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In recent years, deep learning techniques have received a great deal of attention in the context of hyperspec-
tral image (HSI) classification, particularly with regard to land cover mapping. Although 2D convolutional
neural networks (CNNs) are now widely used in this field, this study presents a refined, deeply structured
2D-CNN architecture that is specifically designed for spatial–spectral integration. Rather than introducing
a novel concept, the contribution lies in the balanced design of the architecture, which integrates dropout
and batch normalisation to enhance accuracy and generalisability on benchmark datasets. The proposed
network includes 10 convolutional layers organized into three blocks, each followed by max-pooling, batch
normalization, and dropout layers to reduce overfitting and improve model robustness. A fully connected
classifier with Softmax activation performs the final prediction. We trained the architecture using the Sali-
nas Valley dataset, which contains 54,129 labeled pixels across 16 land cover classes. The data were
meticulously segmented into two distinct components: the initial segment encompassed the primary data
set, while the subsequent segment comprised the ensuing data. It is noteworthy that 70% of the data was
allocated for training purposes. The remaining 30% of the budget was allocated for testing purposes. The
training was executed for 100 epochs by employing the Adam optimizer and categorical cross-entropy loss
function. The 2D-CNNmodel demonstrated superior performance in terms of classification accuracy when
compared with the KNN approach. The 2D-CNN model attained a classification accuracy of 94%, while
the KNN method achieved 88%. The findings indicate the efficacy of deep 2D-CNNs (Convolutional Neu-
ral Networks) in the classification of hyperspectral land cover. The results also demonstrate the networks’
suitability for implementation in large-scale remote sensing projects.

Povzetek: Razvita je uravnotežena globoka 2D-CNN arhitektura za prostorsko-spektralno učenje z dodat-
nimi mehanizmi. Na podatkih Salinas izvede kartiranje rabe tal bolj kvalitetno kot metoda KNN ob zmernih
strojnih računskih zahtevah delovanja.

1 Introduction

The analysis of hyperspectral images (HSIs) is of signifi-
cant value within the domains of environmental science and
agriculture, due to the rich spectral and spatial detail they
contain[1]. However, the process of classification of HSIs
is challenging due to three factors [2]. Firstly, HSIs are
characterised by a high dimensionality. Secondly, there is a
scarcity of labelled samples for training. Thirdly, redundant
information is present. In order to address these challenges,
researchers have explored a range of classification tech-
niques, including random forest (RF)[3], k-nearest neigh-
bors (KNN)[4], multinomial logistic regression (MLR)[5],
and support vector machines (SVM)[6].In recent years,
deep learning approaches such as stacked auto-encoders
(SAEs)[7], deep belief networks (DBNs)[8], and convolu-
tional neural networks (CNNs)[9] have garnered increasing
attention due to their capacity to extract meaningful patterns

from complex data [10],[11].

Hyperspectral image classification has long relied on tra-
ditional machine learning methods, but these approaches
have their drawbacks[12]. One major issue is that they
require manual feature selection, which makes it difficult
to fully grasp the complex relationships between spectral
and spatial information[13],[14]. Convolutional neural net-
works (CNNs) and deep learning in particular are becoming
the most successful approach [15]. By using spatial filter-
ing, CNNs can automatically perform feature learning and
extract useful spectral and spatial data[16]. This character-
istic has made them particularly well suited to the classifi-
cation of hyperspectral images.

Classifying hyperspectral images can be tricky, but
1D CNNs make it easier by focusing on spectral
information[17]. Instead of depending on manually cho-
sen features like traditional machine learning models, 1D
CNNs learn directly from the raw spectral data, spotting
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patterns that help differentiate materials based on their
unique spectral signatures[18]. Since each pixel in a hy-
perspectral image contains a rich set of spectral bands,
1D CNNs process these bands sequentially, identifying re-
lationships between neighboring wavelengths[19]. This
helps improve classification, especially when dealing with
materials that look similar in the spatial domain but have
distinct spectral characteristics[20]. A difficulty with the
1D CNNs is that they focus only on spectral information,
completely overlooking spatial details that are just as im-
portant for distinguishing between similar materials[21].
Discriminating materials based on spectral signatures is
something that 1D CNNs can do effectively. However,
they are unable to capture spatial textures and contextual
relationships between pixels. This limitation makes them
less effective. They are less effective when classifying ob-
jects that have similar spectral characteristics. But these
objects have distinct spatial patterns. In such cases, two-
dimensional convolutional neural networks (2D CNNs) of-
fer a distinct advantage by concurrently leveraging both
spectral and spatial information [?].
One of the different deep learning architectures, Con-

volutional neural networks of the 2D variety (2D-CNNs)
have exhibited considerable potential in the classification
of hyperspectral images (HSIs), particularly when adapted
to capture both spatial and spectral features. For instance,
Diakite et al.[23]. proposed a hybrid 3D–2D CNN that sep-
arately processes the spectral and spatial domains, enhanc-
ing classification precision while managing computational
complexity. In their work, Luo et al.[24]proposed the in-
troduction of HSI-CNN, an advanced neural network that
processes spectral bands as distinct input channels. This in-
novation facilitates the extraction of spatial features using a
streamlined two-dimensional configuration. Concurrently,
Feng et al.[25]developed a residual 3D–2D CNN that uti-
lizes hierarchical connections and deep architecture to en-
hance spectral–spatial learning and model generalization.
In the HSI context, a 2D CNN processes data by consid-

