
https://doi.org/10.31449/inf.v49i9.9444                                                                                       Informatica 49 (2025) 377–392 377 

 

Task Scheduling and Path Planning of Hotel Service Robots Driven 

by Artificial Intelligence 

 

Jingyi Han 

Corresponding author's E-mail: han-jingyi@hotmail.com 

Faculty of Culture and Tourism, Jiyuan Vocational and Technical College  

Jiyuan, Henan, 459000, China 

 

Keywords: hotel service robots, task scheduling, path planning, artificial intelligence, SchedNav-RX, Deep Q-

Network (DQN), Reinforcement Learning, A* Algorithm 

 

Received: May 29, 2025 

Many hotels embrace intelligent service robots as a novel approach to enhancing customer satisfaction 

and streamlining operations. However, the ever-changing hotel environment makes scheduling and 

managing obligations difficult. This research introduces Scheduling + Navigation Robotic Executor 

(SchedNav-RX) for real-time route planning and job prioritization. The proposed SchedNav-RX utilizes 

a deep Q-network-based adaptive task scheduling reinforcement learning model, enabling robots to 

reschedule and prioritize tasks based on urgency and context dynamically. A convolutional neural 

network (CNN) enhances the standard A* algorithm for navigation by predicting obstacles in real-time. 

This makes dynamic interior navigation safer and more efficient. TurtleBot 3 units were used for 

physical validation to enhance performance evaluation. SchedNav-RX outperforms standard planning 

systems by 27% in task completion time and 35% in navigation safety while dealing with unexpected 

vehicle traffic. These findings demonstrate that SchedNav-RX is essential for intelligent, autonomous 

robots to perform hotel service tasks efficiently and easily. The concept allows complicated hospitality 

environments to accommodate dispersed robotic systems driven by artificial intelligence. This work will 

evolve to incorporate reinforcement learning-based guest feedback and interaction modules, enhancing 

the system's capabilities. 

Povzetek: Za optimizirano razporejanje nalog in načrtovanje poti hotelskih robotov je razvit SchedNav-

RX, ki združuje DQN in CNN-izboljšani A* za zaznavanje ovir v realnem času. Na TurtleBot-3 doseže 

94 % uspešnost opravil, +35 % varnejšo navigacijo. 

 

 

1 Introduction 

The rapid development of artificial intelligence and 

robotics has revolutionized several sectors. The 

hospitality industry is one such business that stands to 

benefit significantly from intelligent service automation 

applications. The hotel sector has experienced significant 

growth in the use of service robots for several reasons, 

which will be discussed further below. Several issues are 

at play here, including a scarcity of accessible labor, 

rising operational expenses, and the need for reliable and 

seamless customer experiences. Many new uses for 

robots have emerged in today's society. Some examples 

of these applications include the delivery of food and 

utilities, the escorting of guests, and concierge services. 

There are two reasons why these robots are useful: first, 

they offer clients something fresh and fascinating, and 

second, they reduce the amount of labor that service 

professionals have to do. A comprehensive set of 

capabilities for route planning and intelligent task 

scheduling must be included in these systems before 

deployment. It is almost impossible for service robots to 

collaborate effectively in today's hotel environments due  

 

to the high degree of complexity and the rapid rate of 

change in these environments. 

It is common practice in traditional robotics systems 

to regard the navigation and scheduling modules as 

independent. Although separation makes the design more 

efficient, it also decreases performance because its 

prioritization system does not consider the location of 

activities, such as a robot would either put off or overlook 

vital work. A path planning module cannot recommend 

the most efficient routes if there are guests, service carts, 

or unexpected room closures. This is true even in a static 

and perfect environment. As a result of the lack of a 

consistent planning strategy, Jeon et al. (2022) [1] state 

that service robots struggle with tasks that require them to 

make rapid evaluations while also being aware of their 

context. 

A hybrid offline-online planning system was 

introduced by Wang and Tian (2022) [2]. This system 

uses probabilistic inference and semantic mapping to 

further the need for integrated task and motion planning. 

The system design process considered the integrated 

needs for task and motion planning. Specifically, their 
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research findings highlight the importance of service 

robots adapting to the contexts in which they operate in 

the real world. Their approach is ineffective in terms of 

real-time rearrangement of activities and the situationally 

adaptable learning they aim to achieve. In the extensive 

investigation of robotic task and motion planning 

conducted by Guo et al. (2023) [3], they observed that 

existing systems often fail to consider the various 

mutually advantageous outcomes if navigation and 

scheduling are addressed concurrently. Whenever there is 

a lack of constant human supervision or the capacity for 

robots to adapt to new circumstances, the aim of 

automation becomes meaningless. 

The robot's ability to accurately sense and respond to 

environmental changes is another factor that must be 

considered. As a result, hotels are often crowded to 

capacity with guests and employees, making the standard 

rooms, elevators, and corridors constantly busy with 

activity. An interactive path editing system was developed 

by Yoo and Choi (2024) [4] for collaborative robotics. 

This system was designed to handle the requirement for 

route alteration and real-time simulation when the robots 

are presented with unexpected conditions. Their study 

suggests that static route planning algorithms are not a 

suitable match for the current environment being 

considered. This is a serious concern, as robots that 

provide services must be able to make real-time course 

adjustments to ensure the reliability and safety of such 

services. 

Systems that recognize and react to human gestures 

and other inputs are becoming increasingly critical as the 

complexity of real-time perception and control continues 

to increase. In their demonstration of real-time gesture 

recognition algorithms for gaming systems and robotics, 

Hafiz and Wong (2024) [5] emphasized the importance of 

low-latency perception in user-interactive settings. 

Although their study does not explicitly focus on service 

robots, the fundamental concepts of being responsive in 

real-time and adaptable are crucial for human-robot 

interaction in the hospitality industry. There is a 

possibility that the user experience will be considerably 

diminished if there is any noticeable latency or a lack of 

context awareness. This is because visitors anticipate 

intelligent and responsive behavior from robotic gadgets. 

Although the "e-butler" robot produced by Gunawan 

et al. (2023) [6] is a notable example of a prototype 

system that demonstrates how hotels utilize robotic 

services, it is often not scalable due to its limited artificial 

intelligence capabilities. These systems can perform the 

tasks assigned to them; however, they struggle to adapt to 

new operational needs or optimize their performance in 

diverse environments. The possibility of automating 

specific entry-level jobs in the food service industry was 

investigated by Tuomi and Ascenção in 2023 [7]. 

According to their analysis, most of these duties are 

performed by robots. This approach will fail until robots 

mimic human vision, planning, and execution abilities. 

