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As the global energy crisis intensifies, the integration of renewable energy—particularly photovoltaic (PV) 

systems—has become vital for achieving a sustainable and resilient power infrastructure. This study 

focuses on dynamic modeling and efficient control of grid-connected PV systems to enhance power quality 

and system reliability. An adaptive PI controller is employed for voltage regulation, with a maximum 

power point tracking (MPPT) method ensuring optimal energy harvesting. A DC-DC boost converter and 

a three-phase PWM inverter are incorporated, with MATLAB used for simulation. The proposed approach 

integrates Model Predictive Control (MPC) with Graph Convolutional Networks (GCN) to manage grid 

instability and improve energy efficiency. A novel KNN-SMOTE-GCN algorithm is developed to mitigate 

voltage distortion, harmonic currents, and power fluctuations. The system replicates the behavior of 

traditional generators under disturbances, promoting renewable integration without compromising 

stability. Key performance metrics such as voltage deviation, reactive power fluctuation, power loss, and 

total harmonic distortion (THD) are analyzed. 

Povzetek:  

 

1 Introduction 

The reckless use of hydrocarbons and nuclear power 

threatens environmental safety and causes significant 

pollution. The truth of this energy source is prompting a 

global movement toward renewable energy sources that 

are less harmful to the environment, including as wind 

power, PV, and others. Distributed power generating 

systems that employ renewable energy sources have 

garnered significant interest due to the current focus on 

clean power generation [1], [2], [3]. Recent advances in 

photovoltaic technology have led to the rapid adoption of 

renewable energy production based on solar PV by both 

commercial and residential sectors. Reduced main power 

system load, maximum savings, and reactive power 

support are just a few of the benefits that the distribution 

grid may reap from integrating distributed solar PV 

generating plants [4], [5]. electricity quality and 

dependability are both enhanced by solar PV electricity, 

which lessens the strain on the central grid. The energy 

quality usually drops as the use of non-linear loads 

increases. It is also well known that most non-linear loads 

that produce more complex harmonics and demand 

reactive power are electronic power equipment. This 

action causes voltage distortion, which impacts all 

subsequent loads linked to the identical PCC. Optimal 

performance of solar photovoltaic inverters is hindered by 

the unpredictability of sun irradiation [6], [7]. Two 

examples of supplementary services that the inverter's 

extra capacity may offer are reducing source current 

harmonics while adjusting reactive load power. When it 

comes to PV-integrated systems, MPPT is a go-to for 

reducing harmonics. One method for reducing PV system 

grid current harmonics is the adaptive P&O (perturb and 

observation) MPPT algorithm, which incorporates sliding 

mode control [8], [9]. The goal of auxiliary regulation is to 

maintain grid stability by modifying power system 

characteristics in response to imbalances, fluctuations, and 

disruptions. The grid, however, functions within 

reasonable bounds and adapts efficiently to shifts in both 

generation and demand [10], [11]. Controlling the grid 

frequency entails modifying either electricity production 

or consumption to keep it within predetermined 

boundaries. Ensures that electrical equipment continue to 

function correctly by keeping voltage levels within certain 

limits. Optimizes system performance by balancing the 

production and consumption of both reactive and active 
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electricity. More conventional approaches, such as DL, 

Machine Learning, etc [12]. These systems are often 

studied for their possible use in power system 

optimization, control performance, and forecasting. Due to 

a lack of sophisticated automation infrastructure, many 

system operations are being performed with modest 

degrees of automation at the time. AI is expected to play a 

significant role in the future power system, according to 

several studies, technical papers, and case studies [13], 

[14]. This is because AI will introduce state-of-the-art 

techniques of system optimization while simultaneously 

decreasing the need for human participation. Research on 

AI for grid system power flow optimization is now at a 

premium. The auxiliary services that help to reduce 

frequency variations are crucial to the reliability of ac 

power networks. Large synchronous generators' 

electromechanical inertia is the only available resource for 

absorbing frequencies disturbances on subsecond time 

scales at the moment. This means that switching from 

traditional thermal power plants to NREs, which are 

inertialess, puts grid stability at risk from things like 

unexpected power production outages. Grids with high 

penetrations of NREs may suffer from electromechanical 

inertia, which may disrupt system stability. To address this, 

virtual synchronous generators have been suggested, 

which mimic traditional generators. In this paper, we 

provide a new method of controlling virtual synchronous 

generators that uses a configurable time scale to reduce the 

supplied inertia, which is large at short intervals to absorb 

faults as effectively as traditional generators but sets in 

motion coherent frequency oscillations when it doesn't 

[15], [16]. We test how well our adaptive-inertia approach 

handles large-scale transmission networks that experience 

unexpected power outages. It is more stable than earlier 

proposed methods and consistently outperforms traditional 

electromechanical inertia. The numerical simulations 

demonstrate that the quasioptimal placement of adaptive-

inertia devices enhances the damping of interarea 

oscillations and effectively absorbs local faults. In future 

low-inertia power grids that have significant penetrations 

of NREs, our findings demonstrate that the suggested 

adaptive-inertia control system is a great way to improve 

grid stability [17], [18], [19], [20]. 

 

1.1 Problem statement  

In today's world, contemporary power systems are 

complemented with large-scale renewable energy systems, 

allowing for more efficient operations. Accurate energy 

production and efficient control systems to manage while 

guarantee a reliable power supply are also necessary for 

optimum power systems. However, there is a degree of 

uncertainty due to the high electrical consumption and the 

sporadic balance of supply. Also, traditional power sources 

aren't practical for such a difficult job, and they drive up 

energy prices.  

 The next step was to improve electrical distribution 

networks' power quality by using an optimization 

approach. It employs a hybrid design that incorporates 

shunt and series compensators to address voltage drops, 

harmonics, and imbalance, among other power quality 

concerns. Afterwards, MPPT was used to derive the 

greatest amount of power from the grid system. Controller 

for MPC to ascertain the system's overall stability and 

performance. In addition, the model was tested on the 

MATLAB platform and its reliability was assessed by 

measuring voltage variation, reactive power fluctuations, 

grid current, and THD. 

 

1.2 Motivation  

Many issues, including power quality, stability, 

dependability, and supply management, may arise as a 

result of the increasing need for big power grid-connected 

systems. In addition, the total system performance might 

be negatively impacted by power quality concerns as a 

result of variations. It is possible for there to be an 

imbalance in the power demand and generation frequency 

fluctuations. Next, problems with the power factor, such as 

a low power factor, might cause the power distribution 

system to lose more power and increase energy usage. 