ering each Spectral Band as an Independent Image Channel,
in the same way that RGB images are processed in com-
puter vision[26]. It exploits the spatial continuity of hyper-
spectral data, which allows the network to capture spatial
textures and contextual relationships between pixels. While
2D CNNs typically involve higher computational complex-
ity than 1D CNNs [27] due to their operation over spa-
tial patches, they often yield improved classification per-
formance by integrating both spatial and spectral features
[28].
This paper is organized as follows: Section 2 gives a

brief overview of 2D Convolutional Neural Networks (2D-
CNNs) and explains how they work. Section 3 presents our
experiments, where we compare our 2D CNN model with
KNN using well-known hyperspectral datasets. Although
deep CNNs are now widely adopted in hyperspectral im-
age classification, many existing models remain relatively
shallow or lack structural regularization. This study does
not aim to introduce a novel architecture but instead fo-

cuses on refining and evaluating a deep 2D-CNN configu-
ration specifically tailored for robust spatial–spectral learn-
ing. This study seeks to address the following core research
question: Can a deep 2D convolutional neural network
(CNN) architecture outperform classical methods such as
KNN and shallow CNNs in hyperspectral image classifi-
cation, particularly in terms of accuracy, robustness, and
computational efficiency?
To answer this, we design a deeper 2D CNN with ten con-
volutional layers, batch normalization, and dropout layers.
The performance is evaluated through classification accu-
racy, per-class comparison, and an analysis of model effi-
ciency using the Salinas dataset. Our goal is to demonstrate
that a deeper architecture can deliver better generalization
and feature discrimination without excessively increasing
computational cost.

Review of state-of-the-art methods
In the field of hyperspectral image (HSI) classification, a
wide range of machine learning and deep learning methods
have been explored. Table 1 presents a comparative sum-
mary of several state-of-the-art (SOTA) approaches, high-
lighting their characteristics, performance on benchmark
datasets such as Salinas, and notable limitations.

Table 1: Comparative summary of state-of-the-art HSI clas-
sification methods

Method Key Characteris-
tics

Accuracy Limitations

Support Vector Ma-
chine (SVM)

Works well on small
datasets; uses spec-
tral features only

86% Requires feature
selection; does
not utilize spatial
information

Multinomial Lo-
gistic Regression
(MLR)

Models class proba-
bilities; linear clas-
sifier

83% Struggles with
non-linear sepa-
rability; ignores
spatial features

k-Nearest Neigh-
bors (KNN)

Simple, non-
parametric;
distance-based

88% Sensitive to noise;
lacks scalability

Shallow 2D CNN
(e.g., LeNet)

Captures spatial
structure via 2D
convolution

91% Insufficient depth
to model complex
HSI patterns

Proposed Deep 2D
CNN

10 convolutional
layers; includes
dropout, BN, and
pooling

94% Requires longer
training; larger
parameter count

As demonstrated in Table 1, a substantial number of
conventional methods are predicated on spectral informa-
tion exclusively, or are inadequate in capturing the critical
higher-order spatial dependencies inherent to hyperspectral
data. Convolutional neural networks (CNNs) with a lim-
ited depth exhibit enhancement in the extraction of spatial
features; however, they frequently lack the necessary depth
to adequately model intricate class separations. Previous
comparative studies have shown that deeper CNN architec-
tures significantly outperform shallow ones for HSI clas-
sification tasks [30]. Moreover, earlier hybrid approaches
combining feature selection with deep belief networks have
shown promise but are limited bymanual preprocessing and
scalability issues [29].
In order to address these deficiencies, we propose the
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implementation of a deep 2D CNN architecture that in-
corporates hierarchical feature learning, regularization lay-
ers, and robust generalization capabilities. This approach
has been demonstrated to enhance the precision of classi-
fication and ensure consistency across diverse vegetation
categories in the Salinas dataset. Similar improvements
were observed in optimized CNNs incorporating dropout
and batch normalization, which have proven effective in re-
cent Informatica studies [31].

2 Description of methodology
This study developed a refined architecture for a 2D convo-
lutional neural network (2D CNN) to classify hyperspectral
images (HSI) by simultaneously learning spatial and spec-
tral features from local image patches.The methodology in-
cludes the following key components: (1) data preprocess-
ing and patch extraction to prepare hyperspectral images for
training; (2) design of a deep 2D CNN architecture, incor-
porating dropout and batch normalization layers for regu-
larization; and (3) implementation of a training and valida-
tion procedure using the Salinas dataset, including hyper-
parameter tuning, ablation studies, and performance evalu-
ation against standard classifiers. The experimental results
demonstrate that our proposed method shows higher classi-
fication accuracy and efficiency than conventional meth-
ods, thus demonstrating its applicability in advanced re-
mote sensing applications. To ensure the transparency and
reproducibility of the research results, a detailed step-by-
step description of the experimental setup, implementation,
and validation measures of the method is provided in this
section.

2.1 2D convolution neural network
(2D-CNN)

The 2D convolutional neural network (CNN) is a deep
learning model designed primarily for image data process-
ing. It identifies spatial patterns like edges, textures, and
shapes through convolutional operations. CNNs have had
a major impact on fields such as machine vision, imaging,
and self-driving cars, thanks to their ability to accurately
detect patterns in 2D data. The 2D CNN is composed of
multiple layers that work together to extract features, re-
duce dimensionality and classify input data.

