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In power grid dispatching and planning, the accuracy of electricity demand plays a vital role in the
safety and economy of the power grid. In view of the problems existing in the current load
forecasting of the power grid, a long-term and short-term hybrid model is studied to improve the
accuracy and robustness of load forecasting. This project intends to combine the advantages of
Seq2Seq model in time series analysis with ARIMA's advantages in stability to effectively solve the
supply and demand relationship in long and short cycles. First, considering the nonlinear
characteristics of power demand in the power market, a hybrid modeling framework based on
optimality is constructed. It is optimized using methods such as genetics and particle swarms.
Secondly, the constructed model is empirically analyzed using simulation experiments, and it is
found that the constructed method has excellent accuracy on multiple time scales. Especially in the
volatile power market environment, it has better robustness and adaptability. After precise data
verification, the average error rate of short-term prediction of this model is within 5%, and within
7% in the longer period.

Povzetek: Za napovedovanje obremenitev elektroenergetskih sistemov so razvili Seq2Seq—ARIMA,
kjer Seg2Seq zajame nelinearne odvisnosti na kratkih in dolgih horizontih, ARIMA pa stabilizira
linearno-sezonske komponente; hiperparametri (vkljucno z uteZjo zlivanja) so optimizirani z
genetskim algoritmom in PSO. V simulacijah model izkazuje visoko robustnost v volatilnem trznem

okolju.

1 Introduction

Accurately forecasting the amount of electricity in the
power grid in the power market environment is the key
to realizing power grid dispatching and planning.
Accurate load forecasting is an important means to
ensure the safety of the power grid, economic operation,
and reasonable allocation of electric energy. In the face
of increasing electricity consumption and the
transformation of new energy structures, accurately
forecasting the changes in power grid load is a major
challenge facing current power grid research. Although
the classic time series forecasting method works well in
some applications, it still has certain limitations for
dynamic changes in the power market and medium- and
long-term changes in power consumption demand.
Therefore, in order to improve the accuracy and
adaptability of demand forecasting, researchers have
introduced various correction and fusion methods.
Reference [1] uses ARIMA to predict the electricity
consumption in my country's power market, and uses its
past development laws to effectively overcome the
problems existing in the previous electricity demand

forecasting. However, the ARIMA method cannot well
meet the requirements of nonlinearity and non-
stationarity. Reference [2] uses support vector machine
(SVR) to model the electricity demand in the power
market. By using kernel functions and optimal solutions,
the prediction ability of power grid load changes is
effectively improved. However, its analysis ability of
large time series changes is limited, and it cannot realize
real-time forecasting of power grid load. Reference [3]
uses LSTM to realize the modeling of long-term
dependence of the power market, which can well meet the
needs of the short-term market, but it still has a large error
for the needs of the long-term market.

In addition, in recent years, research has increasingly
mixed different models to fully utilize the advantages of
various models. Reference [4] proposed a hybrid model
based on LSTM and support vector machine (SVM). By
weighted fusion of the prediction results of the two, the
model solved the problem that a single model performed
poorly in certain specific scenarios. However, the model
was more complicated in parameter tuning. Reference [5]
used the Seq2Seq model to forecast electricity demand in
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the power market. The encoder-decoder structure
effectively captured the temporal characteristics of
demand data, solving the problem that traditional models
were difficult to simultaneously handle short-term and
long-term demand forecasting. However, the Seq2Seq
model still has certain prediction errors when dealing
with complex demand fluctuations in the power system
[6].

This paper establishes a new method for forecasting
electricity demand in the medium- and long-term power
market. The time series analysis of Seq2Seq data is
integrated with the classical time series analysis method to
establish a new method that can consider both long and
short time series analysis. The Seq2Seq model is used to
characterize the time series of changes in market supply
and demand, and the ARIMA model is established to
improve the stability of market supply and demand
changes. At the same time, the constructed model is
optimized using methods such as genetics and particle
swarms to ensure the accuracy of the constructed model in
practical applications [7].

2  Design of long-term and short-

term hybrid model
2.1  Principle and application of Seq2Seq

model

The Seq2Seq model was originally used for machine
translation tasks. Its core is to process variable-length
input and output sequences through an encoder and
decoder architecture [8]. In power market electricity
demand forecasting, the Seq2Seq model is also suitable
for converting historical demand data for a period into
demand forecast results for a period in the future. The
encoder gradually compresses the input sequence into a
fixed-length context vector through a series of neural
network layers, and then the decoder uses the vector to
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generate a prediction sequence [9].

