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This paper proposes a hybrid forecasting framework combining ARIMA and LSTM to predict real-time
electricity supply and demand, aiming to capture both linear-seasonal patterns and nonlinear
fluctuations. A cloud-native platform with microservice architecture is constructed to support high-
concurrency data processing and elastic resource allocation. Experimental results show that the hybrid
model reduces average prediction deviation by 12.5% compared to traditional methods, with 92.3%
accuracy. The cloud platform achieves 73% higher processing efficiency under 1000 concurrent
requests than traditional systems, providing technical support for real-time electricity market
operations. At the same time, the cloud computing system proposed in this project has the scalability
to realize massive transaction data. At the same time, it can realize real-time response to massive
transaction data. This provides important support for the effective operation of China's power market.

Povzetek: Za napovedovanje povprasevanja elektricne energije je razvit hibridni model ARIMA—-LSTM,
kjer ARIMA zajame linearno/seasonalno komponento, LSTM pa nelinearne ostanke, vpet v oblacno-

native mikroservisno arhitekturo z elasticnimi viri za visoko socasnost.

1 Introduction

With the rapid development of real-time trading
technology, the supply and demand relationship of the
power grid is becoming increasingly close. Through
effective regulation of power supply and demand, the
dynamic regulation of power generation and power
consumption by power generation entities according to
real-time electricity prices is realized. Since electricity
demand is affected by many factors such as seasons,
climate, and economic activities, it is subject to great
fluctuations and uncertainties. Accurate forecasting of
the supply and demand relationship of the power grid is
the key to ensuring the smooth and orderly operation of
the power market. Some scholars have proposed a real-
time power demand forecasting method based on time
series analysis. With the rise of emerging industries such
as big data and cloud computing, new forecasting
systems based on big data are gradually being replaced.
Cloud native systems, with their high concurrency and
scalability, can achieve instant response to a large
amount of market information. This lays a solid
foundation for the realization of intelligent power grid
management.

Since existing research results cannot adapt well to

the characteristics of seasonal changes, reference [1] uses
the ARIMA model to model the power system. This
study proposes a new method based on ARIMA to predict
the dynamic changes of the power market.
However, the existing research methods often cannot
cope well with market price changes caused by multiple
factors for complex and nonlinear data. Reference [2] uses
LSTM to predict the power grid load, thereby overcoming
the medium- and long-term correlation problem of the
power grid. Researchers use the "storage" mechanism of
LSTM itself to better grasp the long-term trend of the
power market. The research results show that the long
short-term memory model has good application prospects
for nonlinear data, especially in the prediction of short-
term power market. However, this algorithm relies
heavily on massive historical data, which makes its
learning cost high and has limitations for sudden market
fluctuations. Reference [3] proposed a new method for
electricity price forecasting using multiple single
prediction models. Scholars used this method to establish
an electricity price forecasting method. This model
combines the advantages of several different algorithms,
which greatly improves stability. Especially in the face of
complex market environments, it can perform better.
However, due to its large amount of calculation, it
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requires a lot of computing resources and computing
power. In order to overcome the inability of existing
power market price forecasting models to meet the needs
of massive data, some scholars have studied an
expandable method. Cloud computing technology can
dynamically allocate computing resources to meet the
real-time forecasting requirements of the power market
for data. However, the software system currently
developed has problems such as a single calculation
method, inability to make good use of time series
characteristics, and inability to improve forecast
accuracy.

This project integrates time series forecasting
methods with cloud native technology to build an
efficient and accurate real-time power demand
forecasting system [4]. This paper first designs a real-
time power demand forecasting method based on time
series models such as ARIMA and LSTM, and conducts
in-depth research on the characteristics and applicability
of various methods. Secondly, the supply and demand
forecasting system for cloud computing environment is
studied to realize the dynamic allocation and real-time
processing of massive data. The system adopts a
structure based on "container” and "micro”, which makes
it highly scalable and flexible. In this way, it adapts to
the changing requirements of real-time power grid.