Voltage instability is the root cause of both linear and non-

linear problems. Voltage regulation may be subpar due to 

the persistent use of insufficient control mechanisms in 

power grid systems. Ensuring the stability and operation of 

big power networks also relies heavily on rules and norms 

that specify acceptable power quality values. As a result, 

grid systems need an intelligent auxiliary regulatory 

technology that can effectively lessen the burdens on them. 

 

1.3 Contributions  

Despite the paper's focus on intelligent real-time power 

grid regulation and control, no mention of research into 

building the comprehensive functional foundation of a 

dispatching intelligent assistant driving network is made. 

The study and evaluation of real-time regulation and 

control business aims to explore fresh artificial intelligence 

application methods for various business processes, as 

well as the principle and implementation characteristics of 

a grid-assisted control system based on AI thinking and 

decision-making in regulation and control operations. In 

order to achieve the shift from empirical to intelligent 

control and enhance the degree of control over the power 

grid, we provide solutions to raise the bar for artificial 

intelligence in terms of both interaction and performance. 

In order to achieve maximum power generation, it is 

necessary to control the working point of photovoltaic 

panels. For this regulation procedure to be successful, 

there are two primary components that are required: an 

MPPT algorithm that serves as the reference for the MPP, 
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and a voltage controller that guarantees a steady 

functioning at the MPP. 

One of the most significant benefits of adopting MPC is 

that it has the ability to simplify the process of developing 

a variety of controllers while also working to 

accommodate system limits within its formulation. In 

addition, the introduction of KNN-SMOTE-GCN as a 

user-friendly optimization approach is suggested in this 

study as a means of enhancing the cost function of the 

MPC controller. 

 This research work is structured as follows: Section 2 

describes the research articles that were relevant to the 

framework that was developed; Section 3 describes the 

problem statements; Section 4 explains the proposed 

hybrid framework; Section 5 analyzes the results of the 

methodology that was proposed; and Section 6 describes 

the research conclusion. 

 

2 Related work 

 Experts from [21] grid operators use neuro-fuzzy logic for 

dynamic reactive power adjustment. The energy storage 

system may also be effectively managed using that logic. 

After that, SP UPQC was used to improve the electrical 

distribution networks' power quality. It employs a hybrid 

design that incorporates shunt and series compensators to 

address voltage drops, harmonics, and imbalance, among 

other power quality concerns. Afterwards, maximum 

power point tracking was used to derive the greatest 

amount of power from the electricity network. Controller 

for Model Predictive Control to ascertain the system's 

overall stability and performance. In addition, the model 

was tested on the MATLAB platform and its reliability was 

assessed by measuring voltage variation, grid current, 

reactive power fluctuations, and Total Harmonic 

Distortion. 

Enhancing the effectiveness of section control of large 

power grid, altering the traditional experience-led 

dispatching mode, and improving the intrinsic safety level 

of the power grid are all goals of the experimental team in 

[22]. They study intelligent section auxiliary decision-

making algorithms in depth and build a new intelligent 

dispatching structure framework of the power grid using 

deep learning and simulation environments. To build a 

more realistic simulation of the power grid's dynamic 

characteristics under varied operating circumstances, an 

environment that is suited for the upcoming AC-DC hybrid 

big power grid is first built. Secondly, a scheduling agent 

that takes into account the power grid's characteristics and 

the dispatcher's behavior is researched using the power 

grid's historical operation data and the dispatcher's real 

control data. Finally, to address the issues of poor 

regulation speed, complex regulation decision-making, 

and inadequate technical support ability, authors study the 

technology that generates and verifies strategies for multi-

dimensional scheduling agents using deep reinforcement 

learning. In addition to providing solid technical support 

for power grid operation, that research may enhance the 

accuracy and effectiveness of section dispatching 

decision-making, optimize the section control strategy 

continually, and more. 

According to [23], when a problem occurs, the generator 

network determines the unit output plan using the 

combined wind, light, and electrical demand data from a 

northwest area of China. A specialized system generation 

fault recovery strategy is developed for that grid fault using 

data on actual power load while actual renewable energy 

output before and after the fault. The strategy aims to 

minimize the cost of system power generation while 

considering the constraints of secure operation of the 

system. It turns out that the expert system's fault recovery 

method is much different from the one used in the early 

stages of training, and that the error value is very high. 

After a generative adversarial network is fully trained, it 

can approach the fault recovery expert system with an 

auxiliary decision-making scheme that works in different 

situations with different loads and new energy outputs, and 

it can keep the error between the two schemes to less than 

5%. Results from studies examining power grid fault 

recovery strategies using models of generative adversarial 

imitation learning networks demonstrate the force control 

system's capacity for autonomous and secure fault 

recovery. 

With the goal of conducting real-time tracking on the 

operating state of the power grid, eliminating potential 

safety hazards, and upgrading the power grid from 

"manual analysis" scheduling to "intelligent analysis" 

scheduling, the authors of [24] propose an integrated 

framework to aid decision-making of online accident 

processing using large power grids. The study covers five 

aspects: integrated information support system, aid 

decision-making afterwards, risk perception in grow, 

online fault diagnosis, and visual display. 

The writers of the cited work, [25] an online trend analysis 

technology with a functioning mode arrangement for large 

power grids is suggested, drawing on references to the 

growth of intelligent dispatching support systems and their 

dynamic security assessment technologies, in light of the 

growing importance of grid dispatching operations in 

understanding future state security changes. Estimated 

power flow in the future is based on the power grid's 

present operating mode, online stability conclusion, data 

from fresh energy and load forecasts, dispatch scheduling, 

and dispatch operation adjustment. The auxiliary decision-

making approach for control allows for fast assessment of 

future security situations and trends. With the use of that 

technology, the power grids of Heilongjiang and Central 

China have been able to transition from empirical to 

intelligent control, and precontrol techniques for 

complicated power grid dispatching operations have 

received technological support. 
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The tiny sensor sample unit, energy metering device, 

communication unit, protection control device, 

performance evaluation unit, etc. were all combined by the 

experimenters of [26]. In conjunction with the transformer, 

keeping its original dimensions and construction. It is 

possible to analyze the measured data locally, allowing for 

an intelligent and transparent observation of the 

performance indicators of the transformer. 

Simultaneously, it can accomplish intelligent monitoring, 

reduce energy consumption and save energy, and aid in the 

creation of new power systems without uploading a 

mountain of normal and abnormal data. 

Using deep reinforcement learning, the authors of [27] 

provides an auxiliary control method for large-scale power 

grid segments. An intelligent agent for power grid section 

control is built using the Deep Deterministic Policy 

Gradient algorithm. That agent provides real-time control 

methods in complex power grid settings, taking into 

account both the safety and economics of power grid 

operations. That justifies the proposal of a two-stage 

optimization approach that takes sensitivity into account. 