Input layer

The first entry point for the raw image data in the network is
known as the input layer. Generally, this input data is pre-
sented in the format of a 2-D matrix containing channels,
width and height. The intensity of light is only captured in
one channel in the case of greyscale photographs. Whereas
in colour images, the three channels represent each of the
main colours - red, green and blue (RGB). In more compli-
cated data, like hyperspectral photographs, the input chan-
nel layer handles a range of spectral bands instead of just the

colour channels that become visible. Generally, we start the
analysis at the input layer, where the main features of the
image data can be extracted and prepared for further pro-
cessing in a network.

Convolutional layers

An essential element of a CNN is the convolutional layer,
as it helps the template to recognize patterns in the image.
This is achieved using smaller filters, or kernels, which
move over the image. The filters are multiplied by pixels
of the image and then the results added together produce
a feature map.This process enables the network to detect
key patterns at different levels of detail. In simpler terms,
the convolution operation involves multiplying the image
pixels by the filter values over a specific area, then adding
them up. This is mathematically shown as:

h(x, y) =
∑m

i=0

∑n
j=0 I(x− i, y − j)K(i, j)

Where the I is the input image, K is the kernel (filter),
and h(x, y) is the resulting feature map.

Activation function (ReLU - rectified linear unit)

Activation functions are key for introducing non-linearity
in a neural network, helping a model for learning higher
complexity patterns. One of the most useful activation
functions in convolutional neural networks (CNNs) is the
Rectified Linear Unit (ReLU). The ReLU operates using a
transformation of the feature map as follows: ReLU(x) =
max(0, x) . That means negative values are changed to 0,
whilst the positive values are left the same. Introducing this
nonlinearity enables the network to pick up more compli-
cated patterns in the data, which makes it more efficient at
learning from complex inputs.

Pooling layers

An important element of CNN is pooling layers, which re-
duce the spatial dimension of the feature maps while pre-
serving themost important information. Their purpose con-
sists in reducing the spatial dimensions of feature maps.
This helps the model to be more efficient computationally
and to control over-adaptation by reducing the network’s
complexity. However, most clustering is maximum cluster-
ing, where the layer examines small sections of the features
map and selects the highest value of each. This allows the
most significant features to be preserved while eliminating
less significant detail, making the network more robust.

Flattening layer

On the flattening layer, any multi-dimensional feature maps
produced by the convolution and pooling layers are reduced
to a one-dimensional (1D) vector. This is essential since the
fully connected layer, which does the final classification,
must have the data as a 1D vector. Similarly, a flattening
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operationmakes sure that all previously extracted important
features are ordered in a way that makes them available for
accurate prediction. Put simply, the feature maps are ’flat-
tened’ into a single row of data, ready for the final decision.

Fully connected layers

The fully connected layers are an important component of
any neural network, and they come after the convolution
and pooling layers. They work much like a normal neural
network, with every neuron connected to all of the neurons
in previous layers. In effect, the connected layers take the
high-level features extracted from previous layers and put
them to work in the context of classification. The neurons
in the fully connected layers combine the features extracted
from the previous layers to form a representation that the
network can use to make predictions. The final fully con-
nected layer typically has as many neurons as there are clas-
sification categories. Each neuron in this layer corresponds
to a specific class, and the output of each neuron represents
the network’s confidence in that class.

Output layer

The output layer is the final stage in the model’s predic-
tion process. After the features go through the convolution,
pooling, and full connection layers, they are set for classifi-
cation. The output layer’s job is to take this data and trans-
form it into a format, usually probability values, that can
guide the final decision. This conversion is done using an
activation function. For binary classification, where there
are only two possible classes, the Sigmoid function is used.
In contrast, when dealing with more than two classes, the
Softmax function is applied for multi-class classification.

2.2 HSI classification based on the 2D CNN

A 2D CNN is a type of deep learning model that fo-
cuses on identifying spatial patterns in hyperspectral im-
ages (HSIs). Unlike 1D CNNs, which focus on analyzing
spectral information sequentially for each pixel, 2D CNNs
process local spatial neighborhoods as 2D patches, allow-
ing the model to learn spatial context, textures, and rela-
tionships between neighboring pixels. This capability com-
plements the spectral discrimination offered by 1D CNNs
and improves classification performance in scenarios where
spatial patterns are important. In HSI classification, 2D
CNNs autonomously retrieve spatial information via con-
volutional filters, enhance them with pooling layers for ef-
ficiency, and ultimately classify them using fully connected
layers. In contrast to conventional techniques such as KNN
or SVM, which necessitate manual feature selection, 2D
CNNs autonomously discern patterns, yielding enhanced
accuracy and superior generalization.

Data preprocessing for HSI

Prior to the implementation of the hyperspectral data into
the 2D CNN framework, the application of a preprocessing
pipeline becomes imperative, thus enhancing data quality
and model performance. The raw Salinas dataset comprises
224 spectral bands; however, 20 bands (108–112, 154–167,
and 224) are excluded due to elevated atmospheric noise,
resulting in 204 usable bands. Each spectral band is then
subjected tomin-max scaling in order tomap pixel values to
the [0, 1] range. In the subsequent stage of the process, local
patches measuring 11 by 9 pixels are extracted in the vicin-
ity of each labelled pixel. These patches are utilised to pre-
serve spatial context and function as input samples, with the
class label assigned from the central pixel. It is imperative
to note that patches located in proximity to the image bor-
ders are excluded with a view to ensuring the maintenance
of consistent input dimensions. The application of dimen-
sionality reduction techniques, such as PCA, is eschewed in
order to ensure the preservation of full spectral information
during the training of convolutional layers. The purpose of
the pre-processing stage is to ensure that the model training
is facilitated through the utilisation of inputs that are both
clean and normalised, and which are imbued with spatial
awareness.

