
https://doi.org/10.31449/inf.v49i12.9433 Informatica 49 (2025) 345–360 345

Deep Neural Network Architecture Optimization for Edge

Computing Based on Evolutionary Algorithms

Li Wang 1, Xiuming Cheng 2, *

1School of Information and Electronics Engineering, Jiangsu Vocational Institute of Architectural Technology, Xuzhou

221116, Jiangsu, China
2School of General Courses, Jiangsu Vocational Institute of Architectural Technology, Xuzhou 221116, Jiangsu, China

E-mail: xiuming_cheng@hotmail.com

*Corresponding author

Keywords: vehicular edge computing (VEC), edge server placement, network condition adaptation, synergistic

fibroblast optimized efficient deep neural network (SFO-Eff-DNN)

Received: May 28, 2025

Vehicular Edge Computing (VEC) is a crucial component of Intelligent Transportation Systems (ITS),

enabling low-latency and energy-efficient services by offloading computation to the network edge.

However, optimizing system performance in such environments requires careful edge server placement,

especially in dynamic vehicular contexts characterized by high mobility and unpredictability. Achieving

optimal performance under the constraints of latency, energy consumption, and mobility remains a

significant challenge. This research proposes a comprehensive framework for optimizing deep learning

architectures in VEC, utilizing advanced evolutionary algorithms. Building on real-world vehicular

mobility traces, the framework employs the Synergistic Fibroblast Optimized Efficient Deep Neural

Network (SFO-Eff-DNN) to identify optimal configurations and edge server placements. The dataset

includes details about task offloading under different mobility levels, the data was preprocessed using

Min-Max normalization to ensure smooth learning. Among the algorithms evaluated, Synergistic

Fibroblast Optimization (SFO) consistently produces well-distributed Pareto-optimal solutions and

effectively handles trade-offs between competing objectives. The DNN is utilized to learn complex patterns

in vehicular mobility and network conditions, which helps predict the best configurations for edge server

placements. The proposed system efficiently minimizes latency and energy consumption while ensuring

scalability and adaptability to real-world scenarios. Results demonstrate that SFO-Eff-DNN achieves

superior convergence speed and energy efficiency, making it well-suited for time-sensitive deployments.

Comparative simulations validate that this approach outperforms traditional methods, providing valuable

insights for deploying efficient and robust edge intelligence architectures in next-generation intelligent

transportation systems.

Povzetek: Ta raziskava se osredotoča na področje robnega računalništva v vozilih (VEC), kar je ključno

za zagotavljanje nizke zakasnitve v inteligentnih transportnih sistemih. Vsebina prispevka predstavlja

hibridni okvir SFO-Eff-DNN, ki združuje globoko učenje in evolucijsko optimizacijo za reševanje

kompleksnega problema postavitve robnih strežnikov in prilagajanja arhitekture nevronske mreže. Glavni

dosežki vključujejo rešitev večciljne optimizacijske naloge, ki uspešno minimizira zakasnitev in porabo

energije v dinamičnem voznem okolju.

1 Introduction

An ITS enhances the safety of moving vehicles and

hikers within the vicinity. In recent times, problems

regarding road traffic safety have increased and accidents

continue to occur regularly (Wan et al., 2020). Fortunately,

a growing number of related technologies have been

applied to the transportation industry as wireless

communication and sensor technologies have developed

and matured in recent years. The increased need for road

efficiency and safety in intricately linked road systems has

drawn a lot of attention to ITS in recent years (Boukerche

et al., 2020). The exponential growth in ITS has resulted in

an increased demand for responsive, energy-efficient, and

intelligent processing solutions that can manage the

dynamic vehicular environment (Elassy et al., 2024). VEC

is a pattern that brings the cloud computing capacities

closer to the network edge and is a likely solution to

service demands for low-latency services, such as auto-

corrective driving support, real-time traffic management,

and location-based services (Alhilal et al., 2024).

Connected vehicles benefit from VEC by shortening the

response time of their systems and helping them save

power by assigning tasks to local servers (Chougule et al.,

mailto:xiuming_cheng@hotmail.com

346 Informatica 49 (2025) 345–360 L. Wang et al.

2024). Greater safety, dependability, efficiency in

transportation, fast action and network reach make smart

and sustainable driving networks possible (Talpur and

Gurusamy, 2021). To minimize the time for data exchanges

and energy used in vehicles, VEC allows vehicles to

perform certain tasks on edge servers nearby. As a result,

connected vehicles receive a much better level of service

(Zaki et al., 2024). Due to their speed and patches of

unpredictability, the movement of vehicles complicates

VEC systems (Zhao et al., 2023). The greatest aspect to

focus on is the best locations and times for edge servers so

that moving vehicles can be handled efficiently (Shen et

al., 2021). With many vehicles moving, topology shifts

taking place and numerous demands for services, generic

or manual placements are not usually enough. Similarly,

managing various goals, including keeping reaction times

quick, using as little energy as possible, maintaining

flexibility, and scaling up, remained prominent in network

research (Peyman et al., 2023). As simulation traces were

used, working with many nodes and requiring some

attention to used parameters, this approach might face

issues when put to practical use.

Deep learning and evolutionary optimization are used

in the design to choose the best locations for edge servers.

Specifically, the SFO-Eff-DNN approach allows the

system to recognize patterns using a DNN and search

globally using an SFO algorithm. This framework

processes actual data from vehicle movement to

understand vehicle movements and the state of the network,

as well as select the best position for the servers. The key

contribution of the research is as follows.

In extremely dynamic vehicle contexts, it was best to

formulate the edge server placement problem as a multi-

objective optimization task that simultaneously reduces

the latency and energy consumption.

To create the SFO-Eff-DNN framework, which

combines biologically inspired optimization with effective

deep learning to deliver scalable and flexible placement

solutions.

To compare the system against traditional techniques

and perform comprehensive simulations using genuine

mobility datasets, showcasing notable advances in

placement accuracy, energy economy, and convergence

speed.

The remainder of this research is separated into the

following sections: the literature review on edge server

placement and the intelligent optimization techniques in

VEC are reviewed. The phrasing of the problem and the

system model are then given in detail, as well as the

description of the proposed SFO-Eff-DNN framework.

The next section will discuss the experimental settings and

performance evaluations, and the results and insights will

then be discussed. Lastly, the research is concluded with

directions for further research.

The introduction highlights the significant importance

of edge servers' placement efficiency in the VEC for

improving ITS performance. The literature review reveals

the weaknesses of existing methods, especially their

inability to handle the dynamism of vehicular mobility

effectively in the process of optimizing latency and energy

consumption.

2 Related work
This section discusses the positioning of border

servers within the VEC, including the traditional heuristics,

deep learning (DL), evolutionary algorithms, the

challenges in dynamic vehicular environments, and the

recent data-driven and optimization-based developments

of this space for better adaptability and performance. To

fix the issue of resource assignment in cloud computing

Infrastructure as a Service (IaaS), an Equilibrium

Optimization (EO)-based evolutionary Recurrent Neural

Network (RNN) was presented (Ebrahimi Mood et al.,

2025). This model was designed to give virtual machines

an optimal number of physical machines by improving

how they work in general and by reducing their complexity.

The simulations were faster and more reliable than the

conventional ones.

The significance of edge computing topics such as

selecting the right tasks for offloading, allocating resources,

and ensuring good Quality-of-Service and Quality-of-

Experience (Vijayakumar et al., 2021). The challenges in

optimizing and scheduling were solved with models and

DL techniques based on evolution. This approach helps to

make better decisions and effectively manage resources in

environments at the edges of a network. Yang et al., (2021)

introduced a method that can manage both accuracy and

the speed of neural networks on edge devices. An estimate

of resource use latency created from the profiling model

and the Pareto Bayesian search was driven by constraints

on accuracy and latency. Without sacrificing accuracy, the

inference process was 94.71% faster and the search

process became 18.18% more efficient.

An energy-efficient DNN offloading was developed

under deadline and budget constraints in edge-cloud

environments; this optimization modeling was performed

using an Enabled Hybrid Chaotic Evolutionary Algorithm

Dynamic Voltage Frequency Scaling (HCEA-DVFS) (Li et

al., 2024). The Archimedes Optimization and Simulated

Annealing were applied for global exploration, and local

search improvement based on the Genetic Algorithm (GA)

chaotic strategy. Experiments proved that HCEA-DVFS

decreased energy consumption by 7.93% to 19.38%

relative to baseline techniques on a variety of DNN-based

apps. A suitable deep learning model and a proper method

for training the effective training scheme for the deep

neural network (ETS-DNN) were created to allow real-

time monitoring in an Internet of Medical Things (IoMT)

system that used edge computing (Pustokhina et al., 2020).

Optimization of the neural network with autoencoders and

softmax layers was achieved by using a Hybrid Modified

Water Wave Optimization (HMWWO) algorithm.

Examination of simulation results indicated that ETS-

DNN performed better when processing prompts and

making accurate diagnoses. Table 1 demonstrates the

summary of the literature review.

Deep Neural Network Architecture Optimization for Edge… Informatica 49 (2025) 345–360 347

Table 1: Related work VEC optimization methods and outcomes
Methods Aim Outcome Challenge Author/Ref.