2 Design of time series prediction

algorithm
2.1 Analysis of power supply and demand
data characteristics

The supply and demand relationship of electricity
consumption has obvious characteristics such as
seasonality, periodicity, and randomness. Seasonality
refers to the seasonal law of electricity consumption [5].
That is, the peak of electricity consumption is in winter
and summer. Its cycle is mainly reflected in the change
of daily electricity consumption, mainly in the difference
between weekdays and weekends; while randomness
refers to the irregular changes in electricity demand
caused by emergencies (such as weather, emergencies,
etc.). Common data preprocessing includes sliding mean
and exponential smoothing. In these cases, the moving
average smoothing can be expressed by the following
equation:

St = % i=ton+1 Xi @

S; is the smoothing value at time t, x; represents the
actual data at the i time point, and n represents the size
of the moving window. Smoothing operations can
eliminate short-term fluctuations in the system and
enhance the stability of the system.

To denoise the noise, wavelet analysis, Fourier
analysis, etc. are usually used. Wavelet analysis is a
multi-scale signal processing method [6]. It can process
signals in multiple frequency bands to filter out high-
frequency signals. After noise processing, the obtained
curve can better reflect the change law of actual power
load.
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2.2 Design of ARIMA model

The ARIMA model is defined as an autoregressive
integrated moving average model with parameters
(p,d, q), where:

e p: Order of autoregressive terms

e d: Degree of differencing for stationarity

. q : Order of moving average terms

The mathematical formulation is:

¢(B)(1 — B)*y, = 6(B)e; )

where B is the backshift operator, ¢(B) =1 —

¢1B — - —¢,B? is the autoregressive polynomial,

6(B)=1+6,B+--+6,B9 is the moving average
polynomial, and €, is white noise.

For seasonal adjustment, the SARIMA model
(p,d,q)(P,D,Q)_S is adopted with seasonal period S (set to
24 for daily seasonality in this study). Its formulation:

¢(B)P(B5)(1 - B)*(1 - B5)"y; = 6(B)O(B%)¢; (3)

where ®(B5) and ©(B%) are seasonal autoregressive

and moving average polynomials of order P and Q,
respectively [7].

2.3 Design of LSTM model

The LSTM network architecture in this study consists of:

. Input layer: 128 neurons (corresponding to 24 -
hour historical load features)

. Hidden layers: 2 LSTM layers with 64 and 32
neurons, respectively

. Dropout rate: 0.2 (to prevent overfitting)

e Output layer: 1 neuron (predicted residual
value)

Key training parameters:

. Learning rate: 0.001 (optimized via grid search)

. Batch size: 32

. Epochs: 100 (with early stopping if validation
loss plateaus for 10 epochs)

. Optimizer: Adam

*  Loss function: Mean Squared Error (MSE)

2.4 Design of hybrid model

The existing modeling methods based on neural networks
cannot effectively solve the current demand and supply
problems. Especially when faced with a large amount of
information with different characteristics, conventional
statistics and deep learning methods have their own
advantages. This paper constructs a composite prediction
method that integrates ARIMA and LSTM to realize the
respective advantages of the two in each period [8]. The
main idea of this method is to use ARIMA to characterize
the linear and seasonal changes in the time series, and use
LSTM to describe the nonlinear changes of the data. This
project intends to use the ARIMA model to make a
preliminary linear forecast of the observed data, and use
this forecast value as a sample, and use LSTM to correct
the forecast value.
The hybrid model workflow:
»  Linear component extraction: Use SARIMA(
2,1,1)( (1,1, 1) 24 to model linear-seasonal
trends, generating primary forecast Y a ¢
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. Residual calculation: €, = ¥, — Yariv A

. Nonlinear correction: Train LSTM on residuals
to predict &,

*  Final forecast: ¥, = Yarmmat + €:

Model evaluation metrics include:

. Root Mean Squared

/%Z?:l e — Pe)?

*  Mean Absolute Error (MAE): %Z?:l lve — 9¢l
*  Mean Absolute Percentage Error (MAPE):
~iy [P % 100%
t

Error (RMSE):

—yn
n&t=1

3 Cloud native platform architecture
design
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Accurately forecasting the supply and demand
relationship under real-time trading conditions is an
important part of ensuring the smooth and effective
operation of the power grid. For this reason, a "cloud
native" model of power supply and demand is proposed
[9]. The system adopts a variety of methods such as
containerization, microservice structure, and self-
expansion. It has strong elasticity and can adapt to the
changing power market requirements.

3.1 Flow calculation and real-time
forecasting

Real-time performance is very important in power

generation systems. Using cloud computing technology,

the entire process from acquisition to forecast results is

completed. Figure 1 shows the data processing flow.
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Figure 1: Data stream processing and real-time prediction process.

