https://doi.org/10.31449/inf.v49i12.9433

Informatica 49 (2025) 345-360 345

Deep Neural Network Architecture Optimization for Edge
Computing Based on Evolutionary Algorithms

Li Wang !, Xiuming Cheng >~

!School of Information and Electronics Engineering, Jiangsu Vocational Institute of Architectural Technology, Xuzhou

221116, Jiangsu, China

2School of General Courses, Jiangsu Vocational Institute of Architectural Technology, Xuzhou 221116, Jiangsu, China

E-mail: xiuming_cheng@hotmail.com
*Corresponding author

Keywords: vehicular edge computing (VEC), edge server placement, network condition adaptation, synergistic
fibroblast optimized efficient deep neural network (SFO-Eff-DNN)

Received: May 28, 2025

Vehicular Edge Computing (VEC) is a crucial component of Intelligent Transportation Systems (ITS),
enabling low-latency and energy-efficient services by offloading computation to the network edge.
However, optimizing system performance in such environments requires careful edge server placement,
especially in dynamic vehicular contexts characterized by high mobility and unpredictability. Achieving
optimal performance under the constraints of latency, energy consumption, and mobility remains a
significant challenge. This research proposes a comprehensive framework for optimizing deep learning
architectures in VEC, utilizing advanced evolutionary algorithms. Building on real-world vehicular
mobility traces, the framework employs the Synergistic Fibroblast Optimized Efficient Deep Neural
Network (SFO-Eff~DNN) to identify optimal configurations and edge server placements. The dataset
includes details about task offloading under different mobility levels, the data was preprocessed using
Min-Max normalization to ensure smooth learning. Among the algorithms evaluated, Synergistic
Fibroblast Optimization (SFO) consistently produces well-distributed Pareto-optimal solutions and
effectively handles trade-offs between competing objectives. The DNN is utilized to learn complex patterns
in vehicular mobility and network conditions, which helps predict the best configurations for edge server
placements. The proposed system efficiently minimizes latency and energy consumption while ensuring
scalability and adaptability to real-world scenarios. Results demonstrate that SFO-Eff-DNN achieves
superior convergence speed and energy efficiency, making it well-suited for time-sensitive deployments.
Comparative simulations validate that this approach outperforms traditional methods, providing valuable
insights for deploying efficient and robust edge intelligence architectures in next-generation intelligent
transportation systems.

Povzetek: Ta raziskava se osredotoca na podrocje robnega racunalnistva v vozilih (VEC), kar je kljucno
za zagotavljanje nizke zakasnitve v inteligentnih transportnih sistemih. Vsebina prispevka predstavija
hibridni okvir SFO-Eff-DNN, ki zdruzuje globoko ucenje in evolucijsko optimizacijo za resevanje
kompleksnega problema postavitve robnih streznikov in prilagajanja arhitekture nevronske mreze. Glavni
dosezki vkljucujejo resitev vecciljne optimizacijske naloge, ki uspesno minimizira zakasnitev in porabo
energije v dinamicnem voznem okolju.

1 Introduction

An ITS enhances the safety of moving vehicles and
hikers within the vicinity. In recent times, problems
regarding road traffic safety have increased and accidents
continue to occur regularly (Wan et al., 2020). Fortunately,
a growing number of related technologies have been
applied to the transportation industry as wireless
communication and sensor technologies have developed
and matured in recent years. The increased need for road
efficiency and safety in intricately linked road systems has
drawn a lot of attention to ITS in recent years (Boukerche

et al., 2020). The exponential growth in ITS has resulted in
an increased demand for responsive, energy-efficient, and
intelligent processing solutions that can manage the
dynamic vehicular environment (Elassy et al., 2024). VEC
is a pattern that brings the cloud computing capacities
closer to the network edge and is a likely solution to
service demands for low-latency services, such as auto-
corrective driving support, real-time traffic management,
and location-based services (Alhilal et al., 2024).
Connected vehicles benefit from VEC by shortening the
response time of their systems and helping them save
power by assigning tasks to local servers (Chougule et al.,

mailto:xiuming_cheng@hotmail.com

346 Informatica 49 (2025) 345-360

2024). Greater safety, dependability, efficiency in
transportation, fast action and network reach make smart
and sustainable driving networks possible (Talpur and
Gurusamy, 2021). To minimize the time for data exchanges
and energy used in vehicles, VEC allows vehicles to
perform certain tasks on edge servers nearby. As a result,
connected vehicles receive a much better level of service
(Zaki et al., 2024). Due to their speed and patches of
unpredictability, the movement of vehicles complicates
VEC systems (Zhao et al., 2023). The greatest aspect to
focus on is the best locations and times for edge servers so
that moving vehicles can be handled efficiently (Shen et
al., 2021). With many vehicles moving, topology shifts
taking place and numerous demands for services, generic
or manual placements are not usually enough. Similarly,
managing various goals, including keeping reaction times
quick, using as little energy as possible, maintaining
flexibility, and scaling up, remained prominent in network
research (Peyman et al., 2023). As simulation traces were
used, working with many nodes and requiring some
attention to used parameters, this approach might face
issues when put to practical use.

Deep learning and evolutionary optimization are used
in the design to choose the best locations for edge servers.
Specifically, the SFO-Eff-DNN approach allows the
system to recognize patterns using a DNN and search
globally using an SFO algorithm. This framework
processes actual data from vehicle movement to
understand vehicle movements and the state of the network,
as well as select the best position for the servers. The key
contribution of the research is as follows.

In extremely dynamic vehicle contexts, it was best to
formulate the edge server placement problem as a multi-
objective optimization task that simultaneously reduces
the latency and energy consumption.

To create the SFO-Eff-DNN framework, which
combines biologically inspired optimization with effective
deep learning to deliver scalable and flexible placement
solutions.

To compare the system against traditional techniques
and perform comprehensive simulations using genuine
mobility datasets, showcasing notable advances in
placement accuracy, energy economy, and convergence
speed.

The remainder of this research is separated into the
following sections: the literature review on edge server
placement and the intelligent optimization techniques in
VEC are reviewed. The phrasing of the problem and the
system model are then given in detail, as well as the
description of the proposed SFO-Eff-DNN framework.
The next section will discuss the experimental settings and
performance evaluations, and the results and insights will
then be discussed. Lastly, the research is concluded with
directions for further research.

The introduction highlights the significant importance
of edge servers' placement efficiency in the VEC for
improving ITS performance. The literature review reveals
the weaknesses of existing methods, especially their

L. Wang et al.

inability to handle the dynamism of vehicular mobility
effectively in the process of optimizing latency and energy
consumption.

2 Related work

This section discusses the positioning of border
servers within the VEC, including the traditional heuristics,
deep learning (DL), evolutionary algorithms, the
challenges in dynamic vehicular environments, and the
recent data-driven and optimization-based developments
of this space for better adaptability and performance. To
fix the issue of resource assignment in cloud computing
Infrastructure as a Service (laaS), an Equilibrium
Optimization (EO)-based evolutionary Recurrent Neural
Network (RNN) was presented (Ebrahimi Mood et al.,
2025). This model was designed to give virtual machines
an optimal number of physical machines by improving
how they work in general and by reducing their complexity.
The simulations were faster and more reliable than the
conventional ones.