DeepMaker

Framework

(Multi-

objective

Evolutionary

Approach)

Automatically design

robust DNN architectures

for embedded devices

Achieved up to 26.4x compression on

CIFAR-10 with only 4% accuracy

loss; optimized network size and

accuracy for limited resources

Designing efficient DNNs

that fit resource

constraints while

maintaining accuracy

(Loni et al., 2020)

Internet of

Things (IoT)-

Defender

(Modified

GA)/ Deep

long-short-

term memory

(LSTM)

To detect cyberattacks in

IoT networks using an

efficient, lightweight

edge-based IDS

Achieved higher accuracy, superior

detection rate, greater precision, false

alarm rate, mIoU, and training time

on BoT-IoT dataset; effective real-

time deployment on Raspberry Pi

devices

Addressing IoT security

with limited resources,

class imbalance, and low

hardware security in edge

computing environments

(Saheed et al., 2024)

Genetic

Simulated

Annealing-

based Particle

Swarm

Optimization

(GSP)

To reduce latency and

energy usage in smart

mobile devices by

partially offloading

Achieved lower energy consumption

and faster convergence compared to

three baseline methods using real-life

data; provided joint optimization of

offloading ratio, bandwidth, and

transmission power allocation

Balancing limited

resources of SMDs with

high communication costs

and maintaining energy-

efficient service

(Bi et al., 2020)

Greedy

Algorithm

and GA for

Task

Scheduling

Optimizing task

scheduling in cloud-edge

systems to reduce the

average response time of

DNN-based apps

Achieved near-optimal scheduling

performance with reduced average

response time; GA outperformed

greedy in accuracy but required more

computation time.

Reducing excessive

delays during DNN task

offloading to enhance the

vehicle experience

(Chen et al., 2020)

Particle

Swarm

Optimization

(PSO)

to efficiently and quickly

transfer activities from

resource-constrained edge

devices to MEC servers in

IIoT contexts

Reduced MEC server delay, balanced

energy consumption, and enabled

effective resource allocation

compared to GA and SA methods

Designing a low-delay

and energy-efficient

offloading technique in a

system with several

vehicles and MECs

(You et al., 2021)

Differential

Evolution

(DE)

To maximize IoT edge

computing task clustering

and scheduling

Outperformed the Firefly Algorithm

and PSO in reducing execution time

and improving system efficiency and

stability under heavyweight

workloads

Clustering and scheduling

tasks effectively in

heterogeneous IoT edge

environments

(Yousif, et al., 2024)

Greedy

Algorithm +

Lagrangian

Dual +

Adaptive

Harmony

Search in

federated

learning (FL)

To minimize the worst-

case cost of FL in VEC by

optimizing computation,

transmission, and local

model accuracy

Achieved convergence and effective

trade-off between cost and fairness

through dynamic vehicle selection

and resource allocation optimization

Heterogeneous

capabilities and data

quality among vehicles;

energy and time

constraints in VEC

(Xiao et al., 2021)

VECMAN

(Resource

Selector +

Energy

Manager

Algorithms)

To improve energy

efficiency in VEC

systems by managing

resource sharing among

EVs

Achieved 7–18% energy savings vs.

local execution and ~13% vs. RSU

offloading by selecting participating

vehicles and optimizing sharing

durations

Uncertainty in future

vehicle locations;

difficulty in determining

optimal resource sharing

and energy management

(Bahreini et al., 2021)

VaCo

(Vehicle-

assisted

Collaborative

Caching

System

To enhance intelligent

service deployment in

VEC by using vehicles'

storage for collaborative

caching

VaCo effectively utilizes vehicle

resources, reducing the service failure

rate and cost. Real-world dataset

evaluation confirms its ability to

balance benefits for all.

real-time scheduling of

vehicle storage; benefit

evaluation under dynamic

load

(Jiang et al., 2025)

HSCoNAS

(Hardware-

aware

Evolutionary

NAS

Framework)

Optimize DNN

architecture for accuracy

and latency on edge

devices

Achieved strong accuracy–latency

trade-offs on ImageNet across CPU,

GPU, edge

High search overhead and

runtime approximation

challenges

(Luo et al., 2021)

LENS

(Latency-

aware NAS

for Edge–

Incorporate wireless

communication into NAS

for hierarchical systems

Improved Pareto front performance

by 76.47% (energy) and 75%

(latency)

Scalability issues and

fixed-tier constraints
(Odema et al., 2021)

348 Informatica 49 (2025) 345–360 L. Wang et al.

Cloud

Systems)

Federated

Learning in

Edge

Computing

(Survey)

Review implementation,

taxonomy, and challenges

of FL in EC

Classified FL methods, hardware

constraints, and case studies;

identified open issues

Synchronization delays,

hardware resource limits
(Abreha et al., 2022)

RL-Dynamic

(Reinforcement

Learning

Framework)

To optimize service

placement in vehicular

networks by considering

mobility and dynamic

service demands

Reduced delay and improved edge

server utilization compared to static

placement; fairness trade-offs

demonstrated

Model complexity and

vehicle mobility

unpredictability

(Talpur and Gurusamy,

2021)

2.1 Problem statement
Optimizing resources and edge server placement in

VEC as a result of high mobility, variable networks, and

few resources was hard. Usually, greedy algorithms and

other traditional methods do not work well in

environments that change dynamically (Chen et al., 2020).

PSO faces the issues of early convergence and fixation

when working with multiple vehicles (You et al., 2021).

DE was not suitable for clustering tasks in real time on

heterogeneous edge systems due to its issues with

scalability and computation (Yousif et al., 2024).

Therefore, the proposed framework SFO-Eff-DNN was

used to learn how devices move and decide on offloading.

It minimizes delays and uses less power, all while offering

adaptability, scalability, and fast convergence in changing

VEC networks.

3 Methods
3.1 Architectural overview and problem

formulation
The VEC would feature wireless connection,

permanent edge servers, and mobility vehicles. The

simulation's rise can be increased by using vehicles to

carry out new missions on surrounding servers. As

individuals move around and the network evolves, it is

important to find these servers with practical jobs and

make sure they supply energy. The problem is solved by

optimizing multiple objectives, with the main variables

being the location of servers and the way vehicles connect

to them throughout the day.

A) Architectural components

The architecture of the VEC system consists of three

main layers, such cloud, VEC, and vehicle, Cloud storage

allows for convenient processing and provides a backup

system. Figure 1 illustrates the architecture of VEC. The

VEC layer includes a network of Roadside Units (RSUs)

with edge servers, allowing local computing and rapid

exchanges of data. Intelligent vehicles make up the vehicle,

layer and handle task generation and offloading depending

on the current network and mobility issues. Environmental

sensors like Global Positioning System (GPS) and cameras

in vehicles provide live data that is key for improved traffic

management and safety. They enable Vehicle-to-Vehicle

(V2V) and Vehicle-to-RSU (V2R) communication and

were able to process or offload tasks according to resource

availability. Vehicles also allow for caching of data in

memory, which makes the system work more responsively.

Deep Neural Network Architecture Optimization for Edge… Informatica 49 (2025) 345–360 349

Figure 1: The architecture of the VEC

Vehicle Definition: The vehicle 𝑉 defined as a six-

tuple is expressed in equation (1).

𝑽 = {𝑽𝒋𝒅, 𝑽𝒔𝒕, 𝒗𝑲, 𝑮, 𝑱[𝒓]} (1)

Each vehicle 𝑉 is identified by its 𝑉𝑗𝑑, can be activated

or deactivated (𝑉𝑠𝑡), has a type of task (𝑣𝑗,), is located by

Simulation of Urban Mobility (SUMO’s) data 𝐾 =

{𝑘𝑤 , 𝑘𝑧, 𝑘𝑦,𝑠𝑡}, is equipped with certain hardware (𝐺), and

is running several active instances of applications 𝐽[𝑟].
Vehicle Hardware Specifications and Role of RSU: a

vehicle’s hardware specifications 𝐺are represented as a set

in equation (2).

𝑮 = {𝑶,𝑵[𝒓], 𝑨, 𝑻, 𝒅, 𝒆} (2)

Each vehicle’s hardware profile 𝐺 includes processor

specs (𝑂), memory configuration 𝑁[𝑟] distinguishing

central processing unit (CPU)/Graphics processing unit

(GPU usage, battery capacity (𝐴), installed sensors (𝑇),

communication interfaces (𝑑) such as Wi-Fi, Long Term

Evolution (LTE), or 5G New Radio (NR), and

communication frequency range (𝑒). These parameters

influence the vehicle’s ability to process or offload

computational tasks.

RSUs were placed along roadways that help to process

and store data close to the network. RSUs were better at

processing and managing data than vehicles and at storing

and communicating with the internet whenever necessary.

It provides quick answers to requests in maps, and videos,

and controls traffic while edge servers rely on them.

Edge Server: An edge server 𝐹 is defined as a three-

tuple in equation (3).

𝑭 = {𝑭𝒋𝒄, 𝑫, 𝑲} (3)

The edge server is identified by a unique ID (𝐹𝑗𝑐) and

characterized by its computational capacity (𝐷), which

includes memory, processing speed, and storage modeled

similarly to vehicle hardware specifications. Its

geographical location (𝐾) is also a key attribute for optimal

placement within the VEC network.

