing data than vehicles and at storing 

and communicating with the internet whenever necessary. 

It provides quick answers to requests in maps, and videos, 

and controls traffic while edge servers rely on them. 

Edge Server: An edge server 𝐹 is defined as a three-

tuple in equation (3).  

𝑭 = {𝑭𝒋𝒄, 𝑫, 𝑲}         (3) 

The edge server is identified by a unique ID (𝐹𝑗𝑐) and 

characterized by its computational capacity (𝐷 ), which 

includes memory, processing speed, and storage modeled 

similarly to vehicle hardware specifications. Its 

geographical location (𝐾) is also a key attribute for optimal 

placement within the VEC network. 

Properties of edge servers in VEC  

Dynamic vehicle assignment: Vehicle assignments to 

clusters at any time 𝑠 were independent of previous 

assignments, allowing the system to adapt in real-time to 

the high mobility and changing network topology of 

vehicular environments.  

Dedicated edge server assignment: Each vehicular 

cluster was mapped indirectly to a single edge server, 

ensuring exclusive service per cluster. This approach 

minimizes resource conflicts and supports the demanding 

performance requirements of VEC applications.  

Many-to-one vehicle-to-server mapping: Multiple 

vehicles can offload computational tasks to the same edge 

server, enabling efficient resource utilization and 

centralized task processing within the VEC framework. 

Data from edge servers is uploaded to remote data 

centers, known as cloud servers, which supply large 

amounts of computing and storage services over a large 

area. Using information from vehicles and edge servers, 
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cloud services can manage the network from one central 

place and take the best actions. The combination of 

vehicular terminals, edge servers, and cloud infrastructure 

makes the VEC system both strong and capable of 

handling the needs of intelligent transportation 

management. 

With the architectural components established, the 

server placement strategy in the proposed VEC framework 

can now be formally defined to optimize performance 

under dynamic vehicular conditions. 

Edge server placement: In the VEC model, the 

placement of edge servers was modeled by a bipartite 

graph with two sets: 𝐹is for edge servers, while 𝑉 is for 

client vehicles. Each server 𝑓 ∈ 𝐹  comes with a defined 

𝑊𝑚𝑎𝑥𝑓   , showing its maximum vehicle capacity. 

Communication cost indicates how well a vehicle v works 

with a server e due to the effects of latency 𝐾𝑉𝑓 and energy 

consumption 𝐹𝑉𝑓  . The objective is to determine a good 

subset 𝐹1   out of 𝐹 and describe the mapping𝜙: 𝑉 → 𝐹1 :, 
assigning each vehicle to a server to minimize both the 

total delay and the power used across the system. 

Average latency:𝐾ˉis used to mean the average time 

taken for vehicles to communicate with edge servers while 

offloading their tasks. It helps to measure the effectiveness 

of server placement and matching vehicles to servers in the 

VEC framework under changing mobility conditions. It is 

computed as in equation (4). 

𝑲 =
𝟏

|𝑽|
∑ 𝑲𝒗𝒇𝒗∈𝑽    (4) 

The ∣ 𝑉 ∣ denotes the total number of vehicles within 

the VEC network. 𝐾𝑣𝑓 represents the communication 

latency encountered by vehicle 𝑣 during task offloading to 

edge server 𝑓, defined as equation (5). 

𝑲𝒗𝒇   = 𝑺𝒓𝒆𝒄𝒆𝒊𝒗𝒆 − 𝑺𝒔𝒆𝒏𝒅  (5) 

In this context, 𝑆𝑠𝑒𝑛𝑑indicates the timestamp when a 

vehicle initiates the task offloading request, while 𝑆𝑟𝑒𝑐𝑒𝑖𝑣𝑒 

marks the moment the vehicle receives the processed 

response from the edge server. 

The goal of the edge server placement was to 

minimize the average latency 𝐾ˉ, ensuring efficient, low-

latency communication for all vehicles within the network. 

 

B) Model formulation 

The edge server placement issue in a VEC network is 

defined in this section to minimize overall energy usage 

and delay through optimal edge server placement. The 

decision variables, objective functions, and constraints 

involved in the problem formulation are detailed below. 

Consider a fixed of vehicles 𝑉 =  {𝑣₁, 𝑣₂. . . 𝑣ₘ}, a set 

of edge servers 𝐹 = {𝑓1,𝑓2,…,𝑓𝑛} , anda list of possible 

deployment sites 𝐽 = {𝑗1,𝑗2,…,𝑗𝑛} for placing edge servers 

within the network. 

1) Decision Variables: 

To model the edge server placement in the VEC 

network, define decision variables that indicate whether an 

edge server is deployed at a specific location and how 

vehicles were assigned to these servers for optimal 

performance. 𝐴𝑣𝑓  is a binary decision variable that 

indicates the connection status between vehicle 𝑣 and edge 

server 𝑒 in equation (6). 

𝐴𝑣𝑓     =

{
𝟏, 𝒊𝒇 𝒗𝒆𝒉𝒊𝒄𝒍𝒆 𝒖 𝒊𝒔 𝒄𝒐𝒏𝒏𝒆𝒄𝒕𝒆𝒅 𝒕𝒐 𝒆𝒅𝒈𝒆 𝒔𝒆𝒓𝒗𝒆𝒓 𝒇
𝟎, 𝒐𝒕𝒉𝒆𝒓𝒘𝒊𝒔𝒆                                                                      

(6) 

𝐴𝑣𝑓   is a binary decision variable indicating the 

deployment status of an edge server at location  𝑗  in 

equation (7).  