The significance of edge computing topics such as
selecting the right tasks for offloading, allocating resources,
and ensuring good Quality-of-Service and Quality-of-
Experience (Vijayakumar et al., 2021). The challenges in
optimizing and scheduling were solved with models and
DL techniques based on evolution. This approach helps to
make better decisions and effectively manage resources in
environments at the edges of a network. Yang et al., (2021)
introduced a method that can manage both accuracy and
the speed of neural networks on edge devices. An estimate
of resource use latency created from the profiling model
and the Pareto Bayesian search was driven by constraints
on accuracy and latency. Without sacrificing accuracy, the
inference process was 94.71% faster and the search
process became 18.18% more efficient.

An energy-efficient DNN offloading was developed
under deadline and budget constraints in edge-cloud
environments; this optimization modeling was performed
using an Enabled Hybrid Chaotic Evolutionary Algorithm
Dynamic Voltage Frequency Scaling (HCEA-DVES) (Li et
al., 2024). The Archimedes Optimization and Simulated
Annealing were applied for global exploration, and local
search improvement based on the Genetic Algorithm (GA)
chaotic strategy. Experiments proved that HCEA-DVFS
decreased energy consumption by 7.93% to 19.38%
relative to baseline techniques on a variety of DNN-based
apps. A suitable deep learning model and a proper method
for training the effective training scheme for the deep
neural network (ETS-DNN) were created to allow real-
time monitoring in an Internet of Medical Things (IoMT)
system that used edge computing (Pustokhina et al., 2020).
Optimization of the neural network with autoencoders and
softmax layers was achieved by using a Hybrid Modified
Water Wave Optimization (HMWWO) algorithm.
Examination of simulation results indicated that ETS-
DNN performed better when processing prompts and
making accurate diagnoses. Table 1 demonstrates the
summary of the literature review.

Deep Neural Network Architecture Optimization for Edge...

Informatica 49 (2025) 345-360 347

Table 1: Related work VEC optimization methods and outcomes

Methods Aim Outcome Challenge Author/Ref.
DeepMaker Automatically design Achieved up to 26.4x compression on | Designing efficient DNNs | (Loni et al., 2020)
Framework robust DNN architectures CIFAR-10 with only 4% accuracy that fit resource

(Multi- for embedded devices loss; optimized network size and constraints while

objective accuracy for limited resources maintaining accuracy

Evolutionary

Approach)

Internet of To detect cyberattacks in Achieved higher accuracy, superior Addressing IoT security (Saheed et al., 2024)
Things (IoT)- IoT networks using an detection rate, greater precision, false | with limited resources,

Defender efficient, lightweight alarm rate, mloU, and training time class imbalance, and low

(Modified edge-based IDS on BoT-IoT dataset; effective real- hardware security in edge

GA)/ Deep time deployment on Raspberry Pi computing environments

long-short- devices

term memory

(LSTM)

Genetic To reduce latency and Achieved lower energy consumption Balancing limited (Bietal., 2020)
Simulated energy usage in smart and faster convergence compared to resources of SMDs with

Annealing- mobile devices by three baseline methods using real-life | high communication costs

based Particle
Swarm

partially offloading

data; provided joint optimization of
offloading ratio, bandwidth, and

and maintaining energy-
efficient service

Optimization transmission power allocation
(GSP)
Greedy Optimizing task Achieved near-optimal scheduling Reducing excessive (Chen et al., 2020)
Algorithm scheduling in cloud-edge performance with reduced average delays during DNN task
and GA for systems to reduce the response time; GA outperformed offloading to enhance the
Task average response time of greedy in accuracy but required more | vehicle experience
Scheduling DNN-based apps computation time.
Particle to efficiently and quickly Reduced MEC server delay, balanced | Designing a low-delay (You et al., 2021)
Swarm transfer activities from energy consumption, and enabled and energy-efficient
Optimization resource-constrained edge | effective resource allocation offloading technique in a
(PSO) devices to MEC servers in | compared to GA and SA methods system with several

IIoT contexts vehicles and MECs
Differential To maximize loT edge Outperformed the Firefly Algorithm Clustering and scheduling | (Yousif, et al., 2024)
Evolution computing task clustering | and PSO in reducing execution time tasks effectively in
(DE) and scheduling and improving system efficiency and heterogeneous IoT edge

stability under heavyweight environments
workloads
Greedy To minimize the worst- Achieved convergence and effective Heterogeneous (Xiao et al., 2021)
Algorithm + case cost of FL in VEC by | trade-off between cost and fairness capabilities and data
Lagrangian optimizing computation, through dynamic vehicle selection quality among vehicles;
Dual + transmission, and local and resource allocation optimization energy and time
Adaptive model accuracy constraints in VEC
Harmony
Search in
federated
learning (FL)
VECMAN To improve energy Achieved 7-18% energy savings vs. Uncertainty in future (Bahreini et al., 2021)
(Resource efficiency in VEC local execution and ~13% vs. RSU vehicle locations;
Selector + systems by managing offloading by selecting participating difficulty in determining
Energy resource sharing among vehicles and optimizing sharing optimal resource sharing
Manager EVs durations and energy management
Algorithms)
VaCo To enhance intelligent VaCo effectively utilizes vehicle real-time scheduling of (Jiang et al., 2025)
(Vehicle- service deployment in resources, reducing the service failure | vehicle storage; benefit
assisted VEC by using vehicles' rate and cost. Real-world dataset evaluation under dynamic
Collaborative storage for collaborative evaluation confirms its ability to load
Caching caching balance benefits for all.
System
HSCoNAS imi
(Hardware- Op E.mlze DT\fIN Achieved strong accuracy—latency High search overhead and
aware architecture for aceuracy trade-offs on ImageNet across CPU, runtime approximation (Luo et al., 2021)
Evolutiona and latency on edge
ry . GPU, edge challenges
NAS devices
Framework)
LENS Incorporate wireless Improved Pareto front performance o
L Scalability issues and

(Latency- communication into NAS | by 76.47% (energy) and 75% . . (Odema et al., 2021)
aware NAS fixed-tier constraints

for Edge—

for hierarchical systems

(latency)

348 Informatica 49 (2025) 345-360

L. Wang et al.

Cloud
Systems)
Federated
Learning in Review implementation, Classified FL methods, hardware L
. . Synchronization delays,

Edge taxonomy, and challenges | constraints, and case studies; L. (Abreha et al., 2022)

. hardware resource limits
Computing of FLin EC identified open issues
(Survey)
RL-Dynamic To optimize service Reduced delay and improved edge Model complexity and (Talpur and Gurusamy,
(Reinforcement | placement in vehicular server utilization compared to static vehicle mobility 2021)
Learning networks by considering placement; fairness trade-offs unpredictability
Framework) mobility and dynamic demonstrated

service demands

2.1 Problem statement

Optimizing resources and edge server placement in
VEC as a result of high mobility, variable networks, and
few resources was hard. Usually, greedy algorithms and
other traditional methods do mnot work well in
environments that change dynamically (Chen et al., 2020).
PSO faces the issues of early convergence and fixation
when working with multiple vehicles (You et al., 2021).
DE was not suitable for clustering tasks in real time on
heterogeneous edge systems due to its issues with
scalability and computation (Yousif et al., 2024).
Therefore, the proposed framework SFO-Eff-DNN was
used to learn how devices move and decide on offloading.
It minimizes delays and uses less power, all while offering
adaptability, scalability, and fast convergence in changing
VEC networks.