Input layer for HSI

When classifying hyperspectral images (HSI) using 2D
CNNs, the input layer processes the image as a 3D matrix
consisting of height, width, and multiple spectral bands.
Hyperspectral imagery captures a much wider range of
wavelengths, including those beyond visible light, unlike
conventional color imagery which has only three channels
(RGB). For each pixel, the intensity values in these bands
are stored, providing rich spectral detail. A 2DCNN is built
to process this complex data, allowing the model to detect
patterns and precisely classify different materials and ob-
jects based on their unique spectral signatures.

Convolutional layers in HSI

During HSI classification, the convolutional layers extract
the key features fromHSI images by using filters to identify
patterns in different spectral bands. As HSI data includes
many more bands than traditional imagery, these layers
concentrate on extracting local spatial patterns from the
hyperspectral image data, utilizing the rich spectral chan-
nels as feature inputs to learn spatially correlated structures
across multiple bands.

Activation function with HSI

The Rectified Linear Unit (ReLU) activation function is of-
ten applied after the convolutional layers in the context of
hyperspectral image (HSI) classification. ReLU allows the
network to learnmore complex patterns, which are essential
for accurate HSI classification by introducing non-linearity
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into the model. All negative data is set at zero and all posi-
tive data is not changed.

Pooling layers in HSI

The pooling layer is used to reduce the size of the feature
map while retaining important information for classifica-
tion of hyperspectral images (HSIs). The pooling layer re-
duces the size of the feature map after the convolution layer
has extracted spatial and spectral features, while preserv-
ing the essential information. The most common pooling
methods are maximum pooling, which retains the highest
value in a region, and mean pooling, which calculates the
average.This step helps the model to retain the most sig-
nificant spatial features while reducing spatial resolution,
which improves robustness to local variations and reduces
computational cost.

Flattening layer in HSI

The flattening layer is essential for generating features for
the final classification stage of hyperspectral image (HSI)
classification. By passing through convolution and pooling
layers that capture key spatial and spectral features, the im-
age is transformed into a multi-dimensional feature map.
To make this data usable for classification, the flattening
layer converts it into a one-dimensional (1D) vector, allow-
ing the fully connected layers to process and classify the
information effectively

Fully connected layers in HSI

In hyperspectral image (HSI) classification, after the fea-
ture maps have been flattened and passed through the fully
connected layers, a prediction is made in the final layer
based on the learned patterns. Since the number of neurons
in this layer corresponds to several classes in the dataset
(e.g., land cover type, material), the prediction is selected
from the class with the highest output.

Output layer for HSI

In hyperspectral image (HSI) classification, the output layer
plays a vital role in converting the features extracted by
the network into actionable predictions. After the convolu-
tional, pooling, and fully connected layers have processed
the hyperspectral data, the output layer uses an activation
function to produce the final classification results. Soft-
max is generally used for HSI classification when there are
multiple classes, such as various land cover types, materials
or environmental features. Sigmoid activation is frequently
used for binary HSI classification (e.g. distinguishing be-
tween two types of land cover).

2.3 Proposed architecture for hyperspectral
image classification using 2D CNN

To improve the efficiency of feature extraction and classifi-
cation, we present a new 2D convolutional neural network
(CNN) architecture. Through a series of convolutional lay-
ers and max-pooling operations, the network progressively
decreases the spatial dimension of the input data while pre-
serving important features. With our method, we want to
achieve better performance by effectively capturing and im-
proving key patterns at each step, making sure that the most
important data is preserved throughout the network.

Figure 1: Overview of the proposed deep 2D-CNN archi-
tecture used for HSI. The model includes 9 convolutional
layers grouped into three blocks with max-pooling, batch
normalization, and dropout layers for regularization.

Figure 1 illustrates the proposed deep 2D CNN architec-
ture. The model is composed of three convolutional blocks,
each followed by max-pooling and dropout. Batch normal-
ization is integrated to stabilize and accelerate training. The
final dense layers perform classification across the 16 target
classes. This design enables the model to learn both low-
and high-level spatial–spectral features crucial for hyper-
spectral image analysis.
In the proposed 2D Convolutional Neural Network

(CNN), batch normalization layers are interspersed after
convolutional layers within each block to normalize the in-
termediate activations. This helps stabilize and accelerate
training, improving model convergence and generalization.
Our proposed architecture first normalizes and divides the
HSI data into training and test sets, and merges the features
before feeding them into the 2D-CNN for classification.
The model is structured with three main sets of convolu-
tional layers 2D (C1, C2, C3), each containing three layers.
In total there are nine convolutional 2D layers (c1, c2.....c9)
and three max-pooling 2D layers (P1, P2, P3). Also for
each group, the filters are configured as K1 = 128, K2 =
64, and K3 = 32 respectively. For the input data, we
assume the dimensions are (img-height, img-width, img-
channels). At the first level, the data is moved through a
first set of convolutional layers C1 with K1 filters, which
transforms the data to (img-height, img-width, K1). The
data is then passed through the second convolution C2 us-
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ing K2 filtering, and the spatial dimensioning is adapted
according to the step and pad used. Finally, after pass-
ing through the third set of convolutional layers C3 and the
max-pooling layers P3, the output dimensions are reduced
to (img-height, img-width, K3) depending on the pooling
strategy used. Dropout layers are incorporated after each
max-pooling block and between dense layers to improve
regularization and reduce overfitting.