In power market electricity demand forecasting, the
Seq2Seq model can handle complex time series
dependencies in historical demand data and generate
forecast results for future demand. For example, given the
hourly electricity demand data of the power market in the
past week, the Seq2Seq model can predict the electricity
demand of the power market in the next week by learning
the patterns in the sequence. The demand changes in the
power system are usually characterized by short-term
fluctuations and long-term trends. The encoder of the
Seq2Seq model can capture short-term changes, while the
decoder can generate smooth long-term demand forecast
results.

The Seq2Seq model architecture in this study adopts
3 layers for both encoder and decoder. The RNN cells
used are LSTM, which are more suitable for capturing
long-term dependencies in time series data compared to
GRU. The activation function in the hidden layers is
ReL U, and the output layer uses linear activation. The
input sequence length is set to 168 hours (one week) and
the output sequence length is 168 hours for long-term
forecasting and 24 hours for short-term forecasting. The
objective function of the power market electricity demand
forecast is to minimize the prediction error L:

N
1
L= Ntz Ge = o2 &

=1

¥¢ is the predicted value of the model, and y,is the
actual value. The model parameters 8 and ¢ are
optimized through back propagation, and the accuracy of
demand forecasting is finally improved [10]. The input
demand time series enters the encoder layer and is
processed by multiple layers of neural networks to
generate a context vector. The decoder then uses this
vector to gradually generate the output sequence. The
specific structure is shown in Figure 1:
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Figure 1: Architecture of Seq2Seq model

The encoder consists of 3 LSTM layers with 128
hidden units each. The decoder also has 3 LSTM layers
with 128 hidden units each. The input sequence of length

168 is processed by the encoder to generate a context
vector, which is then used by the decoder to produce the
output sequence of length 24 (short-term) or 168 (long-
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term). ReLU activation functions are used in the hidden
layers, and linear activation in the output layer.

2.2 Combination of traditional model and

deep learning model

Although neural networks represented by deep neural
networks such as LSTM and Seq2Seq have better
performance in solving nonlinear time-varying problems,
some special time series, such as ARIMA, can still capture
linear changes well. For this reason, a new method based
on the fusion of ARIMA and Seq2Seq is proposed [11].
The combination of ARIMA and Segq2Seq models is
implemented through weighted averaging. The final
prediction result y5,, is calculated as:

Vtinal = & X Pseqrseq T (1 — @) X Parima (2)

« is the weight coefficient, ranging from 0 to 1, which
is optimized through the genetic algorithm to minimize the
prediction error.

First, the parameter tuning process of the ARIMA and
Seq2Seq models is complex, especially when dealing with
large-scale demand data, the computational cost is high.
Second, the hybrid model needs to coordinate the
optimization of the two parts of the model during training,
which puts higher requirements on the algorithm design.
In addition, in some specific demand scenarios, a single
deep learning model such as the Seq2Seq model may be
accurate enough, while the introduction of the hybrid
model increases the model complexity [12].

3  Optimization algorithm design and

model tuning
3.1  Selection of optimization algorithm

Genetic algorithm simulates the biological evolution
process and gradually optimizes the objective function
through selection, crossover and mutation operations. In
the long-term and short-term mixed model of power
market demand forecasting, genetic algorithm is mainly
used for hyperparameter optimization, such as learning
rate, number of hidden layer nodes, sequence length, etc.
The goal of genetic algorithm is to minimize the fitness
function through multiple generations of evolution and
finally find the optimal parameter combination. Its
mathematical expression is:
fG) = minL(6) 3)
f(x)is the objective function, 6 is the parameter
combination, and L(0)is the loss function, usually the
mean square error (MSE). The optimization process
iterates until the fitness function converges or the preset
stopping condition is reached.

The Particle Swarm Optimization (PSO) algorithm
exhibits superior computational efficiency and rapid
convergence when applied to the hyperparameter tuning
of hybrid models. It is particularly well-suited for
addressing optimization tasks involving continuous
parameters. PSO's ability to efficiently navigate large
search spaces makes it an ideal choice for optimizing
complex model configurations, ensuring  quick
convergence to optimal or near-optimal solutions in
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scenarios requiring continuous parameter adjustment. This
makes the algorithm highly effective in handling intricate
optimization challenges, contributing to the enhancement
of model performance in diverse applications [13]. Genetic
algorithms and PSO algorithms can effectively search in
the parameter space, and by gradually adjusting
hyperparameters, the model can achieve optimal
performance when dealing with electricity demand
forecasting in the power market. The optimization
objective function is:
L(O) =~y G = ye)? @)
¥, is the model prediction value, y, is the actual
value, and the goal of the optimization algorithm is to find
the optimal hyperparameter 8 while minimizing the loss
function.