Properties of edge servers in VEC

Dynamic vehicle assignment: Vehicle assignments to

clusters at any time 𝑠 were independent of previous

assignments, allowing the system to adapt in real-time to

the high mobility and changing network topology of

vehicular environments.

Dedicated edge server assignment: Each vehicular

cluster was mapped indirectly to a single edge server,

ensuring exclusive service per cluster. This approach

minimizes resource conflicts and supports the demanding

performance requirements of VEC applications.

Many-to-one vehicle-to-server mapping: Multiple

vehicles can offload computational tasks to the same edge

server, enabling efficient resource utilization and

centralized task processing within the VEC framework.

Data from edge servers is uploaded to remote data

centers, known as cloud servers, which supply large

amounts of computing and storage services over a large

area. Using information from vehicles and edge servers,

350 Informatica 49 (2025) 345–360 L. Wang et al.

cloud services can manage the network from one central

place and take the best actions. The combination of

vehicular terminals, edge servers, and cloud infrastructure

makes the VEC system both strong and capable of

handling the needs of intelligent transportation

management.

With the architectural components established, the

server placement strategy in the proposed VEC framework

can now be formally defined to optimize performance

under dynamic vehicular conditions.

Edge server placement: In the VEC model, the

placement of edge servers was modeled by a bipartite

graph with two sets: 𝐹is for edge servers, while 𝑉 is for

client vehicles. Each server 𝑓 ∈ 𝐹 comes with a defined

𝑊𝑚𝑎𝑥𝑓 , showing its maximum vehicle capacity.

Communication cost indicates how well a vehicle v works

with a server e due to the effects of latency 𝐾𝑉𝑓 and energy

consumption 𝐹𝑉𝑓 . The objective is to determine a good

subset 𝐹1 out of 𝐹 and describe the mapping𝜙: 𝑉 → 𝐹1 :,
assigning each vehicle to a server to minimize both the

total delay and the power used across the system.

Average latency:𝐾ˉis used to mean the average time

taken for vehicles to communicate with edge servers while

offloading their tasks. It helps to measure the effectiveness

of server placement and matching vehicles to servers in the

VEC framework under changing mobility conditions. It is

computed as in equation (4).

𝑲 =
𝟏

|𝑽|
∑ 𝑲𝒗𝒇𝒗∈𝑽 (4)

The ∣ 𝑉 ∣ denotes the total number of vehicles within

the VEC network. 𝐾𝑣𝑓 represents the communication

latency encountered by vehicle 𝑣 during task offloading to

edge server 𝑓, defined as equation (5).

𝑲𝒗𝒇 = 𝑺𝒓𝒆𝒄𝒆𝒊𝒗𝒆 − 𝑺𝒔𝒆𝒏𝒅 (5)

In this context, 𝑆𝑠𝑒𝑛𝑑indicates the timestamp when a

vehicle initiates the task offloading request, while 𝑆𝑟𝑒𝑐𝑒𝑖𝑣𝑒

marks the moment the vehicle receives the processed

response from the edge server.

The goal of the edge server placement was to

minimize the average latency 𝐾ˉ, ensuring efficient, low-

latency communication for all vehicles within the network.

B) Model formulation

The edge server placement issue in a VEC network is

defined in this section to minimize overall energy usage

and delay through optimal edge server placement. The

decision variables, objective functions, and constraints

involved in the problem formulation are detailed below.

Consider a fixed of vehicles 𝑉 = {𝑣₁, 𝑣₂. . . 𝑣ₘ}, a set

of edge servers 𝐹 = {𝑓1,𝑓2,…,𝑓𝑛} , anda list of possible

deployment sites 𝐽 = {𝑗1,𝑗2,…,𝑗𝑛} for placing edge servers

within the network.

1) Decision Variables:

To model the edge server placement in the VEC

network, define decision variables that indicate whether an

edge server is deployed at a specific location and how

vehicles were assigned to these servers for optimal

performance. 𝐴𝑣𝑓 is a binary decision variable that

indicates the connection status between vehicle 𝑣 and edge

server 𝑒 in equation (6).

𝐴𝑣𝑓 =

{
𝟏, 𝒊𝒇 𝒗𝒆𝒉𝒊𝒄𝒍𝒆 𝒖 𝒊𝒔 𝒄𝒐𝒏𝒏𝒆𝒄𝒕𝒆𝒅 𝒕𝒐 𝒆𝒅𝒈𝒆 𝒔𝒆𝒓𝒗𝒆𝒓 𝒇
𝟎, 𝒐𝒕𝒉𝒆𝒓𝒘𝒊𝒔𝒆

(6)

𝐴𝑣𝑓 is a binary decision variable indicating the

deployment status of an edge server at location  𝑗 in

equation (7).

𝐴𝑓𝑗 =

{
1, 𝑖𝑓 𝑎𝑛 𝑒𝑑𝑔𝑒 𝑠𝑒𝑟𝑣𝑒𝑟 𝑖𝑠 𝑝𝑙𝑎𝑐𝑒𝑑 𝑎𝑡 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛 𝑗

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
(7)

2) Parameters

The parameters in the formulation define the system

characteristics essential for optimizing edge server

placement in the VEC network. The energy consumption

for a vehicle 𝑣 to offload computational tasks to an edge

server e is denoted as 𝐹𝑣𝑓. In equation (8).

𝐹𝑢𝑓 = (𝑂𝑠𝑤 + 𝑂𝑞𝑤). 𝑆𝑐𝑜𝑚𝑚 (8)

Where 𝑂𝑠𝑤is the vehicle’s transmission power, 𝑂𝑞𝑤is

the reception power, and 𝑆𝑐𝑜𝑚𝑚 is the time taken for the

communication exchange. This metric helps quantify

energy efficiency in task offloading scenarios within the

VEC environment. The latency experienced by a vehicle

𝑣 when offloading tasks to an edge server e is denoted as

𝐾𝑣𝑓 . Equation (9) defines it as the interval of time between

the sending of the offloading request and the receiving of

the processed response.

𝑲𝒗𝒇 = 𝑹𝒆𝒄𝒆𝒊𝒗𝒆 𝑻𝒊𝒎𝒆 − 𝑺𝒆𝒏𝒅 𝑻𝒊𝒎𝒆 (9)

In the VEC environment, key parameters include 𝑂𝑓,

the active power consumption of edge server  𝑓; 𝑐𝑣𝑓, the

distance between vehicle  𝑣  and edge server 𝑓 ; 𝐷 , the

maximum number of servers on the edge deployable in the

network; and  𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦𝑖 , the maximum number of

vehicles that a server on the edge  𝑖  can handle. These

factors guide optimal server placement.

3) Objective Function

To minimize overall energy consumption and reduce

total latency in the VEC network.

Deep Neural Network Architecture Optimization for Edge… Informatica 49 (2025) 345–360 351

Minimize Total Energy Consumption: Total energy

consumption includes the energy used by vehicles to

offload tasks (𝐹𝑣𝑓) and the power consumed by active edge

servers (𝑂𝑓). The objective is to minimize the sum of

vehicle offloading energy and edge server power across the

network in equation (10).

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 ∑ ∑ 𝐴𝑣𝑓𝐹𝑣𝑓
𝑀
𝑓=1

𝑁
𝑣=1 +

 ∑ ∑ 𝐴𝑓𝑗𝑜𝑓
𝑚
𝑗=1

𝑚
𝑓=1 (10)

Where 𝑜𝑓 and 𝐴𝑓𝑗 indicates vehicle-to-server

connections and server placements, respectively.

Minimize Total Cumulative Latency: To reduce the

overall communication delay experienced by vehicles

when offloading tasks to edge servers. This total latency is

calculated as the sum of the individual latencies 𝐾𝑣𝑓 ,

defined by the time difference between sending the task

and receiving the response expressed in the following

equation (11).

𝑴𝒊𝒏𝒊𝒎𝒊𝒛𝒆 ∑ ∑ 𝑨𝒗𝒇𝑲𝒗𝒇
𝒏
𝒖=𝟏

𝒎
𝒇=𝟏 (11)

Where 𝐴𝑣𝑓 indicates if vehicle 𝑣 offloads to server 𝑓,

and 𝐾𝑣𝑓 is the latency between them.

4) Constraints

The optimization problem includes constraints to

guarantee efficient deployment of edge servers and proper

assignment of vehicles, ensuring that server capacities

were not exceeded and system resources were utilized

effectively.

Server Capacity Constraint: Each edge server has a

limited capacity, restricting the number of vehicles it can

serve. The total vehicles assigned to server 𝑓 must not

exceed its capacity𝐷𝑓, ensuring balanced load distribution

and preventing server overload in equation (12).

∑ 𝑨𝒗𝒇 ≤ 𝑫𝒇
𝑴
𝒖=𝟏 ∀𝒇 (12)

Vehicle Assignment Constraint: To ensure proper task

offloading, each vehicle must be assigned to exactly one

edge server. This guarantees that every vehicle connects to

a single server for processing its tasks, expressed as

equation (13).

