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Many hotels embrace intelligent service robots as a novel approach to enhancing customer satisfaction
and streamlining operations. However, the ever-changing hotel environment makes scheduling and
managing obligations difficult. This research introduces Scheduling + Navigation Robotic Executor
(SchedNav-RX) for real-time route planning and job prioritization. The proposed SchedNav-RX utilizes
a deep Q-network-based adaptive task scheduling reinforcement learning model, enabling robots to
reschedule and prioritize tasks based on urgency and context dynamically. A convolutional neural
network (CNN) enhances the standard A* algorithm for navigation by predicting obstacles in real-time.
This makes dynamic interior navigation safer and more efficient. TurtleBot 3 units were used for
physical validation to enhance performance evaluation. SchedNav-RX outperforms standard planning
systems by 27% in task completion time and 35% in navigation safety while dealing with unexpected
vehicle traffic. These findings demonstrate that SchedNav-RX is essential for intelligent, autonomous
robots to perform hotel service tasks efficiently and easily. The concept allows complicated hospitality
environments to accommodate dispersed robotic systems driven by artificial intelligence. This work will
evolve to incorporate reinforcement learning-based guest feedback and interaction modules, enhancing
the system's capabilities.

Povzetek: Za optimizirano razporejanje nalog in nacrtovanje poti hotelskih robotov je razvit SchedNav-
RX, ki zdruzuje DON in CNN-izboljsani A* za zaznavanje ovir v realnem casu. Na TurtleBot-3 doseze
94 % uspesnost opravil, +35 % varnejso navigacijo.

1 Introduction

The rapid development of artificial intelligence and
robotics has revolutionized several sectors. The
hospitality industry is one such business that stands to
benefit significantly from intelligent service automation
applications. The hotel sector has experienced significant
growth in the use of service robots for several reasons,
which will be discussed further below. Several issues are
at play here, including a scarcity of accessible labor,
rising operational expenses, and the need for reliable and
seamless customer experiences. Many new uses for
robots have emerged in today's society. Some examples
of these applications include the delivery of food and
utilities, the escorting of guests, and concierge services.
There are two reasons why these robots are useful: first,
they offer clients something fresh and fascinating, and
second, they reduce the amount of labor that service
professionals have to do. A comprehensive set of
capabilities for route planning and intelligent task
scheduling must be included in these systems before
deployment. It is almost impossible for service robots to
collaborate effectively in today's hotel environments due

to the high degree of complexity and the rapid rate of
change in these environments.

It is common practice in traditional robotics systems
to regard the navigation and scheduling modules as
independent. Although separation makes the design more
efficient, it also decreases performance because its
prioritization system does not consider the location of
activities, such as a robot would either put off or overlook
vital work. A path planning module cannot recommend
the most efficient routes if there are guests, service carts,
or unexpected room closures. This is true even in a static
and perfect environment. As a result of the lack of a
consistent planning strategy, Jeon et al. (2022) [1] state
that service robots struggle with tasks that require them to
make rapid evaluations while also being aware of their
context.

A hybrid offline-online planning system was
introduced by Wang and Tian (2022) [2]. This system
uses probabilistic inference and semantic mapping to
further the need for integrated task and motion planning.
The system design process considered the integrated
needs for task and motion planning. Specifically, their
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research findings highlight the importance of service
robots adapting to the contexts in which they operate in
the real world. Their approach is ineffective in terms of
real-time rearrangement of activities and the situationally
adaptable learning they aim to achieve. In the extensive
investigation of robotic task and motion planning
conducted by Guo et al. (2023) [3], they observed that
existing systems often fail to consider the various
mutually advantageous outcomes if navigation and
scheduling are addressed concurrently. Whenever there is
a lack of constant human supervision or the capacity for
robots to adapt to new circumstances, the aim of
automation becomes meaningless.

The robot's ability to accurately sense and respond to
environmental changes is another factor that must be
considered. As a result, hotels are often crowded to
capacity with guests and employees, making the standard
rooms, elevators, and corridors constantly busy with
activity. An interactive path editing system was developed
by Yoo and Choi (2024) [4] for collaborative robotics.
This system was designed to handle the requirement for
route alteration and real-time simulation when the robots
are presented with unexpected conditions. Their study
suggests that static route planning algorithms are not a
suitable match for the current environment being
considered. This is a serious concern, as robots that
provide services must be able to make real-time course
adjustments to ensure the reliability and safety of such
services.

Systems that recognize and react to human gestures
and other inputs are becoming increasingly critical as the
complexity of real-time perception and control continues
to increase. In their demonstration of real-time gesture
recognition algorithms for gaming systems and robotics,
Hafiz and Wong (2024) [5] emphasized the importance of
low-latency perception in user-interactive settings.
Although their study does not explicitly focus on service
robots, the fundamental concepts of being responsive in
real-time and adaptable are crucial for human-robot
interaction in the hospitality industry. There is a
possibility that the user experience will be considerably
diminished if there is any noticeable latency or a lack of
context awareness. This is because visitors anticipate
intelligent and responsive behavior from robotic gadgets.