3 Methods

3.1 Architectural overview and problem
formulation

The VEC would feature wireless connection,
permanent edge servers, and mobility vehicles. The
simulation's rise can be increased by using vehicles to
carry out new missions on surrounding servers. As

individuals move around and the network evolves, it is
important to find these servers with practical jobs and
make sure they supply energy. The problem is solved by
optimizing multiple objectives, with the main variables
being the location of servers and the way vehicles connect
to them throughout the day.

A) Architectural components

The architecture of the VEC system consists of three
main layers, such cloud, VEC, and vehicle, Cloud storage
allows for convenient processing and provides a backup
system. Figure 1 illustrates the architecture of VEC. The
VEC layer includes a network of Roadside Units (RSUs)
with edge servers, allowing local computing and rapid
exchanges of data. Intelligent vehicles make up the vehicle,
layer and handle task generation and offloading depending
on the current network and mobility issues. Environmental
sensors like Global Positioning System (GPS) and cameras
in vehicles provide live data that is key for improved traffic
management and safety. They enable Vehicle-to-Vehicle
(V2V) and Vehicle-to-RSU (V2R) communication and
were able to process or offload tasks according to resource
availability. Vehicles also allow for caching of data in
memory, which makes the system work more responsively.

Deep Neural Network Architecture Optimization for Edge...

Informatica 49 (2025) 345-360 349

Centralized Control Layer I

Vehicular Network
Layer

Figure 1: The architecture of the VEC

Vehicle Definition: The vehicle V defined as a six-
tuple is expressed in equation (1).

V={Vj4VsvK, G][]} (1)

Each vehicle V is identified by its V;4, can be activated
or deactivated (Vs;), has a type of task (v}), is located by
Simulation of Urban Mobility (SUMO’s) data K =
{kw, k,, ky,st}, is equipped with certain hardware (G), and
is running several active instances of applications J[,].

Vehicle Hardware Specifications and Role of RSU: a
vehicle’s hardware specifications Gare represented as a set
in equation (2).

G={0N[,],AT,de})

Each vehicle’s hardware profile G includes processor
specs (0), memory configuration N[,] distinguishing
central processing unit (CPU)/Graphics processing unit
(GPU usage, battery capacity (A4), installed sensors (T),
communication interfaces (d) such as Wi-Fi, Long Term
Evolution (LTE), or 5G New Radio (NR), and
communication frequency range (e). These parameters
influence the vehicle’s ability to process or offload
computational tasks.

RSUs were placed along roadways that help to process
and store data close to the network. RSUs were better at
processing and managing data than vehicles and at storing
and communicating with the internet whenever necessary.
It provides quick answers to requests in maps, and videos,
and controls traffic while edge servers rely on them.

Edge Server: An edge server F is defined as a three-
tuple in equation (3).
F ={Fj,D, K} (3)

The edge server is identified by a unique ID (Fj;) and
characterized by its computational capacity (D), which
includes memory, processing speed, and storage modeled
similarly to vehicle hardware specifications. Its
geographical location (K) is also a key attribute for optimal
placement within the VEC network.

Properties of edge servers in VEC

Dynamic vehicle assignment: Vehicle assignments to
clusters at any time s were independent of previous
assignments, allowing the system to adapt in real-time to
the high mobility and changing network topology of
vehicular environments.

Dedicated edge server assignment: Each vehicular
cluster was mapped indirectly to a single edge server,
ensuring exclusive service per cluster. This approach
minimizes resource conflicts and supports the demanding
performance requirements of VEC applications.

Many-to-one vehicle-to-server mapping: Multiple
vehicles can offload computational tasks to the same edge
server, enabling efficient resource utilization and
centralized task processing within the VEC framework.

Data from edge servers is uploaded to remote data
centers, known as cloud servers, which supply large
amounts of computing and storage services over a large
area. Using information from vehicles and edge servers,

350 Informatica 49 (2025) 345-360

cloud services can manage the network from one central
place and take the best actions. The combination of
vehicular terminals, edge servers, and cloud infrastructure
makes the VEC system both strong and capable of
handling the needs of intelligent transportation
management.

With the architectural components established, the
server placement strategy in the proposed VEC framework
can now be formally defined to optimize performance
under dynamic vehicular conditions.

Edge server placement: In the VEC model, the
placement of edge servers was modeled by a bipartite
graph with two sets: Fis for edge servers, while V is for
client vehicles. Each server f € F comes with a defined
Winax ;o showing its maximum vehicle -capacity.

Communication cost indicates how well a vehicle v works
with a server e due to the effects of latency Ky and energy
consumption Fy, . The objective is to determine a good
subset F; out of F and describe the mappinggp:V — F; :,
assigning each vehicle to a server to minimize both the
total delay and the power used across the system.

Average latency:K'is used to mean the average time
taken for vehicles to communicate with edge servers while
offloading their tasks. It helps to measure the effectiveness
of server placement and matching vehicles to servers in the
VEC framework under changing mobility conditions. It is
computed as in equation (4).

1
K = MZUEV va (4)

The | V' | denotes the total number of vehicles within
the VEC network. K, represents the communication
latency encountered by vehicle v during task offloading to
edge server f, defined as equation (5).

va &)

= Sreceive — Ssend

In this context, Sg.,qindicates the timestamp when a
vehicle initiates the task offloading request, while Syeceive
marks the moment the vehicle receives the processed
response from the edge server.

The goal of the edge server placement was to
minimize the average latency K-, ensuring efficient, low-
latency communication for all vehicles within the network.

B) Model formulation

The edge server placement issue in a VEC network is
defined in this section to minimize overall energy usage
and delay through optimal edge server placement. The
decision variables, objective functions, and constraints
involved in the problem formulation are detailed below.

Consider a fixed of vehiclesV = {vq,v;...vy}, a set
of edge servers F = {flfzfn} , anda list of possible
deployment sites] = {j1 Jo,.. jn}for placing edge servers
within the network.

L. Wang et al.

1) Decision Variables:

To model the edge server placement in the VEC
network, define decision variables that indicate whether an
edge server is deployed at a specific location and how
vehicles were assigned to these servers for optimal
performance. A, is a binary decision variable that
indicates the connection status between vehicle v and edge
server e in equation (6).

Avf =

{1, if vehicle uis connected to edge server f
0,otherwise

(6)

Ay is a binary decision variable indicating the
deployment status of an edge server at location j in
equation (7).

Ari =
fi

{ 1,if an edge server is placed at location j
0, otherwise

O]

2) Parameters

The parameters in the formulation define the system
characteristics essential for optimizing edge server
placement in the VEC network. The energy consumption
for a vehicle v to offload computational tasks to an edge
server € is denoted as F,¢. In equation (8).

Fuf = (Osw + qu)-Scomm (3)

Where O, is the vehicle’s transmission power, O, is
the reception power, and S¢,mm 18 the time taken for the
communication exchange. This metric helps quantify
energy efficiency in task offloading scenarios within the
VEC environment. The latency experienced by a vehicle
v when offloading tasks to an edge server e is denoted as
K, s . Equation (9) defines it as the interval of time between
the sending of the offloading request and the receiving of
the processed response.