∑ 𝐴𝑣𝑓
𝐹
𝑓=1 = 1 ∀𝜈 (13)

Restrictions on Edge Server Positioning: The

deployment of edge servers within the network is restricted

by a maximum allowable number, denoted by 𝐷 . This

constraint confirms that the total quantity of placed edge

servers does not exceed 𝐷, and is formulated as equation

(14).

∑ ∑ 𝐴𝑓𝑗 ≤ 𝐷𝑚
𝑗=1

𝑚
𝑓=1 (14)

Binary Constraints: The decision variables 𝐴𝑣𝑓 and

𝐴𝑓𝑗 are binary, reflecting the discrete nature of the problem.

Specifically, a vehicle 𝑣 is either connected to an edge

server 𝑓 or not, and an edge server is either deployed at

location 𝑗 or not. These binary constraints ensure clear and

unambiguous decision-making in the edge server

placement and vehicle assignment process within the VEC

network in equations (15) and (16).

𝐴𝑢𝑓 ∈ {0,1}∀𝑢,𝑓 (15)

𝐴𝑓𝑗 ∈ {0,1}∀𝑓,𝑗 (16)

3.2 Dataset
For a Vehicular Edge Computing scenario, this 5,811-

record task offloading event dataset is used to validate the

effectiveness of the proposed SFO-Eff-DNN system. This

dataset includes information on task arrival/completion

time, processing time, network latency, energy

consumption, and vehicle node mobility. The model can

learn intricate mobility and network behaviors because to

this dataset's capture of dynamic, real-world vehicle

settings. This is in line with the framework's goal of

optimizing edge server placements and deep neural

network settings. It encourages scalability, responsiveness,

and efficiency for real-time VEC and smart mobility by

facilitating an equitable examination of latency vs. energy

trade-offs.

Source:

https://www.kaggle.com/datasets/programmer3/vec-edge-

server-offloading-dataset

3.3 Preprocessing Using Min-Max

Normalization
To create an energy-efficient optimum structure of a deep

neural network for real-time VEC activities with enhanced

energy economy, reduced latency, and scalable

performance, min-max normalization is applied in the

preprocessing stage. The model's convergence is

enhanced and a uniformly distributed collection of features

is made possible for efficient decision-making for real-

time VEC operations by normalizing the input parameters

of delay, energy consumption, and vehicle speed between

0 and 1.The value of property 𝐵 is normalized from

[𝑚𝑖𝑛𝐵 , 𝑚𝑎𝑥𝐵] to [𝑛𝑒𝑤𝑚𝑖𝑛𝐵 , 𝑛𝑒𝑤𝑚𝑎𝑥𝐵] using equation

(17), which maximizes data representation:

𝑢−𝑚𝑖𝑛𝐵

𝑚𝑎𝑥𝐵−𝑚𝑖𝑛𝐵
(𝑛𝑒𝑤𝑚𝑖𝑛𝐵 , 𝑛𝑒𝑤𝑚𝑎𝑥𝐵) + 𝑛𝑒𝑤𝑚𝑖𝑛𝐵

 (17)

https://www.kaggle.com/datasets/programmer3/vec-edge-server-offloading-dataset
https://www.kaggle.com/datasets/programmer3/vec-edge-server-offloading-dataset

352 Informatica 49 (2025) 345–360 L. Wang et al.

In addition to enhancing prediction reliability and

preserving a consistent data distribution, this

normalization facilitates effective implementation in real-

time automotive applications.

3.4 Synergistic fibroblast optimized efficient

deep neural network (SFO-Eff-DNN)
The research to improve the DL architecture, the SFO-

Eff-DNN suggests a hybrid intelligence framework with

edge servers situated in VEC. It relies on the predictive

power of Eff-DNN and integrates the ability of the SFO

algorithm to adjust itself. Eff-DNN is used to figure out

how vehicles move around and how the network changes,

while SFO acts like fibroblast cells in real healing to search

through lots of different solutions quickly. SFO helps set

up Eff-DNN weights, biases, and learning rates to ensure

good latency, energy consumption, and ability to scale up

or down. As a result of hybridization, the system evades

local optima and gradually finds the best solution. The use

of real-world data for vehicles confirms that the SFO-Eff-

DNN framework can quickly converge, lower the time

needed for inference, and help with making energy-

efficient decisions in rapidly changing VEC environments.

Algorithm 1 represents the proposed SFO-Eff-DNN model

working process.

Algorithm 1: SFO-Eff-DNN

𝑆𝑡𝑒𝑝 1: 𝐼𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛

𝑑𝑒𝑓 𝑠𝑒𝑡𝑢𝑝():

 𝑀 = 30 # 𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 𝑠𝑖𝑧𝑒

 𝑁 = 𝑛𝑢𝑚_𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠() # 𝑇𝑜𝑡𝑎𝑙 𝐸𝑓𝑓 − 𝐷𝑁𝑁 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠

 𝑚𝑎𝑥_𝑖𝑡𝑒𝑟, 𝑟ℎ𝑜, 𝑡𝑎𝑢 = 100, 0.5, 5

 𝑠, 𝑘_𝑝𝑞, 𝐿 = 1.0, 0.8, 10.0

 𝑑𝑎𝑡𝑎 = 𝑙𝑜𝑎𝑑_𝑉𝐸𝐶_𝑑𝑎𝑡𝑎() # 𝑅𝑒𝑎𝑙 − 𝑤𝑜𝑟𝑙𝑑 𝑚𝑜𝑏𝑖𝑙𝑖𝑡𝑦/𝑛𝑒𝑡𝑤𝑜𝑟𝑘 𝑑𝑎𝑡𝑎

 𝑟𝑒𝑡𝑢𝑟𝑛 𝑀,𝑁,𝑚𝑎𝑥_𝑖𝑡𝑒𝑟, 𝑟ℎ𝑜, 𝑡𝑎𝑢, 𝑠, 𝑘_𝑝𝑞, 𝐿, 𝑑𝑎𝑡𝑎

𝑆𝑡𝑒𝑝 2: 𝐼𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑧𝑒 𝑡ℎ𝑒 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛𝑠

𝑑𝑒𝑓 𝑖𝑛𝑖𝑡_𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛(𝑀,𝑁):

 𝑟𝑒𝑡𝑢𝑟𝑛 [{′𝑝𝑎𝑟𝑎𝑚𝑠′: 𝑟𝑎𝑛𝑑_𝑣𝑒𝑐(𝑁), ′𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦′: 𝑟𝑎𝑛𝑑_𝑣𝑒𝑐(𝑁)} 𝑓𝑜𝑟 _ 𝑖𝑛 𝑟𝑎𝑛𝑔𝑒(𝑀)]

𝑆𝑡𝑒𝑝 3: 𝑇𝑟𝑎𝑖𝑛 𝑎𝑛𝑑 𝑒𝑣𝑎𝑙𝑢𝑎𝑡𝑒 𝑡ℎ𝑒 𝐸𝑓𝑓 − 𝐷𝑁𝑁 𝑚𝑜𝑑𝑒𝑙

𝑑𝑒𝑓 𝑒𝑣𝑎𝑙𝑢𝑎𝑡𝑒(𝑝𝑎𝑟𝑎𝑚𝑠, 𝑑𝑎𝑡𝑎):

 𝑚𝑜𝑑𝑒𝑙 = 𝑏𝑢𝑖𝑙𝑑_𝐸𝑓𝑓𝐷𝑁𝑁(𝑝𝑎𝑟𝑎𝑚𝑠)

 𝑡𝑟𝑎𝑖𝑛_𝐷𝑁𝑁(𝑚𝑜𝑑𝑒𝑙,∗ 𝑑𝑎𝑡𝑎)

 𝑙𝑎𝑡𝑒𝑛𝑐𝑦, 𝑒𝑛𝑒𝑟𝑔𝑦 = 𝑒𝑣𝑎𝑙𝑢𝑎𝑡𝑒_𝑙𝑎𝑡𝑒𝑛𝑐𝑦_𝑒𝑛𝑒𝑟𝑔𝑦(𝑚𝑜𝑑𝑒𝑙)

 𝑟𝑒𝑡𝑢𝑟𝑛 𝑙𝑎𝑡𝑒𝑛𝑐𝑦 + 𝑒𝑛𝑒𝑟𝑔𝑦 # 𝑆𝑖𝑚𝑝𝑙𝑒 𝑓𝑖𝑡𝑛𝑒𝑠𝑠 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 (𝑙𝑜𝑤𝑒𝑟 𝑖𝑠 𝑏𝑒𝑡𝑡𝑒𝑟)

𝑆𝑡𝑒𝑝 4: 𝑉𝑒𝑙𝑜𝑐𝑖𝑡𝑦 𝑢𝑝𝑑𝑎𝑡𝑒 𝑤𝑖𝑡ℎ 𝑓𝑒𝑒𝑑𝑏𝑎𝑐𝑘 𝑎𝑛𝑑 𝑙𝑜𝑐𝑎𝑙 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑖𝑜𝑛

𝑑𝑒𝑓 𝑢𝑝𝑑𝑎𝑡𝑒_𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦(𝑖𝑛𝑑, 𝑝𝑎𝑠𝑡_𝑝𝑜𝑠, 𝑟ℎ𝑜):