Training approaches

We propose a training approach for 2D convolutional neu-
ral networks (CNNs) to optimize the network parameters
efficiently for hyperspectral image classification. It con-
sists of two main phases: Forward Propagation and Back-
propagation. In the forward propagation stage, the input hy-
perspectral data is processed through several convolutional
and max-pooling layers, allowing the network to extract
essential spatial features. In the back-propagating stage,
the weights of the network are adjusted by calculating the
slopes of the loss function which measures the difference
between the predicted output and the actual label.

Forward propagation: The input image of (h, w, c)
dimensions will be passed through multiple convolution
layers, each of which will be applied to the image to de-
tect different features. The convolution operation produces
outputs. These outputs are processed as follows: for each
layer i, the input ai is transformed using the equation

ai+1 = gi(zi) (1)

wherezi = wiai + bi represents the weighted sum of the
input and bias, and our activation function ReLu is g(.)
present by g(zi) = max(0, zi). After each convolution op-
eration, a max-pooling layer is applied to reduce the spatial
dimensions of the data.
Once the data has passed through all the convolution and

pooling layers, it is flattened into a 1D vector and fed into a
fully connected layer. This layer calculates a weighted sum
of the inputs. This produces the final output. Then, the
output is run through a softmax function, which converts
it into a probability distribution over different classes. The
softmax function is defined as:

y =
eW1a1+b1∑K
i=1 e

Wiai+bi
(2)

where Wi represent weights, ai the input vector, and K
the number of classes.

Backpropagation: The training parameters are up-
dated using the gradient descent method, which involves
minimizing a cost function and calculating the partial
derivative of the loss function concerning each training pa-
rameter. Having defined the architecture of a 2D CNN clas-
sifier and the associated trainable parameters, we can run
and reload any stored parameters to classify hyperspectral

image data. This classification process is analogous to the
forward propagation step, where we can determine the clas-
sification results for the test dataset.

Ablation study

In order to assess the individual contributions of these ar-
chitectural elements to the overall performance of the pro-
posed deep 2D-CNN, an ablation study was conducted us-
ing the Salinas dataset. The classification accuracy when
key components of the network are removed or modified is
presented in Table 2.

Table 2: Ablation study on the impact of individual archi-
tectural components

Model Variant Accuracy (%)
Full architecture (with
dropout, BN, 10 conv
layers)

94.0

Without dropout layers 91.7
Without batch normal-
ization

90.2

Reduced number of fil-
ters (half per layer)

89.5

Without dropout and BN 87.8

The findings substantiate the significance of each design
decision. The elimination of dropout resulted in a 2.3% re-
duction in accuracy, while the omission of batch normal-
ization caused an even more substantial decline (3.8%).
A 4.5% decrease in accuracy was observed as a conse-
quence of the reduction in the number of filters, which
consequently diminished the model’s capacity for feature
extraction. The most marked decline was observed in
the simultaneous removal of batch normalisation and the
dropout layer. This result is particularly noteworthy as it
underscores the collective impact of these two regularisa-
tion mechanisms, highlighting their synergetic role in the
model’s training. This study emphasises the significance
of architectural depth and regularisation techniques in at-
taining optimal classification performance in hyperspectral
image classification.

Training configuration and validation strategy

The proposed deep two-dimensional convolutional neural
network (2D-CNN) was implemented utilising the Python
programming language and the Keras framework with a
TensorFlow backend. All experiments in this study were
conducted on a workstation equipped with an NVIDIA
RTX 3080 GPU (10 GB VRAM), an Intel Core i7 proces-
sor, and 32 GB of RAM.
The model underwent a training phase that spanned 100

epochs. This training was facilitated by the use of the Adam
optimiser, with a initial learning rate of 0.001 and a batch
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size of 256. The loss function was defined as categorical
cross-entropy. It was estimated that the overall duration of
the training programmewas approximately 120minutes per
session. To facilitate themonitoring of performance and the
prevention of overfitting, a proportion of the training data
was reserved for use as a validation set. This was accom-
plished through the implementation of early stopping with
a patience of 10 epochs, based on the validation loss.
A range of hyperparameters, including learning rate,

batch size, number of filters per layer, and dropout rate,
were subject to empirical fine-tuning via a grid search ap-
proach. Following the conduction of empirical trials which
yielded values ranging from 0.2 to 0.5, it was established
that the optimum dropout rate would be 0.3. The assess-
ment of overfitting was conducted through the analysis of
both training and validation accuracy and loss curves. Reg-
ularization techniques, including dropout and batch nor-
malization, were incorporated into the architecture to en-
hance the control of overfitting.

3 Experimental assessment and
analysis

In this study, we concentrate on assessing the performance
of a new 2D-CNN architecture for the classification of hy-
perspectral images (HSIs), addressing a gap in existing
studies which often overlook the efficiency of computa-
tion and the spectral feature extraction. In the first section,
Study Area and Data Collection for Hyperspectral Imagery,
the Salinas Valley HSI dataset, composed largely of veg-
etated regions, is used to evaluate the classification accu-
racy of our proposed model. In the second section, Re-
sults Interpretation and Analysis, it is demonstrated that
our proposed 2D-CNN method improves the classification
accuracy significantly for 16 classes, especially for veg-
etation types, when compared to the traditional k-nearest
neighbours (KNN) method. In the final section, Results
and Comparisons, our proposed method is presented as out-
performing existing techniques in terms of accuracy and
computational requirements, while addressing the limita-
tions of focusing on a single dataset. Future studies could
confirm the robustness of the approach and explore opti-
misation strategies under resource-constrained conditions,
as well as extending the approach to more diverse environ-
ments. In conclusion, this study highlights the potential of
2DCNN-assistedHSI classification to revolutionise remote
sensing applications, improving accuracy without increas-
ing resource requirements.