When operators are unable to remove the section 

restriction via real-time control, they offer them with the 

optimum market intervention strategy. At last, the efficacy 

of market intervention plans and real-time control 

mechanisms are tested via case studies. The methodology 

presented in that study improves the system's economy by 

lowering the clearing price through an average of 1.2% 

while the average adjustment amount through 37.6% under 

various section limits resulting from power generation 

components participating in the market, as compared to the 

current rules. 

The authors of [28] looking at the power grid from a 

knowledge graph perspective, researchers were able to 

develop a functional framework for an intelligent evaluator 

that could assess static stability, make decisions based on 

that evaluation, and be an all-around smart algorithm. That 

evaluator took into account the stability state evaluation 

index while optimization control strategy data from 

various power grid operation scenarios. The 

implementation of a visual evaluation tool for large-scale 

power grid static stability was made possible with the 

introduction of technology for knowledge graph 

automation engines. To demonstrate the efficacy of the 

suggested approach, an example using a real-world 

electricity system is provided. Regulatory and control 

operators may benefit from the study's findings by better 

understanding the current state of operations and making 

more informed decisions about the power system. 

Explorationally, it may be useful for enhancing the 

building of online intelligent active security defense 

structures on big power grids. 

 

3 PV generated system integrated to 

weak grid 

The basic architecture of a three-phase grid-connected 

double-stage solar power plant is shown in Figure 1. The 

integration of solar electricity into the electrical grid is 

achieved via the employment of this sort of technology, 

which guarantees effective power conversion and 

maintains grid stability. To generate and transmit 

electricity from the solar PV array to the unreliable utility 

grid, the system relies on a number of moving parts, all of 

which contribute in different ways. The PV array generates 

the majority of the system's renewable electricity. It relies 

on a network of solar panels to generate DC power from 

sunlight. The PV array's power production is directly 

related to the amount of solar irradiation and temperature 

that it can operate at. Maximizing the conversion of solar 

energy into grid-ready alternating current electricity is the 

system's primary objective. To get the most power out of 

the solar PV system, the DC-DC boost converter is an 

absolute must. For maximum efficiency in power 

conversion, it raises the DC voltage produced by the PV 

array until it is equal to or greater than the DC-link voltage. 

In order to keep the PV array running at its optimum power 

point no matter what happens to the weather or irradiance, 

the boost converter works using a MPPT algorithm. An 

MPPT method known as Perturb along with Observe is 

used to optimize the amount of energy harvested by the PV 

array. One of the most popular ways to increase the output 

of solar PV systems is by using this algorithm.  
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Figure 1: Auxiliary power control in large power grid 

 

It works by monitoring the change in power output and 

making adjustments to the operating voltage of the PV 

array at regular intervals. When the power goes up, the 

adjustment stays the same; when it goes down, it goes in 

the other way. The technology is able to maintain optimal 

performance regardless of environmental changes because 

of this iterative procedure that continually monitors the PV 

array's MPP. By responding in real-time to variations in 

temperature and irradiance, the P&O MPPT algorithm 

keeps the boost converter operating at the ideal voltage 

input from the PV array.  In areas where the amount of 

sunshine varies throughout the day, the efficiency of the 

solar PV system depends on this capability to monitor the 

MPP under changing circumstances. 

 

3.1 PV array modelling 

To enhance the voltage or current level, the PV panel uses 

numerous modules linked in series or parallel, accordingly. 

A current source, two types of resistance (series and shunt), 

with an antiparallel diode make up the equivalent circuit of 

a PV cell, as shown in Figure 2. The current source ( 𝐼𝑠 ) is 

expressed by de following equation: 

𝐼𝑠 = (
𝐺

𝐺𝑟𝑒𝑓
) (𝐼𝑠_𝑟𝑒𝑓 + 𝐾𝑠𝑐 ⋅ (𝑇 − 𝑇𝑟𝑒𝑓))             (1) 

where irradiance (G) and ambient temperature (T) are the 

two variables. The coefficient of short-circuiting current is 

denoted as 𝐾𝑠𝑐 . The following are the current, irradiation, 

as well as temperature under typical conditions: 𝐼𝑠_ref , 𝐺ref  

and 𝑇ref . The current changes with irradiation and 

temperature change, as shown in Eq. (1); yet, the 𝐼sat  

fluctuation in temperature is the only determinant of 

current. In accordance with Kirchhoff's law, the PV panel's 

output current ( 𝑣𝑝𝑣 ) is given through: 

𝐼𝑝𝑣 = 𝐼𝑠 − 𝐼𝑑 − 𝐼𝑠ℎ𝑢                        (2) 

Yes, it means we can: 

𝐼𝑝𝑣 = 𝐼𝑠 − 𝐼𝑠𝑎𝑡 [𝑒𝑥𝑝⁡ (
𝑞(𝑣𝑝𝑣+(𝐼𝑝𝑣∗𝑅𝑆𝑒𝑟))

𝑛𝑘𝑇
) − 1] −

𝑉𝑝𝑣+(𝐼𝑝𝑣∗𝑅𝑆𝑒𝑟)

𝑅𝑠ℎ𝑢
                            (3) 

With: 

𝐼𝑑 = 𝐼𝑠𝑎𝑡 [𝑒𝑥𝑝⁡ (
𝑞(𝑣𝑝𝑣+(𝐼𝑝𝑣∗𝑅𝑆𝑒𝑟))

𝑛𝑘𝑇
) − 1]               (4) 

And: 

𝐼𝑠ℎ𝑢 =
𝑉𝑝𝑣+(𝐼𝑝𝑣∗𝑅𝑆𝑒𝑟)

𝑅𝑠ℎ𝑢
                       (5) 

 

3.2 DC-DC converter 

Here is one way to express the transfer function of the 

boost converter: 

𝑣𝑚 =
1

1−𝐷
𝑣𝑝𝑣                   (6) 

The relationship between the average currents flowing into 

and out of an electrical device may be expressed as 

follows: 
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𝐼𝑝𝑣 =
1

1−𝐷
𝐼𝑑𝑐                      (7) 

The equation for the DC bus may be written as: 
𝑑𝑣𝑑𝑐

𝑑𝑡
=

1

𝐶
(𝐼𝑑𝑐 − 𝐼𝑖𝑛𝑣)                                     (8) 

 

3.3 DC-AC inverter 

It is possible to transform DC electricity into AC voltage 

with the frequency and amplitude of our choice thanks to 

the inverter, the adaptation step. The inverter control 

makes it possible to inject higher-quality currents and 

powers (P,Q) into the grid. The input/output inverter 

voltage relationship is defined as: 

 