 𝑐 = 𝑙𝑜𝑐𝑎𝑙_𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑖𝑜𝑛(𝑖𝑛𝑑[′𝑝𝑎𝑟𝑎𝑚𝑠′])

 𝑑 = 𝑣𝑒𝑐𝑡𝑜𝑟_𝑑𝑖𝑣(𝑝𝑎𝑠𝑡_𝑝𝑜𝑠, 𝑛𝑜𝑟𝑚(𝑝𝑎𝑠𝑡_𝑝𝑜𝑠))

 𝑟𝑒𝑡𝑢𝑟𝑛 𝑖𝑛𝑑[′𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦′] + (1 − 𝑟ℎ𝑜) ∗ 𝑐 + 𝑟ℎ𝑜 ∗ 𝑑

𝑆𝑡𝑒𝑝 5: 𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛 𝑢𝑝𝑑𝑎𝑡𝑒

𝑑𝑒𝑓 𝑢𝑝𝑑𝑎𝑡𝑒_𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛(𝑖𝑛𝑑, 𝑣𝑒𝑙, 𝑠, 𝑘_𝑝𝑞, 𝐿):

Deep Neural Network Architecture Optimization for Edge… Informatica 49 (2025) 345–360 353

 𝑠𝑝𝑒𝑒𝑑 = 𝑠 / (𝑘_𝑝𝑞 ∗ 𝐿)

 𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛 = 𝑣𝑒𝑐𝑡𝑜𝑟_𝑑𝑖𝑣(𝑣𝑒𝑙, 𝑛𝑜𝑟𝑚(𝑣𝑒𝑙))

 𝑟𝑒𝑡𝑢𝑟𝑛 𝑖𝑛𝑑[′𝑝𝑎𝑟𝑎𝑚𝑠′] + 𝑠𝑝𝑒𝑒𝑑 ∗ 𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛

𝑆𝑡𝑒𝑝 6: 𝑀𝑎𝑖𝑛 𝑆𝐹𝑂 − 𝐸𝑓𝑓𝐷𝑁𝑁 𝑂𝑝𝑡𝑖𝑚𝑖𝑧𝑎𝑡𝑖𝑜𝑛

𝑑𝑒𝑓 𝑜𝑝𝑡𝑖𝑚𝑖𝑧𝑒_𝑆𝐹𝑂_𝐸𝑓𝑓𝐷𝑁𝑁():

 𝑀, 𝑁, 𝑇, 𝑟ℎ𝑜, 𝑡𝑎𝑢, 𝑠, 𝑘_𝑝𝑞, 𝐿, 𝑑𝑎𝑡𝑎 = 𝑠𝑒𝑡𝑢𝑝()

 𝑝𝑜𝑝, ℎ𝑖𝑠𝑡𝑜𝑟𝑦 = 𝑖𝑛𝑖𝑡_𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛(𝑀,𝑁), []

 𝑓𝑜𝑟 𝑡 𝑖𝑛 𝑟𝑎𝑛𝑔𝑒(𝑇):

 𝑓𝑜𝑟 𝑖𝑛𝑑 𝑖𝑛 𝑝𝑜𝑝:

 𝑖𝑛𝑑[′𝑓𝑖𝑡𝑛𝑒𝑠𝑠′] = 𝑒𝑣𝑎𝑙𝑢𝑎𝑡𝑒(𝑖𝑛𝑑[′𝑝𝑎𝑟𝑎𝑚𝑠′], 𝑑𝑎𝑡𝑎)

 𝑝𝑎𝑠𝑡 = 𝑝𝑜𝑝 𝑖𝑓 𝑡 < 𝑡𝑎𝑢 𝑒𝑙𝑠𝑒 𝑝𝑜𝑝. 𝑐𝑜𝑝𝑦()

 𝐹𝑜𝑟 𝑖, 𝑖𝑛𝑑 𝑖𝑛 𝑒𝑛𝑢𝑚𝑒𝑟𝑎𝑡𝑒(𝑝𝑜𝑝):

 𝑖𝑛𝑑[′𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦′] = 𝑢𝑝𝑑𝑎𝑡𝑒_𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦(𝑖𝑛𝑑, 𝑝𝑎𝑠𝑡[𝑖][′𝑝𝑎𝑟𝑎𝑚𝑠′], 𝑟ℎ𝑜)

 𝑖𝑛𝑑[′𝑝𝑎𝑟𝑎𝑚𝑠′] = 𝑢𝑝𝑑𝑎𝑡𝑒_𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛(𝑖𝑛𝑑, 𝑖𝑛𝑑[′𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦′], 𝑠, 𝑘_𝑝𝑞, 𝐿)

 𝑏𝑒𝑠𝑡 = 𝑚𝑖𝑛(𝑝𝑜𝑝, 𝑘𝑒𝑦 = 𝑙𝑎𝑚𝑏𝑑𝑎 𝑥: 𝑥[′𝑓𝑖𝑡𝑛𝑒𝑠𝑠′])

 ℎ𝑖𝑠𝑡𝑜𝑟𝑦. 𝑎𝑝𝑝𝑒𝑛𝑑(𝑏𝑒𝑠𝑡[′𝑓𝑖𝑡𝑛𝑒𝑠𝑠′])

 𝑟𝑒𝑡𝑢𝑟𝑛 𝑏𝑒𝑠𝑡, ℎ𝑖𝑠𝑡𝑜𝑟𝑦

To improve performance in dynamic Vehicular Edge

Computing (VEC) settings, the SFO-Eff-DNN algorithm 1

combines the strength of Efficient Deep Neural Networks

(Eff-DNN) with Synergistic Fibroblast Optimization

(SFO), an optimization technique inspired by nature.

Using actual traffic and network data, the algorithm

initializes a population of solutions, each of which

represents a set of Eff-DNN parameters, and assesses each

according to latency and energy consumption. The

approach is perfect for real-time intelligent transportation

systems because it ensures quick convergence and

improved flexibility by updating its location and velocity

depending on fitness input and historical experiences.

Efficient Deep Neural Network (Eff-DNN) The

proposed optimized deep learning architecture in VEC

makes use of an Eff-DNN to represent how vehicles and

networks interact. An Eff-DNN architecture has an input

layer, an output layer, and many hidden layers, as shown

in Figure 2. The network is set up with six input layers and

seven hidden layers, all containing 64 neurons to avoid

overfitting. Model complexity and generalization were

managed in TensorFlow by setting them as

hyperparameters within the layers. It uses input about how

vehicles behave and interact to determine the best

positioning of the edge servers. The network uses the

Rectified Linear Unit (ReLU) function to make its

computations non-linear and adjust the weights it uses for

learning through backpropagation. The Eff-DNN can

provide quick and efficient decisions in ever-changing

vehicular environments due to the backpropagation

process, which keeps the cost function low. Neuron

outputs were computed as follows in equation (18).

354 Informatica 49 (2025) 345–360 L. Wang et al.

Figure 2: Architecture of Eff-DNN

𝑧𝑟
𝑚+1 = 𝜎(𝑦) = 𝜎(∑ 𝜔𝑗𝑟

𝑚𝑛
𝑗=1 𝑧𝑗

𝑚 + 𝑎𝑟
𝑚+1)

 (18)

Where σ(z) represents the activation function, and

𝑧𝑟
𝑚+1 is the output of the 𝑟 − 𝑡ℎneuron in the (𝑚 + 1)-th

layer. The weights among the 𝑗 − 𝑡ℎ neuron of layer n and

the 𝑟 − 𝑡ℎ neuron of layer (𝑚 + 1) are labeled 𝜔𝑗𝑟
𝑚 , and

𝑎𝑟
𝑚+1 represents the bias term for linear transformations.

While training, the loss function compares the predicted

outcomes with the desired ones. The model finds the best

values for 𝜔 and 𝑎 by minimizing the loss, making the

network predict more accurately. The Eff-DNN’s loss

function is explained in equation (19).

𝑓(𝜃) = −
1

𝑚
∑ ∑ 𝑠𝑚𝑟 log 𝑧𝑚𝑟𝑟𝑚

 (19)

Where𝑠𝑚𝑟 represents the actual value of the 𝑟 − 𝑡ℎ

sample's 𝑚 − 𝑡ℎelement, 𝑧𝑚𝑟 denotes the predicted value

for the same element, and θ represents the collection of

parameters including weights 𝜔 and biases 𝑎 . Here, 𝑀 is

the total quantity of samples. To reduce overfitting, a

dropout mechanism is employed that randomly disables

neurons during training, effectively disrupting the network

structure and promoting generalization. Furthermore, the

proposed method enhances the conventional gradient

descent by dynamically adapting the learning rate for

improved convergence. The optimization of the parameter

set 𝜃 is formally defined as equations (20) and (21).