3.1 Study area and data collection for
hyperspectral imagery

Hyperspectral imaging

The Hyperspectral sensors Detect the flux intensity for a
given surface and a determined wavelength, i.e. a physi-

cal quantity in watts per square meter steradian (W/(m²∙sr)).
More precisely, for every unit of surface area (correspond-
ing to one pixel of the image), this sensor detects the light
emitted and reflected by the object as a spectrum of sev-
eral hundred channels, defining a spectral response curve.
For Earth observation, the signals arriving from the Earth’s
surface are modified by atmospheric disturbances such as
clouds, water vapour, atmospheric aerosols, etc. Thus, for
surface and land cover remote sensing, the preferred mea-
sure is reflectance, defined as the ratio of the emitted flux
from the surface to the incident flux. This ratio is an in-
dication of the reflectivity of a particular object for each
wavelength band of light. The reflectance is an intrinsic
property of the material, independent of the environment,
and is therefore very discriminating for classification.
Hyperspectral images are in practice (w; h; B) tensors,

i.e. 3-dimensional cubes having two spatial dimensions
(width w and height h) and one spectral dimension (with
B-bands). This hypercube is anisotropic compared to vol-
umetric data, e.g. seismic data cubes: the three dimensions
do not have the same physical displacement. However, lin-
ear operations on a 3D subset of the cube are mathemati-
cally and physically valid because all values in the hyper-
cube are expressed in the same unit, either luminance or re-
flectance. When dealingwith convolutions and filtering op-
erations on the hypercube, this property will come in handy.

Dataset description

For our studies, we used the Salinas Valley HSI data set,
which was collected by the 224-band AVIRIS sensor over
the Salinas Valley in California and is characterised by its
high spatial resolution (3.7-metre pixels).
The figure 2 shows the image and the ground truth of

the Salinas Valley, respectively, acquired with the with the
Airborne Visible/Infrared Imaging Spectrometer (AVIRIS)
sensor in October 1998. The HSI consists of 512217 pix-
els and has a resolution of 3.7m. The 400-2500nm spec-
tral data were recorded in 224 bands, of which the 108–
112 (5 bands), 154–167 (14 bands), and band 224 (1 band)
were removed due to high atmospheric absorption, totaling
20 bands removed and leaving 204 reliable bands. Iden-
tifying, measuring and monitoring the composition of the
Earth’s surface and atmosphere was the main objective of
the AVIRIS project. Earth’s surface and atmosphere from
the signatures of molecular absorption and particle scatter-
ing. Understanding processes related to the global envi-
ronment and climate change has been the focus of research
using AVIRIS data.
Each color in the ground truth map corresponds to one

of 16 annotated land cover classes, such as vineyard, let-
tuce (at multiple growth stages), or fallow soil. These la-
bels serve as the basis for supervised training and perfor-
mance evaluation of classification models. The map also
highlights spatial variability and class imbalance, making
it a valuable benchmark for testing spatial–spectral learn-
ing architectures like the proposed 2D CNN.
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broccoli green weeds 1
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vinyard vertical trellis

Figure 2: Ground truth label map of the Salinas dataset,
containing 16 distinct land cover classes. Each class is
color-coded.

To illustrate the diversity of spectral information in hy-
perspectral images, Figure 3 presents selected individ-
ual bands from the Salinas dataset. Each band corre-
sponds to a particular wavelength and reveals different re-
flectance characteristics. These variations are key to en-
abling spectral-based classification of similar-looking sur-
face materials, a core strength of CNN-based models.

Band - 7 Band - 46 Band - 18 Band - 22 Band - 74

Band - 90 Band - 20 Band - 26 Band - 36 Band - 77

Figure 3: Sample spectral bands from the Salinas hyper-
spectral image (e.g., Band 7, Band 22, Band 90).

Our studies used the remaining 204 bands after removing
20 water absorption bands (see figure 3). This scene was
acquired with the AVIRIS sensor over the Salinas Valley,
California, and is characterised by high spatial resolution
(3.7-metre pixels). The dataset includes different land types
such as vegetables, bare soil, and vineyards, with a total of
16 different classes.

3.2 Result interpretation and analysis
Training and testing data

After integration, the data needs to be input into the 2D-
CNN network. It is important before this step to split the
data into training and test groups and to delete any back-
ground pixel samples. In our method, we have separated
our data into 0.7 for training and 0.3 for testing. this pro-
cess of preparation reduces the computational burden and
more details can be found in Table 3.