As a relatively new field, deep reinforcement 

learning has the potential to reduce skill disparities. The 

use of DRL was demonstrated by Li et al. (2024) [8] in 

their study, which showed how multi-robot systems 

enhance learning speed and flexibility by dividing tasks 

and building routes. Another study that may help AGVs 

enhance their real-time route planning in industrial 

settings is Bao et al. (2024) [9], which utilized digital 

twins within a reinforcement learning system. Due to 

differences in social, geographical, and temporal 

attributes among the top candidates for hospitality 

positions, these methodologies demonstrate how DRL 

decreased uncertainty in the real world. 

This paper introduces SchedNav-RX, our latest AI-

driven tool. Regular room service robots resolve these 

issues by integrating their work schedules and route 

planning. SchedNav-RX is capable of autonomous 

movement and operation in a dynamic environment. A 

Deep Q-Network (DQN) that can learn to prioritize jobs, 

an upgraded A* algorithm for optimal route 

determination, and real-time environment awareness are 

all features of this system. Service robots are 

multipurpose due to their intelligent design. In addition to 

several other benefits, they can handle challenging 

environments, select and complete tasks, and perform 

other tasks more efficiently. 

SchedNav-RX potentially eliminates fragmentation 

in conventional systems by factoring in service priority, 

physical proximity, anticipated completion time, and 

route congestion. A robot bringing towels is redirected if 

the system detects another visitor on the same floor who 

needs room service. Both client satisfaction and 

operational efficiency are enhanced by its real-time 

reconfigurability. 

2 Literature survey 
As the need for self-sufficient and flexible robotic 

systems continues to increase, one of the most significant 

areas of research is the incorporation of work scheduling 

and route planning into service robots, particularly in 

hotel environments. Recent research has focused on 

algorithmic techniques and system designs to address 

these challenges. The study has been conducted to find 

solutions. 

Zhang et al. (2023) [10] proposed a geometric task-

and-motion planning (TAMP) framework that integrates 

geometric mobility constraints with symbolic task 

planning, providing support for cooperative execution. 

Despite its efficacy in controlled environments with 

strong inter-robot interaction, this method is unsuitable 

for dynamic, single-robot scenarios in unstructured 

domains. The hotel sector is well-known for its dynamic, 

service-based operations; yet this industry emphasizes the 

manipulation of duties. 

An improved version of the Non-dominated Sorting 

Genetic Algorithm II (NSGA-II) was employed by Duan 

et al. (2024) [11] to address the problem of designing 

routes that consider multiple objectives. This strategy 
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achieves three important route planning objectives by 

maximizing energy economy, safety, and distance. Their 

technique is not reactive in real-time and is most effective 

when used in static or nearly static conditions. This 

system lacks task scheduling logic, another essential 

component for achieving total robot autonomy in hotel 

service situations.  

Using an innovative path-planning algorithm created 

by Li et al. (2023) [12], the inspection robots can be used 

effectively. An Improved Particle Swarm Optimisation 

(IPSO) is used in this approach. Their technology 

enhances several qualities, including route smoothness 

and obstacle avoidance, when used in simulated outdoor 

situations. The calculation durations for PSO variations 

are generally greater than those for other variants because 

of how repetitive they are. Because of this, they are not 

suitable for situations with significant degrees of interior 

dynamic complexity, such as hotels, even though they 

have substantial capabilities for global optimization. 

When making decisions at the task level, PSO-based 

approaches often fail to reach their full potential.  

Additionally, researchers in the field of robotics have 

experimented with graph-based algorithms. A bio-

inspired, graph-based optimal route planning system (B-

IG-ORPS) was reported by Lei et al. (2023) [13]. This 

system draws inspiration from bio-inspired designs and 

employs principles related to swarm intelligence. The 

capability of their method to identify the most efficient 

routes in grid-based maps is evidence of the resilience of 

their approach. The environments of hotels are constantly 

evolving, with new obstacles and human interactions 

appearing regularly. Graph-based systems that are static 

have a difficult time maintaining their accuracy and 

reliability.  

The primary purpose of the study conducted by Gu et 

al. (2022) [14] was to investigate how hotel service 

robots handle scheduling tasks. Although the research 

suggests that hotels should plan tasks independently, it 

does not account for geographical limitations or the real-

time mobility of robots when calculating availability. 

Additionally, the heuristic method cannot handle 

unforeseen difficulties, increased labor, or last-minute 

changes.  

A related study on customer experience was 

conducted by Lei et al. (2023) [15], which examined the 

factors influencing future purchases of AI-powered 

hospitality services. According to the findings of their 

investigation, the three most important aspects that affect 

the degree to which customers are satisfied are 

responsiveness, reliability in job performance, and 

perceived intelligence. This research does not propose a 

method that demonstrates the need for real-time adaptive 

intelligence in robotic systems to function correctly.  

The RL-QPSO Nett method is an improved mobile 

robot route planning technique that Jing and Weiya 

(2025) [16]. This technique optimizes the path planning 

of mobile robots using quantum-behaved particle swarms 

and deep reinforcement learning. With the help of this 

hybrid methodology, achieving higher convergence and 

flexibility is feasible compared to the traditional PSO 

method. Nevertheless, it has not yet developed scheduling 

or service-context awareness; its primary focus is 

navigation. The quantum-inspired nature of the 

optimization adds processing complexity that is not 

always required when applied to real-time service 

settings. This is because the optimization is based on 

quantum mechanics. The SchedNav-RX system uses a 

more modular and practical methodology. DQN is used 

for task scheduling, whereas an updated CNN-enhanced 

A* is utilized for navigation. Real-time performance is 

guaranteed, and the deployment procedure is easier to 

understand and carry out. 

A multi-task deep reinforcement learning framework 

for scheduling optimization and intelligent logistics path 

planning was presented by Zhu (2025) [17]. Delivery 

scheduling and path planning are integrated in this 

method, which allows for flexible decision-making across 

a variety of logistics activities. In intricate transportation 

networks, it shows decreased computation time and 

increased delivery efficiency. However, in extremely 

variable logistics situations, including those with erratic 

traffic or real-time consumer needs, the approach lacks 

stability and is mostly dependent on pre-defined network 

parameters. 

Bendiaf et al. (2024) [18] used the knapsack 

algorithm to create a novel job scheduling strategy 

designed for heterogeneous computing systems. This 

technique minimizes calculation time and maximizes 

system throughput, improving task-to-resource mapping. 

Although it works well in static computer environments 

with predictable task loads, its application in dynamic, 

real-time systems—like cloud-based logistics 

platforms—where job arrivals and resource availability 

are always changing is limited by its deterministic 

scheduling assumptions. 