At present, there are still many problems in the
collection of supply and demand data in China's power
market. This system adopts a message queuing
mechanism such as Apache Kafka to realize the real-time
transmission of various information. The streaming
process architecture is mainly for the real-time
processing of streaming data. This architecture ensures
that the data is processed and predicted when it is
generated, thereby reducing the data latency [10]. The
core of real-time forecasting is the rapid response to the
market. The system adopts multi-layer buffering
technology to improve the reading rate of the system.
This project intends to adopt time series prediction
methods such as ARIMA and LSTM to realize the
prediction of dynamic changes in demand and supply.
The platform gives full play to the efficient computing
function of the cloud to realize real-time warning of high
concurrency of the power grid.

3.2 Microservices and containerized
deployment

This project proposes a dynamic time series analysis
method based on object-oriented. Each time series
prediction algorithm is encapsulated into a separate
document container. In order to ensure the consistency of
the algorithm, the model can work in multiple physical
or virtual environments. This paper proposes a new

container-based computing method, that is, it supports
multiple computing instances to execute simultaneously
on multiple nodes to meet large-scale marketing needs
[11]. Among them, data acquisition, data processing,
prediction algorithm and other parts realize their own
functions. They communicate through REST API or
information queue, so that the coupling degree between
modules is low. Its advantage is that it has strong
flexibility, allowing developers to upgrade a module
without interfering with other functions. The
microservice architecture also supports the parallel
operation of multiple versions, which is convenient for
A/B testing and performance comparison of algorithms.
The platform uses CI/CD pipeline technology to complete
the automatic configuration of the module. Whenever a
developer modifies it, the CI/CD pipeline will
automatically generate a new container image. Then
configure it to the Kubernetes cluster. This method greatly
reduces the time for update iterations while ensuring high
availability and stability.
The cloud-native platform's distributed computing
model follows:
e Scalability metric: R(t) = A(t) X S, where A(t) is
request arrival rate, S is average service time
. Load balancing algorithm: Weighted round-robin
based on node CPU/memory usage ( < 70%
threshold)
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. Fault  tolerance:  Active-standby  container

redundancy with Raft consensus protocol

*  Latency constraint: End-to-end processing <
500 ms (99th percentile)

3.3 Flexible expansion and resource
allocation

The supply and demand relationship in the real-time
power generation system is a dynamic process, which
requires the system to be able to expand flexibly and
meet the computing requirements of different time
periods to a certain extent [12]. The cloud-native
architecture can realize real-time dynamic adjustment of
business needs through autonomous expansion and
resource allocation to ensure efficient work under peak
conditions. At the same time, it can also ensure that
resource loss is reduced under low load conditions.

Automated expansion: Cooper can automatically
expand according to load. When a large amount of
market data is found, more containers will be
automatically opened to share these additional operations
[13]. This expansion is instantaneous and can ensure
system performance under high load. As the load
decreases, Kubernetes will automatically reduce the
system occupation and thus reduce operating costs.

Resource Scheduling: The resource scheduler in
Kubernetes can process different tasks at different times.
For example, for abnormal changes in the operation of
the power grid, additional scheduling is required to
ensure its real-time performance [14]. According to the
computing needs of each functional module, the
memory, CPU, and network bandwidth are reasonably
configured. This makes full use of existing hardware
resources.

Flexible storage and network optimization: The
cloud-native architecture uses a distributed storage
architecture to flexibly expand data storage space. In
order to adapt to the increasing requirements for power
supply and demand information, the system can
dynamically expand storage capacity. By utilizing the
optimal characteristics of the network, high-bandwidth
and low-latency data transmission is guaranteed to
achieve real-time forecasting of the power grid.

4 Experiments and evaluation

This paper designs a series of simulation experiments.
The test results show that this method has good
performance in terms of processing speed, scalability,
and forecast accuracy.

4.1 Experimental cases and experimental

cases

The dataset includes:
*  Source: Real-time trading data from 5 regional
power grids in Yunnan (2019-2023)
e Granularity: 15-minute intervals (96 data
points/day)
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*  Total size: 6.8 million records

. Features:  Historical load, temperature,
humidity, holiday flags, GDP growth rate

Preprocessing:

. Missing values imputed via KNN interpolation

*  Outliers removed using 3¢ criterion

. Normalization: Min-max scaling to [0,1]

. Partitioning: 70% training, 20% validation,
10% testing [15]

4.2 Platform performance evaluation

This project intends to evaluate it from three perspectives:
data processing speed, system throughput and scalability.
This ensures its fast and stable operation in a real power
grid environment.