Table 3: The number of training and test samples in the
Salinas dataset

Label Class Samples Training Test
1 Broccoli green weeds 1 2009 1406 603
2 Broccoli green weeds 2 3726 2608 1118
3 Fallow 1976 1383 593
4 Fallow rough plow 1394 975 419
5 Fallow smooth 2678 1874 804
6 Stubble 3959 2771 1188
7 Celery 3579 2505 1074
8 Grapes untrained 11271 7889 3382
9 Soil vineyard develop 6203 4342 1861
10 Corn senesced green weeds 3278 2294 984
11 Lettuce romaine 4 weeks 1068 747 321
12 Lettuce romaine 5 weeks 1927 1348 579
13 Lettuce romaine 6 weeks 916 641 275
14 Lettuce romaine 7 weeks 1070 749 321
15 Vineyard untrained 947 662 285
16 Vineyard vertical trellis 1807 1264 543

Description of program

The Python program is implemented using the Keras API,
which provides a high-level API for neural networks that
can be executed on top of TensorFlow. We import the Se-
quential class from the Keras library, which we use to ini-
tialise a sequential model. This is composed of multiple
layers, which contain Conv2D, BatchNormalisation, Max-
Pooling2D, Dropout, Flatten and Dense (see table 4).
The Conv2D is a two-dimensional convolutional layer

which operates on the input data by convolution with a
specified number of filters and kernel size, using the ReLU
activation function to introduce non-linearity. In our pro-
posed model, multiple Conv2D layers are successively ap-
plied to extract progressively more complex features from
the input data. BatchNormalisation is used to normalize the
input data by adapting and scaling the activations of the pre-
vious layers. MaxPooling2D is applied to decrease the spa-
tial size of the data by selecting the maximum value within
a given pool size, thus reducing the computational load
and controlling overfitting. The Dropout controls overfit-
ting by randomly dropping a percentage of the input units.
Doing this helps the model to generalise better and avoid
over-reliance on any particular feature. The Flatten layer is
used to transform the multi-dimensional output of the con-
volutional and pooling layers into a one-dimensional array
that can be passed to the fully connected (dense) layers.
Density is a fully connected layer which applies a linear
operation to input data. The initial Density layer has 25
entities, followed by a Drop Out layer to continue to ad-
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Table 4: 2D CNN model design and parameter summary
(with batch normalization after each Conv2D layer)

Layer (type) Output Shape Param
InputLayer (None, 11, 9, 128) 2,432

Layer1 (Conv2D) (None, 11, 9, 128) 147,584
BatchNorm1 (BatchNormalization) (None, 11, 9, 128) 512

Layer2 (Conv2D) (None, 11, 9, 128) 147,584
BatchNorm2 (BatchNormalization) (None, 11, 9, 128) 512

Layer3 (Conv2D) (None, 11, 9, 128) 147,584
BatchNorm3 (BatchNormalization) (None, 11, 9, 128) 512

MaxPooling_Layer1 (MaxPooling2D) (None, 5, 4, 128) 0
Dropout1 (Dropout) (None, 5, 4, 128) 0
Layer4 (Conv2D) (None, 5, 4, 64) 73,792

BatchNorm4 (BatchNormalization) (None, 5, 4, 64) 256
Layer5 (Conv2D) (None, 5, 4, 64) 36,928

BatchNorm5 (BatchNormalization) (None, 5, 4, 64) 256
Layer6 (Conv2D) (None, 5, 4, 64) 36,928

BatchNorm6 (BatchNormalization) (None, 5, 4, 64) 256
MaxPooling_Layer2 (MaxPooling2D) (None, 2, 2, 64) 0

Dropout2 (Dropout) (None, 2, 2, 64) 0
Layer7 (Conv2D) (None, 2, 2, 32) 18,464

BatchNorm7 (BatchNormalization) (None, 2, 2, 32) 128
Layer8 (Conv2D) (None, 2, 2, 32) 9,248

BatchNorm8 (BatchNormalization) (None, 2, 2, 32) 128
Layer9 (Conv2D) (None, 2, 2, 32) 9,248

BatchNorm9 (BatchNormalization) (None, 2, 2, 32) 128
MaxPooling_Layer3 (MaxPooling2D) (None, 1, 1, 32) 0

Dropout3 (Dropout) (None, 1, 1, 32) 0
Flatten (Flatten) (None, 32) 0

DenseLayer (Dense) (None, 25) 825
Dropout4 (Dropout) (None, 25) 0
DenseLayer1 (Dense) (None, 16) 442

dress overfitting. The second Dense layer uses 16 units
and returns the class probabilities using the softmax acti-
vation function. Finally, the model is summarised using
the model.summary() function, which outputs the layers,
shapes and parameters of the model.

3.3 Findings and comparisons
With a focus on improving accuracy and computational ef-
ficiency, this study investigated the effectiveness of a novel
2D CNN architecture for hyperspectral image (HSI) classi-
fication. However, previous work on HSI classification has
often focused on spatial feature extraction or dimension re-
duction, without considering a trade-off between high clas-
sification accuracy and resource usage. When applying
these methods to large datasets or edge computing environ-
ments where computational resources are limited, this gap
becomes critical.
Our model used a standard training procedure with 100

epochs, a batch size of 256, categorical cross-entropy loss,
and an Adam optimizer after the data were input into the
CNN architecture (Figure 1). The table 4 shows the speci-
fications of each 2D CNN layer, providing a detailed break-
down of the architecture. We have use the Salinas dataset
to evaluate the classification accuracy for our method and
we have compared our results with the traditional k-nearest
neighbours (KNN) classifier.
The classification accuracy for each class is summarized

in Table 5, showing that our proposed 2D CNN method

Table 5: Accuracy per class for Salinas dataset comparing
our method with the KNN method