3 Proposed methodology 
The SchedNav-RX framework, which utilizes artificial 

intelligence to aid in route planning and operational 

scheduling, empowers autonomous hotel service robots to 

enhance their navigation capabilities in complex interior 

settings. This strategy uses a convolutional neural 

network (CNN) for environmental perception and 

obstacle detection, an A* algorithm for efficient task 

discovery, and a real-time feedback-based reinforcement 

learning agent for decision-making. SchedNav-RX 

utilizes convolutional neural networks (CNNs) to gather 

information about its surroundings and execute obstacle-

avoidance actions. The RL module then sorts the data to 

determine the best work allocation and navigational 

enhancements. With A*'s assistance, it is possible to 

design a route that is both the most efficient and secure to 

any location. SchedNav-RX is an intelligent robotic 

support system designed to assist the hotel industry. Its 

synergistic workflow, computational speed, and collision 

avoidance capabilities are all advantageous. 
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Figure 1: Proposed diagram 

SchedNav-RX, an acronym for Scheduling and 

Navigation Robotic Executor, is illustrated in Figure 1 as 

having the potential to enhance the capabilities of 

intelligent service robots in the hospitality industry. The 

SchedNav-RX module, a crucial component of the 

system, analyzes information obtained from the 

Intelligent Service Robot, performs a series of tasks, and 

determines the precise positions of the rooms. This 

module is responsible for managing the robot's activities 

by coordinating task scheduling and navigating a 

dynamic environment. 

Through the use of SchedNav-RX, it is possible to 

access two key functional routes. To get things started, 

adaptive task scheduling enables the robot to perform 

multiple tasks simultaneously and intelligently prioritize 

operations. This schedule utilizes reinforcement learning 

to establish the optimal rules, which is facilitated by a 

Deep Q-network (DQN). Take the possibility that the 

system adjusts the deadline for a project or the amount of 

battery life remaining in response to changing priorities 

and constraints. 

In the second route, Dynamic Interior Navigation 

enables the robot to navigate complex hotel layouts in the 

real world seamlessly. A Convolutional Neural Network 

(CNN) is used for visual awareness of the surrounding 

environment, and an A* search strategy is utilized for 

route planning. By using this tactic, it is possible to 

achieve this goal. A sense of self-assurance is instilled in 

the robot due to its ability to adapt to novel settings and 

navigate obstacles seamlessly. 

A common evaluation framework for task scheduling 

and navigation is used to examine the interoperability of 

CNN and A* algorithm-based approaches. The schematic, 

when seen as a whole, illustrates how SchedNav-RX uses 

scheduling and navigation strategies based on artificial 

intelligence. This methodology enables intelligent, 

autonomous service robots to perform exceptionally well 

in highly structured environments, such as hotels. Table 1 

displays the symbol and its corresponding description.

  

 



Task Scheduling and Path Planning of Hotel Service Robots Driven…                                      Informatica 49 (2025) 377–392 381 
 

Table 1: Symbol and description 

Symbols Descriptions 

𝐿𝑟(𝑡) Current 2D or 3D location of the robot 

𝜁𝑞(𝑡) Queue of pending tasks at a time 

𝑂𝑚(𝑡) Obstacle map including static and dynamic 

obstacles 

𝐵𝑟(𝑡) Battery level of the robot 

𝐻𝑝(𝑡) Human presence indicator 

𝐴𝑡 Actions available to the robot for service task 

execution 

𝑄(𝑆𝑡 , 𝐴𝑡; 𝜃) The estimated future reward of taking action𝐴𝑡 

in state 𝐴𝑡 

𝜃 Neural network weights 

𝛾 Discount factor for future rewards 

𝑅𝑡+𝑘+1 Reward at time 𝑡 + 𝑘 + 1 

𝛼 Learning rate 

𝑄′ Target Q-network with parameters𝜃− 

𝑎′ Next best action 

𝑤1, 𝑤2, 𝑤3 Tunable weights 

𝑢𝑟𝑔𝑒𝑛𝑐𝑦, 𝑝𝑟𝑜𝑥𝑖𝑚𝑖𝑡𝑦, 𝑏𝑎𝑡𝑡𝑒𝑟𝑦𝑐𝑜𝑠𝑡 Contextual features of tasks 

𝜆1, 𝜆2 Weights for static and dynamic obstacle 

contributions 

𝑔(𝑛) Cost from start to current node 𝑛 

ℎ(𝑛) Estimated cost from 𝑛 to goal (Heuristic) 

𝛽 Heuristic scaling factor 

𝐺𝑜𝑎𝑙∗ Combines task utility and learned 𝑄 value for 

optimal target selection 

𝛿1, 𝛿2, 𝛿3, 𝛿4 Reward function coefficients 

𝜋∗(𝑆𝑡) Optimal policy for selecting an action 

𝜂 Tradeoff between path cost and expected reward 
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Figure 2: Hybrid policy framework

By integrating goal selection, adaptive perception, 

and deep reinforcement learning, Figure 2 illustrates a 

policy framework that facilitates task planning and 

decision-making in dynamic and changing conditions. 

Initially, a State Representation comprises several 

contextual inputs. These inputs include the following 

𝑆𝑡 = {𝐿𝑟(𝑡), 𝜁𝑞(𝑡), 𝑂𝑚(𝑡), 𝐵𝑟(𝑡)¸𝐻𝑝(𝑡)} : the current 

location of the robot 𝐿𝑟(𝑡), the tasks that need to be done 

𝜁𝑞(𝑡), a map of obstacles 𝑂𝑚(𝑡)), the amount of time that 

the robot's battery will last 𝐵𝑟(𝑡) , and its 

orientation 𝐻𝑝(𝑡) . Running these states through a Q-

function, specifically a deep Q-network, enables the 

calculation of the anticipated benefit of an action. When 

referring to the state 𝑄(𝑆𝑡 , 𝐴𝑡; 𝜃) =

𝐸𝜋[∑ 𝛾𝑘𝑅𝑡+𝑘+1|𝑆𝑡 , 𝐴𝑡
∞
𝑘=0 ]. The usefulness of each task is 

defined by a job usefulness Function, which considers 

weighted parameters such as the cost of the associated 

battery, the closeness to the robot's present position, and 

the urgency of the situation. When it comes to making 

choices, this is helpful. These data are taken into 

consideration by the Adaptive Goal Selection module, 

which then employs a utility-based algorithm to 

determine the most effective location for the goal in real-

time. This function is defined as (𝑛) = 𝑔(𝑛) +
ℎ(𝑛), 𝑤ℎ𝑒𝑟𝑒 ℎ(𝑛) =
𝛽. 𝐸𝑢𝑐𝑙𝑖𝑑𝑒𝑎𝑛 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 (𝑛, 𝑔𝑜𝑎𝑙) represents the cost-to-

come and ℎ(𝑛)represents the estimated geometric distance 

to the target. The data from static maps and moving 

barriers is combined to build a CNN-based Cost Map. 