{

𝑛𝑠 = 𝛽1𝑛𝑠−1 + (1 − 𝛽1)ℎ𝑠
𝑈𝑠 = 𝛽2𝑢𝑠−1 + (1 − 𝛽2)ℎ𝑠

2

ℎ𝑠 = 𝛻𝜃𝐹(𝜃𝑠−1)

𝑛̂𝑠 =
𝑛𝑠

1−𝛽1
𝑠

𝑈̂𝑠 =
𝑢𝑠

1−𝛽2
𝑠

𝜃𝑠 = 𝜃𝑠−1−∝
𝑛̂𝑠

√𝑢𝑠+𝜀

 (20)

∝=∝0 𝛽3

𝑒𝑝𝑜𝑐ℎ−𝑛𝑢𝑚
𝑀

𝑏𝑎𝑡𝑐ℎ−𝑠𝑖𝑧𝑒 (21)

Where 𝑈𝑠represents the weighted average of

exponentially the squared gradients, while ℎ𝑠 denotes the

gradient of the parameters at time 𝑠 , 𝑛𝑠captures the

average movement of the gradient, and ∝0 is the initial

learning rate. The corrected versions of these estimates

were denoted by 𝑈̂𝑠and 𝑛̂𝑠, which improve optimization

accuracy. Exponential decay rates 𝛽1 , 𝛽2,𝑎𝑛𝑑 𝛽3 are used

to stabilize updates. Additionally, parameters such as batch

size (epbatch−size) and current training iterations (ochnum

) influence convergence behavior. The improved DNN

supports dual operational modes, RDL-1 for normal

conditions and RDL-2 for power swing detection, ensuring

adaptive command generation aligned with dynamic

vehicular network scenarios.

Deep Neural Network Architecture Optimization for Edge… Informatica 49 (2025) 345–360 355

Synergistic fibroblast optimization (SFO)

SFO is modeled after migratory fibroblast cells that

heal tissue by responding to the extracellular matrix

(ECM). Every solution searches the solution space by

varying its position and velocity about diffusion and fitness.

This bio-inspired method allows for greater flexibility and

avoids local minima, making it appropriate for optimizing

neural networks and edge server placement in dynamic

VEC settings.

A model based on the adaptive actions of fibroblast

cells used in repairing tissues. SFO works on tuning how

deep neural networks are set up and arranging edge servers

in dynamically changing virtual edge clouds. Much as

fibroblasts respond to the extracellular matrix (ECM), SFO

looks for solutions in many different ways. Ongoing

testing and evaluation of fitness ensure the best solutions

use both energy and time efficiently. For this reason, this

approach ensures flexibility in the way transportation

systems are managed.

The process of biomechanical analysis was

strengthened each time by paying attention to interactions

with the ECM. As it runs, the program tests different

combinations of settings, much like fibroblasts, to improve

its outcome. The simulated cells disperse and travel to the

most promising areas to avoid getting caught in local

minima. Depending on the speed and distribution of the

particles, the algorithm updates its next action using the

information and trends it has gathered. As a result, the

process can handle the trade-offs between speed,

performance, and movement better in VEC networks.

Initialization: Within the 𝑁 -dimensional solution

space, initialize a population of physical activity

movements 𝑓𝑖, , where𝑖 = 1,2, … ,𝑀, . Each movement is

assigned a random position () and velocity (𝑣𝑖). Key

parameters such as the diffusion coefficient 𝜌 and

movement speed 𝑠are established.

Fitness Evaluation: For each candidate solution 𝑓𝑖 in

the N-dimensional space, the fitness function 𝑒(𝑓𝑖) is

evaluated iteratively to assess the quality of each

movement. This process aims to identify the optimal

solution (maximum or minimum) within the evolving

search region. Based on the fitness outcomes, the position

(𝑏𝑖) and velocity (𝑣𝑖) of each movement were updated

accordingly using the update rules given by Equations (22)

and (23), enabling the algorithm to adaptively explore the

solution space.

𝑣𝑖
(𝑡+1)

= 𝑣𝑖
(𝑡)
+ (1 − 𝜌)𝑐(𝑓𝑖

(𝑡)) + 𝜌∗
𝑓𝑖(𝑡−𝜏)

||𝑓𝑖(𝑡−𝜏)||

 (22)

Where 𝑡 is the current iteration, 𝜏 is the time delay,

and the diffusion coefficient 𝜌 is set to 0.5.

𝑏𝑖
(𝑡+1)

= 𝑏𝑖
(𝑡)
+ 𝑠∗

𝑣𝑖
(𝑡+1)

||𝑣𝑖
(𝑡+1)

||
 (23)

The movement speed 𝑡 is defined as 𝑠 =
𝑠

𝑘𝑝𝑞𝐿
′, where

"𝑘𝑝𝑞" represents the baseline movement rate and 𝐿 denotes

the movement length. The SFO-Eff-DNN hybrid model

optimizes edge server placement in dynamic VEC

environments by combining adaptive search with deep

learning. It efficiently predicts optimal configurations,

improves convergence speed, and reduces latency and

energy use, making it ideal for real-time intelligent

transportation systems.

4 Results and discussion
The experimental setup uses an Intel i7 CPU.

Simulations were conducted in Python with TensorFlow

and the Veins platform using Cologne traffic traces. The

dataset was split using an 80:20 ratio, where 80% was used

for training the SFO-Eff-DNN model and 20% was

reserved for testing to evaluate performance and

generalization.

The SFO-Eff-DNN model includes ReLU-activated

layers and dropout, optimized via SFO. Performance was

evaluated based on latency, energy use, and server

placement accuracy. Key simulation parameters with

values aligned to realistic VEC scenarios are presented in

Table 2.

Table 2: Key simulation parameters for the SFO-Eff-

DNN VEC Framework

𝑷𝒂𝒓𝒂𝒎𝒆𝒕𝒆𝒓 𝑽𝒂𝒍𝒖𝒆

𝑆𝑖𝑚𝑢𝑙𝑎𝑡𝑖𝑜𝑛 𝑎𝑟𝑒𝑎 1500 𝑚 × 1500 𝑚

𝑆𝑖𝑚𝑢𝑙𝑎𝑡𝑖𝑜𝑛 𝑡𝑖𝑚𝑒 200𝑠, 300𝑠, 400𝑠

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑒𝑑𝑔𝑒 𝑠𝑒𝑟𝑣𝑒𝑟𝑠 8

𝑇𝑟𝑎𝑛𝑠𝑚𝑖𝑠𝑠𝑖𝑜𝑛 𝑝𝑜𝑤𝑒𝑟 25 𝑚𝑊, 30 𝑚𝑊, 35 𝑚𝑊

𝑅𝑆𝑈 𝑎𝑛𝑡𝑒𝑛𝑛𝑎 ℎ𝑒𝑖𝑔ℎ𝑡 5 𝑚

𝑅𝑒𝑐𝑒𝑖𝑣𝑒𝑟 𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 −100 𝑑𝐵𝑚

𝑀𝑒𝑠𝑠𝑎𝑔𝑒 𝑠𝑖𝑧𝑒 100 𝑏𝑖𝑡𝑠

𝑀𝑒𝑠𝑠𝑎𝑔𝑒 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 2 𝐻𝑧

𝐷𝑎𝑡𝑎 𝑟𝑎𝑡𝑒 10 𝑀𝑏𝑝𝑠, 20 𝑀𝑏𝑝𝑠, 30 𝑀𝑏𝑝𝑠

𝑉𝑒ℎ𝑖𝑐𝑙𝑒 𝑠𝑝𝑒𝑒𝑑 𝑟𝑎𝑛𝑔𝑒 0 – 100 𝑘𝑚/ℎ

𝐸𝑑𝑔𝑒 𝑠𝑒𝑟𝑣𝑒𝑟 𝐶𝑃𝑈 𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦 3.5 𝐺𝐻𝑧

𝐸𝑑𝑔𝑒 𝑠𝑒𝑟𝑣𝑒𝑟 𝑚𝑒𝑚𝑜𝑟𝑦 32 𝐺𝐵

4.1 Offloading ratio
Using time on the x plane and the percentage of tasks

offloaded from the vehicle to edge servers on the y plane,

Figure 3 shows the offloading ratio (%) in the VEC system

over 10 minutes. Starting at 75%, the offloading ratio

steadily rises to 89%, reflecting an increasing reliance on

edge computation. This upward trend is attributed to

enhanced network conditions, adaptive optimization by the

SFO-Eff-DNN framework for energy efficiency, or the

growing complexity of vehicular tasks that necessitate

edge processing. Tracking this metric is crucial in the

356 Informatica 49 (2025) 345–360 L. Wang et al.

research context, as a higher offloading ratio signifies

more efficient utilization of edge resources, which directly

contributes to lowering vehicle energy consumption and

accelerating task processing, thereby improving overall

system performance in dynamic ITS environments.

Figure 3: Offloading ratio over time

4.2 SFO-Eff-DNN Pareto Front in VEC
In VEC, the Pareto front for the suggested SFO-Eff-

DNN illustrates the relationship between latency and

energy use. Figure 4 illustrates that with latency increasing

from 50 ms to 70 ms, the energy consumed decreases from

about 70 J to 40 J, showing an inverse relationship. All

points on the curve are Pareto-optimal, as enhancing one

factor would cause a drop in the other. Because of the

model's diversity, it is possible to choose configurations for

specific needs, such as real-time applications or limited-

power cases, proving its effectiveness and adaptability.