{

𝑣𝑎𝑛 = (𝑆1 − 𝑆2)𝑣𝑑𝑐
𝑣𝑏𝑛 = (𝑆2 − 𝑆3)𝑣𝑑𝑐
𝑣𝑐𝑛 = (𝑆3 − 𝑆1)𝑣𝑑𝑐

[

𝑣𝑎
𝑣𝑏
𝑣𝑐
] =

𝑣𝑑𝑐
3

[
2 −1 −1
−1 2 −1
−1 −1 2

] [

𝑆1
𝑆2
𝑆3

]

⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(9) 

 

where 𝑣𝑑𝑐  is the DC voltage, 𝑣𝑖𝑛(𝑖 = 𝑎, 𝑏, 𝑐) and 𝑆𝑗(𝑗 =

1,2,3) consist of alternating current voltages and signals 

indicating the current state of the switches. Here is the 

equation for grid voltages: 

 

[

𝑣𝑔𝑎
𝑣𝑔𝑏
𝑣𝑔𝑐

] = [

𝑣𝑎
𝑣𝑏
𝑣𝑐
] + 𝑅 [

𝐼𝑔𝑎
𝐼𝑔𝑏
𝐼𝑔𝑐

] + 𝐿
𝑑

𝑑𝑡
[

𝐼𝑔𝑎
𝐼𝑔𝑏
𝐼𝑔𝑐

]                  (10) 

 

The goal of studying and realizing the decoupling among 

the active (P) with reactive (Q) capabilities was to regulate 

them independently. If we want a fair system, we can just 

put down the powers 𝑃𝑔 and 𝑄𝑔 as follows: 

 

{
𝑃𝑔 =

3

2
(𝑣𝑔𝑑𝐼𝑔𝑑 + 𝑣𝑔𝑞𝐼𝑔𝑞)

𝑄𝑔 =
3

2
(vgqIgd − vgdIgq)

                                 (11) 

Indeed, we can write: 

 

{
Pg =

3

2
vgdIgd

Qg = −
3

2
vgdIgq)

                                             (12) 

 

where vgdq as well as Igdq, which stands for grid current. 

 

3.4 Normalization 

The data were standardized to ensure that the model's 

accuracy was unaffected by dimensions. The min-max 

scaling approach was used for normalization in this 

research. 

 

𝑥̂ =
𝑥−𝑚𝑖𝑛(𝑥)

𝑚𝑎𝑥(𝑥)−𝑚𝑖𝑛(𝑥)
                    (13) 

 

where 𝑥̂ stands for the value of the normalized property. 

The function min(x) finds the lowest value in the values of 

the attributes while max(x) finds the highest value. 

 

3.5 Missing value completion 

One approach that uses nearby data points is KNN (K-

Nearest Neighbors) interpolation. The goal of this 

technique is to estimate the target point's value by 

comparing it to the values of the K data points that are 

known to be the closest to it. For KNN interpolation, the 

fundamental procedures are these: 

Choose the K-value: Choose the optimal K-size by 

determining its value, often using cross-validation. 

Determine Distance: Find the total distance in geometric 

units between the current location and all other known 

locations. This is the formula for the distance in geometric 

units: 

 

𝑙(𝑥𝑙 , 𝑥𝑓) = √∑  𝑀
𝑚=1   (𝑥𝑙,𝑚 − 𝑥𝑙,𝑚)

2
                   (14) 

 

where 𝑥𝑖 and 𝑥𝑗 constitute data points, with M serving as 

the data dimension. 

How to Determine the K-Nearest Neighbours:  choose the 

K known points of data that are most closely located to the 

desired location. 

Weighted averaging: Give each of your K neighbors a 

weight that is inversely proportionate to their distance 

from you. The formula for the weighted average 

interpolation for the K closest neighbors is 

𝑦̂ =
∑  𝐾
𝑘=1  𝑤𝑘𝑦𝑘

∑  𝐾
𝑘=1  𝑤𝑘

                             (15) 

where 𝑦𝑘 𝑤𝑘 is the weight that defines the distance from 

the location to be interpolated, and is often specified as the 

opposite proportion of the distance, and is the value of the 

k-th neighbour: 

 

𝑤𝑘 =
1

𝑑𝑘
                        (16) 

 

3.6 Deal with unbalanced data 

In classification tasks, when minority samples are 

oversampled, an interpolation approach called Synthetic 

Minority Oversampling Technique (SMOTE) is used to 

address imbalanced datasets. By augmenting the dataset's 

diversity via the synthesis of fresh minority samples, 

SMOTE boosts the classifier's performance. The detailed 

procedures are these: 

 

Pick a Representative Sample: Pick a representative 

sample at random from the minority group. 

 Determine the sample's k closest neighbors by using a 

distance measure. 
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 Create a fresh sample by using the following formula to 

synthesize a neighbor from among these k neighbors at 

random: 

 

new_sample = 𝑥1 + 𝜆(𝑥1 − 𝑥1)                       (17) 

 

3.7 Maximum power point tracking (MPPT) 

The DC-DC boost converter controls the output of PV 

cells, which is one of its dual functions. As a result, MPPT 

is simplified and the output voltage is reliably controlled. 

This study combines a DC-to-DC converter with the 

widely known MPPT algorithm to optimize power 

extraction from PV panels. The operating point must be 

dynamically changed to the Maximum Power Point in 

order to accommodate changing weather conditions. The 

low cost and user-friendliness of the MPC algorithm led to 

its selection for MPPT. The MPC algorithm tracks the PV 

array's current and voltage down to the microsecond in 

order to foretell how a voltage modification will play out. 

This approach may be more resource intensive, but it can 

adapt to new conditions very fast. A little amount of energy 

can be saved in that gadget for use in seconds, and its 

performance is assessed by comparing the discharged and 

charged powers of the device. At all times, the following 

equation (4) describes how the charging and discharge 

rates of the constraints are combined with the battery 

efficiency. 

Wess
′ (n) = Wess

′ (n − 1) + αcpc
′Δn −

1

αd
pd
′ Δn

{

Wess
′ ≤ Wess

′ (n) ≤ Wess
′ ⋅ max

pc
′ (n) ≤ pc⋅max

′

pd
′ ≤ pd⋅max

′

 

 

            (18) 

 

Where, Wess 
′  The energy storage limits are represented by 

pc
′ , the charging power is pd

′ , and the battery efficiency 

while charging and discharging is αc. 

 

3.8 Cost function 

Using three crucial factors, including 1) the energy and 

discharging rate of each grid system, 2) the degradation 

cost of the battery and the discharge rate, and 3) the 

operation cost of other activities such service chargers and 

cable wear, we need to build the net cost function of the 

j^"th" grid system. First, use the following equation (5) to 

express the grid system discharge rate. 