Although the "e-butler" robot produced by Gunawan
et al. (2023) [6] is a notable example of a prototype
system that demonstrates how hotels utilize robotic
services, it is often not scalable due to its limited artificial
intelligence capabilities. These systems can perform the
tasks assigned to them; however, they struggle to adapt to
new operational needs or optimize their performance in
diverse environments. The possibility of automating
specific entry-level jobs in the food service industry was
investigated by Tuomi and Ascencdo in 2023 [7].
According to their analysis, most of these duties are
performed by robots. This approach will fail until robots
mimic human vision, planning, and execution abilities.
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As a relatively new field, deep reinforcement
learning has the potential to reduce skill disparities. The
use of DRL was demonstrated by Li et al. (2024) [8] in
their study, which showed how multi-robot systems
enhance learning speed and flexibility by dividing tasks
and building routes. Another study that may help AGVs
enhance their real-time route planning in industrial
settings is Bao et al. (2024) [9], which utilized digital
twins within a reinforcement learning system. Due to
differences in social, geographical, and temporal
attributes among the top candidates for hospitality
positions, these methodologies demonstrate how DRL
decreased uncertainty in the real world.

This paper introduces SchedNav-RX, our latest Al-
driven tool. Regular room service robots resolve these
issues by integrating their work schedules and route
planning. SchedNav-RX is capable of autonomous
movement and operation in a dynamic environment. A
Deep Q-Network (DQN) that can learn to prioritize jobs,
an upgraded A* algorithm for optimal route
determination, and real-time environment awareness are
all features of this system. Service robots are
multipurpose due to their intelligent design. In addition to
several other benefits, they can handle challenging
environments, select and complete tasks, and perform
other tasks more efficiently.

SchedNav-RX potentially eliminates fragmentation
in conventional systems by factoring in service priority,
physical proximity, anticipated completion time, and
route congestion. A robot bringing towels is redirected if
the system detects another visitor on the same floor who
needs room service. Both client satisfaction and
operational efficiency are enhanced by its real-time
reconfigurability.

2 Literature survey

As the need for self-sufficient and flexible robotic
systems continues to increase, one of the most significant
areas of research is the incorporation of work scheduling
and route planning into service robots, particularly in
hotel environments. Recent research has focused on
algorithmic techniques and system designs to address
these challenges. The study has been conducted to find
solutions.

Zhang et al. (2023) [10] proposed a geometric task-
and-motion planning (TAMP) framework that integrates
geometric mobility constraints with symbolic task
planning, providing support for cooperative execution.
Despite its efficacy in controlled environments with
strong inter-robot interaction, this method is unsuitable
for dynamic, single-robot scenarios in unstructured
domains. The hotel sector is well-known for its dynamic,
service-based operations; yet this industry emphasizes the
manipulation of duties.

An improved version of the Non-dominated Sorting
Genetic Algorithm II (NSGA-II) was employed by Duan
et al. (2024) [11] to address the problem of designing
routes that consider multiple objectives. This strategy
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achieves three important route planning objectives by
maximizing energy economy, safety, and distance. Their
technique is not reactive in real-time and is most effective
when used in static or nearly static conditions. This
system lacks task scheduling logic, another essential
component for achieving total robot autonomy in hotel
service situations.

Using an innovative path-planning algorithm created
by Li et al. (2023) [12], the inspection robots can be used
effectively. An Improved Particle Swarm Optimisation
(IPSO) is used in this approach. Their technology
enhances several qualities, including route smoothness
and obstacle avoidance, when used in simulated outdoor
situations. The calculation durations for PSO variations
are generally greater than those for other variants because
of how repetitive they are. Because of this, they are not
suitable for situations with significant degrees of interior
dynamic complexity, such as hotels, even though they
have substantial capabilities for global optimization.
When making decisions at the task level, PSO-based
approaches often fail to reach their full potential.

Additionally, researchers in the field of robotics have
experimented with graph-based algorithms. A bio-
inspired, graph-based optimal route planning system (B-
IG-ORPS) was reported by Lei et al. (2023) [13]. This
system draws inspiration from bio-inspired designs and
employs principles related to swarm intelligence. The
capability of their method to identify the most efficient
routes in grid-based maps is evidence of the resilience of
their approach. The environments of hotels are constantly
evolving, with new obstacles and human interactions
appearing regularly. Graph-based systems that are static
have a difficult time maintaining their accuracy and
reliability.

The primary purpose of the study conducted by Gu et
al. (2022) [14] was to investigate how hotel service
robots handle scheduling tasks. Although the research
suggests that hotels should plan tasks independently, it
does not account for geographical limitations or the real-
time mobility of robots when calculating availability.
Additionally, the heuristic method cannot handle
unforeseen difficulties, increased labor, or last-minute
changes.

A related study on customer experience was
conducted by Lei et al. (2023) [15], which examined the
factors influencing future purchases of Al-powered
hospitality services. According to the findings of their
investigation, the three most important aspects that affect
the degree to which customers are satisfied are
responsiveness, reliability in job performance, and
perceived intelligence. This research does not propose a
method that demonstrates the need for real-time adaptive
intelligence in robotic systems to function correctly.