K,; = Receive Time — Send Time (9)

In the VEC environment, key parameters include Of,
the active power consumption of edge server f;c,, the
distance between vehicle v and edge server f; D, the
maximum number of servers on the edge deployable in the
network; and Capacity; , the maximum number of
vehicles that a server on the edge i can handle. These
factors guide optimal server placement.

3) Objective Function

To minimize overall energy consumption and reduce
total latency in the VEC network.

Deep Neural Network Architecture Optimization for Edge...

Minimize Total Energy Consumption: Total energy
consumption includes the energy used by vehicles to
offload tasks (F,) and the power consumed by active edge
servers (Of). The objective is to minimize the sum of
vehicle offloading energy and edge server power across the
network in equation (10).

Minimize — Y5_y X7 5 AppFop +

Yfer Xt Agjor (10)

Where o and Ay indicates vehicle-to-server
connections and server placements, respectively.

Minimize Total Cumulative Latency: To reduce the
overall communication delay experienced by vehicles
when offloading tasks to edge servers. This total latency is
calculated as the sum of the individual latencies K,
defined by the time difference between sending the task
and receiving the response expressed in the following
equation (11).
Minimize

Y1 Zu=1Avs Ky (1)

Where A, indicates if vehicle v offloads to server f,
and K, is the latency between them.

4) Constraints

The optimization problem includes constraints to
guarantee efficient deployment of edge servers and proper
assignment of vehicles, ensuring that server capacities
were not exceeded and system resources were utilized
effectively.

Server Capacity Constraint: Each edge server has a
limited capacity, restricting the number of vehicles it can
serve. The total vehicles assigned to server f must not
exceed its capacityDy, ensuring balanced load distribution
and preventing server overload in equation (12).

Yue1Ays < DsVy (12)

Vehicle Assignment Constraint: To ensure proper task
offloading, each vehicle must be assigned to exactly one
edge server. This guarantees that every vehicle connects to
a single server for processing its tasks, expressed as
equation (13).

YiiAy =1V, (13)

Restrictions on Edge Server Positioning: The
deployment of edge servers within the network is restricted
by a maximum allowable number, denoted by D. This
constraint confirms that the total quantity of placed edge
servers does not exceed D, and is formulated as equation

(14).

Informatica 49 (2025) 345-360 351

Yfe1 Xj=145j <D (14)

Binary Constraints: The decision variables A,f and
Ay ; are binary, reflecting the discrete nature of the problem.
Specifically, a vehicle v is either connected to an edge
server f or not, and an edge server is either deployed at
location j or not. These binary constraints ensure clear and
unambiguous decision-making in the edge server
placement and vehicle assignment process within the VEC
network in equations (15) and (16).

Ayr €{0,1}V, ¢ (15)

Asj € {0,1}Vf; (16)

3.2 Dataset

For a Vehicular Edge Computing scenario, this 5,811-
record task offloading event dataset is used to validate the
effectiveness of the proposed SFO-Eff-DNN system. This
dataset includes information on task arrival/completion
processing
consumption, and vehicle node mobility. The model can

time, time, network latency, energy
learn intricate mobility and network behaviors because to
this dataset's capture of dynamic, real-world vehicle
settings. This is in line with the framework's goal of
optimizing edge server placements and deep neural
network settings. It encourages scalability, responsiveness,
and efficiency for real-time VEC and smart mobility by
facilitating an equitable examination of latency vs. energy

trade-offs.

Source:

https://www.kaggle.com/datasets/programmer3/vec-edge-
server-offloading-dataset

3.3 Preprocessing Min-Max
Normalization

To create an energy-efficient optimum structure of a deep
neural network for real-time VEC activities with enhanced
energy economy, reduced latency, and scalable
performance, min-max normalization is applied in the
preprocessing stage. The model's convergence is
enhanced and a uniformly distributed collection of features
is made possible for efficient decision-making for real-
time VEC operations by normalizing the input parameters
of delay, energy consumption, and vehicle speed between
0 and 1.The value of property B is normalized from
[ming, maxg] to [newmmB, newmaxB] using equation
(17), which maximizes data representation:

Using

u—ming
(newminB, newmaxB) + NeWning

a7

maxg—ming

https://www.kaggle.com/datasets/programmer3/vec-edge-server-offloading-dataset
https://www.kaggle.com/datasets/programmer3/vec-edge-server-offloading-dataset

352 Informatica 49 (2025) 345-360

In addition to enhancing prediction reliability and
preserving a consistent data distribution, this
normalization facilitates effective implementation in real-
time automotive applications.

3.4 Synergistic fibroblast optimized efficient

deep neural network (SFO-Eff-DNN)

The research to improve the DL architecture, the SFO-
Eff-DNN suggests a hybrid intelligence framework with
edge servers situated in VEC. It relies on the predictive
power of Eff-DNN and integrates the ability of the SFO
algorithm to adjust itself. Eff-DNN is used to figure out
how vehicles move around and how the network changes,

L. Wang et al.

while SFO acts like fibroblast cells in real healing to search
through lots of different solutions quickly. SFO helps set
up Eff-DNN weights, biases, and learning rates to ensure
good latency, energy consumption, and ability to scale up
or down. As a result of hybridization, the system evades
local optima and gradually finds the best solution. The use
of real-world data for vehicles confirms that the SFO-Eff-
DNN framework can quickly converge, lower the time
needed for inference, and help with making energy-
efficient decisions in rapidly changing VEC environments.
Algorithm 1 represents the proposed SFO-Eff-DNN model
working process.

Algorithm 1: SFO-Eff-DNN

Step 1: Initialization
def setup():

M = 30 # Population size
N = num_parameters()
max_iter,rho,tau = 100,0.5,5
s,k_pq,L = 1.0,0.8,10.0
data =
return M, N, max_iter,rho, tau, s, k_pq, L, data

Step 2: Initialize the population of solutions

def init_population(M,N):

Total Eff — DNN parameters

load VEC_data() # Real — world mobility/network data

return [{'params’: rand_vec(N), 'velocity': rand_vec(N)} for _in range(M)]

Step 3: Train and evaluate the Eff — DNN model
def evaluate(params,data):
model = build_EffDNN (params)

train_DNN (model,* data)

latency,energy = evaluate_latency_energy(model)

return latency + energy # Simple fitness function (lower is better)

Step 4: Velocity update with feedback and local correction

def update_velocity(ind, past_pos,rho):
¢ = local_correction(ind['params'])

d = vector_div(past_pos,norm(past_pos))

return ind['velocity'] + (1 — rho) * ¢ + rho * d

Step 5: Position update

def update_position(ind,vel,s, k_pq, L):

Deep Neural Network Architecture Optimization for Edge...

speed = s/ (k_pq * L)
direction = vector_div(vel,norm(vel))
return ind['params'] + speed * direction
Step 6: Main SFO — EffDNN Optimization
def optimize_SFO_EffDNN():
M,N,T,rho, tau,s, k_pq,L,data = setup()
pop, history = init_population(M, N), []
for tinrange(T):
forind in pop:
ind['fitness'] = evaluate(ind['params'], data)
past = pop if t < tau else pop.copy()
For i,ind in enumerate(pop):
ind['velocity'] =
ind['params’] =
best = min(pop, key = lambda x: x['fitness'])
history. append (best['fitness'])

return best, history

Informatica 49 (2025) 345-360 353

update_velocity (ind, past[i]['params’], rho)

update_position(ind, ind['velocity'], s, k_pq, L)

To improve performance in dynamic Vehicular Edge
Computing (VEC) settings, the SFO-Eff-DNN algorithm 1
combines the strength of Efficient Deep Neural Networks
(Eff-DNN) with Synergistic Fibroblast Optimization
(SFO), an optimization technique inspired by nature.
Using actual traffic and network data, the algorithm
initializes a population of solutions, each of which
represents a set of Eff-DNN parameters, and assesses each
according to latency and energy consumption. The
approach is perfect for real-time intelligent transportation
systems because it ensures quick convergence and
improved flexibility by updating its location and velocity
depending on fitness input and historical experiences.