 

Uj⌊Cj
′(n)⌋ = p′(n)Cj

′(n)                   (19) 

 

where⁡p′(n) represents the unit pricing with the grid 

aggregator at time n, and cj
′(n stands for the discharge rate 

of each network grid at that specific time n. In this case, 

the degree of the generated aggregator grid system is 

shown by the increased energy wasted at the grid system. 

As a result, the grid power plant facilitates degradation 

cost in order to fulfill the particular demand at the grid 

system's discharge point. Equation (6) also allows for the 

modeling of the deterioration cost using a quadratic 

function. 

 

dj
′[cj

′(n)] = δjcj
′(n)2 + μjcj

′(n) + λi                  (20) 

 

Where, δj, μj and λi represents the degradation cost 

function and is represented by operational cost parameters 

dj
′ ∣ cj

′(n)]. Because of the limited integration between the 

operating cost parameters and the grid system's 

discharging rate, the constant value here must be 

associated with the grid system's discharge rate. However, 

using eqn. (21) in the following context, the cost function's 

simplicity is related: 

 

fj
′[c′(n), p′(n)] = dj

′[c′(n)] + oj
′ − Uj ∣ Cj

′(n)] (21) 

 

Where, oj
′ is the formula for the lumped cost. Here, power 

is supplied by the grid at a net cost rate according to the 

electricity pricing unit with either an off-peak or peak-time 

tariff. Not to mention that the fixed price unit diverges 

from the original cost function. 

 

3.9 Design of MPC  

An extensive evaluation of the reference grid currents is 

carried out, taking into consideration various factors such 

as the presence of nonlinear loads at the Point of Common 

Coupling, regulation of the DC link voltage, and dynamic 

variations in PV power. This reference current is fed into 

the MPC controller, which then calculates the quantity of 

switching pulses required for optimum functioning. 

Considering the dynamic changes in PV power, ensuring 

stable control of the DC link voltage, while tolerating 

nonlinear loads at the PCC allow the system to efficiently 

supply reference grid currents that sustain efficient 

operation. The MPC controller enhances the system's 

general efficiency and stability by using these currents to 

identify the optimum switching pulses. As a result, the 

following equations (8), (9), (10), (11), define the key 

function of the charging station's net cost function in 

regards to multi-objective optimization problems. 

 

minCj(n) = ∑  j∈T(n)   sj ∣ Cj(n) + G(n)]

Cj(n) = Cj(n)∀j ≠ i ∈ T(n)

Cmin
j

≤ Cj(n) ≤ Cmin
j

∀j ∈ T(n)

SOCmin
j

≤ SOCj(n) ≤ 100%∀j ∈ T(n)

             (22) 

 

Where, Cj(n) represents the cost function of a grid system 

charging station, and is depicted as the minimization of the 

net cost function for every grid system charging stations, 
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∑  j∈T(n)  appears as the energy cost function for the jth user 

over the time interval t. Additionally, the suggested KNN-

SMOTE-GCN model's flowchart is shown in figure 2. 

 

Proposed KNN-SMOTE-GCN with MPPT algorithm 

Verifcation

Power loss

Voltage deviation

Reactive power fluctuation

THD
 

Figure 3: Typical Model Diagram for KNN-SMOTE-

GCN 

 

3.10 Graph convolutional network (GCN) 

Building the association graph: A collection of nodes V 

and edges E may be characterized as a graph G(V, E). The 

connection between individual nodes 𝑣𝑓 and 𝑣𝑓 is signified 

by an edge 𝑒𝑓𝑔 ∈ 𝐸. In order to make it easier to aggregate 

information in the graph framework, an adjacency matrix 

𝐴 is built 𝐴[𝑖, 𝑗] = 1 if the edge 𝑒𝑓𝑗 exists, besides 𝐴[𝑖, 𝑗] =

𝟎 then. 

The convolution theorem states that, in terms of forward 

propagation of the GCN, the Fourier transform of a 

convolution between two signals is the same as the 

pointwise multiplication of their individual Fourier 

transforms. Let 𝑓 ∗ 𝑥 Introduce the spatial domain 

convolution operation, which 𝑥 = {𝑥1, 𝑥2, … , 𝑥𝑛} ∈ 𝑅𝑛 

stands for a dataset that has n pieces of data and 𝑓 =
{𝑓1, 𝑓2, … , 𝑓𝑛} are the neural network's trainable 

parameters. Using the Fourier transform, this procedure 

may be converted to the frequency domain. 

 

𝐹(𝑓 ∗ 𝑥) = 𝐹(𝑓) ⋅ 𝐹(𝑥)                   (23) 

 

Where the Fourier transform is denoted by F. Equation (1) 

may be simplified to describe the convolution process f*x 

in the spatial domain through the use the inverse Fourier 

transform 𝐹−1 to both sides. 

 

𝑓 ∗ 𝑥⁡= 𝐹−1(𝐹(𝑓) ⊙ 𝐹(𝑥))

⁡= 𝑈((𝑈𝑇𝑓) ⊙ (𝑈𝑇𝑥))
                (24) 

 

Where U stands for the Fourier basis while ⊙ means 

multiplication element-wise. The goal of the GCN was to 

provide a way for neural networks to use the association 

graph. The GCN does this by obtaining the Fourier basis 

from the graph's Laplacian matrix. What if 𝐿𝑚 = 𝐷 − 𝐴 is 

a graph's Laplacian matrix. One way to standardize it is as 

𝐿𝑚 = 𝐼𝑁 − 𝐷1/2𝐴𝐷1/2 ∈ ℝ𝑁×𝑁, where 𝐼𝑁 is the 

neighboring matrix and denotes a unit matrix. For the 

degree matrix, D stands for 𝐷𝑢 ∈ ∑ ⁡ , 𝐴𝑢𝑓. Then, using the 

eigenvalue decomposition, one may derive the Fourier 

basis, U, and the eigenvalue matrix ∧. 

 

𝑈∧𝑈
𝑇 = 𝐿𝑚 , 𝜆 = 𝑑𝑖𝑎𝑔([𝜆0, … , 𝜆𝑁−1])               (25) 

 

U is a set of orthogonal matrices satisfying the Fourier 

transform's mathematical constraints, based on the 

Laplacian matrix's properties. The diagonal matrix, 

denoted as 𝑔𝑒 = 𝑑𝑖𝑎𝑔(𝑈𝑇𝑓). Next, we may simplify 

Equation (2) by following these steps: 

 

𝑓 ∗ 𝑥 = 𝑈((𝑈𝑇𝑓) ⊙ (𝑈𝑇𝑥)) = 𝑈𝑔𝜚𝑈
𝑇𝑥          (26) 

 

Graphic convolution relies heavily on the eigenvalue 

decomposition of the Laplacian matrix. There is a 

quadratic relationship between the total amount of nodes 

and the computing complexity when the graph size is big. 