𝐴𝑓𝑗     =

{
1, 𝑖𝑓 𝑎𝑛 𝑒𝑑𝑔𝑒 𝑠𝑒𝑟𝑣𝑒𝑟 𝑖𝑠 𝑝𝑙𝑎𝑐𝑒𝑑 𝑎𝑡 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛 𝑗

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                                                                             
(7) 

2)  Parameters 

The parameters in the formulation define the system 

characteristics essential for optimizing edge server 

placement in the VEC network. The energy consumption 

for a vehicle 𝑣 to offload computational tasks to an edge 

server e is denoted as 𝐹𝑣𝑓. In equation (8).  

𝐹𝑢𝑓 = (𝑂𝑠𝑤 + 𝑂𝑞𝑤). 𝑆𝑐𝑜𝑚𝑚  (8) 

Where 𝑂𝑠𝑤is the vehicle’s transmission power, 𝑂𝑞𝑤is 

the reception power, and 𝑆𝑐𝑜𝑚𝑚 is the time taken for the 

communication exchange. This metric helps quantify 

energy efficiency in task offloading scenarios within the 

VEC environment. The latency experienced by a vehicle 

𝑣 when offloading tasks to an edge server e is denoted as 

𝐾𝑣𝑓 . Equation (9) defines it as the interval of time between 

the sending of the offloading request and the receiving of 

the processed response. 

𝑲𝒗𝒇 = 𝑹𝒆𝒄𝒆𝒊𝒗𝒆 𝑻𝒊𝒎𝒆 − 𝑺𝒆𝒏𝒅 𝑻𝒊𝒎𝒆    (9) 

In the VEC environment, key parameters include 𝑂𝑓, 

the active power consumption of edge server  𝑓; 𝑐𝑣𝑓, the 

distance between vehicle  𝑣  and edge server 𝑓 ; 𝐷 , the 

maximum number of servers on the edge deployable in the 

network; and  𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦𝑖  , the maximum number of 

vehicles that a server on the edge  𝑖  can handle. These 

factors guide optimal server placement. 

3) Objective Function  

To minimize overall energy consumption and reduce 

total latency in the VEC network. 
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Minimize Total Energy Consumption: Total energy 

consumption includes the energy used by vehicles to 

offload tasks (𝐹𝑣𝑓) and the power consumed by active edge 

servers (𝑂𝑓 ). The objective is to minimize the sum of 

vehicle offloading energy and edge server power across the 

network in equation (10). 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒      ∑ ∑ 𝐴𝑣𝑓𝐹𝑣𝑓
𝑀
𝑓=1

𝑁
𝑣=1 +

  ∑ ∑ 𝐴𝑓𝑗𝑜𝑓
𝑚
𝑗=1

𝑚
𝑓=1    (10) 

Where 𝑜𝑓 and 𝐴𝑓𝑗 indicates vehicle-to-server 

connections and server placements, respectively. 

Minimize Total Cumulative Latency: To reduce the 

overall communication delay experienced by vehicles 

when offloading tasks to edge servers. This total latency is 

calculated as the sum of the individual latencies  𝐾𝑣𝑓 , 

defined by the time difference between sending the task 

and receiving the response expressed in the following 

equation (11). 

𝑴𝒊𝒏𝒊𝒎𝒊𝒛𝒆      ∑ ∑ 𝑨𝒗𝒇𝑲𝒗𝒇
𝒏
𝒖=𝟏

𝒎
𝒇=𝟏     (11) 

Where 𝐴𝑣𝑓 indicates if vehicle 𝑣 offloads to server 𝑓, 

and 𝐾𝑣𝑓 is the latency between them. 

4) Constraints 

The optimization problem includes constraints to 

guarantee efficient deployment of edge servers and proper 

assignment of vehicles, ensuring that server capacities 

were not exceeded and system resources were utilized 

effectively. 

Server Capacity Constraint: Each edge server has a 

limited capacity, restricting the number of vehicles it can 

serve. The total vehicles assigned to server 𝑓  must not 

exceed its capacity𝐷𝑓, ensuring balanced load distribution 

and preventing server overload in equation (12).  

∑ 𝑨𝒗𝒇   ≤ 𝑫𝒇
𝑴
𝒖=𝟏 ∀𝒇   (12) 

Vehicle Assignment Constraint: To ensure proper task 

offloading, each vehicle must be assigned to exactly one 

edge server. This guarantees that every vehicle connects to 

a single server for processing its tasks, expressed as 

equation (13). 

∑ 𝐴𝑣𝑓
𝐹
𝑓=1   = 1    ∀𝜈   (13) 

Restrictions on Edge Server Positioning: The 

deployment of edge servers within the network is restricted 

by a maximum allowable number, denoted by  𝐷 . This 

constraint confirms that the total quantity of placed edge 

servers does not exceed 𝐷, and is formulated as equation 

(14).  

∑ ∑ 𝐴𝑓𝑗 ≤ 𝐷𝑚
𝑗=1

𝑚
𝑓=1     (14) 

Binary Constraints: The decision variables 𝐴𝑣𝑓  and 

𝐴𝑓𝑗 are binary, reflecting the discrete nature of the problem. 

Specifically, a vehicle 𝑣  is either connected to an edge 

server 𝑓 or not, and an edge server is either deployed at 

location 𝑗 or not. These binary constraints ensure clear and 

unambiguous decision-making in the edge server 

placement and vehicle assignment process within the VEC 

network in equations (15) and (16).  

𝐴𝑢𝑓 ∈ {0,1}∀𝑢,𝑓   (15) 

𝐴𝑓𝑗 ∈ {0,1}∀𝑓,𝑗   (16) 

3.2  Dataset 
For a Vehicular Edge Computing scenario, this 5,811-

record task offloading event dataset is used to validate the 

effectiveness of the proposed SFO-Eff-DNN system.   This 

dataset includes information on task arrival/completion 

time, processing time, network latency, energy 

consumption, and vehicle node mobility.  The model can 

learn intricate mobility and network behaviors because to 

this dataset's capture of dynamic, real-world vehicle 

settings.  This is in line with the framework's goal of 

optimizing edge server placements and deep neural 

network settings.  It encourages scalability, responsiveness, 

and efficiency for real-time VEC and smart mobility by 

facilitating an equitable examination of latency vs. energy 

trade-offs. 

