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In power grid dispatching and planning, the accuracy of electricity demand plays a vital role in the 

safety and economy of the power grid. In view of the problems existing in the current load 

forecasting of the power grid, a long-term and short-term hybrid model is studied to improve the 

accuracy and robustness of load forecasting. This project intends to combine the advantages of 

Seq2Seq model in time series analysis with ARIMA's advantages in stability to effectively solve the 

supply and demand relationship in long and short cycles. First, considering the nonlinear 

characteristics of power demand in the power market, a hybrid modeling framework based on 

optimality is constructed. It is optimized using methods such as genetics and particle swarms. 

Secondly, the constructed model is empirically analyzed using simulation experiments, and it is 

found that the constructed method has excellent accuracy on multiple time scales. Especially in the 

volatile power market environment, it has better robustness and adaptability. After precise data 

verification, the average error rate of short-term prediction of this model is within 5%, and within 

7% in the longer period. 

Povzetek: Za napovedovanje obremenitev elektroenergetskih sistemov so razvili Seq2Seq–ARIMA, 

kjer Seq2Seq zajame nelinearne odvisnosti na kratkih in dolgih horizontih, ARIMA pa stabilizira 

linearno-sezonske komponente; hiperparametri (vključno z utežjo zlivanja) so optimizirani z 

genetskim algoritmom in PSO. V simulacijah model izkazuje visoko robustnost v volatilnem tržnem 

okolju.

 

1 Introduction 
Accurately forecasting the amount of electricity in the 

power grid in the power market environment is the key 

to realizing power grid dispatching and planning. 

Accurate load forecasting is an important means to 

ensure the safety of the power grid, economic operation, 

and reasonable allocation of electric energy. In the face 

of increasing electricity consumption and the 

transformation of new energy structures, accurately 

forecasting the changes in power grid load is a major 

challenge facing current power grid research. Although 

the classic time series forecasting method works well in 

some applications, it still has certain limitations for 

dynamic changes in the power market and medium- and 

long-term changes in power consumption demand. 

Therefore, in order to improve the accuracy and 

adaptability of demand forecasting, researchers have 

introduced various correction and fusion methods. 

Reference [1] uses ARIMA to predict the electricity 

consumption in my country's power market, and uses its 

past development laws to effectively overcome the 

problems existing in the previous electricity demand  

 

 

forecasting. However, the ARIMA method cannot well 

meet the requirements of nonlinearity and non-

stationarity. Reference [2] uses support vector machine  

(SVR) to model the electricity demand in the power 

market. By using kernel functions and optimal solutions, 

the prediction ability of power grid load changes is 

effectively improved. However, its analysis ability of 

large time series changes is limited, and it cannot realize 

real-time forecasting of power grid load. Reference [3] 

uses LSTM to realize the modeling of long-term 

dependence of the power market, which can well meet the 

needs of the short-term market, but it still has a large error 

for the needs of the long-term market. 

In addition, in recent years, research has increasingly 

mixed different models to fully utilize the advantages of 

various models. Reference [4] proposed a hybrid model 

based on LSTM and support vector machine (SVM). By 

weighted fusion of the prediction results of the two, the 

model solved the problem that a single model performed 

poorly in certain specific scenarios. However, the model 

was more complicated in parameter tuning. Reference [5] 

used the Seq2Seq model to forecast electricity demand in 
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the power market. The encoder-decoder structure 

effectively captured the temporal characteristics of 

demand data, solving the problem that traditional models 

were difficult to simultaneously handle short-term and 

long-term demand forecasting. However, the Seq2Seq 

model still has certain prediction errors when dealing 

with complex demand fluctuations in the power system 

[6]. 

This paper establishes a new method for forecasting 

electricity demand in the medium- and long-term power 

market. The time series analysis of Seq2Seq data is 

integrated with the classical time series analysis method to 

establish a new method that can consider both long and 

short time series analysis. The Seq2Seq model is used to 

characterize the time series of changes in market supply 

and demand, and the ARIMA model is established to 

improve the stability of market supply and demand 

changes. At the same time, the constructed model is 

optimized using methods such as genetics and particle 

swarms to ensure the accuracy of the constructed model in 

practical applications [7]. 

