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This paper proposes a hybrid forecasting framework combining ARIMA and LSTM to predict real-time 

electricity supply and demand, aiming to capture both linear-seasonal patterns and nonlinear 

fluctuations. A cloud-native platform with microservice architecture is constructed to support high-

concurrency data processing and elastic resource allocation. Experimental results show that the hybrid 

model reduces average prediction deviation by 12.5% compared to traditional methods, with 92.3% 

accuracy. The cloud platform achieves 73% higher processing efficiency under 1000 concurrent 

requests than traditional systems, providing technical support for real-time electricity market 

operations. At the same time, the cloud computing system proposed in this project has the scalability 

to realize massive transaction data. At the same time, it can realize real-time response to massive 

transaction data. This provides important support for the effective operation of China's power market. 

Povzetek: Za napovedovanje povpraševanja električne energije je razvit hibridni model ARIMA–LSTM, 

kjer ARIMA zajame linearno/seasonalno komponento, LSTM pa nelinearne ostanke, vpet v oblačno-

native mikroservisno arhitekturo z elastičnimi viri za visoko sočasnost. 

 

 

1 Introduction 
With the rapid development of real-time trading 

technology, the supply and demand relationship of the 

power grid is becoming increasingly close. Through 

effective regulation of power supply and demand, the 

dynamic regulation of power generation and power 

consumption by power generation entities according to 

real-time electricity prices is realized. Since electricity 

demand is affected by many factors such as seasons, 

climate, and economic activities, it is subject to great 

fluctuations and uncertainties. Accurate forecasting of 

the supply and demand relationship of the power grid is 

the key to ensuring the smooth and orderly operation of 

the power market. Some scholars have proposed a real-

time power demand forecasting method based on time 

series analysis. With the rise of emerging industries such 

as big data and cloud computing, new forecasting 

systems based on big data are gradually being replaced. 

Cloud native systems, with their high concurrency and  

scalability, can achieve instant response to a large 

amount of market information. This lays a solid 

foundation for the realization of intelligent power grid 

management. 

Since existing research results cannot adapt well to  

 

the characteristics of seasonal changes, reference [1] uses 

the ARIMA model to model the power system. This  

study proposes a new method based on ARIMA to predict 

the dynamic changes of the power market.  

However, the existing research methods often cannot 

cope well with market price changes caused by multiple 

factors for complex and nonlinear data. Reference [2] uses 

LSTM to predict the power grid load, thereby overcoming 

the medium- and long-term correlation problem of the 

power grid. Researchers use the "storage" mechanism of 

LSTM itself to better grasp the long-term trend of the 

power market. The research results show that the long 

short-term memory model has good application prospects 

for nonlinear data, especially in the prediction of short-

term power market. However, this algorithm relies 

heavily on massive historical data, which makes its 

learning cost high and has limitations for sudden market 

fluctuations. Reference [3] proposed a new method for 

electricity price forecasting using multiple single 

prediction models. Scholars used this method to establish 

an electricity price forecasting method. This model 

combines the advantages of several different algorithms, 

which greatly improves stability. Especially in the face of 

complex market environments, it can perform better. 

However, due to its large amount of calculation, it 
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requires a lot of computing resources and computing 

power. In order to overcome the inability of existing 

power market price forecasting models to meet the needs 

of massive data, some scholars have studied an 

expandable method. Cloud computing technology can 

dynamically allocate computing resources to meet the 

real-time forecasting requirements of the power market 

for data. However, the software system currently 

developed has problems such as a single calculation 

method, inability to make good use of time series 

characteristics, and inability to improve forecast 

accuracy. 

This project integrates time series forecasting 

methods with cloud native technology to build an 

efficient and accurate real-time power demand 

forecasting system [4]. This paper first designs a real-

time power demand forecasting method based on time 

series models such as ARIMA and LSTM, and conducts 

in-depth research on the characteristics and applicability 

of various methods. Secondly, the supply and demand 

forecasting system for cloud computing environment is 

studied to realize the dynamic allocation and real-time 

processing of massive data. The system adopts a 

structure based on "container" and "micro", which makes 

it highly scalable and flexible. In this way, it adapts to 

the changing requirements of real-time power grid. 