The RL-QPSO Nett method is an improved mobile
robot route planning technique that Jing and Weiya
(2025) [16]. This technique optimizes the path planning
of mobile robots using quantum-behaved particle swarms
and deep reinforcement learning. With the help of this
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hybrid methodology, achieving higher convergence and
flexibility is feasible compared to the traditional PSO
method. Nevertheless, it has not yet developed scheduling
or service-context awareness; its primary focus is
navigation. The quantum-inspired nature of the
optimization adds processing complexity that is not
always required when applied to real-time service
settings. This is because the optimization is based on
quantum mechanics. The SchedNav-RX system uses a
more modular and practical methodology. DQN is used
for task scheduling, whereas an updated CNN-enhanced
A* is utilized for navigation. Real-time performance is
guaranteed, and the deployment procedure is easier to
understand and carry out.

A multi-task deep reinforcement learning framework
for scheduling optimization and intelligent logistics path
planning was presented by Zhu (2025) [17]. Delivery
scheduling and path planning are integrated in this
method, which allows for flexible decision-making across
a variety of logistics activities. In intricate transportation
networks, it shows decreased computation time and
increased delivery efficiency. However, in extremely
variable logistics situations, including those with erratic
traffic or real-time consumer needs, the approach lacks
stability and is mostly dependent on pre-defined network
parameters.

Bendiaf et al. (2024) [18] used the knapsack
algorithm to create a novel job scheduling strategy
designed for heterogeneous computing systems. This
technique minimizes calculation time and maximizes
system throughput, improving task-to-resource mapping.
Although it works well in static computer environments
with predictable task loads, its application in dynamic,
real-time systems—Ilike cloud-based logistics
platforms—where job arrivals and resource availability
are always changing is limited by its deterministic
scheduling assumptions.

3 Proposed methodology

The SchedNav-RX framework, which utilizes artificial
intelligence to aid in route planning and operational
scheduling, empowers autonomous hotel service robots to
enhance their navigation capabilities in complex interior
settings. This strategy uses a convolutional neural
network (CNN) for environmental perception and
obstacle detection, an A* algorithm for efficient task
discovery, and a real-time feedback-based reinforcement
learning agent for decision-making. SchedNav-RX
utilizes convolutional neural networks (CNNs) to gather
information about its surroundings and execute obstacle-
avoidance actions. The RL module then sorts the data to
determine the best work allocation and navigational
enhancements. With A*'s assistance, it is possible to
design a route that is both the most efficient and secure to
any location. SchedNav-RX is an intelligent robotic
support system designed to assist the hotel industry. Its
synergistic workflow, computational speed, and collision
avoidance capabilities are all advantageous.
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Figure 1: Proposed diagram

SchedNav-RX, an acronym for Scheduling and
Navigation Robotic Executor, is illustrated in Figure 1 as
having the potential to enhance the capabilities of
intelligent service robots in the hospitality industry. The
SchedNav-RX module, a crucial component of the
system, analyzes information obtained from the
Intelligent Service Robot, performs a series of tasks, and
determines the precise positions of the rooms. This
module is responsible for managing the robot's activities
by coordinating task scheduling and navigating a
dynamic environment.

Through the use of SchedNav-RX, it is possible to
access two key functional routes. To get things started,
adaptive task scheduling enables the robot to perform
multiple tasks simultaneously and intelligently prioritize
operations. This schedule utilizes reinforcement learning
to establish the optimal rules, which is facilitated by a
Deep Q-network (DQN). Take the possibility that the
system adjusts the deadline for a project or the amount of

battery life remaining in response to changing priorities
and constraints.

In the second route, Dynamic Interior Navigation
enables the robot to navigate complex hotel layouts in the
real world seamlessly. A Convolutional Neural Network
(CNN) is used for visual awareness of the surrounding
environment, and an A* search strategy is utilized for
route planning. By using this tactic, it is possible to
achieve this goal. A sense of self-assurance is instilled in
the robot due to its ability to adapt to novel settings and
navigate obstacles seamlessly.

A common evaluation framework for task scheduling
and navigation is used to examine the interoperability of
CNN and A* algorithm-based approaches. The schematic,
when seen as a whole, illustrates how SchedNav-RX uses
scheduling and navigation strategies based on artificial
intelligence. This methodology enables intelligent,
autonomous service robots to perform exceptionally well
in highly structured environments, such as hotels. Table 1
displays the symbol and its corresponding description.
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Table 1: Symbol and description

Symbols Descriptions
L.(t) Current 2D or 3D location of the robot
{q@®) Queue of pending tasks at a time
0,,(t) Obstacle map including static and dynamic
obstacles
B.(t) Battery level of the robot
H,(t) Human presence indicator
A, Actions available to the robot for service task
execution
Q(S;, A ) The estimated future reward of taking actionA,
in state A;
0 Neural network weights
y Discount factor for future rewards
Reipst Reward attime t + k + 1
a Learning rate
Q' Target Q-network with parametersg ™
a' Next best action
Wi, Wy, Wy Tunable weights

urgency, proximity, batterycost

Contextual features of tasks

A1, A, Weights for static and dynamic obstacle
contributions
gn) Cost from start to current node n
h(n) Estimated cost from n to goal (Heuristic)
B Heuristic scaling factor
Goal* Combines task utility and learned Q value for
optimal target selection
61,05,05,04 Reward function coefficients
T (S;) Optimal policy for selecting an action
n Tradeoff between path cost and expected reward
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Figure 2: Hybrid policy framework