Efficient Deep Neural Network (Eff-DNN) The
proposed optimized deep learning architecture in VEC

makes use of an Eff-DNN to represent how vehicles and
networks interact. An Eff-DNN architecture has an input
layer, an output layer, and many hidden layers, as shown
in Figure 2. The network is set up with six input layers and
seven hidden layers, all containing 64 neurons to avoid
overfitting. Model complexity and generalization were
managed in TensorFlow by setting them as
hyperparameters within the layers. It uses input about how
vehicles behave and interact to determine the best
positioning of the edge servers. The network uses the
Rectified Linear Unit (ReLU) function to make its
computations non-linear and adjust the weights it uses for
learning through backpropagation. The Eff-DNN can
provide quick and efficient decisions in ever-changing
vehicular environments due to the backpropagation
process, which keeps the cost function low. Neuron
outputs were computed as follows in equation (18).

354 Informatica 49 (2025) 345-360

Input Layer Hidden Layer

IV
'/[’v‘ \\\'
"0 \\\\

.\\\

Figure 2: Architecture of Eff-DNN

7t =a(y) = o(T],

™z 4+ a™tt) (1)

Where o(z) represents the activation function, and
z™*1 is the output of the v — thneuron in the (m + 1)-th
layer. The weights among the j — th neuron of layer n and
the r — th neuron of layer (m + 1) are labeled w’-:l, and
a™*1represents the bias term for linear transformations.
While training, the loss function compares the predicted
outcomes with the desired ones. The model finds the best
values for w and a by minimizing the loss, making the
network predict more accurately. The Eff-DNN’s loss
function is explained in equation (19).

f(@) = _%Zm Zr Smr lOmer (19)

Wheres,,,,- represents the actual value of the r —th
sample's m — thelement, z,,,- denotes the predicted value
for the same element, and 0 represents the collection of
parameters including weights w and biases a. Here, M is
the total quantity of samples. To reduce overfitting, a
dropout mechanism is employed that randomly disables
neurons during training, effectively disrupting the network
structure and promoting generalization. Furthermore, the
proposed method enhances the conventional gradient
descent by dynamically adapting the learning rate for
improved convergence. The optimization of the parameter
set 6 is formally defined as equations (20) and (21).

L. Wang et al.
Output Layer
7
(Mg = Ping_1 + (1 = B1)hs
Us = Bauts—q + (1 = Bo)h
hg = VoF(8s-1)
A~ Nng
. Ms = 1288 (20)
—~ Ug
Us =1
fis
K 0 - 95_1_()(\/m
epoch—num
M .
OCZOCO ﬁ3batch—stze (21)

Where Urepresents the weighted average of
exponentially the squared gradients, while h; denotes the
gradient of the parameters at time s, ngcaptures the
average movement of the gradient, and X,is the initial
learning rate. The corrected versions of these estimates
were denoted by Usand A, which improve optimization
accuracy. Exponential decay rates f3; , 5, and f3 are used
to stabilize updates. Additionally, parameters such as batch
size (epbatch—size) and current training iterations (ochnum
) influence convergence behavior. The improved DNN
supports dual operational modes, RDL-1 for normal
conditions and RDL-2 for power swing detection, ensuring
adaptive command generation aligned with dynamic
vehicular network scenarios.

Deep Neural Network Architecture Optimization for Edge...

Synergistic fibroblast optimization (SFO)

SFO is modeled after migratory fibroblast cells that
heal tissue by responding to the extracellular matrix
(ECM). Every solution searches the solution space by

varying its position and velocity about diffusion and fitness.

This bio-inspired method allows for greater flexibility and
avoids local minima, making it appropriate for optimizing
neural networks and edge server placement in dynamic
VEC settings.

A model based on the adaptive actions of fibroblast
cells used in repairing tissues. SFO works on tuning how
deep neural networks are set up and arranging edge servers
in dynamically changing virtual edge clouds. Much as
fibroblasts respond to the extracellular matrix (ECM), SFO
looks for solutions in many different ways. Ongoing
testing and evaluation of fitness ensure the best solutions
use both energy and time efficiently. For this reason, this
approach ensures flexibility in the way transportation
systems are managed.

The process of biomechanical analysis was
strengthened each time by paying attention to interactions
with the ECM. As it runs, the program tests different
combinations of settings, much like fibroblasts, to improve
its outcome. The simulated cells disperse and travel to the
most promising areas to avoid getting caught in local
minima. Depending on the speed and distribution of the
particles, the algorithm updates its next action using the
information and trends it has gathered. As a result, the
process can handle the trade-offs between speed,
performance, and movement better in VEC networks.

Initialization: Within the N -dimensional solution
space, initialize a population of physical activity
movements f; , wherei = 1,2, ..., M,. Each movement is
assigned a random position ()and velocity (v;). Key
parameters such as the diffusion coefficient p and
movement speed sare established.

Fitness Evaluation: For each candidate solution f; in
the N-dimensional space, the fitness function e(f;) is
evaluated iteratively to assess the quality of each
movement. This process aims to identify the optimal
solution (maximum or minimum) within the evolving
search region. Based on the fitness outcomes, the position
(b;) and velocity (v;) of each movement were updated
accordingly using the update rules given by Equations (22)
and (23), enabling the algorithm to adaptively explore the
solution space.

(t+1) _ () ® « filt-7)
Ui _Ui +(1—p)C(f;)+pm

(22)

Where tis the current iteration, T is the time delay,
and the diffusion coefficient p is set to 0.5.

Informatica 49 (2025) 345-360 355

(t+1)

(t+1) _ (1) « Y
b; =b;" +s

. N
The movement speed ¢ is defined as s = P where
pq

"kpq" represents the baseline movement rate and L denotes
the movement length. The SFO-Eff-DNN hybrid model
optimizes edge server placement in dynamic VEC
environments by combining adaptive search with deep
learning. It efficiently predicts optimal configurations,
improves convergence speed, and reduces latency and
energy use, making it ideal for real-time intelligent
transportation systems.

4 Results and discussion

The experimental setup uses an Intel i7 CPU.
Simulations were conducted in Python with TensorFlow
and the Veins platform using Cologne traffic traces. The
dataset was split using an 80:20 ratio, where 80% was used
for training the SFO-Eff-DNN model and 20% was
reserved for testing to evaluate performance and
generalization.

The SFO-Eff-DNN model includes ReLU-activated
layers and dropout, optimized via SFO. Performance was
evaluated based on latency, energy use, and server
placement accuracy. Key simulation parameters with
values aligned to realistic VEC scenarios are presented in
Table 2.