Source:  

https://www.kaggle.com/datasets/programmer3/vec-edge-

server-offloading-dataset    

3.3  Preprocessing Using Min-Max 

Normalization 
To create an energy-efficient optimum structure of a deep 

neural network for real-time VEC activities with enhanced 

energy economy, reduced latency, and scalable 

performance, min-max normalization is applied in the 

preprocessing stage.  The model's convergence is 

enhanced and a uniformly distributed collection of features 

is made possible for efficient decision-making for real-

time VEC operations by normalizing the input parameters 

of delay, energy consumption, and vehicle speed between 

0 and 1.The value of property 𝐵  is normalized from 

[𝑚𝑖𝑛𝐵 , 𝑚𝑎𝑥𝐵]  to [𝑛𝑒𝑤𝑚𝑖𝑛𝐵 , 𝑛𝑒𝑤𝑚𝑎𝑥𝐵] using equation 

(17), which maximizes data representation: 

𝑢−𝑚𝑖𝑛𝐵

𝑚𝑎𝑥𝐵−𝑚𝑖𝑛𝐵
(𝑛𝑒𝑤𝑚𝑖𝑛𝐵 , 𝑛𝑒𝑤𝑚𝑎𝑥𝐵) + 𝑛𝑒𝑤𝑚𝑖𝑛𝐵 

    (17) 

https://www.kaggle.com/datasets/programmer3/vec-edge-server-offloading-dataset
https://www.kaggle.com/datasets/programmer3/vec-edge-server-offloading-dataset
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In addition to enhancing prediction reliability and 

preserving a consistent data distribution, this 

normalization facilitates effective implementation in real-

time automotive applications. 

3.4  Synergistic fibroblast optimized efficient 

deep neural network (SFO-Eff-DNN) 
The research to improve the DL architecture, the SFO-

Eff-DNN suggests a hybrid intelligence framework with 

edge servers situated in VEC. It relies on the predictive 

power of Eff-DNN and integrates the ability of the SFO 

algorithm to adjust itself. Eff-DNN is used to figure out 

how vehicles move around and how the network changes, 

while SFO acts like fibroblast cells in real healing to search 

through lots of different solutions quickly. SFO helps set 

up Eff-DNN weights, biases, and learning rates to ensure 

good latency, energy consumption, and ability to scale up 

or down. As a result of hybridization, the system evades 

local optima and gradually finds the best solution. The use 

of real-world data for vehicles confirms that the SFO-Eff-

DNN framework can quickly converge, lower the time 

needed for inference, and help with making energy-

efficient decisions in rapidly changing VEC environments. 

Algorithm 1 represents the proposed SFO-Eff-DNN model 

working process. 

Algorithm 1: SFO-Eff-DNN 

𝑆𝑡𝑒𝑝 1: 𝐼𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛  

𝑑𝑒𝑓 𝑠𝑒𝑡𝑢𝑝(): 

    𝑀 =  30                     # 𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 𝑠𝑖𝑧𝑒 

    𝑁 =  𝑛𝑢𝑚_𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠()       # 𝑇𝑜𝑡𝑎𝑙 𝐸𝑓𝑓 − 𝐷𝑁𝑁 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠 

    𝑚𝑎𝑥_𝑖𝑡𝑒𝑟, 𝑟ℎ𝑜, 𝑡𝑎𝑢 =  100, 0.5, 5 

    𝑠, 𝑘_𝑝𝑞, 𝐿 =  1.0, 0.8, 10.0 

    𝑑𝑎𝑡𝑎 =  𝑙𝑜𝑎𝑑_𝑉𝐸𝐶_𝑑𝑎𝑡𝑎()     # 𝑅𝑒𝑎𝑙 − 𝑤𝑜𝑟𝑙𝑑 𝑚𝑜𝑏𝑖𝑙𝑖𝑡𝑦/𝑛𝑒𝑡𝑤𝑜𝑟𝑘 𝑑𝑎𝑡𝑎 

    𝑟𝑒𝑡𝑢𝑟𝑛 𝑀,𝑁,𝑚𝑎𝑥_𝑖𝑡𝑒𝑟, 𝑟ℎ𝑜, 𝑡𝑎𝑢, 𝑠, 𝑘_𝑝𝑞, 𝐿, 𝑑𝑎𝑡𝑎 

𝑆𝑡𝑒𝑝 2: 𝐼𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑧𝑒 𝑡ℎ𝑒 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛𝑠 

𝑑𝑒𝑓 𝑖𝑛𝑖𝑡_𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛(𝑀,𝑁): 

    𝑟𝑒𝑡𝑢𝑟𝑛 [{′𝑝𝑎𝑟𝑎𝑚𝑠′: 𝑟𝑎𝑛𝑑_𝑣𝑒𝑐(𝑁), ′𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦′: 𝑟𝑎𝑛𝑑_𝑣𝑒𝑐(𝑁)} 𝑓𝑜𝑟 _ 𝑖𝑛 𝑟𝑎𝑛𝑔𝑒(𝑀)] 