By integrating goal selection, adaptive perception,
and deep reinforcement learning, Figure 2 illustrates a
policy framework that facilitates task planning and
decision-making in dynamic and changing conditions.
Initially, a State Representation comprises several
contextual inputs. These inputs include the following
S, = {Lr(t), {4, Om(t),Br(t),Hp(t)} :  the current
location of the robot L,.(t), the tasks that need to be done
{q(t), a map of obstacles Oy, (t)), the amount of time that
the robot's battery will last B.(t) , and its
orientation H,(t) . Running these states through a Q-
function, specifically a deep Q-network, enables the
calculation of the anticipated benefit of an action. When
referring to the state Q(S;, A 0) =
E 250 V*Riik+11Se,Ar]. The usefulness of each task is
defined by a job usefulness Function, which considers
weighted parameters such as the cost of the associated
battery, the closeness to the robot's present position, and
the urgency of the situation. When it comes to making
choices, this is helpful. These data are taken into
consideration by the Adaptive Goal Selection module,
which then employs a utility-based algorithm to
determine the most effective location for the goal in real-
time. This function is defined as (n) =g(n) +
h(n),where h(n) =
B.Euclidean distance (n, goal) represents the cost-to-

Sy = {Lr(t)v {q @®), Om(t)v Br(t),Hp (t)} (D

As calculated in equation (1), state representation has
been examined. At each timestep t, the state S; provides a
detailed description of the internal and exterior
environmental situations that the robot is experiencing. It
is possible to indicate the geographic location of the robot

come and i(n)represents the estimated geometric distance
to the target. The data from static maps and moving
barriers is combined to build a CNN-based Cost Map.
The parameters  C(x,y) = A;.static map(x,y) +
A,. Dynamicobstactles yy(x,y) are used to identify the
relative relevance of each kind of data. This cost map
illustrates the advantages and disadvantages of various
solutions in a graphical format. A reward function has
been implemented to prevent individuals from wasting
their time, effort, and resources while motivating them to
accomplish their goals. It employs the values §;, and
8,,03 to encourage energy-efficient activities andd, to
punish actions that are not energy-efficient. R, =
6;.Task Completion — §,. Collision Penalty —

65.Time taken + §,Energy Ef ficiency. In conclusion,
the Hybrid Policy Function considers the cost of the route
and the Q-values that have been learned to decide the
most effective course of action. The policy 7*(S;) is
characterized by the following equation: 7*(S;) =
arg mgf[Q(Sf’At;et) —nC(path(A,))] This policy is

designed to strike a compromise between the principles
of reinforcement learning and cost-based planning. This
comprehensive framework enables making informed
decisions in complex situations with dynamic features
and limited resources.

as L,(t) in either two-dimensional or three-dimensional
coordinates, depending on the level of navigational
granularity used. Some service requests are currently
being handled, including deliveries to guests, calls for
cleaning, and interactions with the concierge. The
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function represents this queue {,(t). It is possible to
construct a CNN-based vision system or sensors to
produce a O0,,(t) -A dimensional obstacle map that
records both moving and stationary objects that have the
potential to block mobility. When it comes to realistic job
planning, staying on top of the battery life, which is
represented by the symbol B,.(t), is an essential factor.
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H,(t) is responsible for determining whether humans are
present; this is necessary for the robot's safety and to
ensure that it does not cause irritation to people. When
everything is considered, this state formulation provides
the robot with the necessary information about its
surroundings to make informed judgments about its
immediate environment.

A; = {Navigate(x,y), pickup (i), delivery (j), Idel()} (2)

The fundamental capabilities A;of the robot system is
defined by its action set at any given time t, which is
represented by the equation (2). The operations that are
related to commands at the highest level are as follows:
Using the Navigate(x,y), function, can send the robot
to a particular location, retrieve an object or package by
using the pickup(i), function, complete a delivery to a
particular location by using the Deliver(j) function, send
the robot back to its charging dock when its power is low

State Representation
S L(D)
T,: Task quene
O.: Obstacle map

Bz Battery level
H:: Human presence

Y

Deep Q-Network Oz

!

by using the function I/dle (). The modules responsible
for scheduling and planning use these activities as
building blocks to construct more complicated service
performances. As a result of these atomic activities,
contemporary hotel robots can rapidly respond to a wide
variety of service needs, reroute themselves to avoid
obstacles, conserve energy when not in use, and execute
tasks in a manner that is both ecologically and socially
responsible.