2 Design of long-term and short-

term hybrid model 
2.1 Principle and application of Seq2Seq 

model 
The Seq2Seq model was originally used for machine 

translation tasks. Its core is to process variable-length 

input and output sequences through an encoder and 

decoder architecture [8]. In power market electricity 

demand forecasting, the Seq2Seq model is also suitable 

for converting historical demand data for a period into 

demand forecast results for a period in the future. The 

encoder gradually compresses the input sequence into a 

fixed-length context vector through a series of neural 

network layers, and then the decoder uses the vector to 

generate a prediction sequence [9]. 

In power market electricity demand forecasting, the 

Seq2Seq model can handle complex time series 

dependencies in historical demand data and generate 

forecast results for future demand. For example, given the 

hourly electricity demand data of the power market in the 

past week, the Seq2Seq model can predict the electricity 

demand of the power market in the next week by learning 

the patterns in the sequence. The demand changes in the 

power system are usually characterized by short-term 

fluctuations and long-term trends. The encoder of the 

Seq2Seq model can capture short-term changes, while the 

decoder can generate smooth long-term demand forecast 

results. 

The Seq2Seq model architecture in this study adopts 

3 layers for both encoder and decoder. The RNN cells 

used are LSTM, which are more suitable for capturing 

long-term dependencies in time series data compared to 

GRU. The activation function in the hidden layers is 

ReLU, and the output layer uses linear activation. The 

input sequence length is set to 168 hours (one week) and 

the output sequence length is 168 hours for long-term 

forecasting and 24 hours for short-term forecasting. The 

objective function of the power market electricity demand 

forecast is to minimize the prediction error 𝐿: 

𝐿 =
1

𝑁
∑  

𝑁

𝑡=1

(𝑦̂𝑡 − 𝑦𝑡)2                                     (1) 

𝑦̂𝑡 is the predicted value of the model, and 𝑦𝑡is the 

actual value. The model parameters 𝜃  and 𝜙  are 

optimized through back propagation, and the accuracy of 

demand forecasting is finally improved [10]. The input 

demand time series enters the encoder layer and is 

processed by multiple layers of neural networks to 

generate a context vector. The decoder then uses this 

vector to gradually generate the output sequence. The 

specific structure is shown in Figure 1: 

 

 
Figure 1: Architecture of Seq2Seq model 

 
The encoder consists of 3 LSTM layers with 128 

hidden units each. The decoder also has 3 LSTM layers 

with 128 hidden units each. The input sequence of length 

168 is processed by the encoder to generate a context 

vector, which is then used by the decoder to produce the 

output sequence of length 24 (short-term) or 168 (long-
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term). ReLU activation functions are used in the hidden 

layers, and linear activation in the output layer. 

 

2.2 Combination of traditional model and 

deep learning model 
Although neural networks represented by deep neural 

networks such as LSTM and Seq2Seq have better 

performance in solving nonlinear time-varying problems, 

some special time series, such as ARIMA, can still capture 

linear changes well. For this reason, a new method based 

on the fusion of ARIMA and Seq2Seq is proposed [11]. 

The combination of ARIMA and Seq2Seq models is 

implemented through weighted averaging. The final 

prediction result 𝑦̂final  is calculated as: 

𝑦̂final = 𝛼 × 𝑦̂Seq2Seq + (1 − 𝛼) × 𝑦̂ARIMA              (2)  

𝛼 is the weight coefficient, ranging from 0 to 1 , which 

is optimized through the genetic algorithm to minimize the 

prediction error. 

First, the parameter tuning process of the ARIMA and 

Seq2Seq models is complex, especially when dealing with 

large-scale demand data, the computational cost is high. 

Second, the hybrid model needs to coordinate the 

optimization of the two parts of the model during training, 

which puts higher requirements on the algorithm design. 