The objective function for the genetic algorithm (GA)
in optimizing the weight coefficient « and
hyperparameters of the hybrid model is:

minimizeL(a, Oseqrseq » OARIMA ) = %thv—l Phinal — Ye)*
(5)

subject t0 0 < a <1, and Osegrseq » Oarima Within
their respective parameter spaces. For the particle swarm

optimization (PSO) algorithm, the objective function for
optimizing the hyperparameters of the Seq2Seq model is:

o 1 . 2
mlnlmlzeL(GSquSeq) = Nz%v—l (ySquSeq - yt) (6)
Where 6g.,, seq includes learning rate, number of

hidden layer nodes, etc.

3.2 Automatic tuning method of model
parameters

The setting of hyperparameter values has a great influence
on the effect and convergence rate of the algorithm.
Among them, hyperparameter values include learning
rate, number of hidden layer nodes, regularization
coefficient, etc. In the electricity demand forecast of the
power market using short-term and long-term mixed
modes, how to select hyperparameters is extremely
critical. Since the electricity consumption data in the
power market often shows obvious short-term
fluctuations and long-term change trends, modeling it
should not only consider its impact on short-term
changes, but also its impact on long-term changes.
Therefore, in the modeling process, how to use the
optimal method to adaptively adjust the hyperparameters
to achieve the best forecasting results is an extremely
important topic [14].

This paper proposes an adaptive optimization method
based on genetic algorithm. The algorithm is based on the
difference of the group and ensures the maximum
convergence speed of the algorithm. The particle swarm
optimization strategy is adopted to improve the efficiency
of optimization solution. This method uses the movement
of particle swarms in various parameter spaces to achieve
gradual approximation of the optimization problem, so
that this method has shown good results in hybrid
modeling of power load. The best hyperparameter
combination is gradually found based on the properties of
the initial values and the optimization strategy in different
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hyperparameter spaces [15]. For example, in the forecast
of power demand in a hybrid power market, this method
achieves adaptability to complex and changeable power
grid loads by real-time adjustment of the network
learning rate and the number of hidden layer nodes,
thereby improving the accuracy and reliability of the
forecast.
0" = arg rgleig L(6) (7
6~ is the optimal parameter combination, L(6)is the
loss function, and @ is the hyperparameter space. The
optimization algorithm searches for © and finally finds
the parameter 6*that minimizes the loss function. The
algorithmic flowchart of the genetic algorithm for
hyperparameter optimization is as Table 1:

Table 1: Hyperparameters considered, their ranges,
and selected optimal values

Hyperparameter Range Optimal
Value

Learning rate 0.001-0.1 0.01

Number of hidden 32-256 128

layer nodes (encoder)

Number of hidden 32-256 128

layer nodes (decoder)

Sequence length 72-336 168

(input)

Sequence length 12-48 24

(output, short-term)

Sequence length 120-216 168

(output, long-term)

Regularization 0.0001- 0.001

coefficient 0.01

Weight coefficient 0-1 0.7

1. Initialize a population of hyperparameter

combinations randomly within the specified ranges.

2. Evaluate the fitness of each individual in the
population using the objective function (prediction
error).

3. Select the individuals with higher fitness for
reproduction.

4.  Perform crossover and mutation operations to
generate offspring.

5.  Replace the worst-performing individuals in the
population with the offspring.

6. Repeat steps 2-5 until the stopping condition
(maximum number of generations or convergence) is
met.

7. Output the best hyperparameter combination found.
The particle swarm optimization algorithm starts by

initializing a particle swarm with random positions and
velocities within the parameter space. For each particle,
its fitness is evaluated using the objective function, and
its personal best position is set as the current position if
the fitness is better. The global best position is then
determined among all personal best positions. The
algorithm proceeds in a loop until the stopping condition
is met: for each particle, its velocity is updated using the
formula v; =w-v; +cl-r1-(pbest ; —x;) +c2-
r2 - (gbest — x;) (where w is the inertia weight, c1 and
c2 are acceleration coefficients, r1 and r2 are random

J. Zou et al.

numbers between 0 and 1, v; is the velocity of particle
i,x; is the position of particle i, pbest; is the personal
best position of particle i, and gbest is the global best
position), and its position is updated as x; = x; + v;.
After evaluating the fitness of the new position, the
personal best and global best positions are updated if
necessary. Finally, the global best position is outputted.