Graph convolution methods are mostly useful for small-

scale networks due to the high cost of eigenvalue 

decomposition. Figure 3 showed in GCN model. In order 

to tackle this problem, Krizhevsky et al. suggested a 

method for approximating g_ş via Chebyshev polynomials 

T_k, that may be stated in the following way: 
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distribution network
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Test and verify

Data loading

Offline training
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Figure 3:  Proposed GCN model 

 

𝑔𝜚(𝛬) = ∑  𝑘−1
𝑘=0 𝜃𝑘𝑇𝑘(𝛬̃)                                     (27) 

 

in where θ stands for the Chebyshev coefficient while 𝑇𝑘 

for the k-th element of the Chebyshev polynomial. To be 

more precise, it is 𝑇𝑘(𝑥) = 2𝑥𝑇𝑘−1(𝑥) −

𝑇𝑘−2(𝑥), 𝑇𝑜(𝑥) = 1, and 𝑇1(𝑥) = 1.∧̃= 2 ∧/𝜆max − 𝐼𝑁 

contains the eigenvalues of scale in a diagonal matrix. 

Then, we may write (4) as: 

𝑓 ∗ 𝑥 = 𝑈𝑔 ∘ 𝑈𝑇𝑥 ≈ ∑  𝑘−1
𝑘=0 𝜃𝑘𝑇𝑘(𝑈 ∧̃ 𝑈𝑇)𝑥 =

∑  𝑘−1
𝑘=0 𝜃𝑘𝑇𝑘(𝐿𝑚̃)𝑥                                               (28) 

 

where 𝐿̃ = 2𝐿/𝜆max − 𝐼𝑁 and 𝜆max  stand for the highest 

eigenvalue of the Laplacian matrix. A more simplified 

version of the Chebyshev polynomials was developed by 

Xiao et al. 𝜆max = 0 and 𝑘 = 2, that is, the data is only 

aggregated from nodes that are in the first order 

neighboring the central node. This leads us to the 

following simplification of (6): 

 

𝑓 ∗ 𝑥 ≈ 𝜃0𝑥 + 𝜃1 (
2𝐿𝑚
𝜆𝑚𝑎𝑥

− 𝐼𝑁) 𝑥

⁡≈ 𝜃0𝑥 − 𝜃1 (𝐷
−
1
2𝐴𝐷−

1
2) 𝑥

⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(29) 

 

By setting the parameter 𝜃 = 𝜃0 = −𝜃1, (7) more 

information about: 

𝑓 ∗ 𝑥 ≈ 𝜃0 (𝐼𝑁 + 𝐷−
1

2𝐴𝐷−
1

2) 𝑥                           (30) 

 

Additionally, the settings allow the network to be trained 

using backpropagation " 𝑊,𝐷c  often undergo 

renormalization via 𝑊̃ = 𝑊 + 𝐼𝑁 and 𝐷̃𝑡𝑙 = ∑  𝑓 𝑊̃𝑡𝑙, that 

is, in turn. Lastly, the spectral domain convolution 

operation is defined as: 
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𝑓 ∗ 𝑥 ≈ 𝜃 (𝐼𝑁 + 𝐷−
1

2𝐴𝐷−
1

2) 𝑥 = 𝜃 (𝐷̃−
1

2𝐴̃𝐷̃−
1

2) 𝑥                      

                                                                            (31) 

 

4 Result and discussion  

4.1 Configuration of PV system 

This study's suggested PV system is composed of a great 

deal of different components. A first step involves the use 

of a solar panel to convert solar energy into electrical 

energy. Through the use of a boost converter, the output 

voltage of the array is thus increased while simultaneously 

maintaining the appropriate voltage level. A DC–AC 

converter is provided in order to maintain a power factor 

of one while converting DC to AC. In addition, a 

transformer is used in order to raise the output voltage to 

the amount that is necessary for a common connection. In 

order to optimize power extraction, maintain a power 

factor of one, and modify junction voltage, the control 

group of the system is comprised of a number of different 

strategies that have gone through extensive study. In this 

part, the primary issues that will be discussed are the 

modeling of a solar power system and the performance of 

the system. It begins by providing an overview of the 

characteristics of the PV module. It covers how the 

photovoltaic module reacts to variations in temperature 

and the amount of sunlight that it receives. Another 

component that is included is the boost converter, which is 

responsible for monitoring the reduction in the output 

voltage of the PV array. An exhaustive amount of 

information is provided on the operation of the boost 

converter as well as its control mechanisms, which include 

the MPPT approach. With the help of the MPPT 

technology, the photovoltaic (PV) system is able to run at 

its maximum power output regardless of the changing 

environmental conditions. A DC–AC inverter is also 

discussed in this section. This device converts DC energy 

generated by a photovoltaic array into AC power for grid 

integration. While discussing the operation and 

management of the DC–AC converter, a power factor of 

one is maintained throughout the discussion. Within the 

context of this section's treatment of the modeling, 

performance, and control elements of the PV system, the 

PV module, boost converter, MPPT method, and DC–AC 

inverter are all dissected in great detail. 

 

4.2 Simulation  

During this section, the performance of the system was 

examined at a number of different levels of direct sunlight 

irradiation, all while maintaining a constant temperature of 

25 degrees Celsius for the photovoltaic array. Standard test 

conditions (STC) were used in order to determine the 

output of the solar panels while the temperature was set to 

25 degrees Celsius. The Simulink model of the 

photovoltaic (PV) system, which illustrates the linked 

components and the interactions between them. 

Additionally, the mathematical model that is used to 

explain the solar panel's electrical characteristics is 

included into the PV module block, which serves as a 

representation of the solar panel. It takes into account the 

input solar radiation as well as temperature in order to 

generate the matching current–voltage (I–V) and power–

voltage (P–V) curves. It is the responsibility of the booster 

converter block to monitor the drop in the output voltage 

of the PV array. The control algorithm that is used to guide 

the functioning of the boost converter via the utilization of 

the MPPT approach is included inside it. The Maximum 

Power Point Tracking (MPPT) algorithm continually 

analyzes and adjusts the PV system's operating point in 

order to achieve maximum power extraction. Through the 

use of the DC–AC inverter block, the DC power generated 

by the PV array is converted into AC energy that is 

compatible with the grid. Furthermore, a power factor of 

one is assured, in addition to the maintenance of the quality 

and interoperability of the AC power that is produced with 

the utility grid. Transformers and grid connections are two 

examples of extra model construction parts that might be 

used to depict the photographvoltaic (PV) system as a 

whole as well as its connection to the conventional 

electrical grid. 