2 Design of time series prediction 

algorithm 
2.1 Analysis of power supply and demand 

data characteristics 

The supply and demand relationship of electricity 

consumption has obvious characteristics such as 

seasonality, periodicity, and randomness. Seasonality 

refers to the seasonal law of electricity consumption [5]. 

That is, the peak of electricity consumption is in winter 

and summer. Its cycle is mainly reflected in the change 

of daily electricity consumption, mainly in the difference 

between weekdays and weekends; while randomness 

refers to the irregular changes in electricity demand 

caused by emergencies (such as weather, emergencies, 

etc.). Common data preprocessing includes sliding mean 

and exponential smoothing. In these cases, the moving 

average smoothing can be expressed by the following 

equation: 

𝑆𝑡 =
1

𝑛
∑  𝑡

𝑖=𝑡−𝑛+1 𝑥𝑖                                    (1) 

𝑆𝑡 is the smoothing value at time 𝑡, 𝑥𝑖 represents the 

actual data at the 𝑖 time point, and 𝑛 represents the size 

of the moving window. Smoothing operations can 

eliminate short-term fluctuations in the system and 

enhance the stability of the system. 

To denoise the noise, wavelet analysis, Fourier 

analysis, etc. are usually used. Wavelet analysis is a 

multi-scale signal processing method [6]. It can process 

signals in multiple frequency bands to filter out high-

frequency signals. After noise processing, the obtained 

curve can better reflect the change law of actual power 

load. 
 

2.2 Design of ARIMA model 

The ARIMA model is defined as an autoregressive 

integrated moving average model with parameters 

(𝑝, 𝑑, 𝑞), where: 

 𝑝 : Order of autoregressive terms 

 𝑑 : Degree of differencing for stationarity 

 𝑞 : Order of moving average terms 

The mathematical formulation is: 

𝜙(𝐵)(1 − 𝐵)𝑑𝑦𝑡 = 𝜃(𝐵)𝜖𝑡         (2) 

where 𝐵  is the backshift operator, 𝜙(𝐵) = 1 −
𝜙1𝐵 − ⋯ − 𝜙𝑝𝐵𝑝  is the autoregressive polynomial, 

𝜃(𝐵) = 1 + 𝜃1𝐵 + ⋯ + 𝜃𝑞𝐵𝑞  is the moving average 

polynomial, and 𝜖𝑡 is white noise. 

For seasonal adjustment, the SARIMA model 

(p,d,q)(P,D,Q)_S is adopted with seasonal period 𝑆 (set to 

24 for daily seasonality in this study). Its formulation: 

𝜙(𝐵)Φ(𝐵𝑆)(1 − 𝐵)𝑑(1 − 𝐵𝑆)𝐷𝑦𝑡 = 𝜃(𝐵)Θ(𝐵𝑆)𝜖𝑡 (3) 

where Φ(𝐵𝑆) and Θ(𝐵𝑆) are seasonal autoregressive 

and moving average polynomials of order P and Q, 

respectively [7]. 

 

2.3 Design of LSTM model 

The LSTM network architecture in this study consists of: 

 Input layer: 128 neurons (corresponding to 24 -

hour historical load features) 

 Hidden layers: 2 LSTM layers with 64 and 32 

neurons, respectively 

 Dropout rate: 0.2 (to prevent overfitting) 

 Output layer: 1 neuron (predicted residual 

value) 

Key training parameters: 

 Learning rate: 0.001 (optimized via grid search) 

 Batch size: 32 

 Epochs: 100 (with early stopping if validation 

loss plateaus for 10 epochs) 

 Optimizer: Adam 

 Loss function: Mean Squared Error (MSE) 

 

2.4 Design of hybrid model 

The existing modeling methods based on neural networks 

cannot effectively solve the current demand and supply 

problems. Especially when faced with a large amount of 

information with different characteristics, conventional 

statistics and deep learning methods have their own 

advantages. This paper constructs a composite prediction 

method that integrates ARIMA and LSTM to realize the 

respective advantages of the two in each period [8]. The 

main idea of this method is to use ARIMA to characterize 

the linear and seasonal changes in the time series, and use 

LSTM to describe the nonlinear changes of the data. This 

project intends to use the ARIMA model to make a 

preliminary linear forecast of the observed data, and use 

this forecast value as a sample, and use LSTM to correct 

the forecast value.  