The parameters 𝐶(𝑥, 𝑦) = 𝜆1. 𝑠𝑡𝑎𝑡𝑖𝑐 𝑚𝑎𝑝(𝑥, 𝑦) +
𝜆2. 𝐷𝑦𝑛𝑎𝑚𝑖𝑐𝑜𝑏𝑠𝑡𝑎𝑐𝑡𝑙𝑒𝑠𝐶𝑁𝑁(𝑥, 𝑦) are used to identify the 

relative relevance of each kind of data. This cost map 

illustrates the advantages and disadvantages of various 

solutions in a graphical format. A reward function has 

been implemented to prevent individuals from wasting 

their time, effort, and resources while motivating them to 

accomplish their goals. It employs the values 𝛿1, and 

𝛿2, 𝛿3  to encourage energy-efficient activities and 𝛿4  to 

punish actions that are not energy-efficient. 𝑅𝑡 =
𝛿1. 𝑇𝑎𝑠𝑘 𝐶𝑜𝑚𝑝𝑙𝑒𝑡𝑖𝑜𝑛 − 𝛿2. 𝐶𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛 𝑃𝑒𝑛𝑎𝑙𝑡𝑦 −
𝛿3. 𝑇𝑖𝑚𝑒 𝑡𝑎𝑘𝑒𝑛 + 𝛿4𝐸𝑛𝑒𝑟𝑔𝑦 𝐸𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦. In conclusion, 

the Hybrid Policy Function considers the cost of the route 

and the Q-values that have been learned to decide the 

most effective course of action. The policy 𝜋∗(𝑆𝑡)  is 

characterized by the following equation: 𝜋∗(𝑆𝑡) =
𝑎𝑟𝑔 max

𝐴𝑡∈𝐴
[𝑄(𝑆𝑡 , 𝐴𝑡; 𝜃𝑡) − 𝜂𝐶(𝑝𝑎𝑡ℎ(𝐴𝑡))]   This policy is 

designed to strike a compromise between the principles 

of reinforcement learning and cost-based planning. This 

comprehensive framework enables making informed 

decisions in complex situations with dynamic features 

and limited resources. 

𝑆𝑡 = {𝐿𝑟(𝑡), 𝜁𝑞(𝑡), 𝑂𝑚(𝑡), 𝐵𝑟(𝑡)¸𝐻𝑝(𝑡)} (1) 

As calculated in equation (1), state representation has 

been examined. At each timestep 𝑡, the state 𝑆𝑡 provides a 

detailed description of the internal and exterior 

environmental situations that the robot is experiencing. It 

is possible to indicate the geographic location of the robot 

as 𝐿𝑟(𝑡) in either two-dimensional or three-dimensional 

coordinates, depending on the level of navigational 

granularity used. Some service requests are currently 

being handled, including deliveries to guests, calls for 

cleaning, and interactions with the concierge. The 
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function represents this queue 𝜁𝑞(𝑡) . It is possible to 

construct a CNN-based vision system or sensors to 

produce a 𝑂𝑚(𝑡) -A dimensional obstacle map that 

records both moving and stationary objects that have the 

potential to block mobility. When it comes to realistic job 

planning, staying on top of the battery life, which is 

represented by the symbol 𝐵𝑟(𝑡)¸ is an essential factor. 

𝐻𝑝(𝑡) is responsible for determining whether humans are 

present; this is necessary for the robot's safety and to 

ensure that it does not cause irritation to people. When 

everything is considered, this state formulation provides 

the robot with the necessary information about its 

surroundings to make informed judgments about its 

immediate environment. 

 

𝐴𝑡 = {𝑁𝑎𝑣𝑖𝑔𝑎𝑡𝑒(𝑥, 𝑦), 𝑝𝑖𝑐𝑘𝑢𝑝(𝑖), 𝑑𝑒𝑙𝑖𝑣𝑒𝑟𝑦 (𝑗), 𝐼𝑑𝑒𝑙()} (2) 

The fundamental capabilities 𝐴𝑡of the robot system is 

defined by its action set at any given time 𝑡, which is 

represented by the equation (2). The operations that are 

related to commands at the highest level are as follows: 

Using the 𝑁𝑎𝑣𝑖𝑔𝑎𝑡𝑒(𝑥, 𝑦),  function, can send the robot 

to a particular location, retrieve an object or package by 

using the 𝑝𝑖𝑐𝑘𝑢𝑝(𝑖), function, complete a delivery to a 

particular location by using the 𝐷𝑒𝑙𝑖𝑣𝑒𝑟(𝑗) function, send 

the robot back to its charging dock when its power is low 

by using the function 𝐼𝑑𝑙𝑒 (). The modules responsible 

for scheduling and planning use these activities as 

building blocks to construct more complicated service 

performances. As a result of these atomic activities, 

contemporary hotel robots can rapidly respond to a wide 

variety of service needs, reroute themselves to avoid 

obstacles, conserve energy when not in use, and execute 

tasks in a manner that is both ecologically and socially 

responsible. 

 

Figure 3: Intelligent robot task execution 

Intelligent robotic task execution is shown in Figure 

3. This task execution uses a hybrid decision-making 

architecture that combines heuristic planning with deep 

reinforcement learning (DRL). In the State 

Representation module, everything starts from the very 

beginning. Important information about the system and 

its surroundings is stored in it. This information includes 

the position of the robot (𝐿(𝑡)), the task queue (𝑇), the 

obstacle map (𝑂(𝑡) ), the battery level (𝐵(𝑡)) , and 

whether or not humans are present (𝐻(𝑡)) . The input 

state aids the learning and planning processes 𝑆𝑡, which is 

comprised of these variables. Following the consideration 

of factors such as their proximity to the robot, the 

anticipated cost of the battery, and the level of urgency, 

Function assigns a rating to each job 𝑖  based on its 

relative significance. The mathematical definition of this 

utility is as follows in equation (5). To determine the 

optimal amount of labor to be performed, the Adaptive 

Objective Selection module considers both the predicted  

Q-value of accomplishing the purpose, which is presented 

as: and the usefulness of the activity. To get the highest 

possible value, the aim is to maximize the absolute value 

of 𝐺𝑜𝑎𝑙∗ = 𝑎𝑟𝑔 max
𝑇∈𝜍𝑞

[𝑈(𝑇𝑖). 𝑄(𝑆𝑡 , 𝑛𝑎𝑣𝑖𝑔𝑎𝑡𝑒(𝑇𝑖); 𝜃)] . 