𝑆𝑡𝑒𝑝 3: 𝑇𝑟𝑎𝑖𝑛 𝑎𝑛𝑑 𝑒𝑣𝑎𝑙𝑢𝑎𝑡𝑒 𝑡ℎ𝑒 𝐸𝑓𝑓 − 𝐷𝑁𝑁 𝑚𝑜𝑑𝑒𝑙  

𝑑𝑒𝑓 𝑒𝑣𝑎𝑙𝑢𝑎𝑡𝑒(𝑝𝑎𝑟𝑎𝑚𝑠, 𝑑𝑎𝑡𝑎): 

    𝑚𝑜𝑑𝑒𝑙 =  𝑏𝑢𝑖𝑙𝑑_𝐸𝑓𝑓𝐷𝑁𝑁(𝑝𝑎𝑟𝑎𝑚𝑠) 

    𝑡𝑟𝑎𝑖𝑛_𝐷𝑁𝑁(𝑚𝑜𝑑𝑒𝑙,∗ 𝑑𝑎𝑡𝑎) 

    𝑙𝑎𝑡𝑒𝑛𝑐𝑦, 𝑒𝑛𝑒𝑟𝑔𝑦 =  𝑒𝑣𝑎𝑙𝑢𝑎𝑡𝑒_𝑙𝑎𝑡𝑒𝑛𝑐𝑦_𝑒𝑛𝑒𝑟𝑔𝑦(𝑚𝑜𝑑𝑒𝑙) 

    𝑟𝑒𝑡𝑢𝑟𝑛 𝑙𝑎𝑡𝑒𝑛𝑐𝑦 +  𝑒𝑛𝑒𝑟𝑔𝑦  # 𝑆𝑖𝑚𝑝𝑙𝑒 𝑓𝑖𝑡𝑛𝑒𝑠𝑠 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 (𝑙𝑜𝑤𝑒𝑟 𝑖𝑠 𝑏𝑒𝑡𝑡𝑒𝑟) 

𝑆𝑡𝑒𝑝 4: 𝑉𝑒𝑙𝑜𝑐𝑖𝑡𝑦 𝑢𝑝𝑑𝑎𝑡𝑒 𝑤𝑖𝑡ℎ 𝑓𝑒𝑒𝑑𝑏𝑎𝑐𝑘 𝑎𝑛𝑑 𝑙𝑜𝑐𝑎𝑙 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑖𝑜𝑛  

𝑑𝑒𝑓 𝑢𝑝𝑑𝑎𝑡𝑒_𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦(𝑖𝑛𝑑, 𝑝𝑎𝑠𝑡_𝑝𝑜𝑠, 𝑟ℎ𝑜): 

    𝑐 =  𝑙𝑜𝑐𝑎𝑙_𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑖𝑜𝑛(𝑖𝑛𝑑[′𝑝𝑎𝑟𝑎𝑚𝑠′]) 

    𝑑 =  𝑣𝑒𝑐𝑡𝑜𝑟_𝑑𝑖𝑣(𝑝𝑎𝑠𝑡_𝑝𝑜𝑠, 𝑛𝑜𝑟𝑚(𝑝𝑎𝑠𝑡_𝑝𝑜𝑠)) 

    𝑟𝑒𝑡𝑢𝑟𝑛 𝑖𝑛𝑑[′𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦′]  +  (1 −  𝑟ℎ𝑜)  ∗  𝑐 +  𝑟ℎ𝑜 ∗  𝑑 

𝑆𝑡𝑒𝑝 5: 𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛 𝑢𝑝𝑑𝑎𝑡𝑒  

𝑑𝑒𝑓 𝑢𝑝𝑑𝑎𝑡𝑒_𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛(𝑖𝑛𝑑, 𝑣𝑒𝑙, 𝑠, 𝑘_𝑝𝑞, 𝐿): 
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    𝑠𝑝𝑒𝑒𝑑 =  𝑠 / (𝑘_𝑝𝑞 ∗  𝐿) 

    𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛 =  𝑣𝑒𝑐𝑡𝑜𝑟_𝑑𝑖𝑣(𝑣𝑒𝑙, 𝑛𝑜𝑟𝑚(𝑣𝑒𝑙)) 

    𝑟𝑒𝑡𝑢𝑟𝑛 𝑖𝑛𝑑[′𝑝𝑎𝑟𝑎𝑚𝑠′]  +  𝑠𝑝𝑒𝑒𝑑 ∗  𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛 

𝑆𝑡𝑒𝑝 6: 𝑀𝑎𝑖𝑛 𝑆𝐹𝑂 − 𝐸𝑓𝑓𝐷𝑁𝑁 𝑂𝑝𝑡𝑖𝑚𝑖𝑧𝑎𝑡𝑖𝑜𝑛 

𝑑𝑒𝑓 𝑜𝑝𝑡𝑖𝑚𝑖𝑧𝑒_𝑆𝐹𝑂_𝐸𝑓𝑓𝐷𝑁𝑁(): 

    𝑀, 𝑁, 𝑇, 𝑟ℎ𝑜, 𝑡𝑎𝑢, 𝑠, 𝑘_𝑝𝑞, 𝐿, 𝑑𝑎𝑡𝑎 =  𝑠𝑒𝑡𝑢𝑝() 

    𝑝𝑜𝑝, ℎ𝑖𝑠𝑡𝑜𝑟𝑦 =  𝑖𝑛𝑖𝑡_𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛(𝑀,𝑁), [] 

    𝑓𝑜𝑟 𝑡 𝑖𝑛 𝑟𝑎𝑛𝑔𝑒(𝑇): 

        𝑓𝑜𝑟 𝑖𝑛𝑑 𝑖𝑛 𝑝𝑜𝑝: 

            𝑖𝑛𝑑[′𝑓𝑖𝑡𝑛𝑒𝑠𝑠′]  =  𝑒𝑣𝑎𝑙𝑢𝑎𝑡𝑒(𝑖𝑛𝑑[′𝑝𝑎𝑟𝑎𝑚𝑠′], 𝑑𝑎𝑡𝑎) 