Adaptive Goal Selection

Goal = argmax
U(T)-O(S;, Navigate(T);0)

Reward Function

R, =drTaskCompletion

TimeTaken
ds = CollisionPenalty
d¢« = EnergyEfficiency

Hybrid Policy Function

Task Utility Function

U(T) = or-Urgency(T,)

+ w2 Proximity(T,, L)
- ws*BatteryCost(T)

n'(S) = argmax [O(S, A0) -
y§-C(Path(A))f

v

A* Heuristic
Function
fin) = g(n) + h(n)
hin) =
p-EuclideanDistance(n,

Goal)

Figure 3: Intelligent robot task execution

Intelligent robotic task execution is shown in Figure
3. This task execution uses a hybrid decision-making
architecture that combines heuristic planning with deep
reinforcement  learning (DRL). In the State
Representation module, everything starts from the very
beginning. Important information about the system and
its surroundings is stored in it. This information includes
the position of the robot (L(t)), the task queue (T), the
obstacle map (O(t) ), the battery level (B(t)), and
whether or not humans are present (H(t)). The input
state aids the learning and planning processes S;, which is
comprised of these variables. Following the consideration
of factors such as their proximity to the robot, the
anticipated cost of the battery, and the level of urgency,
Function assigns a rating to each job i based on its
relative significance. The mathematical definition of this
utility is as follows in equation (5). To determine the
optimal amount of labor to be performed, the Adaptive

Objective Selection module considers both the predicted
Q-value of accomplishing the purpose, which is presented
as: and the usefulness of the activity. To get the highest
possible value, the aim is to maximize the absolute value
of Goal* =arg rTne%;([U(Ti)'Q(St' navigate(T;); 6)]

The purpose of the navigate(T;);0 algorithm is to
maximize the value that is obtained by dividing the value
of U(T;)by the value of Q(S i) shown in equation (8). It is
a Deep Q-Network (DQN) that is responsible for
determining  the ideal action-value function
Q(Sp, A 0) = Ex[ X750V Resr+11Se, Acl. In this context,
0 is a representation of the parameters the neural network
has learned. This information is then used to enhance the
goal-setting process.

The purpose of the system is to affect learning via the
use of a comprehensive Reward Function. This function
takes into consideration a multitude of factors, including
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penalties Ry = §,.Task Completion —
&,.Collision Penalty — 6. Time taken +

é,Energy Ef ficiency For route planning, an
independent A Heuristic Function* has been added, and
the evaluation function that has been included is as
follows: If the equation fn) =gn) +
h(n),where h(n) = B.Euclidean distance (n, goal)
then the equation is valid. There is a possibility that this
will increase the anticipated cost of the shortest route to
the destination for a node. Ultimately, the Hybrid Policy
Function combines the Q-values learned with the route
costs estimated using heuristics. This is the approach that
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it chooses to take: It is expected that the outcome will be
m'(Se) = arg max[Q(S;, A; 0c) —nC(path(4:))] ).

Additionally, this formulation ensures that the agent
prioritizes high-reward jobs while also considering route
cost, resulting in navigation that is both more efficient
and secure.

The hybrid architecture combines techniques,
including heuristic search, cost-aware planning,
reinforcement learning, utility-based goal selection, and
more. These techniques enable autonomous agents to
adapt to complex situations and make informed decisions.

Q(St, A 0) = Ex[Yi-o yth+k+1|St’At] 3)

As initialized in Equation (3), the Q-function
(Deep Q-Network) has been explored. A function of
Q(.)is the estimated anticipated cumulative reward,
which is denoted as Q(S;, A;; 6) represents the weights
of the neural network 6 and policy 7 represents the
state S; in which the action A;is carried out. This
function enables the system to consider the value of
the activity and the attractiveness or quality of each
state-action pair. The current policy employs a scalar
value to represent the situation. It is through
reinforcement learning that the Q-function is updated

as the robot interacts with its surroundings. This
allows the robot to be trained to adapt to new
situations and tasks. Deep neural networks enable the
system to manage complex, high-dimensional input
states, such as visual data, sensor readings, and task
queues. The utilization of deep neural networks
guarantees this. The discount factor y, balances short-
term and long-term rewards, making it worthwhile
where immediate actions impact future consequences,
such as when completing a job.

01 =0+ [Rt+1 +y n}ﬁXQ(stH: a';07) —Q(S, Ag; gr)] VoQ (S, Ar; 0) (4)

As discussed in equation (4), the DQN Update
Rule is described. Additionally, the learning rate,
denoted as a, regulates the size of the weight update.
The target network, denoted as 87, is a stabilized
variant of 6 employed for bootstrapping purposes.
Reyq + yrr(llz;le(SHl, a'; 67) The target Q-value and

the optimal future reward are both represented by the
expression y max Q(S;,q,a’;67). The calculation of
a

the Temporal Difference (TD) error involves the
addition of the current estimates, denoted as
Q(S;, A 6,) . Over time, the network's ability to
accurately predict the value of an action improves as
the error is gradually reduced. Due to its iterative
learning process, the robot can continuously adapt and
perform better in complex hotel service environments.

U(T;) = wy.urgency(T;) + wy. proximity(T;, L,) — ws. Batterycost(T;) (5)

As found in equation (5), the Task Utility function
has been expressed. The robot makes use of the scalar
value that is provided by the task utility function U(T;)
Batterycost(T;) to get a better idea of which task
should be completed next. The term "proximity"
indicates how close something is, the term "
urgency(T;)" indicates how important something is
(for example, a request from a guest at the last
minute), and the term "battery cost" discourages routes

that consume considerable amounts of energy.
Through the utilization of the weights wy , w,, ws the
designers can modify the system's actions with
functional  objectives, such as  enhancing
responsiveness or energy efficiency. This function
ensures that service demands are met and promotes
balanced workload distribution and smooth robot
operation by verifying that the selected tasks are
logistically feasible and efficient.