Figure 4: Pareto front diversity of SFO-Eff-DNN in VEC

4.3 Convergence Behavior of SFO-Eff-DNN
Figures 5 (a) and (b) illustrate the convergence

behavior of the SFO-Eff-DNN algorithm over 100

optimization iterations for energy consumption and latency.

In Figure (a), the minimum energy consumption (blue line)

rapidly drops from approximately 0.34 to 0.29 within the

first 10 iterations and then stabilizes, indicating that the

algorithm quickly identifies energy-efficient

configurations. The average energy consumption (green

dashed line) also follows a similar decreasing trend,

gradually converging toward the minimum, which reflects

the population's collective improvement. Similarly, in

Figure (b), during the first iterations, the latency drops

rapidly and then becomes more stable at a much lower

Deep Neural Network Architecture Optimization for Edge… Informatica 49 (2025) 345–360 357

level. The average latency also decreases and stabilizes

around the same value, highlighting consistent

performance improvement across the solution space.

Overall, these trends confirm that SFO-Eff-DNN achieves

efficient and simultaneous convergence toward optimal

energy and latency trade-offs.

Figure 5: Convergence Behavior of SFO-Eff-DNN (a) energy conception and (b) latency

4.4 Performance analysis
A comparison of several optimization techniques

based on their energy consumption and latency

performance in vehicular edge computing scenarios is

shown in Table 3. Among the evaluated techniques,

Particle Swarm Optimization (PSO) (Surayya et al., 2025),

Teaching–Learning-Based Optimization (TLBO) (Surayya

et al., 2025), and Ant Colony Optimization (ACO)

(Surayya et al., 2025), the proposed SFO-Eff-DNN method

demonstrates the energy consumption and the latency. This

highlights the superior efficiency and responsiveness of

the SFO-Eff-DNN framework, making it highly suitable

for real-time, energy-aware edge deployments in dynamic

vehicular environments. Figure 6 demonstrates the results

of the performance analysis.

Table 3: Comparison of optimization methods by

energy consumption and latency

Methods Energy

Consumption

(J)

Latency (S)

PSO (Surayya

et al., 2025)

0.3535 40 μs

TLBO

(Surayya et

al., 2025)

0.3546 40 μs

ACO

(Surayya et

al., 2025)

0.3517 60μs

SFO-Eff-DNN

(Proposed)

0.3480 30 μs

Figure 6: Comparison methods by energy

consumption and latency

Analyzing different optimization methods for their

energy consumption and latency when used in VEC. SFO-

Eff-DNN shows better results than other models by using

the least amount of energy (0.3480 J) and having the

shortest latency (30 μs). Here, microseconds (μs) are used,

358 Informatica 49 (2025) 345–360 L. Wang et al.

since 1 μs is a millionth of a second, which is needed to

ensure fast response times vital in real-time VEC systems.

For energy usage, PSO and TLBO lead with 0.3535 J and

0.3546 J, respectively, but both have a latency of 40 μs,

while ACO uses 0.3517 J with the highest latency of 60 μs.

The results demonstrate that SFO-Eff-DNN offers better

results in real-time, energy-sensitive VEC applications.

A comparison of task drop rates for various placement

techniques in dynamic VEC situations is shown in Table 4

and Figure 7. In comparison to the generic method's 2.90%

(Khamari et al., 2022) dropped task rate, the suggested

SFO-Eff-DNN model performs better, attaining a dropped

task rate of just 1.83% (Proposed). In latency-sensitive,

high-mobility edge computing systems, this research

demonstrates how well the SFO-Eff-DNN optimises server

workload allocation and lowers service denial.

Table 4: Comparison of task dropped rate between

placement strategies in VEC environments

Placement strategies Dropped Tasks (%)

generic method

(Khamari et al.,

2022)

2.90%

SFO-Eff-DNN

(Proposed)

1.83%

Figure 7: Comparison of Dropped Task Rates for

Generic Method and SFO-Eff-DNN

4.5 Discussion
By optimizing the placement of edge servers and DL

networks, the SFO-Eff-DNN in VEC reduces latency and

conserves energy. The technique has some problems with

responding to changes in vehicles and adapting to sudden

network changes in VEC settings (Bi et al., 2020). While

VECMAN saves energy by sharing resources among

electric vehicles, it is difficult for it to accurately predict

where vehicles are and to schedule them in situations that

are constantly changing (Bahreini et al., 2021). As both

PSO and TLBO (Surayya et al., 2025) prioritize low

energy over low latency, they may not respond fast enough

when ultra-low latency is necessary. ACO (Surayya et al.,

2025) can distribute solutions equally, but its slow

execution means it is not suitable when time is critical. A

PSO, TLBO, and ACO lead with low energy of 0.3535 J,

0.3546 J, and 0.3517 J. Using the SFO-Eff-DNN model,

energy costs and latency can be cut down at the same time,

compared to older versions. Compared to the generic

method's 2.90% dropped task rate (Khamari et al., 2022),

the SFO-Eff-DNN's dropped task rate was only 1.83%,

indicating its resilience in workload balancing and edge

resource utilisation in dynamic vehicular situations. Due to

advanced techniques and deep learning, the system reacts

to updates in vehicles and can quickly and accurately

configure servers for VEC applications.

The computational load brought on by the

hybridization of deep learning and evolutionary

optimization constitutes one of the key issues, especially

during the early phases of training and adaption. Despite

its potential for convergence efficiency, iterative

optimization can be resource-hungry on edge nodes with

constrained computing capacity. Another problem is the

system's scalability in high-density vehicle networks.

While the model works well for simulations of

intermediate scale, more study is needed to determine how

it responds and operates in large, real-time vehicular

systems with hundreds of nodes. These limitations

highlight the significance of future studies that focus on

distributed training practices and lightweight optimization

versions that can sustain performance without increasing

compute demands in practical applications.

5 Conclusion
VEC is a pattern that encourages cloud computing

capabilities closer to the network edge services needed for

low-latency services, such as auto-corrective driving

support, real-time traffic management, and location-based

applications. The proposed SFO-Eff-DNN framework is

used to optimize deep learning for VEC using modern

evolutionary algorithms. To deal with the problem of

placing servers at the edge of wireless networks in vehicles,

both Synergistic Fibroblast Optimization and deep neural

networks were used. It makes use of real travel data to

manage how quickly it responds and how much energy it

uses, adjusts to any changes in the network, and provides

quick results. The data from experiments reveals that SFO-

Eff-DNN works with 30 μs latency, 0.3480 J energy

consumption, and only 1.83% dropped tasks, making it

well-suited for speedy and efficient smart transportation. It

strongly supports and adapts to the new directions being

taken in VEC deployments. Using simulated movement

and experimentation usually does not reflect real-world

events or problems, meaning their practical use may not be

as effective.

Future scope
Future research should integrate real-time traffic incident

data and 5G network slicing to further enhance adaptability.

Extending the framework with federated learning for

Deep Neural Network Architecture Optimization for Edge… Informatica 49 (2025) 345–360 359

privacy-preserving model updates across distributed

vehicles, and exploring hybrid optimizers that combine

SFO with reinforcement learning could improve

robustness against unforeseen network disruptions and

accelerate convergence in large-scale, heterogeneous VEC

deployments.

References
[1] Wan, S., Xu, X., Wang, T., and Gu, Z., 2020. An

intelligent video analysis method for abnormal event

detection in intelligent transportation systems. IEEE

Transactions on Intelligent Transportation Systems,

22(7), pp.4487-4495.DOI:

10.1109/TITS.2020.3017505

[2] Boukerche, A., Tao, Y. and Sun, P., 2020. Artificial

intelligence-based vehicular traffic flow prediction

methods for supporting intelligent transportation

systems. Computer networks, 182,

p.107484.https://doi.org/10.1016/j.comnet.2020.107

484

[3] Elassy, M., Al-Hattab, M., Takruri, M. and Badawi,

S., 2024. Intelligent transportation systems for

sustainable smart cities. Transportation Engineering,

p.100252.https://doi.org/10.1016/j.treng.2024.10025

2

[4] Alhilal, A.Y., Finley, B., Braud, T., Su, D. and Hui, P.,

2022. Street smart in 5G: Vehicular applications,

communication, and computing. IEEE Access, 10,

pp.105631-

105656.DOI: 10.1109/ACCESS.2022.3210985

[5] Chougule, S.B., Chaudhari, B.S., Ghorpade, S.N. and

Zennaro, M., 2024. Exploring computing paradigms

for electric vehicles: from cloud to edge intelligence,

challenges and future directions. World Electric

Vehicle Journal, 15(2),

p.39.https://doi.org/10.3390/wevj15020039

[6] Talpur, A. and Gurusamy, M., 2021. Drld-sp: A deep-

reinforcement-learning-based dynamic service

placement in edge-enabled internet of vehicles. IEEE

Internet of Things Journal, 9(8), pp.6239-

6251.DOI: 10.1109/JIOT.2021.3110913

[7] Zaki, A.M., Elsayed, S.A., Elgazzar, K. and

Hassanein, H.S., 2024. Quality-Aware Task

Offloading for Cooperative Perception in Vehicular

Edge Computing. IEEE Transactions on Vehicular

Technology.DOI: 10.1109/TVT.2024.3444591

[8] Zhao, L., Li, T., Zhang, E., Lin, Y., Wan, S., Hawbani,

A. and Guizani, M., 2023. Adaptive swarm

intelligent offloading based on digital twin-assisted

prediction in VEC. IEEE Transactions on Mobile

Computing, 23(8), pp.8158-

8174.DOI: 10.1109/TMC.2023.3344645

[9] Shen, B., Xu, X., Qi, L., Zhang, X. and Srivastava,

G., 2021. Dynamic server placement in edge

computing toward the internet of vehicles. Computer

Communications, 178, pp.114-

123.https://doi.org/10.1016/j.comcom.2021.07.021

[10] Peyman, M., Fletcher, T., Panadero, J., Serrat, C.,

Xhafa, F. and Juan, A.A., 2023. Optimization of

vehicular networks in smart cities: from agile

optimization to learn heuristics and sim heuristics.