The hybrid model workflow: 

 Linear component extraction: Use SARIMA( 

2,1,1 )( ( 1, 1, 1)_24 to model linear-seasonal 

trends, generating primary forecast 𝑦̂ARIM A,t  
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 Residual calculation: 𝜖𝑡 = 𝑦𝑡 − 𝑦̂ARIM A,t  

 Nonlinear correction: Train LSTM on residuals 

to predict 𝜖𝑡 

 Final forecast: 𝑦̂𝑡 = 𝑦̂ARIM 𝐴,𝑡 + 𝜖𝑡 

Model evaluation metrics include: 

 Root Mean Squared Error (RMSE): 

√
1

𝑛
∑𝑡=1

𝑛  (𝑦𝑡 − 𝑦̂𝑡)2 

 Mean Absolute Error (MAE): 
1

𝑛
∑𝑡=1

𝑛  |𝑦𝑡 − 𝑦̂𝑡| 

 Mean Absolute Percentage Error (MAPE): 
1

𝑛
∑𝑡=1

𝑛   |
𝑦𝑡−𝑦̂𝑡

𝑦𝑡
| × 100% 

 

3 Cloud native platform architecture 

design 

Accurately forecasting the supply and demand 

relationship under real-time trading conditions is an 

important part of ensuring the smooth and effective 

operation of the power grid. For this reason, a "cloud 

native" model of power supply and demand is proposed 

[9]. The system adopts a variety of methods such as 

containerization, microservice structure, and self-

expansion. It has strong elasticity and can adapt to the 

changing power market requirements. 

 

3.1 Flow calculation and real-time 

forecasting 

Real-time performance is very important in power 

generation systems. Using cloud computing technology, 

the entire process from acquisition to forecast results is 

completed. Figure 1 shows the data processing flow. 

 

 
Figure 1: Data stream processing and real-time prediction process. 

 

At present, there are still many problems in the 

collection of supply and demand data in China's power 

market. This system adopts a message queuing 

mechanism such as Apache Kafka to realize the real-time 

transmission of various information. The streaming 

process architecture is mainly for the real-time 

processing of streaming data. This architecture ensures 

that the data is processed and predicted when it is 

generated, thereby reducing the data latency [10]. The 

core of real-time forecasting is the rapid response to the 

market. The system adopts multi-layer buffering 

technology to improve the reading rate of the system. 

This project intends to adopt time series prediction 

methods such as ARIMA and LSTM to realize the 

prediction of dynamic changes in demand and supply. 

The platform gives full play to the efficient computing 

function of the cloud to realize real-time warning of high 

concurrency of the power grid. 
 

3.2 Microservices and containerized 

deployment 

This project proposes a dynamic time series analysis 

method based on object-oriented. Each time series 

prediction algorithm is encapsulated into a separate 

document container. In order to ensure the consistency of 

the algorithm, the model can work in multiple physical 

or virtual environments. This paper proposes a new 

container-based computing method, that is, it supports 

multiple computing instances to execute simultaneously 

on multiple nodes to meet large-scale marketing needs 

[11]. Among them, data acquisition, data processing, 

prediction algorithm and other parts realize their own 

functions. They communicate through REST API or 

information queue, so that the coupling degree between 

modules is low. Its advantage is that it has strong 

flexibility, allowing developers to upgrade a module 

without interfering with other functions. The 

microservice architecture also supports the parallel 

operation of multiple versions, which is convenient for 

A/B testing and performance comparison of algorithms. 