        𝑝𝑎𝑠𝑡 =  𝑝𝑜𝑝 𝑖𝑓 𝑡 <  𝑡𝑎𝑢 𝑒𝑙𝑠𝑒 𝑝𝑜𝑝. 𝑐𝑜𝑝𝑦() 

        𝐹𝑜𝑟 𝑖, 𝑖𝑛𝑑 𝑖𝑛 𝑒𝑛𝑢𝑚𝑒𝑟𝑎𝑡𝑒(𝑝𝑜𝑝): 

            𝑖𝑛𝑑[′𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦′]  =  𝑢𝑝𝑑𝑎𝑡𝑒_𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦(𝑖𝑛𝑑, 𝑝𝑎𝑠𝑡[𝑖][′𝑝𝑎𝑟𝑎𝑚𝑠′], 𝑟ℎ𝑜) 

            𝑖𝑛𝑑[′𝑝𝑎𝑟𝑎𝑚𝑠′]  =  𝑢𝑝𝑑𝑎𝑡𝑒_𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛(𝑖𝑛𝑑, 𝑖𝑛𝑑[′𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦′], 𝑠, 𝑘_𝑝𝑞, 𝐿) 

        𝑏𝑒𝑠𝑡 =  𝑚𝑖𝑛(𝑝𝑜𝑝, 𝑘𝑒𝑦 = 𝑙𝑎𝑚𝑏𝑑𝑎 𝑥: 𝑥[′𝑓𝑖𝑡𝑛𝑒𝑠𝑠′]) 

        ℎ𝑖𝑠𝑡𝑜𝑟𝑦. 𝑎𝑝𝑝𝑒𝑛𝑑(𝑏𝑒𝑠𝑡[′𝑓𝑖𝑡𝑛𝑒𝑠𝑠′]) 

    𝑟𝑒𝑡𝑢𝑟𝑛 𝑏𝑒𝑠𝑡, ℎ𝑖𝑠𝑡𝑜𝑟𝑦 

To improve performance in dynamic Vehicular Edge 

Computing (VEC) settings, the SFO-Eff-DNN algorithm 1 

combines the strength of Efficient Deep Neural Networks 

(Eff-DNN) with Synergistic Fibroblast Optimization 

(SFO), an optimization technique inspired by nature.  

Using actual traffic and network data, the algorithm 

initializes a population of solutions, each of which 

represents a set of Eff-DNN parameters, and assesses each 

according to latency and energy consumption.  The 

approach is perfect for real-time intelligent transportation 

systems because it ensures quick convergence and 

improved flexibility by updating its location and velocity 

depending on fitness input and historical experiences. 

Efficient Deep Neural Network (Eff-DNN) The 

proposed optimized deep learning architecture in VEC 

makes use of an Eff-DNN to represent how vehicles and 

networks interact. An Eff-DNN architecture has an input 

layer, an output layer, and many hidden layers, as shown 

in Figure 2. The network is set up with six input layers and 

seven hidden layers, all containing 64 neurons to avoid 

overfitting. Model complexity and generalization were 

managed in TensorFlow by setting them as 

hyperparameters within the layers. It uses input about how 

vehicles behave and interact to determine the best 

positioning of the edge servers. The network uses the 

Rectified Linear Unit (ReLU) function to make its 

computations non-linear and adjust the weights it uses for 

learning through backpropagation. The Eff-DNN can 

provide quick and efficient decisions in ever-changing 

vehicular environments due to the backpropagation 

process, which keeps the cost function low. Neuron 

outputs were computed as follows in equation (18).  
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Figure 2: Architecture of Eff-DNN 

 

𝑧𝑟
𝑚+1 = 𝜎(𝑦) = 𝜎(∑ 𝜔𝑗𝑟

𝑚𝑛
𝑗=1 𝑧𝑗

𝑚 + 𝑎𝑟
𝑚+1)

 
 (18) 

Where σ(z) represents the activation function, and 

𝑧𝑟
𝑚+1 is the output of the 𝑟 − 𝑡ℎneuron in the (𝑚 + 1)-th 

layer. The weights among the 𝑗 − 𝑡ℎ neuron of layer n and 

the 𝑟 − 𝑡ℎ  neuron of layer (𝑚 + 1 ) are labeled 𝜔𝑗𝑟
𝑚 , and 

𝑎𝑟
𝑚+1 represents the bias term for linear transformations. 

While training, the loss function compares the predicted 

outcomes with the desired ones. The model finds the best 

values for 𝜔  and 𝑎  by minimizing the loss, making the 

network predict more accurately. The Eff-DNN’s loss 

function is explained in equation (19).  

𝑓(𝜃) = −
1

𝑚
∑ ∑ 𝑠𝑚𝑟 log 𝑧𝑚𝑟𝑟𝑚

 
  (19) 

Where𝑠𝑚𝑟 represents the actual value of the 𝑟 − 𝑡ℎ 

sample's 𝑚 − 𝑡ℎelement, 𝑧𝑚𝑟  denotes the predicted value 

for the same element, and θ represents the collection of 

parameters including weights 𝜔  and biases 𝑎 . Here, 𝑀  is 

the total quantity of samples. To reduce overfitting, a 

dropout mechanism is employed that randomly disables 

neurons during training, effectively disrupting the network 

structure and promoting generalization. Furthermore, the 

proposed method enhances the conventional gradient 

descent by dynamically adapting the learning rate for 

improved convergence. The optimization of the parameter 

set 𝜃 is formally defined as equations (20) and (21).  