In addition, in some specific demand scenarios, a single 

deep learning model such as the Seq2Seq model may be 

accurate enough, while the introduction of the hybrid 

model increases the model complexity [12]. 

3 Optimization algorithm design and 

model tuning 
3.1 Selection of optimization algorithm 

Genetic algorithm simulates the biological evolution 

process and gradually optimizes the objective function 

through selection, crossover and mutation operations. In 

the long-term and short-term mixed model of power 

market demand forecasting, genetic algorithm is mainly 

used for hyperparameter optimization, such as learning 

rate, number of hidden layer nodes, sequence length, etc. 

The goal of genetic algorithm is to minimize the fitness 

function through multiple generations of evolution and 

finally find the optimal parameter combination. Its 

mathematical expression is: 

𝑓(𝑥) = min
𝜃∈Θ

 𝐿(𝜃)                             (3) 

𝑓(𝑥) is the objective function, 𝜃  is the parameter 

combination, and 𝐿(𝜃) is the loss function, usually the 

mean square error (MSE). The optimization process 

iterates until the fitness function converges or the preset 

stopping condition is reached. 

The Particle Swarm Optimization (PSO) algorithm 

exhibits superior computational efficiency and rapid 

convergence when applied to the hyperparameter tuning 

of hybrid models. It is particularly well-suited for 

addressing optimization tasks involving continuous 

parameters. PSO's ability to efficiently navigate large 

search spaces makes it an ideal choice for optimizing 

complex model configurations, ensuring quick 

convergence to optimal or near-optimal solutions in 

scenarios requiring continuous parameter adjustment. This 

makes the algorithm highly effective in handling intricate 

optimization challenges, contributing to the enhancement 

of model performance in diverse applications [13]. Genetic 

algorithms and PSO algorithms can effectively search in 

the parameter space, and by gradually adjusting 

hyperparameters, the model can achieve optimal 

performance when dealing with electricity demand 

forecasting in the power market. The optimization 

objective function is: 

𝐿(𝜃) =
1

𝑁
∑  𝑁

𝑡=1 (𝑦̂𝑡 − 𝑦𝑡)2                             (4) 

𝑦̂𝑡  is the model prediction value, 𝑦𝑡   is the actual 

value, and the goal of the optimization algorithm is to find 

the optimal hyperparameter 𝜃 while minimizing the loss 

function. 

The objective function for the genetic algorithm (GA) 

in optimizing the weight coefficient 𝛼  and 

hyperparameters of the hybrid model is: 

minimize𝐿(𝛼, 𝜃Seq2Seq , 𝜃ARIMA ) =
1

𝑁
∑𝑡−1

𝑁  (𝑦̂final − 𝑦𝑡)2                

(5) 

subject to 0 ≤ 𝛼 ≤ 1 , and 𝜃Seq2Seq , 𝜃ARIMA  within 

their respective parameter spaces. For the particle swarm 

optimization (PSO) algorithm, the objective function for 

optimizing the hyperparameters of the Seq2Seq model is: 

minimize𝐿(𝜃Seq2Seq ) =
1

𝑁
∑𝑡−1

𝑁  (𝑦̂Seq2Seq − 𝑦𝑡)
2

(6) 

Where 𝜃Seq 2 Seq  includes learning rate, number of 

hidden layer nodes, etc. 

 

3.2 Automatic tuning method of model 

parameters 

The setting of hyperparameter values has a great influence 

on the effect and convergence rate of the algorithm. 

Among them, hyperparameter values include learning 

rate, number of hidden layer nodes, regularization 

coefficient, etc. In the electricity demand forecast of the 

power market using short-term and long-term mixed 

modes, how to select hyperparameters is extremely 

critical. Since the electricity consumption data in the 

power market often shows obvious short-term 

fluctuations and long-term change trends, modeling it 

should not only consider its impact on short-term 

changes, but also its impact on long-term changes. 

Therefore, in the modeling process, how to use the 

optimal method to adaptively adjust the hyperparameters 

to achieve the best forecasting results is an extremely 

important topic [14]. 