C(x,y) = A;.static map(x,y) + A,. Dynamicobstactlescyy(x,y) (6)

As computed in equation (6), the Cost Map with
CNN-based Perception has been found. The dynamic
obstacle layer utilizes a convolutional neural network
(CNN) to track people and objects in real-time, while
the static map component labels walls and furniture.

Using adjustable weights A; and A,. The robot's
routing process prioritizes safety and efficiency.
Raising A, during peak guest hours, it promotes
cautious movement. This cost model allows strong,
real-time  decision-making in  dynamic  hotel



Task Scheduling and Path Planning of Hotel Service Robots Driven...

environments with frequent human-robot interaction

Informatica 49 (2025) 377-392 385

by continuously adjusting to new perceptual data.

|Initia] Open and Closed Sets I

A 4
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Path Cost Lower?

v

Update Cost, Parents of
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Figure 4: A* star Algorithm

Figure 4 depicts the flowchart for the A* (A-star)
method, a well-known algorithm recognized for its
efficiency and accuracy in pathfinding and graph
traversal. The first step in the process involves initializing
both the open set, which is necessary for monitoring
nodes that have not yet been investigated, and the closed
set, which is essential for tracking nodes that have been
inspected. The start node is first added to the open set to
initiate the procedure.

Next, the core logic will determine whether or not the
open set contains any items by performing a check. If this
were to occur, the algorithm would indicate that it could
not find a specific route. It uses the formula f(n) =
gmn) + h(n) to determine which node is the least
costly. In this calculation, g(n) represents the cost that
has already been incurred from the starting node to n, and
h(n) represents the cost that is anticipated to be incurred
from n to the destination. Following this, the algorithm
double-checks the picked node to ensure it is the target
node. If this is the case, then we have accomplished our

goal and the process of reconstructing the route. The
software will check all nodes near it if the aim is still not
achieved after this. Before evaluating, it determines
whether or not a neighbor is already included in the
closed set. In light of these conditions should steer clear
of the neighbour.

On the other hand, the system will determine whether
the cost of the route is lower than that of its neighbor if it
has not previously been acknowledged as such. At this
point, it adjusts the neighbor's price so that it equals the
current node's cost. Additionally, it moves the parent node
to the current node, making it possible to trace an optimal
path in the future.

This cycle will continue to repeat until the target is
located or the open set is depleted, indicating that there is
no way to proceed. The A* algorithm strikes a balance
between efficiency and optimality by utilizing heuristics
to prioritize examining paths with the most significant
potential for success.
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f(n) = g(n) + h(n), where h(n) = B. Euclidean distance (n, goal) (7)

As determined in Equation (7), the *Heuristic
Function* has been discussed. The path cost from the
starting point to node n is denoted by g(n), f(n)is the
total estimated cost of the best path through node n and
the Euclidean distance between n and the goal are
denoted by h(n). The standard gradient is applied to the
algebraic slope. One can estimate the cost of traveling
from n to the goal later by using the distance (n, goal)
function. The adjusted coefficient B determines the

weight assigned to the heuristic estimation and the actual
charge. The robot can navigate even the most complex
and crowded hotel layouts efficiently and quickly using
A*. It is possible to promptly reroute to avoid temporary
obstacles, such as guests or service carts, which helps to
ensure that tasks are completed efficiently and that
customers are satisfied.

Goal* = arg rTl'éax[U(Ti). Q(S;, navigate(T;); 6)] (8)
Sq

As discussed in equation (8), Adaptive Goal
Selection has been examined. and the Q-value for
reaching T; target is worthwhile (utility) and will have an
impact over time (learned Q-value). Intelligent
scheduling is achieved by combining experience with
present priorities through this mechanism. This flexible
system includes the learned Q-value and the task's utility

U(T;) to maximize this combined metric, the bot
prioritizes time-sensitive and resource-efficient tasks.
This metric indicates which tasks are likely to be
profitable. By requiring the robot to evaluate its goals in
context, this dual criterion improves its adaptability to
new guests or hallway congestion. It connects abstract
ideas to real-world applications.

R; = 6;.Task Completion — §,. Collision Penalty — §5.Time taken + 6, Energy Ef ficiency
©)

As described in equation (9), the Reward Function
has been calculated. Specific behaviors are either
supported or discouraged by particular components. §; is
a recommendation for finishing tasks, §; is a warning
against inefficiency and 6§, is a warning against unsafe
navigation. The number denotes an operation that is both
energy-efficient and profitable §,. By modifying the

values of the coefficients &; through §,, designers can
modify robots' behavior to meet service objectives such
as responsiveness, safety, and sustainability. With the
assistance of this well-organized system of rewards,
hotels can now teach their staff members how to be
confident and friendly in various situations.

n*(S;) = arg g;g;g[Q(St. Ag; 8.) —nC(path(A.))] (10)

As depicted in equation (10), the Hybrid Policy
Function has been computed. This hybrid policy weighs
the Q-network's expected reward and the action's
execution path cost to choose the best action. The total
cost of executing action nC(path(4,), is determined by
n, which balances reward and risk. This ensures the
chosen actions are beneficial and feasible in dynamic
environments. This hybrid policy maximizes rewards and
minimizes costs by considering path cost and Q-function
action value. By balancing reward and path cost, 0
enables context-sensitive decision-making. If its battery is
low, the robot chooses a less-than-ideal job over a shorter,
safer route. Autonomous service in dynamic, human-

populated environments, such as hotels, requires
balancing task performance, safety, and resource
management.