4 System simulation and result
analysis

In the electricity demand forecasting of the power market,
the design of the long-term and short-term hybrid model
needs to be verified and optimized through system
simulation. This paper evaluates the performance of the
proposed model through simulation experiments, aiming
to verify its accuracy and stability in the electricity
demand forecasting of the power market [16]. The
simulation experiment includes the construction of the
simulation environment, the selection and preprocessing
of the data set, and the performance comparison of
various models in different scenarios. A variety of
evaluation indicators are used to analyze the performance
of the model.

4.1 Introduction to simulation

environment and data set

The data for this experiment comes from the historical
electricity market demand data set of Yunnan Province,
China, which contains hourly electricity market demand
information from 2018 to 2022. This data set records the
changes in electricity demand on working days and non-
working days, and has obvious seasonal and cyclical
fluctuation characteristics.
Before using these data for model training, they need
to be preprocessed. The preprocessing steps include:
. Missing data handling: Missing values are filled
using linear interpolation.
. Normalization: Min-max scaling is applied to
scale the data to the range [0,1] using X,om =
—Xmin_ where x is the original data, x,.;, and

Xmax ~Xmin
Xmax are the minimum and maximum values of
the data set, respectively.

e Outlier detection and removal: Outliers are
detected using the Z-score method ( |Z] > 3)
and replaced with the mean value of the
neighboring data points.

The simulation experiment in this article is carried
out in the Python programming environment, and the
model is mainly built using the TensorFlow and Keras
frameworks.

4.2 Model performance evaluation

During the simulation process, this paper compares the
performance of four types of models: the traditional
ARIMA model, the LSTM model based on deep learning,
the Seq2Seq model proposed in this paper, and the hybrid
model of Seq2Seq and ARIMA. In addition, a
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Transformer-based model is also included as a baseline
for comparison. The experiment designed two scenarios:
short-term demand forecasting (1 hour to 24 hours
forecasting) and long-term demand forecasting (24 hours
to one week forecasting).

Table 2: Evaluation results of each model under
short-term demand forecasting.

Model type MSE RMSE | MAE
ARIMA 0.025 0.158 0.132
LSTM 0.019 | 0.138 0.104
Transformer 0.017 0.130 0.100
Seq2Seq 0.015 0.122 0.092
Hybrid 0.013 0.114 0.085
(Seq2Seq+ARIMA)

As can be seen from Table 2, the hybrid model
performs better than other models in short-term demand
forecasting, and its MSE, RMSE and MAE values are
lower than those of the other models.

Table 3: Evaluation results of each model under
long-term demand forecasting.
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LSTM 0.02 | 0.148 0.126
Transformer (2).02 0.141 0.120
Seq2Seq 8.01 0.131 0.110
Hybrid 3.01 0.122 0.102
(Seq2Seq+ARIMA | 5

Rainy LRIMA 0.03 | 0.176 | 0.150
LSTM (1).02 0.158 0.133
Transformer 3.02 0.152 0.128
Seq2Seq (3).01 0.138 0.115
Hybrid (9).01 0.130 | 0.108
(Seq2Seq+ARIMA | 7
)

Model type MSE RMSE | MAE
ARIMA 0.035 0.187 0.162
LSTM 0.029 | 0.170 0.141
Transformer 0.026 0.161 0.135
Seq2Seq 0.022 | 0.148 0.120
Hybrid 0.020 | 0.141 0.112
(Seq2Seq+ARIMA)

The long-term demand forecast results in Table 3
show that the hybrid model also performs best in long-
term forecasting, especially when dealing with complex
long-term fluctuations, the model shows stronger
stability and adaptability.

Table 4 shows the performance of each model under
various meteorological factors, especially in adverse
meteorological environments such as rainy weather, the
hybrid model has better stability and adaptability. The
hybrid model consistently outperforms other models
across different weather conditions, with the lowest MSE,
RMSE, and MAE values, indicating its strong ability to
handle the impact of meteorological factors on power
demand.