This paper proposes an adaptive optimization method 

based on genetic algorithm. The algorithm is based on the 

difference of the group and ensures the maximum 

convergence speed of the algorithm. The particle swarm 

optimization strategy is adopted to improve the efficiency 

of optimization solution. This method uses the movement 

of particle swarms in various parameter spaces to achieve 

gradual approximation of the optimization problem, so 

that this method has shown good results in hybrid 

modeling of power load. The best hyperparameter 

combination is gradually found based on the properties of 

the initial values and the optimization strategy in different 
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hyperparameter spaces [15]. For example, in the forecast 

of power demand in a hybrid power market, this method 

achieves adaptability to complex and changeable power 

grid loads by real-time adjustment of the network 

learning rate and the number of hidden layer nodes, 

thereby improving the accuracy and reliability of the 

forecast. 

𝜃∗ = arg min
𝜃∈Θ

 𝐿(𝜃)                                   (7) 

𝜃∗  is the optimal parameter combination, 𝐿(𝜃)is the 

loss function, and Θ is the hyperparameter space. The 

optimization algorithm searches for Θ and finally finds 

the parameter 𝜃∗ that minimizes the loss function. The 

algorithmic flowchart of the genetic algorithm for 

hyperparameter optimization is as Table 1: 

 
Table 1: Hyperparameters considered, their ranges, 

and selected optimal values 
Hyperparameter Range Optimal 

Value 
Learning rate 0.001-0.1 0.01 
Number of hidden 
layer nodes (encoder) 

32-256 128 

Number of hidden 
layer nodes (decoder) 

32-256 128 

Sequence length 
(input) 

72-336 168 

Sequence length 
(output, short-term) 

12-48 24 

Sequence length 
(output, long-term) 

120-216 168 

Regularization 
coefficient 

0.0001-
0.01 

0.001 

Weight coefficient 0-1 0.7 

1. Initialize a population of hyperparameter 

combinations randomly within the specified ranges. 

2. Evaluate the fitness of each individual in the 

population using the objective function (prediction 

error). 

3. Select the individuals with higher fitness for 

reproduction. 

4. Perform crossover and mutation operations to 

generate offspring. 

5. Replace the worst-performing individuals in the 

population with the offspring. 

6. Repeat steps 2-5 until the stopping condition 

(maximum number of generations or convergence) is 

met. 

7. Output the best hyperparameter combination found. 

The particle swarm optimization algorithm starts by 

initializing a particle swarm with random positions and 

velocities within the parameter space. For each particle, 

its fitness is evaluated using the objective function, and 

its personal best position is set as the current position if 

the fitness is better. The global best position is then 

determined among all personal best positions. The 

algorithm proceeds in a loop until the stopping condition 

is met: for each particle, its velocity is updated using the 

formula 𝑣𝑖 = 𝑤 ⋅ 𝑣𝑖 + 𝑐1 ⋅ 𝑟1 ⋅ (pbest  𝑖 − 𝑥𝑖)  +𝑐2 ⋅
𝑟2 ⋅ (𝑔𝑏𝑒𝑠𝑡 − 𝑥𝑖) (where 𝑤 is the inertia weight, 𝑐1 and 

𝑐2 are acceleration coefficients, 𝑟1 and 𝑟2 are random 

numbers between 0 and 1, 𝑣𝑖  is the velocity of particle 

𝑖, 𝑥𝑖  is the position of particle 𝑖, 𝑝𝑏𝑒𝑠𝑡𝑖  is the personal 

best position of particle 𝑖, and 𝑔𝑏𝑒𝑠𝑡  is the global best 

position), and its position is updated as 𝑥𝑖 = 𝑥𝑖 + 𝑣𝑖 . 

After evaluating the fitness of the new position, the 

personal best and global best positions are updated if 

necessary. Finally, the global best position is outputted. 