4 Numerical results and discussion

The proposed SchedNav-RX framework was tested and
compared to three current task scheduling and path
planning models: TAMP, B-IG-ORPS, and RL-QPSO
Nett. The four critical performance metrics utilized were

Task Completion Rate, Average Path Efficiency (APE),
Computational Time, and Collision Avoidance Rate. A
range of 10 to 100 tasks was tested in dynamic multi-
robot hotel service scenarios to assess scalability and
resilience.  Overall work  sizes, SchedNav-RX
outperformed competing navigation algorithms, boasting
a job completion rate of up to 94% and showing slight
degradation as the project load increased. It is evident
that this effectively reduces robot idle time and work
overlap by utilizing its Al-powered dynamic scheduling
technology. With average path efficiency values of
around 90%, the proposed model outperformed the
competition in route optimization. This means the
navigational paths were more direct and smoother even
when faced with obstacles and workloads. By
outperforming rival algorithms in complex task
allocations and route computations, SchedNav-RX
demonstrated its computational scalability through
reduced processing overhead. As little as 1.9 seconds was
required for 10 jobs, while 3.7 seconds was sufficient for
100 tasks. In conclusion, SchedNav-RX demonstrated the
effectiveness of its environment-aware and adaptive real-
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time path replanning features by achieving a high
Collision Avoidance Rate (up to 96%) across all task
levels. In light of these results, the proposed approach is
quick, reliable, and well-suited to practical scenarios that
require interior service robots, such as those in the
hospitality industry.

Dataset Description: The 2D grid-based maps in
dcaffo's Kaggle 2D Route Planning Dataset are used to
test and evaluate Al-enhanced route planning methods,
such as A* and D*. Each dataset sample contains
grayscale images of 2D grid configurations with white
pixels representing vacant space and black pixels
representing impediments. These maps are great for hotel,
warehouse, and workplace service robots. This dataset
enables us to evaluate algorithm performance under
various restrictions, ranging from simple pathways with
few obstacles to those with numerous randomly dispersed
obstacles. It aids in adaptive route planning, shortest
route finding, and collision avoidance. The grid-based
environment is ideal for testing Al-based robotic
navigation frameworks, such as SchedNav-RX, which
simulates internal dynamic decision-making. The dataset
is useful for both theoretical and practical applications in

i) Task completion rate (%)
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artificial intelligence, particularly in autonomous
navigation systems, as it is simple, compatible with
standard route planning algorithms, and suitable for
indoor robots [19].

Experimental Setup: During the trials conducted in a
hotel environment replicated using ROS and Gazebo,
service robots were hired to deliver packages and provide
assistance. The SchedNav-RX algorithm was evaluated
when compared to other methods (TAMP, B-IG-ORPS,
and RL-QPSO Nett) for ten to one hundred different
workloads. The robots were equipped with artificial
intelligence modules and virtual sensors to improve their
vision and navigation capabilities, including LiDAR and
ultrasonic sensors. When evaluating each strategy, the
criteria used were the completion rate of tasks, the
average path efficiency, the amount of time spent
computing, and the collision avoidance rate. With its Intel
17 central processor unit, 32 gigabytes of random-access
memory, and RTX 3080 graphics processing unit, the
simulations were carried out on a powerful machine
capable of real-time processing and artificial intelligence
computing.

Table 2: Task Completion Rate (%)

Number of Tasks TAMP B-IG-ORPS RL-QPSO Nett SchedNav-RX
(Proposed)
10 77 83 87 93
20 79 80 85 94
30 76 82 86 91
40 74 78 83 90
50 78 79 84 92
60 73 76 81 89
70 75 77 83 91
80 70 75 82 90
90 72 74 80 89
100 74 76 81 90
Task Completion Rate = (T Number of Tasks Completed ) x 100 (11)
otal number of tasks Scheduled

Equations (11) and Table 2 illustrate the time
required to complete the assignment. The hotel service
robot's task completion rate (TCR) is used to evaluate its
overall performance in fulfilling the assigned duties.
Guests can get assistance with room supplies, cleaning
arrangements, and even frequent inspections using the
hotel's automated system. A technique used to solve this
issue is to divide the total number of tasks by the
percentage of tasks assigned and completed within a
certain time frame. This leads to the acquisition of the
TCR percentage. When it comes to explaining things,
most individuals think that percentages are the most
effective. Due to its high TCR, the SchedNav-RX
architecture performs effectively in dynamic hotel

settings, particularly in terms of prioritization,
sequencing, and task execution. The findings of research
like this are contributing to the growing body of data
suggesting that Al-driven job scheduling systems have
the potential to reduce robot idle time, manage resource
competition, and prevent delays. The technique's
resilience and flexibility in maintaining operational
scalability and service continuity are validated by
findings that provide TCR values that are more than 90%
across various workload intensities and environmental
conditions.
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ii) Average path efficiency
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Figure 5: Average path efficiency (%)
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APE =