The purpose of the 𝑛𝑎𝑣𝑖𝑔𝑎𝑡𝑒(𝑇𝑖); 𝜃  algorithm is to 

maximize the value that is obtained by dividing the value 

of 𝑈(𝑇𝑖)by the value of Q(S i) shown in equation (8). It is 

a Deep Q-Network (DQN) that is responsible for 

determining the ideal action-value function 

𝑄(𝑆𝑡 , 𝐴𝑡; 𝜃) = 𝐸𝜋[∑ 𝛾𝑘𝑅𝑡+𝑘+1|𝑆𝑡 , 𝐴𝑡
∞
𝑘=0 ]. In this context, 

𝜃 is a representation of the parameters the neural network 

has learned. This information is then used to enhance the 

goal-setting process. 

The purpose of the system is to affect learning via the 

use of a comprehensive Reward Function. This function 

takes into consideration a multitude of factors, including 
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penalties 𝑅𝑡 = 𝛿1. 𝑇𝑎𝑠𝑘 𝐶𝑜𝑚𝑝𝑙𝑒𝑡𝑖𝑜𝑛 −
𝛿2. 𝐶𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛 𝑃𝑒𝑛𝑎𝑙𝑡𝑦 − 𝛿3. 𝑇𝑖𝑚𝑒 𝑡𝑎𝑘𝑒𝑛 +
𝛿4𝐸𝑛𝑒𝑟𝑔𝑦 𝐸𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦 . For route planning, an 

independent A Heuristic Function* has been added, and 

the evaluation function that has been included is as 

follows: If the equation 𝑓(𝑛) = 𝑔(𝑛) +
ℎ(𝑛), 𝑤ℎ𝑒𝑟𝑒 ℎ(𝑛) = 𝛽. 𝐸𝑢𝑐𝑙𝑖𝑑𝑒𝑎𝑛 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 (𝑛, 𝑔𝑜𝑎𝑙)  

then the equation is valid. There is a possibility that this 

will increase the anticipated cost of the shortest route to 

the destination for a node. Ultimately, the Hybrid Policy 

Function combines the Q-values learned with the route 

costs estimated using heuristics. This is the approach that 

it chooses to take: It is expected that the outcome will be 

𝜋∗(𝑆𝑡) = 𝑎𝑟𝑔 max
𝐴𝑡∈𝐴

[𝑄(𝑆𝑡 , 𝐴𝑡; 𝜃𝑡) − 𝜂𝐶(𝑝𝑎𝑡ℎ(𝐴𝑡))] ). 

Additionally, this formulation ensures that the agent 

prioritizes high-reward jobs while also considering route 

cost, resulting in navigation that is both more efficient 

and secure. 

The hybrid architecture combines techniques, 

including heuristic search, cost-aware planning, 

reinforcement learning, utility-based goal selection, and 

more. These techniques enable autonomous agents to 

adapt to complex situations and make informed decisions.

 

𝑄(𝑆𝑡 , 𝐴𝑡; 𝜃) = 𝐸𝜋[∑ 𝛾𝑘𝑅𝑡+𝑘+1|𝑆𝑡 , 𝐴𝑡
∞
𝑘=0 ] (3) 

As initialized in Equation (3), the Q-function 

(Deep Q-Network) has been explored. A function of 

𝑄(. ) is the estimated anticipated cumulative reward, 

which is denoted as 𝑄(𝑆𝑡 , 𝐴𝑡; 𝜃) represents the weights 

of the neural network 𝜃  and policy 𝜋  represents the 

state 𝑆𝑡 in which the action 𝐴𝑡 is carried out. This 

function enables the system to consider the value of 

the activity and the attractiveness or quality of each 

state-action pair. The current policy employs a scalar 

value to represent the situation. It is through 

reinforcement learning that the Q-function is updated 

as the robot interacts with its surroundings. This 

allows the robot to be trained to adapt to new 

situations and tasks. Deep neural networks enable the 

system to manage complex, high-dimensional input 

states, such as visual data, sensor readings, and task 

queues. The utilization of deep neural networks 

guarantees this. The discount factor 𝛾, balances short-

term and long-term rewards, making it worthwhile 

where immediate actions impact future consequences, 

such as when completing a job.

 

𝜃𝑡+1 = 𝜃𝑡 + 𝛼 [𝑅𝑡+1 + 𝛾 max
𝑎′

𝑄(𝑆𝑡+1, 𝑎′; 𝜃−) − 𝑄(𝑆𝑡 , 𝐴𝑡; 𝜃𝑡)] ∇𝜃𝑄(𝑆𝑡 , 𝐴𝑡; 𝜃𝑡) (4) 

As discussed in equation (4), the DQN Update 

Rule is described. Additionally, the learning rate, 

denoted as α, regulates the size of the weight update. 

The target network, denoted as 𝜃− , is a stabilized 

variant of θ employed for bootstrapping purposes. 

𝑅𝑡+1 + 𝛾 max
𝑎′

𝑄(𝑆𝑡+1, 𝑎′; 𝜃−) The target Q-value and 

the optimal future reward are both represented by the 

expression 𝛾 max
𝑎′

𝑄(𝑆𝑡+1, 𝑎′; 𝜃−) . The calculation of 

the Temporal Difference (TD) error involves the 

addition of the current estimates, denoted as 

𝑄(𝑆𝑡 , 𝐴𝑡; 𝜃𝑡) . Over time, the network's ability to 

accurately predict the value of an action improves as 

the error is gradually reduced. Due to its iterative 

learning process, the robot can continuously adapt and 

perform better in complex hotel service environments. 

𝑈(𝑇𝑖) = 𝑤1. 𝑢𝑟𝑔𝑒𝑛𝑐𝑦(𝑇𝑖) + 𝑤2. 𝑝𝑟𝑜𝑥𝑖𝑚𝑖𝑡𝑦(𝑇𝑖 ,  𝐿𝑟) − 𝑤3. 𝐵𝑎𝑡𝑡𝑒𝑟𝑦𝑐𝑜𝑠𝑡(𝑇𝑖) (5) 

As found in equation (5), the Task Utility function 

has been expressed. The robot makes use of the scalar 

value that is provided by the task utility function 𝑈(𝑇𝑖) 

𝐵𝑎𝑡𝑡𝑒𝑟𝑦𝑐𝑜𝑠𝑡(𝑇𝑖)  to get a better idea of which task 

should be completed next. The term "proximity" 

indicates how close something is, the term " 

𝑢𝑟𝑔𝑒𝑛𝑐𝑦(𝑇𝑖)" indicates how important something is 

(for example, a request from a guest at the last 

minute), and the term "battery cost" discourages routes 

that consume considerable amounts of energy. 