 

 

 

{
 
 
 
 

 
 
 
 
𝑛𝑠 = 𝛽1𝑛𝑠−1 + (1 − 𝛽1)ℎ𝑠
𝑈𝑠 = 𝛽2𝑢𝑠−1 + (1 − 𝛽2)ℎ𝑠

2 

ℎ𝑠 = 𝛻𝜃𝐹(𝜃𝑠−1) 

𝑛̂𝑠 =
𝑛𝑠

1−𝛽1
𝑠

𝑈̂𝑠 =
𝑢𝑠

1−𝛽2
𝑠

𝜃𝑠 = 𝜃𝑠−1−∝
𝑛̂𝑠

√𝑢𝑠+𝜀

  (20) 

∝=∝0 𝛽3

𝑒𝑝𝑜𝑐ℎ−𝑛𝑢𝑚
𝑀

𝑏𝑎𝑡𝑐ℎ−𝑠𝑖𝑧𝑒    (21) 

Where 𝑈𝑠represents the weighted average of 

exponentially the squared gradients, while ℎ𝑠  denotes the 

gradient of the parameters at time  𝑠 , 𝑛𝑠captures the 

average movement of the gradient, and ∝0 is the initial 

learning rate. The corrected versions of these estimates 

were denoted by 𝑈̂𝑠and 𝑛̂𝑠, which improve optimization 

accuracy. Exponential decay rates 𝛽1 , 𝛽2,𝑎𝑛𝑑 𝛽3 are used 

to stabilize updates. Additionally, parameters such as batch 

size (epbatch−size) and current training iterations (ochnum

) influence convergence behavior. The improved DNN 

supports dual operational modes, RDL-1 for normal 

conditions and RDL-2 for power swing detection, ensuring 

adaptive command generation aligned with dynamic 

vehicular network scenarios. 
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Synergistic fibroblast optimization (SFO)  

SFO is modeled after migratory fibroblast cells that 

heal tissue by responding to the extracellular matrix 

(ECM). Every solution searches the solution space by 

varying its position and velocity about diffusion and fitness. 

This bio-inspired method allows for greater flexibility and 

avoids local minima, making it appropriate for optimizing 

neural networks and edge server placement in dynamic 

VEC settings. 

A model based on the adaptive actions of fibroblast 

cells used in repairing tissues. SFO works on tuning how 

deep neural networks are set up and arranging edge servers 

in dynamically changing virtual edge clouds. Much as 

fibroblasts respond to the extracellular matrix (ECM), SFO 

looks for solutions in many different ways. Ongoing 

testing and evaluation of fitness ensure the best solutions 

use both energy and time efficiently. For this reason, this 

approach ensures flexibility in the way transportation 

systems are managed. 

The process of biomechanical analysis was 

strengthened each time by paying attention to interactions 

with the ECM. As it runs, the program tests different 

combinations of settings, much like fibroblasts, to improve 

its outcome. The simulated cells disperse and travel to the 

most promising areas to avoid getting caught in local 

minima. Depending on the speed and distribution of the 

particles, the algorithm updates its next action using the 

information and trends it has gathered. As a result, the 

process can handle the trade-offs between speed, 

performance, and movement better in VEC networks. 

Initialization: Within the 𝑁 -dimensional solution 

space, initialize a population of physical activity 

movements 𝑓𝑖,  , where𝑖 = 1,2, … ,𝑀, . Each movement is 

assigned a random position ( ) and velocity (𝑣𝑖). Key 

parameters such as the diffusion coefficient 𝜌 and 

movement speed 𝑠are established.   

Fitness Evaluation: For each candidate solution 𝑓𝑖   in 

the N-dimensional space, the fitness function 𝑒(𝑓𝑖)  is 

evaluated iteratively to assess the quality of each 

movement. This process aims to identify the optimal 

solution (maximum or minimum) within the evolving 

search region. Based on the fitness outcomes, the position 

(𝑏𝑖)  and velocity (𝑣𝑖)  of each movement were updated 

accordingly using the update rules given by Equations (22) 

and (23), enabling the algorithm to adaptively explore the 

solution space. 

𝑣𝑖
(𝑡+1)

= 𝑣𝑖
(𝑡)
+ (1 − 𝜌)𝑐(𝑓𝑖

(𝑡)) + 𝜌∗
𝑓𝑖(𝑡−𝜏)

||𝑓𝑖(𝑡−𝜏)||

    (22) 

Where 𝑡 is the current iteration, 𝜏   is the time delay, 

and the diffusion coefficient 𝜌 is set to 0.5.  

𝑏𝑖
(𝑡+1)

= 𝑏𝑖
(𝑡)
+ 𝑠∗

𝑣𝑖
(𝑡+1)

||𝑣𝑖
(𝑡+1)

||
  (23) 

The movement speed 𝑡 is defined as 𝑠 =
𝑠

𝑘𝑝𝑞𝐿
′, where 

"𝑘𝑝𝑞" represents the baseline movement rate and 𝐿 denotes 

the movement length. The SFO-Eff-DNN hybrid model 

optimizes edge server placement in dynamic VEC 

environments by combining adaptive search with deep 

learning. It efficiently predicts optimal configurations, 

improves convergence speed, and reduces latency and 

energy use, making it ideal for real-time intelligent 

transportation systems. 

 

4  Results and discussion  
The experimental setup uses an Intel i7 CPU. 

Simulations were conducted in Python with TensorFlow 

and the Veins platform using Cologne traffic traces. The 

dataset was split using an 80:20 ratio, where 80% was used 

for training the SFO-Eff-DNN model and 20% was 

reserved for testing to evaluate performance and 

generalization.  

The SFO-Eff-DNN model includes ReLU-activated 

layers and dropout, optimized via SFO. Performance was 

evaluated based on latency, energy use, and server 

placement accuracy. Key simulation parameters with 

values aligned to realistic VEC scenarios are presented in 

Table 2. 