Figure 5 and Equation (12) have explored the
average path efficiency. One of the most critical
indicators for evaluating the effectiveness of the route
planning module within the SchedNav-RX architecture is
the Average Route Efficiency (APE). Specifically, it
measures the degree to which the robot's path
corresponds to the theoretical shortest path, which is one
way it represents spatial optimization in navigation. To
describe it technically, the APE is the ratio of the actual
route length of the robot to the ideal path length
(computed using the A* technique or a heuristic-
enhanced form of the methods). An APE score close to
one indicates that the travel routes are almost optimal,
with few unnecessary moves, diversions, or oscillations.

(12)

This is the case when the APE score is close to 1. By
maximizing route utilization, it is possible to significantly
reduce the time spent on service, as well as the energy
used in interior hotel settings. The SchedNav-RX
system's ability to adjust to both fixed and moving
impediments in real-time, while maintaining navigational
accuracy and timeliness, is demonstrated by the high APE
values recorded by the system. During the performance
evaluation process, the APE is a crucial statistic used to
assess the degree to which the components of motion
planning and sensory perception (via CNNs) are
integrated.

iii) Computational time (seconds)

Table 3: Computational time

Number of Tasks TAMP B-IG-ORPS RL-QPSO Nett SchedNav-RX
(Proposed)

10 3.1 2.9 2.6 1.9

20 4 3.5 32 2.4

30 44 3.9 3.5 22

40 5.9 5.3 4.8 3

50 5.4 4.9 43 2.6

60 6.2 5.8 5.1 3.1

70 6 5.5 4.9 33

80 6.5 6.2 5.7 3.8

90 6.9 6 5.5 3.5

100 7.2 6.6 5.9 3.7
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CTSchedNav—RX = TCNN + TSchedule + TA* + TCollisioncheck + Tupdate

Table 3 and Equation (13) have been examined for
computational time. The computational time is a
performance metric that analyzes the accuracy and
speed with which the SchedNav-RX system can
construct work schedules and navigation courses. It
measures how quickly and accurately the system can
create information. After receiving input, such as a
new service request or a change in the environment,
the system takes a certain length of time to develop a
plan that is 100% operational. Since delays impact
both customer satisfaction and operational efficiency,
this statistic is of significant relevance for real-time
systems used in service-oriented industries. For
perceptual analysis, the suggested system utilizes
lightweight convolutional neural networks (CNNs),

Informatica 49 (2025) 377-392 389

(13)

while for route planning, an enhanced version of the
A* algorithm is employed. The ability to create speedy
responses is enabled by this, even in complicated
circumstances. The model, data structures, and
processing pipelines are well-designed if the runtimes
decrease. The empirical study determines whether the
architecture is plausible for incorporation into actual
smart hotel infrastructure by comparing normal
reaction times in various circumstances, such as low-
and high-traffic zones or static and dynamic
impediments.

iv) Collision avoidance rate (%)
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Figure 6: Collision avoidance rate (%)

Tasks Completed without Collision

Collision Avoidance Rate (%) = (

Figure 6 and equation (14) show that the collision
avoidance rate has been expressed. The robustness and
safety of the navigation system are evaluated using the
Collision Avoidance Rate (CAR), which is calculated by
determining the percentage of task executions that do not
entail physical contact with barriers or disruptions to the
route integrity. It is necessary to avoid rigid items, such as
walls or furniture, and mobile objects, such as clients,
service staff, or other robots. Having a high CAR would
make the robot safer for the physical infrastructure and
increase the trust that hotel personnel and guests have in

Total Tasks Attempted

) x 100 (14)

the robot's reliability. By utilizing a cost-aware A* variant
that continually adapts to changes, the SchedNav-RX
framework can achieve a high CAR. This is
accomplished by integrating environmental awareness
with CNN-based object detection and dynamic
replanning. Moreover, techniques for smoothing
pathways and modifying velocities are also helpful in
ensuring safe navigation. The assessment confirmed the

effectiveness of the proposed Al-based method in real-
world, human-centric situations, with consistently high
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CAR (more than 95%) across various hotel floor designs
and population densities.

5 Conclusion

To conclude, the SchedNav-RX framework optimizes
hotel service robot job scheduling and route planning
using Al approaches including CNN, RL, and the A*
algorithm. Experimental results show that SchedNav-RX
outperforms TAMP, B-IG-ORPS, and RL-QPSO Nett in
terms of Task Completion Rate, Average Path Efficiency,
Computational Time, and Collision Avoidance Rate.
SchedNav-RX ensures safe navigation in dynamic
settings, efficient and adaptable route selection, and
suitable work assignments. Real-world 2D grid-based
datasets demonstrate the framework's reliability and
suitability for autonomous robot deployment in outdoor
service domains, such as hotels and other hospitality
settings. Future developments include multi-agent
coordination and real-time environmental adaptability to
improve framework scalability and responsiveness.
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