To confirm the statistical significance of the
improvements achieved by the hybrid model, paired t-
tests are conducted between the hybrid model and each of
the other models. The results are shown in Table 5, where
the p-values are all less than 0.05, indicating that the
improvements are statistically significant.

Table 5: Paired t-test results between the hybrid
model and other models

Compared p-value p-value
Table 4: Comparison of performance of each model Model (short-term) (long-term)

under different weather conditions. ARIMA 0.002 0.001
Weather | Model Type MSE | RMS | MA LSTM 0.015 0.012
condition E E Transformer 0.028 0.025
s Seq2Seq 0.035 0.031
Sunny ARIMA 0.02 | 0.167 0.145
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Short-term Demand Forecasting (1-24 h)
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Figure 2: Simulation results of short-term demand forecasting.

The x-axis represents time (hours), and the y-axis
represents load (MW). The actual load is shown as a solid

line, while the predicted loads of the Seq2Seq model,
LSTM model, ARIMA model, Transformer model, and




628 Informatica 49 (2025) 623630

hybrid model are shown as dashed lines with different

colors. The hybrid model's prediction curve is closest to
the actual load curve, with the smallest deviation.

As can be seen from Figure 2, the prediction results of

the hybrid model are closest to the actual demand trend,

Long-term Demand Forecasting (24 h-168 h)
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followed by the Seq2Seq model, then the Transformer
model, the LSTM model, while the ARIMA model has a
large deviation.

Seq2Seq [N 1 ’

75 100
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Figure 3: Simulation results of long-term demand forecasting.

The x-axis represents time (hours), and the y-axis
represents load (MW). The actual load is shown as a solid
line, and the predicted loads of various models are shown
as dashed lines with different colors. The hybrid model
maintains high accuracy even in the long-term forecasting,
with stable performance. Figure 3 shows the performance

of each model in long-term demand forecasting. Like short-
term forecasting, Seq2Seq also performs significantly
better than other models in long-term forecasting,
especially when forecasting time periods with large
fluctuations, the performance is more stable.

Demand Forecasting under Different Weather Conditions

Sunny Weather

2800

2600

== ARIMA
LSTM
Seq2Seq
== Hybrid (Seq2Seq+ARIFA)

o
&
=3
=3

Load (MW)

VN~
2200

0 10 20 30 40
Time (hour)

Rainy Weather

~
8 @
S o
o o

[N
=
S
=1

Load (MW)

— = Hybrid (Seq2Seq+ARIMA)

0 10 20 30 40
Time (hour)

Figure 4: Demand forecast results under different weather conditions.

The left subfigure shows the forecast results under
sunny weather, and the right subfigure shows the forecast
results under rainy weather. The x-axis represents time
(hours), and the y-axis represents load (MW). The hybrid
model's prediction curve is smoother and closer to the
actual demand changes in both weather conditions,
demonstrating its strong adaptability. Figure 4 shows the
demand forecast results wunder different weather
conditions. Seq2Seq still performs better than other
models under complex weather conditions such as cloudy
weather, and the prediction curve is smoother and closer
to the actual demand changes.

5 Conclusion

This study constructs a hybrid Seq2Seq-ARIMA model
for power system load forecasting, optimized by
metaheuristic algorithms (genetic algorithm and particle
swarm optimization). The model integrates the advantages
of Seq2Seq in capturing nonlinear time series
dependencies and ARIMA in describing linear trends, and
realizes adaptive adjustment of hyperparameters through
optimization algorithms, thereby improving the accuracy
and robustness of load forecasting.

Through simulation experiments, it is verified that the
hybrid model has excellent performance in both short-

term and long-term load forecasting. Compared with
ARIMA, LSTM, Transformer, and single Seq2Seq models,
the hybrid model has lower MSE, RMSE, and MAE values.
The average error rate of short-term prediction is within
5%, and within 7% in the longer period. Statistical tests
confirm that the improvements are statistically significant.
In addition, the hybrid model shows good stability and
adaptability under different weather conditions.

However, this study also has certain limitations. The
model's computational complexity is relatively high, which
may affect its application in real-time forecasting scenarios
with strict time constraints. In future research, we will
focus on optimizing the model's structure to reduce
computational complexity while maintaining forecasting
accuracy. In addition, we will expand the dataset to include
more regions and longer time series to further verify the
generalization ability of the model.
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