Results from a two-stage PV system with a three-level 

inverter and a DC/DC converter that is linked to a weak 

grid are shown below. Results show that the control 

method and inverter configuration were executed when the 

system was evaluated under different dynamic situations. 

The PV array, DC/DC converter, and three-level inverter 

that interface with the grid are all shown Table 1, which is 

the system schematic. In Table 1 we see the system's 

parameters. Grid voltage sag, Grid voltage swell, 

irradiance change, and a comparison between two-levels 

with three-level inverters are among the operational 

situations that the system is evaluated under. Voltage on 

the grid, current via the grid, current through the VSC, 

current through the PV array, and the weighted positive 

sequence are the critical metrics studied. The stability, 

power quality, as well as transient responsiveness of the 

system under dynamic situations may be understood by 

examining these factors. 
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Table 1: System parameters 

 

Parameters Value 

PV Array 55 

Power Rating 35 kW 

Maximum Power (W) 211.802 

Short-circuit current Isc (A) 9.03 

Voltage at maximum power point Vmp (V) 27.9 

Cells per module (Ncell) 70 

Open circuit voltage Voc (V) 39.17 

Shunt resistance Rsh (ohms) 312.6345 

Temperature coefficient of Voc (%/deg.C) -0.36044 

Temperature coefficient of Isc (%/deg.C) 0.112 

Parallel strings 7 

Series-connected modules per string 23 

Boost Converter 

Inductor 𝐿cc (𝑚𝐻) 4 

Capacitor 𝐶𝑎𝑐(𝜇 𝐹) 100 

Voltage Source Converter 

Interfacing Inductor 𝐿𝑓(𝑚𝐻) 75 

𝑅𝐶𝑅𝑓(𝛺) 0.4 

𝑅𝐶𝐶𝑓(𝜇 𝐹) 100 

Grid Voltage and Frequency, (V) and (Hz) 433, 70 

DC link capacitor 2200 µF 

PV array current Ipv 3.46 A 

Inductance L 

Resistor R 

2 mH 

0.1 Ω 

PV array voltage Vdc 540 V 

Grid Frequency 50 Hz 

Grid Voltage rms 120 V 

The experimental environment and the recommended 

technique's effectiveness are described in this section. 

Several metrics, including power loss, grid current, voltage 

deviation, along with grid voltage, are used to assess the 

system's performance via the use of the innovative KNN-

SMOTE-GCN algorithm. By redistributing loads and 

arranging generating units, KNN-SMOTE- 

 

GCN systems improve the efficiency of power grids. To 

optimize power quality, KNN-SMOTE-GCN controllers 

regulate the grid's reactive power, voltage, and harmonic 

correction. The system is constantly adjusting the control 

settings using fuzzy rules with real-time data to maximize 

power quality.  

Implementation Steps 

There are various essential phases involved in the 

implementation process. Before anything else, it is 

necessary to gather historical data on demand, generation, 

and market pricing. Additionally, forecasting models 

should be used in order to make predictions about future 

demand, renewable generation, and market prices. In the 

next step, the optimization problem is stated and used in 

order to combine the objective function, constraints, and 

suitable optimization solvers, such as linear programming. 

or mixed-integer planning. After this, the control 

algorithms for the first, second, and third control levels are 

designed and implemented inside a hierarchical manage 

structure. This is done in order to further govern the 

system. For the purpose of testing these control algorithms 

and verifying that they are stable and effective, the system 

is then simulated under a variety of market condition 

scenarios. With the last step, the control algorithms are 

implemented for real-time operation. This means that the 

system constantly checks and changes the distributed 

power resources (DPRs) based on the data that is being 

collected in real time. 

 

4.2 Comparative analysis  

Table 2 illustrates the existing techniques with their 

description.  
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Table 2: Comparison techniques 

Technique Description 

Active Filters To reduce harmonic 

distortion and enhance 

power quality, active filters 

are a useful tool.  

Wavelet Neural 

Networks (WNN) 

•  These may be 

used in the creation of 

controllers for auxiliary 

damping.  

Artificial Neural 

Networks 

(ANNs): 

•  Power systems 

may have their dynamic 

responsiveness improved 

with the help of ANNs.  

Virtual 

Synchronous 

Generator (VSG) 

 The grid may benefit from 

the inertia and damping 

provided by VSGs. 

Deep 

Deterministic 

Policy Gradient 

(DDPG) 

•  Damping 

controllers may be 

designed with the help of 

DDPG. 

 

Power loss occurs in a grid system when electrical energy, 

in the process of transmission and distribution, dissipates 

as heat. Transmission or distribution losses are other 

names for this occurrence. A lower current density per unit 

of power is a common result of increasing voltage. When 

the voltage or current in a three-phase circuit is not 

balanced between the phases. Voltage or load imbalances 

cause an uneven distribution of electricity, which in turn 

causes losses. Low power factor happens when the 

voltage-current relationship is not ideal. Figure 4 show that 

when the power factor is low, the reactive power increases, 

leading to higher losses in the transmission and 

distribution systems. 

 

 
Figure 4: Power loss and time analysis 

 

 

When power grid voltages deviate from their nominal or 

ideal values, this is known as voltage deviation. Nominal 

voltage standards could vary by region while kind of 

electrical system, although they often range from 230V to 

400V and beyond. Voltage must be maintained constant 

and under control for grid-connected electrical gadgets and 

machinery to work reliably. A number of factors contribute 

to voltage fluctuations' potential effects on the 

performance and longevity of electrical devices. When the 

real voltage exceeds the nominal voltage, overvoltage 

occurs. As seen in figure 5, the term "under voltage" is 

used when the real voltage is less than the nominal voltage. 

 
 

Figure 5: Voltage deviation 

 

The efficiency, reliability, and performance of an electrical 

network are all impacted by fluctuations in reactive power 

in a grid system. Maintaining safe voltage levels and 

powering inductive loads both need reactive power. There 

are a lot of potential sources of reactive power fluctuations, 

which might lead to undesirable outcomes. Reactive power 

is a component of electrical power that does nothing useful 

while it sways between the generator and the consumer. 

"Reactive volt-amperes" is the standard measuring unit. 

When inductive loads are included or excluded, changes to 

the load profile may cause variations in reactive power. As 

seen in figure 6, fluctuations in generator output, 

especially in synchronous generators, may affect reactive 

power. 
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Figure 6: Reactive power fluctuation 

 

A grid system experiences THD when harmonic 

components are present in the voltage or current waveform 

in relation to the fundamental frequency. In power 

systems, the fundamental frequency is typically 50 or 60 

Hz, and harmonics are multiples of that. Harmonics may 

be caused by a variety of sources, including non-linear 

loads and switching operations.  