Table 2: Key simulation parameters for the SFO-Eff-

DNN VEC Framework
Parameter Value
Simulation area 1500 m x 1500 m
Simulation time 200s,300s,400s
Number of edge serve| 8
Transmission power | 25 mW,30 mW,35 mW

RSU antenna height | 5m

Receiver sensitivity | —100 dBm

Message size 100 bits

Message frequency 2Hz

Data rate 10 Mbps, 20 Mbps,30 M
Vehicle speed range | 0- 100 km/h

Edge server CPU capa| 3.5 GHz

Edge server memory 32 GB

4.1 Offloading ratio

Using time on the x plane and the percentage of tasks
offloaded from the vehicle to edge servers on the y plane,
Figure 3 shows the offloading ratio (%) in the VEC system
over 10 minutes. Starting at 75%, the offloading ratio
steadily rises to 89%, reflecting an increasing reliance on
edge computation. This upward trend is attributed to
enhanced network conditions, adaptive optimization by the
SFO-Eff-DNN framework for energy efficiency, or the
growing complexity of vehicular tasks that necessitate
edge processing. Tracking this metric is crucial in the

356 Informatica 49 (2025) 345-360

research context, as a higher offloading ratio signifies
more efficient utilization of edge resources, which directly
contributes to lowering vehicle energy consumption and

L. Wang et al.

accelerating task processing, thereby improving overall
system performance in dynamic ITS environments.

Offloading Ratio Over Time

100

95

S0 1

85 1

80 4

75 1

Offloading Ratio (%)

70 4

65 4

60

1 2 3 4 5

6 7 8 9 10

Time (minutes)

Figure 3: Offloading ratio over time

4.2 SFO-Eff-DNN Pareto Front in VEC

In VEC, the Pareto front for the suggested SFO-Eff-
DNN illustrates the relationship between latency and
energy use. Figure 4 illustrates that with latency increasing
from 50 ms to 70 ms, the energy consumed decreases from

about 70 J to 40 J, showing an inverse relationship. All
points on the curve are Pareto-optimal, as enhancing one
factor would cause a drop in the other. Because of the
model's diversity, it is possible to choose configurations for
specific needs, such as real-time applications or limited-
power cases, proving its effectiveness and adaptability.

Pareto Front Diversity - SFO-Eff-DNN

70 —®— Pareto Front (SFO-Eff-DNN)
65
2
3
3 60+
5
£ 551
3
£
]
2 50
@
&
a5 -
40 -
50.0 525 550 575 600 625 650 675 70.0
Latency (ms)
Figure 4: Pareto front diversity of SFO-Eff-DNN in VEC
4.3 Convergence Behavior of SFO-Eff-DNN algorithm quickly ~ identifies energy-efficient

Figures 5 (a) and (b) illustrate the convergence
behavior of the SFO-Eff-DNN algorithm over 100
optimization iterations for energy consumption and latency.
In Figure (a), the minimum energy consumption (blue line)
rapidly drops from approximately 0.34 to 0.29 within the
first 10 iterations and then stabilizes, indicating that the

configurations. The average energy consumption (green
dashed line) also follows a similar decreasing trend,
gradually converging toward the minimum, which reflects
the population's collective improvement. Similarly, in
Figure (b), during the first iterations, the latency drops
rapidly and then becomes more stable at a much lower

Deep Neural Network Architecture Optimization for Edge...

level. The average latency also decreases and stabilizes

around the same wvalue, highlighting consistent
performance improvement across the solution space.
0.36
Min Energy

0,35 -1 o« o Alg Energy
§ 0.34 1
S
Q.
E 0331
7]
5 >
G032
9 .
g
2 0.31 4
w

0.30

0.29 4

T T T T
0 20 40 60 80 100
Iterartion
(a)

Informatica 49 (2025) 345-360 357

Overall, these trends confirm that SFO-Eff-DNN achieves
efficient and simultaneous convergence toward optimal
energy and latency trade-offs.

0.000045

3 ‘— Min Latency
i [=="=Avg Latency |
0.000040 - *y
i
\

0.0000354 |
> i
b \
< !
2 0.0000304
o \
i \

0.000025

0.000020 A e

,~_,v_l N A'\,\"'v'\"A\‘/'\»’J \.‘_/ N
0.000015
T T § T
0 20 40 60 80 100
Iteration
(b)

Figure 5: Convergence Behavior of SFO-Eff-DNN (a) energy conception and (b) latency

4.4 Performance analysis

A comparison of several optimization techniques
based on their energy consumption and latency
performance in vehicular edge computing scenarios is
shown in Table 3. Among the evaluated techniques,
Particle Swarm Optimization (PSO) (Surayya et al., 2025),
Teaching—Learning-Based Optimization (TLBO) (Surayya
et al, 2025), and Ant Colony Optimization (ACO)
(Surayya et al., 2025), the proposed SFO-Eff-DNN method
demonstrates the energy consumption and the latency. This
highlights the superior efficiency and responsiveness of
the SFO-Eff-DNN framework, making it highly suitable
for real-time, energy-aware edge deployments in dynamic
vehicular environments. Figure 6 demonstrates the results
of the performance analysis.

Table 3: Comparison of optimization methods by
energy consumption and latency

Methods Energy Latency (S)
Consumption
(¢))
PSO (Surayya | 0.3535 40 ps
et al., 2025)
TLBO 0.3546 40 ps
(Surayya et
al., 2025)
ACO 0.3517 60us
(Surayya et
al., 2025)
SFO-Eff-DNN | 0.3480 30 ps
(Proposed)

0.0000588

0.0000490

Latency (s)

0.0000392

0.0000294

0.3549

T
1

0.3528

0.3507

0.3486

Energy Consumption (J)

1,

PSO TLBO ACO SFO-Eff-DNN
(Surayya et (Surayyaet (Surayyaet (Proposed)
al., 2025) al., 2025) al., 2025)
Methods

Figure 6: Comparison methods by energy
consumption and latency

Analyzing different optimization methods for their
energy consumption and latency when used in VEC. SFO-
Eff-DNN shows better results than other models by using
the least amount of energy (0.3480 J) and having the
shortest latency (30 ps). Here, microseconds (ps) are used,

358 Informatica 49 (2025) 345-360

since 1 ps is a millionth of a second, which is needed to
ensure fast response times vital in real-time VEC systems.
For energy usage, PSO and TLBO lead with 0.3535 J and
0.3546 J, respectively, but both have a latency of 40 ps,
while ACO uses 0.3517 J with the highest latency of 60 ps.
The results demonstrate that SFO-Eff-DNN offers better
results in real-time, energy-sensitive VEC applications.

A comparison of task drop rates for various placement
techniques in dynamic VEC situations is shown in Table 4

L. Wang et al.

when ultra-low latency is necessary. ACO (Surayya et al.,
2025) can distribute solutions equally, but its slow
execution means it is not suitable when time is critical. A
PSO, TLBO, and ACO lead with low energy of 0.3535 J,
0.3546 J, and 0.3517 J. Using the SFO-Eff-DNN model,
energy costs and latency can be cut down at the same time,
compared to older versions. Compared to the generic
method's 2.90% dropped task rate (Khamari et al., 2022),
the SFO-Eff-DNN's dropped task rate was only 1.83%,

and Figure 7. In comparison to the generic method's 2.90% indicating its resilience in workload balancing and edge

(Khamari et al., 2022) dropped task rate, the suggested
SFO-Eff-DNN model performs better, attaining a dropped
task rate of just 1.83% (Proposed). In latency-sensitive,
high-mobility edge computing systems, this research
demonstrates how well the SFO-Eff-DNN optimises server
workload allocation and lowers service denial.