Through the utilization of the weights 𝑤1,, 𝑤2, 𝑤3  the 

designers can modify the system's actions with 

functional objectives, such as enhancing 

responsiveness or energy efficiency. This function 

ensures that service demands are met and promotes 

balanced workload distribution and smooth robot 

operation by verifying that the selected tasks are 

logistically feasible and efficient. 

𝐶(𝑥, 𝑦) = 𝜆1. 𝑠𝑡𝑎𝑡𝑖𝑐 𝑚𝑎𝑝(𝑥, 𝑦) + 𝜆2. 𝐷𝑦𝑛𝑎𝑚𝑖𝑐𝑜𝑏𝑠𝑡𝑎𝑐𝑡𝑙𝑒𝑠𝐶𝑁𝑁(𝑥, 𝑦) (6) 

As computed in equation (6), the Cost Map with 

CNN-based Perception has been found. The dynamic 

obstacle layer utilizes a convolutional neural network 

(CNN) to track people and objects in real-time, while 

the static map component labels walls and furniture. 

Using adjustable weights 𝜆1  and 𝜆2.  The robot's 

routing process prioritizes safety and efficiency. 

Raising 𝜆2  during peak guest hours, it promotes 

cautious movement. This cost model allows strong, 

real-time decision-making in dynamic hotel 
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environments with frequent human-robot interaction by continuously adjusting to new perceptual data. 

 

Figure 4: A* star Algorithm 

Figure 4 depicts the flowchart for the A* (A-star) 

method, a well-known algorithm recognized for its 

efficiency and accuracy in pathfinding and graph 

traversal. The first step in the process involves initializing 

both the open set, which is necessary for monitoring 

nodes that have not yet been investigated, and the closed 

set, which is essential for tracking nodes that have been 

inspected. The start node is first added to the open set to 

initiate the procedure. 

Next, the core logic will determine whether or not the 

open set contains any items by performing a check. If this 

were to occur, the algorithm would indicate that it could 

not find a specific route. It uses the formula 𝑓(𝑛)  =
 𝑔(𝑛)  +  ℎ(𝑛)  to determine which node is the least 

costly. In this calculation, 𝑔(𝑛) represents the cost that 

has already been incurred from the starting node to 𝑛, and 

ℎ(𝑛) represents the cost that is anticipated to be incurred 

from 𝑛 to the destination. Following this, the algorithm 

double-checks the picked node to ensure it is the target 

node. If this is the case, then we have accomplished our 

goal and the process of reconstructing the route. The 

software will check all nodes near it if the aim is still not 

achieved after this. Before evaluating, it determines 

whether or not a neighbor is already included in the 

closed set. In light of these conditions should steer clear 

of the neighbour. 

On the other hand, the system will determine whether 

the cost of the route is lower than that of its neighbor if it 

has not previously been acknowledged as such. At this 

point, it adjusts the neighbor's price so that it equals the 

current node's cost. Additionally, it moves the parent node 

to the current node, making it possible to trace an optimal 

path in the future. 

This cycle will continue to repeat until the target is 

located or the open set is depleted, indicating that there is 

no way to proceed. The A* algorithm strikes a balance 

between efficiency and optimality by utilizing heuristics 

to prioritize examining paths with the most significant 

potential for success. 
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𝑓(𝑛) = 𝑔(𝑛) + ℎ(𝑛), 𝑤ℎ𝑒𝑟𝑒 ℎ(𝑛) = 𝛽. 𝐸𝑢𝑐𝑙𝑖𝑑𝑒𝑎𝑛 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 (𝑛, 𝑔𝑜𝑎𝑙) (7) 

As determined in Equation (7), the *Heuristic 

Function* has been discussed. The path cost from the 

starting point to node 𝑛 is denoted by 𝑔(𝑛), 𝑓(𝑛)is the 

total estimated cost of the best path through node 𝑛 and 

the Euclidean distance between 𝑛 and the goal are 

denoted by ℎ(𝑛). The standard gradient is applied to the 

algebraic slope. One can estimate the cost of traveling 

from 𝑛 to the goal later by using the 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 (𝑛, 𝑔𝑜𝑎𝑙) 

function. The adjusted coefficient β determines the 

weight assigned to the heuristic estimation and the actual 

charge. The robot can navigate even the most complex 

and crowded hotel layouts efficiently and quickly using 

A*. It is possible to promptly reroute to avoid temporary 

obstacles, such as guests or service carts, which helps to 

ensure that tasks are completed efficiently and that 

customers are satisfied.

 

𝐺𝑜𝑎𝑙∗ = 𝑎𝑟𝑔 max
𝑇∈𝜍𝑞

[𝑈(𝑇𝑖). 𝑄(𝑆𝑡 , 𝑛𝑎𝑣𝑖𝑔𝑎𝑡𝑒(𝑇𝑖); 𝜃)] (8) 

As discussed in equation (8), Adaptive Goal 

Selection has been examined. and the Q-value for 

reaching 𝑇𝑖  target is worthwhile (utility) and will have an 

impact over time (learned Q-value). Intelligent 

scheduling is achieved by combining experience with 

present priorities through this mechanism. This flexible 

system includes the learned Q-value and the task's utility 

𝑈(𝑇𝑖)  to maximize this combined metric, the bot 

prioritizes time-sensitive and resource-efficient tasks. 

This metric indicates which tasks are likely to be 

profitable. By requiring the robot to evaluate its goals in 

context, this dual criterion improves its adaptability to 

new guests or hallway congestion. It connects abstract 

ideas to real-world applications.

 

𝑅𝑡 = 𝛿1. 𝑇𝑎𝑠𝑘 𝐶𝑜𝑚𝑝𝑙𝑒𝑡𝑖𝑜𝑛 − 𝛿2. 𝐶𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛 𝑃𝑒𝑛𝑎𝑙𝑡𝑦 − 𝛿3. 𝑇𝑖𝑚𝑒 𝑡𝑎𝑘𝑒𝑛 + 𝛿4𝐸𝑛𝑒𝑟𝑔𝑦 𝐸𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦                                                                                                           

(9) 

As described in equation (9), the Reward Function 

has been calculated. Specific behaviors are either 

supported or discouraged by particular components. 𝛿1 is 

a recommendation for finishing tasks, 𝛿3  is a warning 

against inefficiency and 𝛿2  is a warning against unsafe 

navigation.  The number denotes an operation that is both 

energy-efficient and profitable 𝛿4 . By modifying the 

values of the coefficients 𝛿1  through 𝛿4 , designers can 

modify robots' behavior to meet service objectives such 

as responsiveness, safety, and sustainability. With the 

assistance of this well-organized system of rewards, 

hotels can now teach their staff members how to be 

confident and friendly in various situations.