The platform uses CI/CD pipeline technology to complete 

the automatic configuration of the module. Whenever a 

developer modifies it, the CI/CD pipeline will 

automatically generate a new container image. Then 

configure it to the Kubernetes cluster. This method greatly 

reduces the time for update iterations while ensuring high 

availability and stability. 

The cloud-native platform's distributed computing 

model follows: 

 Scalability metric: 𝑅(𝑡) = 𝜆(𝑡) × 𝑆, where 𝜆(𝑡) is 

request arrival rate, 𝑆 is average service time 

 Load balancing algorithm: Weighted round-robin 

based on node CPU/memory usage ( < 70% 

threshold) 
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 Fault tolerance: Active-standby container 

redundancy with Raft consensus protocol 

 Latency constraint: End-to-end processing <
500 ms (99th percentile) 

 

 

3.3 Flexible expansion and resource 

allocation 

The supply and demand relationship in the real-time 

power generation system is a dynamic process, which 

requires the system to be able to expand flexibly and 

meet the computing requirements of different time 

periods to a certain extent [12]. The cloud-native 

architecture can realize real-time dynamic adjustment of 

business needs through autonomous expansion and 

resource allocation to ensure efficient work under peak 

conditions. At the same time, it can also ensure that 

resource loss is reduced under low load conditions. 

Automated expansion: Cooper can automatically 

expand according to load. When a large amount of 

market data is found, more containers will be 

automatically opened to share these additional operations 

[13]. This expansion is instantaneous and can ensure 

system performance under high load. As the load 

decreases, Kubernetes will automatically reduce the 

system occupation and thus reduce operating costs. 

Resource Scheduling: The resource scheduler in 

Kubernetes can process different tasks at different times. 

For example, for abnormal changes in the operation of 

the power grid, additional scheduling is required to 

ensure its real-time performance [14]. According to the 

computing needs of each functional module, the 

memory, CPU, and network bandwidth are reasonably 

configured. This makes full use of existing hardware 

resources. 

Flexible storage and network optimization: The 

cloud-native architecture uses a distributed storage 

architecture to flexibly expand data storage space. In 

order to adapt to the increasing requirements for power 

supply and demand information, the system can 

dynamically expand storage capacity. By utilizing the 

optimal characteristics of the network, high-bandwidth 

and low-latency data transmission is guaranteed to 

achieve real-time forecasting of the power grid. 

4 Experiments and evaluation 
This paper designs a series of simulation experiments. 

The test results show that this method has good 

performance in terms of processing speed, scalability, 

and forecast accuracy. 

 

4.1 Experimental cases and experimental 

cases 

The dataset includes: 

 Source: Real-time trading data from 5 regional 

power grids in Yunnan (2019-2023) 

 Granularity: 15-minute intervals (96 data 

points/day) 

 Total size: 6.8 million records 

 Features: Historical load, temperature, 

humidity, holiday flags, GDP growth rate 

Preprocessing: 

 Missing values imputed via KNN interpolation 

 Outliers removed using 3σ criterion 

 Normalization: Min-max scaling to [0,1] 

 Partitioning: 70% training, 20% validation, 

10% testing [15] 

 

4.2 Platform performance evaluation 

This project intends to evaluate it from three perspectives: 

data processing speed, system throughput and scalability. 

This ensures its fast and stable operation in a real power 

grid environment. 

4.2.1 Data processing speed 

The cloud native system uses a streaming architecture to 

realize the processing of real-time data, and the speed of 

its processing is related to the real-time performance of 

the entire system [16]. This paper verifies the data 

analysis speed of the system under various load 

conditions through multiple experiments. Table 1 shows 

the data transfer rate on the platform under different 

numbers of parallel requirements. 
 

Table 1: Platform data processing speed 

comparison. 

Number of 
concurrent 
requests 

Processing 
speed of this 
platform (n/s) 

Traditional 
platform 
processing 
speed (n/s) 

100 1500 900 
500 7000 4500 
1000 13000 7500 

 

As shown in Table 1, the computing efficiency of the 

cloud computing system proposed in this paper is much 

faster than that of conventional systems under high 

concurrency conditions, especially for 1,000 concurrent 

requests, its computing efficiency is 73% faster than that 

of conventional systems. 