Sensors, 23(1),

p.499.https://doi.org/10.3390/s23010499

[11] Ebrahimi Mood, S., Rouhbakhsh, A. and Souri, A.,

2025. Evolutionary recurrent neural network based

on equilibrium optimization method for cloud-edge

resource management in Internet of Things. Neural

Computing and Applications, 37(6), pp.4957-

4969.https://doi.org/10.1007/s00521-024-10929-1

[12] Vijayakumar, P., Rajalingam, P. and Rajeswari,

S.V.K.R., 2021. Edge Computing Optimization

Using Mathematical Modeling, Deep Learning

Models, and Evolutionary Algorithms. Simulation

and Analysis of Mathematical Methods in Real‐Time

Engineering Applications, pp.17-

44.https://doi.org/10.1002/9781119785521.ch2

[13] Yang, Z., Zhang, S., Li, R., Li, C., Wang, M., Wang,

D. and Zhang, M., 2021. Efficient resource-aware

convolutional neural architecture search for edge

computing with Pareto-bayesian optimization.

Sensors, 21(2),

p.444.https://doi.org/10.3390/s21020444

[14] Li, Z., Yu, H., Fan, G., Zhang, J. and Xu, J., 2024.

Energy-efficient offloading for DNN-based

applications in edge-cloud computing: A hybrid

chaotic evolutionary approach. Journal of Parallel

and Distributed Computing, 187,

p.104850.https://doi.org/10.1016/j.jpdc.2024.10485

0

[15] Pustokhina, I.V., Pustokhin, D.A., Gupta, D., Khanna,

A., Shankar, K. and Nguyen, G.N., 2020. An

effective training scheme for deep neural networks in

edge computing enabled Internet of Medical Things

(IoMT) systems. IEEE Access, 8, pp.107112-

107123.DOI: 10.1109/ACCESS.2020.3000322

[16] Loni, M., Sinaei, S., Zoljodi, A., Daneshtalab, M. and

Sjödin, M., 2020. DeepMaker: A multi-objective

optimization framework for deep neural networks in

embedded systems. Microprocessors and

Microsystems, 73,

p.102989.https://doi.org/10.1016/j.micpro.2020.102

989

[17] Saheed, Y.K., Abdulganiyu, O.H. and Ait Tchakoucht,

T., 2024. Modified genetic algorithm and fine-tuned

long short-term memory network for intrusion

detection in the Internet of Things networks with

edge capabilities. Applied Soft Computing, 155,

p.111434.https://doi.org/10.1016/j.asoc.2024.111434

[18] Bi, J., Yuan, H., Duanmu, S., Zhou, M. and Abusorrah,

A., 2020. Energy-optimized partial computation

offloading in mobile-edge computing with genetic

simulated-annealing-based particle swarm

optimization. IEEE Internet of Things Journal, 8(5),

pp.3774-3785.DOI: 10.1109/JIOT.2020.3024223

https://doi.org/10.1109/TITS.2020.3017505
https://doi.org/10.1016/j.comnet.2020.107484
https://doi.org/10.1016/j.comnet.2020.107484
https://doi.org/10.1016/j.treng.2024.100252
https://doi.org/10.1016/j.treng.2024.100252
https://doi.org/10.1109/ACCESS.2022.3210985
https://doi.org/10.3390/wevj15020039
https://doi.org/10.1109/JIOT.2021.3110913
https://doi.org/10.1109/TVT.2024.3444591
https://doi.org/10.1109/TMC.2023.3344645
https://doi.org/10.1016/j.comcom.2021.07.021
https://doi.org/10.3390/s23010499
https://doi.org/10.1007/s00521-024-10929-1
https://doi.org/10.1002/9781119785521.ch2
https://doi.org/10.3390/s21020444
https://doi.org/10.1016/j.jpdc.2024.104850
https://doi.org/10.1016/j.jpdc.2024.104850
https://doi.org/10.1109/ACCESS.2020.3000322
https://doi.org/10.1016/j.micpro.2020.102989
https://doi.org/10.1016/j.micpro.2020.102989
https://doi.org/10.1016/j.asoc.2024.111434
https://doi.org/10.1109/JIOT.2020.3024223

360 Informatica 49 (2025) 345–360 L. Wang et al.

[19] Chen, Z., Hu, J., Chen, X., Hu, J., Zheng, X. and Min,

G., 2020. Computation offloading and task

scheduling for DNN-based applications in cloud-

edge computing. IEEE Access, 8, pp.115537-

115547.DOI: 10.1109/ACCESS.2020.3004509

[20] You, Q. and Tang, B., 2021. Efficient task offloading

using particle swarm optimization algorithm in edge

computing for the industrial internet of things.

Journal of Cloud Computing, 10, pp.1-

11.https://doi.org/10.1186/s13677-021-00256-4

[21] Yousif, A., Bashir, M.B. and Ali, A., 2024. An

evolutionary algorithm for task clustering and

scheduling in IoT edge

computing. Mathematics, 12(2),

p.281.https://doi.org/10.3390/math12020281

[22] Xiao, H., Zhao, J., Pei, Q., Feng, J., Liu, L. and Shi,

W., 2021. Vehicle selection and resource

optimization for federated learning in vehicular edge

computing. IEEE Transactions on Intelligent

Transportation Systems, 23(8), pp.11073-

11087.DOI: 10.1109/TITS.2021.3099597

[23] Bahreini, T., Brocanelli, M. and Grosu, D., 2021.

VECMAN: A framework for energy-aware resource

management in vehicular edge computing

systems. IEEE Transactions on Mobile

Computing.DOI: 10.1109/TMC.2021.3089338

[24] Jiang, H., Cai, J., Xiao, Z., Yang, K., Chen, H. and Liu,

J., 2025. Vehicle-Assisted Service Caching for Task

Offloading in Vehicular Edge Computing. IEEE

Transactions on Mobile

Computing.DOI: 10.1109/TMC.2025.3545444

[25] Surayya, A., Hussain, M.M., Reddy, V.D., Abdul, A.

and Gazi, F., 2025. Evolutionary Algorithms for Edge

Server Placement in Vehicular Edge

Computing. IEEEAccess.10.1109/ACCESS.2025.35

66172

[26] Luo, X., Liu, D., Huai, S. and Liu, W., 2021,

February. HSCoNAS: Hardware-software co-design

of efficient DNNs via neural architecture search. In

2021 Design, Automation & Test in Europe

Conference & Exhibition (DATE) (pp. 418-421).

IEEE.https://doi.org/10.23919/DATE51398.2021.94

73937

[27] Odema, M., Rashid, N., Demirel, B.U. and Al

Faruque, M.A., 2021, December. LENS: Layer

distribution enabled neural architecture search in

edge-cloud hierarchies. In 2021 58th ACM/IEEE

Design Automation Conference (DAC) (pp. 403-

408). IEEE.

https://doi.org/10.1109/DAC18074.2021.9586259

[28] Abreha, H.G., Hayajneh, M. and Serhani, M.A.,

2022. Federated learning in edge computing: a

systematic survey. Sensors, 22(2), p.450.

https://doi.org/10.3390/s22020450

[29] Talpur, A. and Gurusamy, M., 2021, April.

Reinforcement learning-based dynamic service

placement in vehicular networks. In 2021 IEEE 93rd

Vehicular Technology Conference (VTC2021-Spring)

(pp. 1-7). IEEE. https://doi.org/10.1109/VTC2021-

Spring51267.2021.9448645

[30] Khamari, S., Ahmed, T. and Mosbah, M., 2022,

December. Efficient edge server placement under

latency and load balancing constraints for vehicular

networks. In GLOBECOM 2022-2022 IEEE Global

Communications Conference (pp. 4437-4442).

IEEE.https://doi.org/10.1109/GLOBECOM48099.2

022.10000721

https://doi.org/10.1109/ACCESS.2020.3004509
https://doi.org/10.1186/s13677-021-00256-4
https://doi.org/10.3390/math12020281
https://doi.org/10.1109/TITS.2021.3099597
https://doi.org/10.1109/TMC.2021.3089338
https://doi.org/10.1109/TMC.2025.3545444
https://doi.org/10.1109/ACCESS.2025.3566172
https://doi.org/10.1109/ACCESS.2025.3566172