 

𝜋∗(𝑆𝑡) = 𝑎𝑟𝑔 max
𝐴𝑡∈𝐴

[𝑄(𝑆𝑡 , 𝐴𝑡; 𝜃𝑡) − 𝜂𝐶(𝑝𝑎𝑡ℎ(𝐴𝑡))] (10) 

As depicted in equation (10), the Hybrid Policy 

Function has been computed. This hybrid policy weighs 

the Q-network's expected reward and the action's 

execution path cost to choose the best action. The total 

cost of executing action 𝜂𝐶(𝑝𝑎𝑡ℎ(𝐴𝑡), is determined by 

𝜂 , which balances reward and risk. This ensures the 

chosen actions are beneficial and feasible in dynamic 

environments. This hybrid policy maximizes rewards and 

minimizes costs by considering path cost and Q-function 

action value.  By balancing reward and path cost, η 

enables context-sensitive decision-making. If its battery is 

low, the robot chooses a less-than-ideal job over a shorter, 

safer route. Autonomous service in dynamic, human-

populated environments, such as hotels, requires 

balancing task performance, safety, and resource 

management. 

4 Numerical results and discussion 
The proposed SchedNav-RX framework was tested and 

compared to three current task scheduling and path 

planning models: TAMP, B-IG-ORPS, and RL-QPSO 

Nett. The four critical performance metrics utilized were 

Task Completion Rate, Average Path Efficiency (APE), 

Computational Time, and Collision Avoidance Rate. A 

range of 10 to 100 tasks was tested in dynamic multi-

robot hotel service scenarios to assess scalability and 

resilience. Overall work sizes, SchedNav-RX 

outperformed competing navigation algorithms, boasting 

a job completion rate of up to 94% and showing slight 

degradation as the project load increased. It is evident 

that this effectively reduces robot idle time and work 

overlap by utilizing its AI-powered dynamic scheduling 

technology. With average path efficiency values of 

around 90%, the proposed model outperformed the 

competition in route optimization. This means the 

navigational paths were more direct and smoother even 

when faced with obstacles and workloads. By 

outperforming rival algorithms in complex task 

allocations and route computations, SchedNav-RX 

demonstrated its computational scalability through 

reduced processing overhead. As little as 1.9 seconds was 

required for 10 jobs, while 3.7 seconds was sufficient for 

100 tasks. In conclusion, SchedNav-RX demonstrated the 

effectiveness of its environment-aware and adaptive real-
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time path replanning features by achieving a high 

Collision Avoidance Rate (up to 96%) across all task 

levels. In light of these results, the proposed approach is 

quick, reliable, and well-suited to practical scenarios that 

require interior service robots, such as those in the 

hospitality industry. 

Dataset Description: The 2D grid-based maps in 

dcaffo's Kaggle 2D Route Planning Dataset are used to 

test and evaluate AI-enhanced route planning methods, 

such as A* and D*. Each dataset sample contains 

grayscale images of 2D grid configurations with white 

pixels representing vacant space and black pixels 

representing impediments. These maps are great for hotel, 

warehouse, and workplace service robots. This dataset 

enables us to evaluate algorithm performance under 

various restrictions, ranging from simple pathways with 

few obstacles to those with numerous randomly dispersed 

obstacles. It aids in adaptive route planning, shortest 

route finding, and collision avoidance. The grid-based 

environment is ideal for testing AI-based robotic 

navigation frameworks, such as SchedNav-RX, which 

simulates internal dynamic decision-making. The dataset 

is useful for both theoretical and practical applications in 

artificial intelligence, particularly in autonomous 

navigation systems, as it is simple, compatible with 

standard route planning algorithms, and suitable for 

indoor robots [19]. 

Experimental Setup: During the trials conducted in a 

hotel environment replicated using ROS and Gazebo, 

service robots were hired to deliver packages and provide 

assistance. The SchedNav-RX algorithm was evaluated 

when compared to other methods (TAMP, B-IG-ORPS, 

and RL-QPSO Nett) for ten to one hundred different 

workloads. The robots were equipped with artificial 

intelligence modules and virtual sensors to improve their 

vision and navigation capabilities, including LiDAR and 

ultrasonic sensors. When evaluating each strategy, the 

criteria used were the completion rate of tasks, the 

average path efficiency, the amount of time spent 

computing, and the collision avoidance rate. With its Intel 

i7 central processor unit, 32 gigabytes of random-access 

memory, and RTX 3080 graphics processing unit, the 

simulations were carried out on a powerful machine 

capable of real-time processing and artificial intelligence 

computing.

 

i) Task completion rate (%) 
Table 2: Task Completion Rate (%) 

Number of Tasks TAMP B-IG-ORPS RL-QPSO Nett SchedNav-RX 

(Proposed) 

10 77 83 87 93 

20 79 80 85 94 

30 76 82 86 91 

40 74 78 83 90 

50 78 79 84 92 

60 73 76 81 89 

70 75 77 83 91 

80 70 75 82 90 

90 72 74 80 89 

100 74 76 81 90 

 

𝑇𝑎𝑠𝑘 𝐶𝑜𝑚𝑝𝑙𝑒𝑡𝑖𝑜𝑛 𝑅𝑎𝑡𝑒 = (
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑇𝑎𝑠𝑘𝑠 𝐶𝑜𝑚𝑝𝑙𝑒𝑡𝑒𝑑

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑎𝑠𝑘𝑠 𝑆𝑐ℎ𝑒𝑑𝑢𝑙𝑒𝑑
) × 100  (11) 

Equations (11) and Table 2 illustrate the time 

required to complete the assignment. The hotel service 

robot's task completion rate (TCR) is used to evaluate its 

overall performance in fulfilling the assigned duties. 