4.2.1 Data processing speed

The cloud native system uses a streaming architecture to
realize the processing of real-time data, and the speed of
its processing is related to the real-time performance of
the entire system [16]. This paper verifies the data
analysis speed of the system under various load
conditions through multiple experiments. Table 1 shows
the data transfer rate on the platform under different
numbers of parallel requirements.

Table 1: Platform data processing speed

comparison.

Number of Processing Traditional
. platform

concurrent speed of this processing
requests platform (n/s) speed (n/s)
100 1500 900
500 7000 4500
1000 13000 7500

As shown in Table 1, the computing efficiency of the
cloud computing system proposed in this paper is much
faster than that of conventional systems under high
concurrency conditions, especially for 1,000 concurrent
requests, its computing efficiency is 73% faster than that
of conventional systems.

4.2.2 System throughput

The system throughput is the data transmission that the
platform can perform in each period. Under high load
environment, the system throughput will directly affect
the stable operation of the system. Table 2 compares the
system throughput performance of various timing
prediction algorithms based on the platform.

Table 2: Comparison of system throughput of
different prediction algorithms.

Prediction algorithm Throughput
0

ARIMA 12000

LSTM 15000

Hybrid algorithm used in this 18000

paper
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The simulation test proves that this method gives full
play to the advantages of ARIMA and LSTM, and
significantly improves the processing capacity of the
system.

4.2.3 Elastic expansion capability

The scalability of Kubernetes can continuously increase or
decrease the sample of the container as the storage scale
changes, thereby ensuring efficient operation during the
busy operation cycle [17]. Figure 2 shows the display
effect under various load conditions. X is the number of
parallel requests, and Y is the response speed of the entire
system. Through adaptive expansion technology, the
response speed when processing high concurrent requests

Informatica 49 (2025) 615622 619

is reduced. This ensures high efficiency under high load
conditions [18].

This paper proves the performance of various time
series prediction methods in a cloud-native environment
through testing. Many experimental results show that this
method and the constructed cloud computing system have
obvious advantages in real-time power demand and
demand forecasting [19]. Table 3 shows the accuracy of
real-time power demand forecasting using the ARIMA
model, LSTM and the combined algorithm provided in
the article [20]. Compared with the individual methods,
the accuracy of this method is significantly improved by
more than 5 percentage points.
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Figure 2: Platform elastic expansion effect curve.

Table 3: Comparison of prediction accuracy of different prediction algorithms.

Algorithm Accuracy (%) | RMSE | MAE | MAPE (%)
ARIMA 85.2 234.5 189.2 | 8.7
LSTM 87.5 201.3 165.7 | 1.5
Hybrid (Ours) | 92.3 145.8 1124 | 52
Informer 89.7 187.2 1526 | 6.8
N-BEATSx 90.5 176.3 143.1 | 6.1

In order to compare the convergence of each mode,
the paper gives the curves of each mode changing over
time. Figure 3 shows the results of the average moving
average method, short-term Many memories method,
and mixed mode. Hybrid model achieves stable
convergence after 15 epochs (final loss: 0.082+0.005).
ARIMA loss plateaus at 0.213+0.012, LSTM at
0.156+0.008.
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Figure 3: Loss convergence curves with 95%
confidence intervals.

Statistical test (t-test, p<0.01) confirms hybrid model's
significantly lower loss [21].

The cloud computing system proposed in this paper
can still maintain high computing efficiency when facing
many concurrent requests. Figure 4 shows the processing
capacity under various load conditions, with the X-axis
being the number of parallel requests and the Y -axis being
the number of requests per second [22].
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Figure 4: Processing capacity of the platform under
different loads.

5 Conclusion

This project intends to build a set of time series
forecasting methods suitable for real-time demand and
supply of China's power grid, and build a cloud source
forecasting system for actual needs. By integrating
multiple time series forecasting methods such as ARIMA
and LSTM, the seasonal and trend changes in power
market demand can be better grasped, thereby improving
the accuracy of supply and demand. Simulation
experiments show that the model in this paper can adapt
well to different market environments, and its forecast
accuracy is 12.5% lower than that of traditional methods.
The cloud-native forecasting platform constructed in this
paper has high flexibility and scalability. The system can
well adapt to the real-time data processing requirements
in the real-time power grid environment. The system has
the characteristics of scalability and high concurrency,
can respond quickly to market changes, and can update
forecasts and data in a timely manner.
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