Table 4: Comparison of task dropped rate between
placement strategies in VEC environments

Placement strategies | Dropped Tasks (%)

generic method 2.90%
(Khamari et al.,
2022)
SFO-Eff-DNN

(Proposed)

3.0—‘ —

2.5 |

2.0 —

1.5

1.0

0.5 y J |

0.0

1.83%

Dropped Tasks (%)

T T
generic method (khamari ~ SFO-Eff-DNN (Proposed)

et.,2022)
Placement strategies

Figure 7: Comparison of Dropped Task Rates for
Generic Method and SFO-Eff-DNN

4.5 Discussion

By optimizing the placement of edge servers and DL
networks, the SFO-Eff-DNN in VEC reduces latency and
conserves energy. The technique has some problems with
responding to changes in vehicles and adapting to sudden
network changes in VEC settings (Bi et al., 2020). While
VECMAN saves energy by sharing resources among
electric vehicles, it is difficult for it to accurately predict
where vehicles are and to schedule them in situations that
are constantly changing (Bahreini et al., 2021). As both
PSO and TLBO (Surayya et al., 2025) prioritize low
energy over low latency, they may not respond fast enough

resource utilisation in dynamic vehicular situations. Due to
advanced techniques and deep learning, the system reacts
to updates in vehicles and can quickly and accurately
configure servers for VEC applications.

The computational load brought on by the
hybridization of deep learning and evolutionary
optimization constitutes one of the key issues, especially
during the early phases of training and adaption. Despite
its potential for convergence efficiency, iterative
optimization can be resource-hungry on edge nodes with
constrained computing capacity. Another problem is the
system's scalability in high-density vehicle networks.
While the model works well for simulations of
intermediate scale, more study is needed to determine how
it responds and operates in large, real-time vehicular
systems with hundreds of nodes. These limitations
highlight the significance of future studies that focus on
distributed training practices and lightweight optimization
versions that can sustain performance without increasing
compute demands in practical applications.

5 Conclusion

VEC is a pattern that encourages cloud computing
capabilities closer to the network edge services needed for
low-latency services, such as auto-corrective driving
support, real-time traffic management, and location-based
applications. The proposed SFO-Eff-DNN framework is
used to optimize deep learning for VEC using modern
evolutionary algorithms. To deal with the problem of
placing servers at the edge of wireless networks in vehicles,
both Synergistic Fibroblast Optimization and deep neural
networks were used. It makes use of real travel data to
manage how quickly it responds and how much energy it
uses, adjusts to any changes in the network, and provides
quick results. The data from experiments reveals that SFO-
Eff-DNN works with 30 us latency, 0.3480J energy
consumption, and only 1.83% dropped tasks, making it
well-suited for speedy and efficient smart transportation. It
strongly supports and adapts to the new directions being
taken in VEC deployments. Using simulated movement
and experimentation usually does not reflect real-world
events or problems, meaning their practical use may not be
as effective.

Future scope

Future research should integrate real-time traffic incident
data and 5G network slicing to further enhance adaptability.
Extending the framework with federated learning for

Deep Neural Network Architecture Optimization for Edge...

privacy-preserving model updates across distributed
vehicles, and exploring hybrid optimizers that combine
SFO with reinforcement learning could improve
robustness against unforeseen network disruptions and
accelerate convergence in large-scale, heterogeneous VEC
deployments.

References

[1] Wan, S., Xu, X., Wang, T., and Gu, Z., 2020. An
intelligent video analysis method for abnormal event
detection in intelligent transportation systems. IEEE
Transactions on Intelligent Transportation Systems,
22(7), pp-4487-4495.DOI:
10.1109/TITS.2020.3017505

[2] Boukerche, A., Tao, Y. and Sun, P., 2020. Artificial
intelligence-based vehicular traffic flow prediction
methods for supporting intelligent transportation
systems. Computer networks, 182,
p-107484.https://doi.org/10.1016/j.comnet.2020.107
484

[3] Elassy, M., Al-Hattab, M., Takruri, M. and Badawi,
S., 2024. Intelligent transportation systems for
sustainable smart cities. Transportation Engineering,
p.100252 https://doi.org/10.1016/]j.treng.2024.10025
2

[4] Alhnilal, A.Y., Finley, B., Braud, T., Su, D. and Hui, P.,
2022. Street smart in 5G: Vehicular applications,
communication, and computing. [IEEE Access, 10,
pp.-105631-
105656.DOI: 10.1109/ACCESS.2022.3210985

[5] Chougule, S.B., Chaudhari, B.S., Ghorpade, S.N. and
Zennaro, M., 2024. Exploring computing paradigms
for electric vehicles: from cloud to edge intelligence,
challenges and future directions. World Electric
Vehicle Journal, 15(2),
p-39.https://doi.org/10.3390/wevj15020039

[6] Talpur, A. and Gurusamy, M., 2021. Drld-sp: A deep-
reinforcement-learning-based ~ dynamic service
placement in edge-enabled internet of vehicles. IEEE
Internet of Things Journal, 9(8), pp.6239-
6251.DOI: 10.1109/J10T.2021.3110913

[7] Zaki, AM., Elsayed, S.A., Elgazzar, K. and
Hassanein, H.S., 2024. Quality-Aware Task
Offloading for Cooperative Perception in Vehicular
Edge Computing. IEEE Transactions on Vehicular
Technology.DOI: 10.1109/TVT.2024.3444591

[8] Zhao, L., Li, T., Zhang, E., Lin, Y., Wan, S., Hawbani,
A. and Guizani, M., 2023. Adaptive swarm
intelligent offloading based on digital twin-assisted
prediction in VEC. IEEE Transactions on Mobile
Computing, 23(8), pp-8158-
8174.DOI: 10.1109/TMC.2023.3344645

[9] Shen, B., Xu, X., Qi, L., Zhang, X. and Srivastava,
G., 2021. Dynamic server placement in edge
computing toward the internet of vehicles. Computer
Communications, 178, pp.114-
123 https://doi.org/10.1016/j.comcom.2021.07.021

Informatica 49 (2025) 345-360 359

[10] Peyman, M., Fletcher, T., Panadero, J., Serrat, C.,
Xhafa, F. and Juan, A.A., 2023. Optimization of
vehicular networks in smart cities: from agile
optimization to learn heuristics and sim heuristics.
Sensors, 23(1),
p-499.https://doi.org/10.3390/s23010499

[11] Ebrahimi Mood, S., Rouhbakhsh, A. and Souri, A.,

2025. Evolutionary recurrent neural network based

on equilibrium optimization method for cloud-edge

resource management in Internet of Things. Neural

Computing and Applications, 37(6), pp.4957-

4969 .https://doi.org/10.1007/s00521-024-10929-1

Vijayakumar, P., Rajalingam, P. and Rajeswari,

S.VK.R., 2021. Edge Computing Optimization

Using Mathematical Modeling, Deep Learning

Models, and Evolutionary Algorithms. Simulation

and Analysis of Mathematical Methods in Real-Time

Engineering Applications, pp-17-

44 https://doi.org/10.1002/9781119785521.ch2

[13] Yang, Z., Zhang, S., Li, R., Li, C., Wang, M., Wang,
D. and Zhang, M., 2021. Efficient resource-aware
convolutional neural architecture search for edge
computing with Pareto-bayesian optimization.
Sensors, 21(2),
p-444 https://doi.org/10.3390/s21020444