 

4 System simulation and result 

analysis 
In the electricity demand forecasting of the power market, 

the design of the long-term and short-term hybrid model 

needs to be verified and optimized through system 

simulation. This paper evaluates the performance of the 

proposed model through simulation experiments, aiming 

to verify its accuracy and stability in the electricity 

demand forecasting of the power market [16]. The 

simulation experiment includes the construction of the 

simulation environment, the selection and preprocessing 

of the data set, and the performance comparison of 

various models in different scenarios. A variety of 

evaluation indicators are used to analyze the performance 

of the model. 

 

4.1 Introduction to simulation 

environment and data set 

The data for this experiment comes from the historical 

electricity market demand data set of Yunnan Province, 

China, which contains hourly electricity market demand 

information from 2018 to 2022. This data set records the 

changes in electricity demand on working days and non-

working days, and has obvious seasonal and cyclical 

fluctuation characteristics. 

Before using these data for model training, they need 

to be preprocessed. The preprocessing steps include: 

 Missing data handling: Missing values are filled 

using linear interpolation. 

 Normalization: Min-max scaling is applied to 

scale the data to the range [0,1] using 𝑥norm =
𝑥−𝑥min 

𝑥max −𝑥min 
, where 𝑥 is the original data, 𝑥min  and 

𝑥max  are the minimum and maximum values of 

the data set, respectively. 

 Outlier detection and removal: Outliers are 

detected using the Z-score method ( |𝑍| > 3 ) 

and replaced with the mean value of the 

neighboring data points. 

The simulation experiment in this article is carried 

out in the Python programming environment, and the 

model is mainly built using the TensorFlow and Keras 

frameworks. 

 

4.2 Model performance evaluation 

During the simulation process, this paper compares the 

performance of four types of models: the traditional 

ARIMA model, the LSTM model based on deep learning, 

the Seq2Seq model proposed in this paper, and the hybrid 

model of Seq2Seq and ARIMA. In addition, a 
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Transformer-based model is also included as a baseline 

for comparison. The experiment designed two scenarios: 

short-term demand forecasting (1 hour to 24 hours 

forecasting) and long-term demand forecasting (24 hours 

to one week forecasting). 

 

 

 

Table 2: Evaluation results of each model under 

short-term demand forecasting. 
Model type MSE RMSE MAE 
ARIMA 0.025 0.158 0.132 
LSTM 0.019 0.138 0.104 
Transformer 0.017 0.130 0.100 
Seq2Seq 0.015 0.122 0.092 
Hybrid 
(Seq2Seq+ARIMA) 

0.013 0.114 0.085 

 

As can be seen from Table 2, the hybrid model 

performs better than other models in short-term demand 

forecasting, and its MSE, RMSE and MAE values are 

lower than those of the other models. 
 

Table 3: Evaluation results of each model under 

long-term demand forecasting. 
Model type MSE RMSE MAE 
ARIMA 0.035 0.187 0.162 
LSTM 0.029 0.170 0.141 
Transformer 0.026 0.161 0.135 
Seq2Seq 0.022 0.148 0.120 
Hybrid 
(Seq2Seq+ARIMA) 

0.020 0.141 0.112 

The long-term demand forecast results in Table 3 

show that the hybrid model also performs best in long-

term forecasting, especially when dealing with complex 

long-term fluctuations, the model shows stronger 

stability and adaptability. 
 

Table 4: Comparison of performance of each model 

under different weather conditions. 
Weather 

condition

s 

Model Type MSE RMS

E 

MA

E 

Sunny ARIMA 0.02

8 

0.167 0.145 

 LSTM 0.02

2 

0.148 0.126 

 Transformer 0.02

0 

0.141 0.120 

 Seq2Seq 0.01

7 

0.131 0.110 

 Hybrid 

(Seq2Seq+ARIMA

) 

0.01

5 

0.122 0.102 

Rainy ARIMA 0.03

1 

0.176 0.150 

 LSTM 0.02

5 

0.158 0.133 

 Transformer 0.02

3 

0.152 0.128 

 Seq2Seq 0.01

9 

0.138 0.115 

 Hybrid 

(Seq2Seq+ARIMA

) 

0.01

7 

0.130 0.108 

 

Table 4 shows the performance of each model under 

various meteorological factors, especially in adverse 

meteorological environments such as rainy weather, the 

hybrid model has better stability and adaptability. The 

hybrid model consistently outperforms other models 

across different weather conditions, with the lowest MSE, 

RMSE, and MAE values, indicating its strong ability to 

handle the impact of meteorological factors on power 

demand. 