 

4.2.2 System throughput 

The system throughput is the data transmission that the 

platform can perform in each period. Under high load 

environment, the system throughput will directly affect 

the stable operation of the system. Table 2 compares the 

system throughput performance of various timing 

prediction algorithms based on the platform. 

 

Table 2: Comparison of system throughput of 

different prediction algorithms. 
Prediction algorithm Throughput 

() 
ARIMA 12000 
LSTM 15000 
Hybrid algorithm used in this 
paper 

18000 
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The simulation test proves that this method gives full 

play to the advantages of ARIMA and LSTM, and 

significantly improves the processing capacity of the 

system. 

 

4.2.3 Elastic expansion capability 

The scalability of Kubernetes can continuously increase or 

decrease the sample of the container as the storage scale 

changes, thereby ensuring efficient operation during the 

busy operation cycle [17]. Figure 2 shows the display 

effect under various load conditions. X is the number of 

parallel requests, and Y is the response speed of the entire 

system. Through adaptive expansion technology, the 

response speed when processing high concurrent requests 

is reduced. This ensures high efficiency under high load 

conditions [18]. 

 

This paper proves the performance of various time 

series prediction methods in a cloud-native environment 

through testing. Many experimental results show that this 

method and the constructed cloud computing system have 

obvious advantages in real-time power demand and 

demand forecasting [19]. Table 3 shows the accuracy of 

real-time power demand forecasting using the ARIMA 

model, LSTM and the combined algorithm provided in 

the article [20]. Compared with the individual methods, 

the accuracy of this method is significantly improved by 

more than 5 percentage points. 
 

 
Figure 2: Platform elastic expansion effect curve. 

 

Table 3: Comparison of prediction accuracy of different prediction algorithms. 
Algorithm Accuracy (%) RMSE MAE MAPE (%) 
ARIMA 85.2 234.5 189.2 8.7 
LSTM 87.5 201.3 165.7 7.5 
Hybrid (Ours) 92.3 145.8 112.4 5.2 
Informer 89.7 187.2 152.6 6.8 
N-BEATSx 90.5 176.3 143.1 6.1 

In order to compare the convergence of each mode, 

the paper gives the curves of each mode changing over 

time. Figure 3 shows the results of the average moving 

average method, short-term Many memories method, 

and mixed mode. Hybrid model achieves stable 

convergence after 15 epochs (final loss: 0.082±0.005). 
ARIMA loss plateaus at 0.213±0.012, LSTM at 

0.156±0.008.  
 

 

Figure 3: Loss convergence curves with 95% 

confidence intervals. 

 

Statistical test (t-test, p<0.01) confirms hybrid model's 

significantly lower loss [21]. 

The cloud computing system proposed in this paper 

can still maintain high computing efficiency when facing 

many concurrent requests. Figure 4 shows the processing 

capacity under various load conditions, with the X-axis 

being the number of parallel requests and the Y-axis being 

the number of requests per second [22].  



620   Informatica 49 (2025) 615–622                                                                                                                               X. Wang et al. 

 
Figure 4: Processing capacity of the platform under 

different loads. 

5 Conclusion 
This project intends to build a set of time series 

forecasting methods suitable for real-time demand and 

supply of China's power grid, and build a cloud source 

forecasting system for actual needs. By integrating 

multiple time series forecasting methods such as ARIMA 

and LSTM, the seasonal and trend changes in power 

market demand can be better grasped, thereby improving 

the accuracy of supply and demand. Simulation 

experiments show that the model in this paper can adapt 

well to different market environments, and its forecast 

accuracy is 12.5% lower than that of traditional methods. 

The cloud-native forecasting platform constructed in this 

paper has high flexibility and scalability. The system can 

well adapt to the real-time data processing requirements 

in the real-time power grid environment. The system has 

the characteristics of scalability and high concurrency, 

can respond quickly to market changes, and can update 

forecasts and data in a timely manner. 
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