[14] Li, Z., Yu, H., Fan, G., Zhang, J. and Xu, J., 2024.
Energy-efficient offloading for DNN-based
applications in edge-cloud computing: A hybrid
chaotic evolutionary approach. Journal of Parallel

[12]

and Distributed Computing, 187,
p.104850.https://doi.org/10.1016/j.jpdc.2024.10485
0

[15] Pustokhina, I.V., Pustokhin, D.A., Gupta, D., Khanna,
A., Shankar, K. and Nguyen, G.N., 2020. An
effective training scheme for deep neural networks in
edge computing enabled Internet of Medical Things
(IoMT) systems. IEEE Access, 8, pp.107112-
107123.DOI: 10.1109/ACCESS.2020.3000322

[16] Loni, M., Sinaei, S., Zoljodi, A., Daneshtalab, M. and
Sjodin, M., 2020. DeepMaker: A multi-objective
optimization framework for deep neural networks in
embedded systems. Microprocessors and
Microsystems, 73,
p.102989.https://doi.org/10.1016/j.micpro.2020.102
989

[17] Saheed, Y.K., Abdulganiyu, O.H. and Ait Tchakoucht,
T., 2024. Modified genetic algorithm and fine-tuned
long short-term memory network for intrusion
detection in the Internet of Things networks with
edge capabilities. Applied Soft Computing, 155,
p. 111434 https://doi.org/10.1016/j.as0c.2024.111434

[18] Bi, J., Yuan, H., Duanmu, S., Zhou, M. and Abusorrah,
A., 2020. Energy-optimized partial computation
oftloading in mobile-edge computing with genetic
simulated-annealing-based particle swarm
optimization. IEEE Internet of Things Journal, 8(5),
pp.3774-3785.DOI: 10.1109/J10T.2020.3024223

https://doi.org/10.1109/TITS.2020.3017505
https://doi.org/10.1016/j.comnet.2020.107484
https://doi.org/10.1016/j.comnet.2020.107484
https://doi.org/10.1016/j.treng.2024.100252
https://doi.org/10.1016/j.treng.2024.100252
https://doi.org/10.1109/ACCESS.2022.3210985
https://doi.org/10.3390/wevj15020039
https://doi.org/10.1109/JIOT.2021.3110913
https://doi.org/10.1109/TVT.2024.3444591
https://doi.org/10.1109/TMC.2023.3344645
https://doi.org/10.1016/j.comcom.2021.07.021
https://doi.org/10.3390/s23010499
https://doi.org/10.1007/s00521-024-10929-1
https://doi.org/10.1002/9781119785521.ch2
https://doi.org/10.3390/s21020444
https://doi.org/10.1016/j.jpdc.2024.104850
https://doi.org/10.1016/j.jpdc.2024.104850
https://doi.org/10.1109/ACCESS.2020.3000322
https://doi.org/10.1016/j.micpro.2020.102989
https://doi.org/10.1016/j.micpro.2020.102989
https://doi.org/10.1016/j.asoc.2024.111434
https://doi.org/10.1109/JIOT.2020.3024223

360 Informatica 49 (2025) 345-360

[19] Chen, Z., Hu, J., Chen, X., Hu, J., Zheng, X. and Min,
G., 2020. Computation offloading and task
scheduling for DNN-based applications in cloud-
edge computing. IEEE Access, 8, pp.115537-
115547.DOI: 10.1109/ACCESS.2020.3004509

[20] You, Q. and Tang, B., 2021. Efficient task offloading

using particle swarm optimization algorithm in edge

computing for the industrial internet of things.

Journal of Cloud Computing, 10, pp.l-

11.https://doi.org/10.1186/s13677-021-00256-4

Yousif, A., Bashir, M.B. and Ali, A., 2024. An

evolutionary algorithm for task clustering and

scheduling in IoT edge

computing. Mathematics, 12(2),

p-281.https://doi.org/10.3390/math12020281

[22] Xiao, H., Zhao, J., Pei, Q., Feng, J., Liu, L. and Shi,

W., 2021. Vehicle selection and resource

optimization for federated learning in vehicular edge

computing. IEEE Transactions on Intelligent

Transportation Systems, 23(8), pp-11073-

11087.DOI: 10.1109/TITS.2021.3099597

Bahreini, T., Brocanelli, M. and Grosu, D., 2021.

VECMAN: A framework for energy-aware resource

management in vehicular edge computing

systems. IEEE Transactions on Mobile

Computing.DOI: 10.1109/TMC.2021.3089338

[24] Jiang, H., Cai, J., Xiao, Z., Yang, K., Chen, H. and Liu,
J., 2025. Vehicle-Assisted Service Caching for Task
Offloading in Vehicular Edge Computing. IEEE
Transactions on Mobile
Computing.DOI: 10.1109/TMC.2025.3545444

[25] Surayya, A., Hussain, M.M., Reddy, V.D., Abdul, A.
and Gazi, F., 2025. Evolutionary Algorithms for Edge

(21]

(23]

Server Placement in Vehicular Edge
Computing. IEEEAccess.10.1109/ACCESS.2025.35
66172

[26] Luo, X., Liu, D., Huai, S. and Liu, W., 2021,
February. HSCoNAS: Hardware-software co-design
of efficient DNNs via neural architecture search. In
2021 Design, Automation & Test in Europe
Conference & Exhibition (DATE) (pp. 418-421).
IEEE.https://doi.org/10.23919/DATES51398.2021.94
73937

[27] Odema, M., Rashid, N., Demirel, B.U. and Al

Faruque, M.A., 2021, December. LENS: Layer

distribution enabled neural architecture search in

edge-cloud hierarchies. In 2021 58th ACM/IEEE

Design Automation Conference (DAC) (pp. 403-

408). IEEE.

https://doi.org/10.1109/DAC18074.2021.9586259

Abreha, H.G., Hayajneh, M. and Serhani, M.A.,

2022. Federated learning in edge computing: a

systematic survey. Sensors, 22(2), p.450.

https://doi.org/10.3390/s22020450

[29] Talpur, A. and Gurusamy, M., 2021, April.
Reinforcement learning-based dynamic service
placement in vehicular networks. In 2021 IEEE 93rd
Vehicular Technology Conference (VTC2021-Spring)

(28]

[30]

L. Wang et al.

(pp- 1-7). IEEE. https://doi.org/10.1109/VTC2021-
Spring51267.2021.9448645

Khamari, S., Ahmed, T. and Mosbah, M., 2022,
December. Efficient edge server placement under
latency and load balancing constraints for vehicular
networks. In GLOBECOM 2022-2022 IEEE Global
Communications Conference (pp. 4437-4442).
IEEE.https://doi.org/10.1109/GLOBECOM48099.2
022.10000721

https://doi.org/10.1109/ACCESS.2020.3004509
https://doi.org/10.1186/s13677-021-00256-4
https://doi.org/10.3390/math12020281
https://doi.org/10.1109/TITS.2021.3099597
https://doi.org/10.1109/TMC.2021.3089338
https://doi.org/10.1109/TMC.2025.3545444
https://doi.org/10.1109/ACCESS.2025.3566172
https://doi.org/10.1109/ACCESS.2025.3566172