Table 2: Key simulation parameters for the SFO-Eff-

DNN VEC Framework 

𝑷𝒂𝒓𝒂𝒎𝒆𝒕𝒆𝒓 𝑽𝒂𝒍𝒖𝒆 

𝑆𝑖𝑚𝑢𝑙𝑎𝑡𝑖𝑜𝑛 𝑎𝑟𝑒𝑎 1500 𝑚 ×  1500 𝑚 

𝑆𝑖𝑚𝑢𝑙𝑎𝑡𝑖𝑜𝑛 𝑡𝑖𝑚𝑒  200𝑠, 300𝑠, 400𝑠 

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑒𝑑𝑔𝑒 𝑠𝑒𝑟𝑣𝑒𝑟𝑠 8 

𝑇𝑟𝑎𝑛𝑠𝑚𝑖𝑠𝑠𝑖𝑜𝑛 𝑝𝑜𝑤𝑒𝑟 25 𝑚𝑊, 30 𝑚𝑊, 35 𝑚𝑊 

𝑅𝑆𝑈 𝑎𝑛𝑡𝑒𝑛𝑛𝑎 ℎ𝑒𝑖𝑔ℎ𝑡 5 𝑚 

𝑅𝑒𝑐𝑒𝑖𝑣𝑒𝑟 𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 −100 𝑑𝐵𝑚 

𝑀𝑒𝑠𝑠𝑎𝑔𝑒 𝑠𝑖𝑧𝑒 100 𝑏𝑖𝑡𝑠 

𝑀𝑒𝑠𝑠𝑎𝑔𝑒 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 2 𝐻𝑧 

𝐷𝑎𝑡𝑎 𝑟𝑎𝑡𝑒 10 𝑀𝑏𝑝𝑠, 20 𝑀𝑏𝑝𝑠, 30 𝑀𝑏𝑝𝑠 

𝑉𝑒ℎ𝑖𝑐𝑙𝑒 𝑠𝑝𝑒𝑒𝑑 𝑟𝑎𝑛𝑔𝑒 0 –  100 𝑘𝑚/ℎ 

𝐸𝑑𝑔𝑒 𝑠𝑒𝑟𝑣𝑒𝑟 𝐶𝑃𝑈 𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦 3.5 𝐺𝐻𝑧 

𝐸𝑑𝑔𝑒 𝑠𝑒𝑟𝑣𝑒𝑟 𝑚𝑒𝑚𝑜𝑟𝑦 32 𝐺𝐵 

 

4.1  Offloading ratio 
Using time on the x plane and the percentage of tasks 

offloaded from the vehicle to edge servers on the y plane, 

Figure 3 shows the offloading ratio (%) in the VEC system 

over 10 minutes. Starting at 75%, the offloading ratio 

steadily rises to 89%, reflecting an increasing reliance on 

edge computation. This upward trend is attributed to 

enhanced network conditions, adaptive optimization by the 

SFO-Eff-DNN framework for energy efficiency, or the 

growing complexity of vehicular tasks that necessitate 

edge processing. Tracking this metric is crucial in the 
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research context, as a higher offloading ratio signifies 

more efficient utilization of edge resources, which directly 

contributes to lowering vehicle energy consumption and 

accelerating task processing, thereby improving overall 

system performance in dynamic ITS environments. 

 

Figure 3: Offloading ratio over time  

 

4.2  SFO-Eff-DNN Pareto Front in VEC  
In VEC, the Pareto front for the suggested SFO-Eff-

DNN illustrates the relationship between latency and 

energy use. Figure 4 illustrates that with latency increasing 

from 50 ms to 70 ms, the energy consumed decreases from 

about 70 J to 40 J, showing an inverse relationship. All 

points on the curve are Pareto-optimal, as enhancing one 

factor would cause a drop in the other. Because of the 

model's diversity, it is possible to choose configurations for 

specific needs, such as real-time applications or limited-

power cases, proving its effectiveness and adaptability. 

 

Figure 4: Pareto front diversity of SFO-Eff-DNN in VEC 

 

4.3  Convergence Behavior of SFO-Eff-DNN 
Figures 5 (a) and (b) illustrate the convergence 

behavior of the SFO-Eff-DNN algorithm over 100 

optimization iterations for energy consumption and latency. 

In Figure (a), the minimum energy consumption (blue line) 

rapidly drops from approximately 0.34 to 0.29 within the 

first 10 iterations and then stabilizes, indicating that the 

algorithm quickly identifies energy-efficient 

configurations. The average energy consumption (green 

dashed line) also follows a similar decreasing trend, 

gradually converging toward the minimum, which reflects 

the population's collective improvement. Similarly, in 

Figure (b), during the first iterations, the latency drops 

rapidly and then becomes more stable at a much lower 
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level. The average latency also decreases and stabilizes 

around the same value, highlighting consistent 

performance improvement across the solution space. 

Overall, these trends confirm that SFO-Eff-DNN achieves 

efficient and simultaneous convergence toward optimal 

energy and latency trade-offs. 

 

Figure 5: Convergence Behavior of SFO-Eff-DNN (a) energy conception and (b) latency 

 

4.4  Performance analysis  
A comparison of several optimization techniques 

based on their energy consumption and latency 

performance in vehicular edge computing scenarios is 

shown in Table 3. Among the evaluated techniques, 

Particle Swarm Optimization (PSO) (Surayya et al., 2025), 

Teaching–Learning-Based Optimization (TLBO) (Surayya 

et al., 2025), and Ant Colony Optimization (ACO) 

(Surayya et al., 2025), the proposed SFO-Eff-DNN method 

demonstrates the energy consumption and the latency. This 

highlights the superior efficiency and responsiveness of 

the SFO-Eff-DNN framework, making it highly suitable 

for real-time, energy-aware edge deployments in dynamic 

vehicular environments. Figure 6 demonstrates the results 

of the performance analysis.   