 

 
Figure 7: THD analysis 

 

We get the THD by Figure 7 by dividing the root mean 

square (RMS) value of the harmonic content by the RMS 

value of the fundamental frequency. Typically, total 

harmonic distortion is expressed as a proportion of the 

fundamental frequency. Additionally, figure 6 shows THD 

in action. The performance comparison yielded better 

findings from the proposed work's assessment of 

performance. The comparative assessment has shown that 

the proposed model has successfully minimized the THD 

as much as possible. Consequently, PV systems that are 

linked to the grid may use it. In this study, we maximize 

the produced output power of the PV panel by using a DC-

DC converter using MPPT. Step one involves regulating 

the boost converter's duty cycle. It is necessary to 

gradually raise the DC voltage of the PV array until it 

reaches a high enough voltage to meet the load's 

requirements. Whenever power is needed, it is transferred 

from the stored energy in the inductor to the load. The duty 

cycle, or gate pulse input, is responsible for carrying out 

the whole operation. It is vital to manage the duty cycle. 

After then, it's a matter of getting the most electricity out 

of the PV array in any weather. To maximize the voltage 

and power output of a photovoltaic array, irradiance and 

temperature are the two most critical elements. Therefore, 

it is necessary to monitor the maximum power stage, 

which is near the PV array's maximum power. The MPPT 

was created to provide a standardized, efficient tracking 

system. Prior research has explored a wide variety of 

MPPT methods for peak power tracking. Some MPPT 

methods, like P&O, which uses step-size control as well as 
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oscillates around steady state in response to dynamically 

changing environmental variables, have been shown to 

have significant drawbacks, however. The incremental 

conductance method is more complicated and expensive 

[11], [19], but it responds quickly to changing conditions. 

The controllers utilized in this investigation yielded 

promising outcomes since they were based on 

mathematical principles. There has been an astonishing 

level of consistency throughout the whole energy output, 

leading to a steady supply of 27 MW of pumped electricity 

to the grid. This is true even if the amount of sunlight 

reaching Earth has changed during the course of the day. 

Many researchers and professionals in the field have taken 

an interest in photovoltaic (PV) systems. The incremental 

conductance + integral regulator strategy is one of the 

methods proposed for training the MPPT controller; it is 

referenced. The goal of developing this method was to 

ensure that the photovoltaic (PV) system operates at its 

maximum power point in all weather conditions, thereby 

optimizing its performance. Also, a Proportional-Integral 

(PI) controller was recommended as a method for 

controlling the DC-AC converter in the study. The 

conversion of direct current (DC) from solar panels to 

alternating current (AC) for grid integration relies on this 

converter. It should be noted that various control 

techniques become unstable when exposed to large 

fluctuations in solar irradiation. Keeping energy output 

steady is made more difficult by the fact that solar radiation 

is inherently unpredictable, especially when clouds are 

present or when the sun's beams are changing. A change in 

the amount of power supplied into the system could be 

discernible if sun irradiation decreases. Concerns about the 

practical applications of PV systems, particularly those 

connected to the electricity grid, are highlighted by this 

phenomenon. Although mathematically-based controllers 

have performed well in conditions of relatively constant 

solar radiation, they may require additional tuning to 

account for the challenges posed by sudden and 

unexpected changes in solar radiation. These findings are 

important because they show how important it is to have 

adaptive control systems that can adjust to new conditions 

and maintain a steady power supply and stable grid. 

Research in this area may focus on creating more resilient 

and flexible solar controllers in the future by combining 

real-time weather forecasts with sensor-based feedback 

systems. To further improve the reliability of grid-

connected photovoltaic (PV) system [17]s, research into 

energy storage alternatives like batteries may also provide 

a means of reducing the impact of variations in sun 

irradiation. Solar energy consumption might be maximized 

with these upgrades, which would be a huge step toward 

creating sustainable energy and integrating systems. 

A cleaner and more sustainable energy landscape may be 

achieved via the total performance and efficiency of 

photovoltaic (PV) systems, which can be enhanced 

through this synthesis of current approaches. Study results 

were very promising for the proposed system, obtained 

after an exhaustive series of simulations meticulously 

executed on the MATLAB/SIMULINK platform. The 

predictive control systems utilized demonstrated 

remarkable robustness in the face of dynamic variations in 

solar radiation levels, allowing for a constant energy 

production profile relative to the energy production 

profile. Additionally, the suggested system's adaptability 

to rapidly changing weather conditions ensures continuous 

and dependable energy generation, thus establishing its 

status as a robust and resilient energy solution alternative. 

As we navigate into the future of photovoltaic (PV) 

systems, it is wise to direct research efforts on 

investigating and perfecting innovative control techniques. 

The overarching goal is to make the system far more 

efficient and productive, with an unwavering commitment 

to producing even more remarkable and dependable 

results. Furthermore, the research plan includes a 

comprehensive comparison study, an exhaustive endeavor 

aimed at methodically contrasting the effectiveness of 

these novel control methods with the performance metrics 

of the current systems. The whole capability of 

sophisticated control techniques is expected to be exposed 

by using this methodical approach. By streamlining grid 

connectivity, these methods are poised to change the 

course of renewable energy generation. Ultimately, this 

research adds to the growing body of knowledge on 

renewable energy sources by introducing a new 

photovoltaic (PV) system and demonstrating the system's 

inherent capacity to address major energy and 

environmental issues. This contribution demonstrates the 

potential of state-of-the-art control systems and 

optimization methodologies, building a foundation for a 

future that is sustainable, energy-efficient, and kind to the 

environment. 

 

5 Conclusion  

In order to improve grid-connected PV systems, this study 

presented a new KNN-SMOTE-GCN method. In this case, 

the UPQC model is used to enhance power quality. This 

model controls voltage and current concerns to assure 

better power quality. Beyond that, the MPPT algorithm, 

which controls the grid system dynamically, extracts the 

maximum power from solar panels. By using GCN, the 

grid system's MMPT and UPQC operations may be 

coordinated to ensure optimal power quality. Hence, power 

loss, voltage deviation, total harmonic distortion, and 

reactive power variations make up the assessment criteria. 

In addition, we compare the resultant parameter 

considerations to those of more traditional models. 

According to the results, the created KNN-SMOTE-GCN 

paradigm reduced power loss by 4% compared to the other 

models. The voltage deviation is 26.42V and the total 

harmonic distortion is 0.56THD. When applied to hybrid 
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renewable energy systems, DL models and optimization 

algorithms will improve BESS in the future. 
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