Guests can get assistance with room supplies, cleaning 

arrangements, and even frequent inspections using the 

hotel's automated system. A technique used to solve this 

issue is to divide the total number of tasks by the 

percentage of tasks assigned and completed within a 

certain time frame. This leads to the acquisition of the 

TCR percentage. When it comes to explaining things, 

most individuals think that percentages are the most 

effective. Due to its high TCR, the SchedNav-RX 

architecture performs effectively in dynamic hotel 

settings, particularly in terms of prioritization, 

sequencing, and task execution. The findings of research 

like this are contributing to the growing body of data 

suggesting that AI-driven job scheduling systems have 

the potential to reduce robot idle time, manage resource 

competition, and prevent delays. The technique's 

resilience and flexibility in maintaining operational 

scalability and service continuity are validated by 

findings that provide TCR values that are more than 90% 

across various workload intensities and environmental 

conditions. 
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ii) Average path efficiency 

 

Figure 5: Average path efficiency (%) 

𝐴𝑃𝐸 =
𝑂𝑝𝑡𝑖𝑚𝑎𝑙 𝑃𝑎𝑡ℎ 𝐿𝑒𝑛𝑔𝑡ℎ

𝐴𝑐𝑡𝑢𝑎𝑙 𝑃𝑎𝑡ℎ 𝐿𝑒𝑛𝑔𝑡ℎ
  (12) 

Figure 5 and Equation (12) have explored the 

average path efficiency. One of the most critical 

indicators for evaluating the effectiveness of the route 

planning module within the SchedNav-RX architecture is 

the Average Route Efficiency (APE). Specifically, it 

measures the degree to which the robot's path 

corresponds to the theoretical shortest path, which is one 

way it represents spatial optimization in navigation. To 

describe it technically, the APE is the ratio of the actual 

route length of the robot to the ideal path length 

(computed using the A* technique or a heuristic-

enhanced form of the methods). An APE score close to 

one indicates that the travel routes are almost optimal, 

with few unnecessary moves, diversions, or oscillations. 

This is the case when the APE score is close to 1. By 

maximizing route utilization, it is possible to significantly 

reduce the time spent on service, as well as the energy 

used in interior hotel settings. The SchedNav-RX 

system's ability to adjust to both fixed and moving 

impediments in real-time, while maintaining navigational 

accuracy and timeliness, is demonstrated by the high APE 

values recorded by the system. During the performance 

evaluation process, the APE is a crucial statistic used to 

assess the degree to which the components of motion 

planning and sensory perception (via CNNs) are 

integrated. 

iii) Computational time (seconds) 

Table 3: Computational time 

Number of Tasks TAMP B-IG-ORPS RL-QPSO Nett SchedNav-RX 

(Proposed) 

10 3.1 2.9 2.6 1.9 

20 4 3.5 3.2 2.4 

30 4.4 3.9 3.5 2.2 

40 5.9 5.3 4.8 3 

50 5.4 4.9 4.3 2.6 

60 6.2 5.8 5.1 3.1 

70 6 5.5 4.9 3.3 

80 6.5 6.2 5.7 3.8 

90 6.9 6 5.5 3.5 

100 7.2 6.6 5.9 3.7 
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𝑪𝑻SchedNav−RX = 𝑻𝑪𝑵𝑵 + 𝑻𝑺𝒄𝒉𝒆𝒅𝒖𝒍𝒆 + 𝑻𝑨∗ + 𝑻𝑪𝒐𝒍𝒍𝒊𝒔𝒊𝒐𝒏𝒄𝒉𝒆𝒄𝒌 + 𝑻𝒖𝒑𝒅𝒂𝒕𝒆  (13) 

Table 3 and Equation (13) have been examined for 

computational time. The computational time is a 

performance metric that analyzes the accuracy and 

speed with which the SchedNav-RX system can 

construct work schedules and navigation courses. It 

measures how quickly and accurately the system can 

create information. After receiving input, such as a 

new service request or a change in the environment, 

the system takes a certain length of time to develop a 

plan that is 100% operational. Since delays impact 

both customer satisfaction and operational efficiency, 

this statistic is of significant relevance for real-time 

systems used in service-oriented industries. For 

perceptual analysis, the suggested system utilizes 

lightweight convolutional neural networks (CNNs), 

while for route planning, an enhanced version of the 

A* algorithm is employed. The ability to create speedy 

responses is enabled by this, even in complicated 

circumstances. The model, data structures, and 

processing pipelines are well-designed if the runtimes 

decrease. The empirical study determines whether the 

architecture is plausible for incorporation into actual 

smart hotel infrastructure by comparing normal 

reaction times in various circumstances, such as low- 

and high-traffic zones or static and dynamic 

impediments. 

iv) Collision avoidance rate (%) 

 

Figure 6: Collision avoidance rate (%) 

𝑪𝒐𝒍𝒍𝒊𝒔𝒊𝒐𝒏 𝑨𝒗𝒐𝒊𝒅𝒂𝒏𝒄𝒆 𝑹𝒂𝒕𝒆 (%) = (
𝑻𝒂𝒔𝒌𝒔 𝑪𝒐𝒎𝒑𝒍𝒆𝒕𝒆𝒅 𝒘𝒊𝒕𝒉𝒐𝒖𝒕 𝑪𝒐𝒍𝒍𝒊𝒔𝒊𝒐𝒏

𝑻𝒐𝒕𝒂𝒍 𝑻𝒂𝒔𝒌𝒔 𝑨𝒕𝒕𝒆𝒎𝒑𝒕𝒆𝒅
) × 𝟏𝟎𝟎  (14) 

Figure 6 and equation (14) show that the collision 

avoidance rate has been expressed. The robustness and 

safety of the navigation system are evaluated using the 

Collision Avoidance Rate (CAR), which is calculated by 

determining the percentage of task executions that do not 

entail physical contact with barriers or disruptions to the 

route integrity. It is necessary to avoid rigid items, such as 

walls or furniture, and mobile objects, such as clients, 

service staff, or other robots. Having a high CAR would 

make the robot safer for the physical infrastructure and 

increase the trust that hotel personnel and guests have in 

the robot's reliability. By utilizing a cost-aware A* variant 

that continually adapts to changes, the SchedNav-RX 

framework can achieve a high CAR. This is 

accomplished by integrating environmental awareness 

with CNN-based object detection and dynamic 

replanning. Moreover, techniques for smoothing 

pathways and modifying velocities are also helpful in 

ensuring safe navigation. The assessment confirmed the 

effectiveness of the proposed AI-based method in real-

world, human-centric situations, with consistently high 
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CAR (more than 95%) across various hotel floor designs 

and population densities. 

5 Conclusion 
To conclude, the SchedNav-RX framework optimizes 

hotel service robot job scheduling and route planning 

using AI approaches including CNN, RL, and the A* 

algorithm. Experimental results show that SchedNav-RX 

outperforms TAMP, B-IG-ORPS, and RL-QPSO Nett in 

terms of Task Completion Rate, Average Path Efficiency, 

Computational Time, and Collision Avoidance Rate. 

SchedNav-RX ensures safe navigation in dynamic 

settings, efficient and adaptable route selection, and 

suitable work assignments. Real-world 2D grid-based 

datasets demonstrate the framework's reliability and 

suitability for autonomous robot deployment in outdoor 

service domains, such as hotels and other hospitality 

settings. Future developments include multi-agent 

coordination and real-time environmental adaptability to 

improve framework scalability and responsiveness. 
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