To confirm the statistical significance of the 

improvements achieved by the hybrid model, paired t-

tests are conducted between the hybrid model and each of 

the other models. The results are shown in Table 5, where 

the p-values are all less than 0.05, indicating that the 

improvements are statistically significant. 

 

Table 5: Paired t-test results between the hybrid 

model and other models 
Compared 
Model 

p-value 
(short-term) 

p-value 
(long-term) 

ARIMA 0.002 0.001 
LSTM 0.015 0.012 
Transformer 0.028 0.025 
Seq2Seq 0.035 0.031 

 
 

 
Figure 2: Simulation results of short-term demand forecasting.  

 

The x-axis represents time (hours), and the y-axis 

represents load (MW). The actual load is shown as a solid 

line, while the predicted loads of the Seq2Seq model, 

LSTM model, ARIMA model, Transformer model, and 
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hybrid model are shown as dashed lines with different 

colors. The hybrid model's prediction curve is closest to 

the actual load curve, with the smallest deviation. 

As can be seen from Figure 2, the prediction results of 

the hybrid model are closest to the actual demand trend, 

followed by the Seq2Seq model, then the Transformer 

model, the LSTM model, while the ARIMA model has a 

large deviation. 
 

 
Figure 3: Simulation results of long-term demand forecasting. 

 

The x-axis represents time (hours), and the y-axis 

represents load (MW). The actual load is shown as a solid 

line, and the predicted loads of various models are shown 

as dashed lines with different colors. The hybrid model 

maintains high accuracy even in the long-term forecasting, 

with stable performance. Figure 3 shows the performance 

of each model in long-term demand forecasting. Like short-

term forecasting, Seq2Seq also performs significantly 

better than other models in long-term forecasting, 

especially when forecasting time periods with large 

fluctuations, the performance is more stable. 
 

 
Figure 4: Demand forecast results under different weather conditions. 

 

The left subfigure shows the forecast results under 

sunny weather, and the right subfigure shows the forecast 

results under rainy weather. The x-axis represents time 

(hours), and the y-axis represents load (MW). The hybrid 

model's prediction curve is smoother and closer to the 

actual demand changes in both weather conditions, 

demonstrating its strong adaptability. Figure 4 shows the 

demand forecast results under different weather 

conditions. Seq2Seq still performs better than other 

models under complex weather conditions such as cloudy 

weather, and the prediction curve is smoother and closer 

to the actual demand changes. 

5 Conclusion 
This study constructs a hybrid Seq2Seq-ARIMA model 

for power system load forecasting, optimized by 

metaheuristic algorithms (genetic algorithm and particle 

swarm optimization). The model integrates the advantages 

of Seq2Seq in capturing nonlinear time series 

dependencies and ARIMA in describing linear trends, and 

realizes adaptive adjustment of hyperparameters through 

optimization algorithms, thereby improving the accuracy 

and robustness of load forecasting. 

Through simulation experiments, it is verified that the 

hybrid model has excellent performance in both short-

term and long-term load forecasting. Compared with 

ARIMA, LSTM, Transformer, and single Seq2Seq models, 

the hybrid model has lower MSE, RMSE, and MAE values. 

The average error rate of short-term prediction is within 

5%, and within 7% in the longer period. Statistical tests 

confirm that the improvements are statistically significant. 

In addition, the hybrid model shows good stability and 

adaptability under different weather conditions. 

However, this study also has certain limitations. The 

model's computational complexity is relatively high, which 

may affect its application in real-time forecasting scenarios 

with strict time constraints. In future research, we will 

focus on optimizing the model's structure to reduce 

computational complexity while maintaining forecasting 

accuracy. In addition, we will expand the dataset to include 

more regions and longer time series to further verify the 

generalization ability of the model. 
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