 

Table 3: Comparison of optimization methods by 

energy consumption and latency 

Methods Energy 

Consumption 

(J) 

Latency (S) 

PSO (Surayya 

et al., 2025) 

0.3535 40 μs 

TLBO 

(Surayya et 

al., 2025) 

0.3546 40 μs 

ACO 

(Surayya et 

al., 2025) 

0.3517 60μs 

SFO-Eff-DNN 

(Proposed) 

0.3480 30 μs 

 

Figure 6: Comparison methods by energy 

consumption and latency 

 

Analyzing different optimization methods for their 

energy consumption and latency when used in VEC. SFO-

Eff-DNN shows better results than other models by using 

the least amount of energy (0.3480 J) and having the 

shortest latency (30 μs). Here, microseconds (μs) are used, 
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since 1 μs is a millionth of a second, which is needed to 

ensure fast response times vital in real-time VEC systems. 

For energy usage, PSO and TLBO lead with 0.3535 J and 

0.3546 J, respectively, but both have a latency of 40 μs, 

while ACO uses 0.3517 J with the highest latency of 60 μs. 

The results demonstrate that SFO-Eff-DNN offers better 

results in real-time, energy-sensitive VEC applications. 

A comparison of task drop rates for various placement 

techniques in dynamic VEC situations is shown in Table 4 

and Figure 7.  In comparison to the generic method's 2.90% 

(Khamari et al., 2022) dropped task rate, the suggested 

SFO-Eff-DNN model performs better, attaining a dropped 

task rate of just 1.83% (Proposed). In latency-sensitive, 

high-mobility edge computing systems, this research 

demonstrates how well the SFO-Eff-DNN optimises server 

workload allocation and lowers service denial. 

 

Table 4: Comparison of task dropped rate between 

placement strategies in VEC environments 

 

Placement strategies Dropped Tasks (%) 

 

generic method 

(Khamari et al., 

2022) 

 

2.90% 

SFO-Eff-DNN 

(Proposed) 

1.83% 

 

 
 

Figure 7: Comparison of Dropped Task Rates for 

Generic Method and SFO-Eff-DNN 

 

4.5   Discussion 
By optimizing the placement of edge servers and DL 

networks, the SFO-Eff-DNN in VEC reduces latency and 

conserves energy. The technique has some problems with 

responding to changes in vehicles and adapting to sudden 

network changes in VEC settings (Bi et al., 2020). While 

VECMAN saves energy by sharing resources among 

electric vehicles, it is difficult for it to accurately predict 

where vehicles are and to schedule them in situations that 

are constantly changing (Bahreini et al., 2021). As both 

PSO and TLBO (Surayya et al., 2025) prioritize low 

energy over low latency, they may not respond fast enough 

when ultra-low latency is necessary. ACO (Surayya et al., 

2025) can distribute solutions equally, but its slow 

execution means it is not suitable when time is critical. A 

PSO, TLBO, and ACO lead with low energy of 0.3535 J, 

0.3546 J, and 0.3517 J. Using the SFO-Eff-DNN model, 

energy costs and latency can be cut down at the same time, 

compared to older versions. Compared to the generic 

method's 2.90% dropped task rate (Khamari et al., 2022), 

the SFO-Eff-DNN's dropped task rate was only 1.83%, 

indicating its resilience in workload balancing and edge 

resource utilisation in dynamic vehicular situations. Due to 

advanced techniques and deep learning, the system reacts 

to updates in vehicles and can quickly and accurately 

configure servers for VEC applications. 

The computational load brought on by the 

hybridization of deep learning and evolutionary 

optimization constitutes one of the key issues, especially 

during the early phases of training and adaption.  Despite 

its potential for convergence efficiency, iterative 

optimization can be resource-hungry on edge nodes with 

constrained computing capacity. Another problem is the 

system's scalability in high-density vehicle networks.  

While the model works well for simulations of 

intermediate scale, more study is needed to determine how 

it responds and operates in large, real-time vehicular 

systems with hundreds of nodes. These limitations 

highlight the significance of future studies that focus on 

distributed training practices and lightweight optimization 

versions that can sustain performance without increasing 

compute demands in practical applications. 

 

5 Conclusion  
VEC is a pattern that encourages cloud computing 

capabilities closer to the network edge services needed for 

low-latency services, such as auto-corrective driving 

support, real-time traffic management, and location-based 

applications. The proposed SFO-Eff-DNN framework is 

used to optimize deep learning for VEC using modern 

evolutionary algorithms. To deal with the problem of 

placing servers at the edge of wireless networks in vehicles, 

both Synergistic Fibroblast Optimization and deep neural 

networks were used. It makes use of real travel data to 

manage how quickly it responds and how much energy it 

uses, adjusts to any changes in the network, and provides 

quick results. The data from experiments reveals that SFO-

Eff-DNN works with 30 μs latency, 0.3480 J energy 

consumption, and only 1.83% dropped tasks, making it 

well-suited for speedy and efficient smart transportation. It 

strongly supports and adapts to the new directions being 

taken in VEC deployments. Using simulated movement 

and experimentation usually does not reflect real-world 

events or problems, meaning their practical use may not be 

as effective. 

Future scope  
Future research should integrate real-time traffic incident 

data and 5G network slicing to further enhance adaptability. 

Extending the framework with federated learning for 
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privacy-preserving model updates across distributed 

vehicles, and exploring hybrid optimizers that combine 

SFO with reinforcement learning could improve 

robustness against unforeseen network disruptions and 

accelerate convergence in large-scale, heterogeneous VEC 

deployments. 
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