Label Class KNN Proposed Method
1 Broccoli green weeds 1 0.99 1.0
2 Broccoli green weeds 2 0.98 1.0
3 Fallow 0.70 0.99
4 Fallow rough plow 0.98 0.99
5 Fallow smooth 0.84 0.99
6 Stubble 0.97 1.0
7 Celery 1.0 1.0
8 Grapes untrained 0.78 0.88
9 Soil vineyard develop 0.84 1.0
10 Corn senesced green weeds 0.73 0.98
11 Lettuce romaine 4 weeks 0.92 0.98
12 Lettuce romaine 5 weeks 0.89 0.99
13 Lettuce romaine 6 weeks 0.91 1.0
14 Lettuce romaine 7 weeks 0.88 0.99
15 Vineyard untrained 0.56 0.81
16 Vineyard vertical trellis 0.98 1.0

Accuracy 0.88 0.94

achieved higher accuracy than KNNon 14 out of 16 classes,
matched performance on 1 class, and showed no signifi-
cantly lower accuracy on any class. Our main results show
that the proposed 2D CNN approach provides significantly
higher classification accuracy for vegetation classes, such
as broccoli, celery, and vineyard, where spatial textures and
contextual patterns are critical for differentiation. This im-
proved performance stems from the ability of 2D CNNs to
jointly model spatial and spectral information within local
patches, allowing the network to capture subtle variations
in both spectral signatures and spatial arrangements of crop
types.
In addition to KNN, we benchmarked our model against

traditional classifiers including SVM and Random Forest,
as well as a shallow CNN (LeNet-5), with results summa-
rized in Table 6.

Table 6: Comparative evaluation of classification perfor-
mance on the Salinas dataset

Model Accuracy Precision Recall F1-score
Random Forest (RF) 87.2% 0.88 0.86 0.87

Support Vector Machine (SVM) 86.0% 0.87 0.85 0.86
Shallow 2D CNN (LeNet-5) 91.1% 0.91 0.90 0.90
k-Nearest Neighbors (KNN) 88.0% 0.89 0.87 0.88
Proposed Deep 2D CNN 94.0% 0.96 0.93 0.95

To further validate our model, we compared it with Sup-
port Vector Machine (SVM), Random Forest (RF), and a
shallow 2D CNN (LeNet-5), in addition to k-nearest neigh-
bors (KNN). As shown in Table 6, the proposed deep 2D
CNN achieved the highest accuracy and also outperformed
all baselines in terms of precision, recall, and F1-score. The
shallow CNN performed better than the traditional classi-
fiers, which emphasizes the advantage of spatial feature
learning. However, it still fell short of the deep architec-
ture in capturing complex spatial–spectral patterns. These
results confirm that deeper CNNs, with dropout and batch
normalization, are more capable of handling hyperspectral
classification challenges.
The classification maps presented in Figures 4 and 5

demonstrate the advantages of our proposed 2D CNN ap-
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Figure 4: Ground truth classification map of the
Salinas Valley dataset showing 16 land cover
classes. Each color corresponds to a different
class as indicated by the colorbar on the right.
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Figure 5: Predicted classification map using the
proposed 2D CNN method on the Salinas Valley
dataset. Each color corresponds to a predicted
land cover class as shown in the colorbar.

proach, especially its accurate identification of vegetation
areas, which aligns closely with the ground truth data. The
classification results in Figure 5 are consistent with quanti-
tative results summarized in Table 5, including a 94% over-
all accuracy and high per-class accuracies. This supports
the model’s effectiveness in capturing spatial–spectral pat-
terns across crop types. Each color in the maps corresponds
to a specific land cover class: dark blue for broccoli green
weeds 1, deep blue for broccoli green weeds 2, blue for
fallow, cyan for fallow rough plow, light cyan for fallow
smooth, teal for stubble, light blue for celery, purple for
grapes untrained, lavender for soil vineyard develop, or-
ange for corn senesced green weeds, light yellow for let-

tuce romaine 4 weeks, yellow for lettuce romaine 5 weeks,
orange-yellow for lettuce romaine 6 weeks, dark red for let-
tuce romaine 7 weeks, brown for vineyard untrained, and
pale yellow for vineyard vertical trellis.
Our method demonstrates that enhanced spectral feature

extraction without negatively impacting computational ef-
ficiency, a major limitation of previous work, when com-
paring our results to other studies. For example, by si-
multaneously integrating both spectral and spatial domain
information, our approach achieves superior classification
performance compared to models that focus solely on ei-
ther spectral or spatial features, achieves superior classifi-
cation performance without the heavy computational bur-
den typically associated with 2D CNNs. Nevertheless,
our study was limited to the Salinas dataset, which con-
tains vegetation data. This limitation means that our results
may not be generalisable to datasets containing more di-
verse or urban environments. More research is necessary
to confirm the stability of the method in different types of
hyperspectral data and environments. Our study demon-
strates that the suggested 2D CNN method is more ro-
bust to spectral noise and outperforms traditional classi-
fiers in vegetation-related classification tasks. Future stud-
ies may explore the implementation of this architecture
on other hyperspectral datasets, with focus on optimising
2D CNN power under constrained computational resources
while maintaining high accuracy. Recent observations sug-
gest that the proposed 2D CNN architecture significantly
enhances HSI classification accuracy. Our findings pro-
vide conclusive evidence that this improvement is associ-
ated with a balanced approach to handling complex spectral
datasets, rather than increased computational costs. This
enhanced classification method has the potential to bene-
fit remote sensing applications, particularly in agriculture
and environmental monitoring, where both efficiency and
accuracy are crucial.

3.4 Discussion

A comparative analysis of the performance of the proposed
deep 2D-CNN model with that of multiple state-of-the-art
classification techniques has been conducted on the Sali-
nas dataset. The objective of this analysis is to furnish a
more exhaustive evaluation of the efficacy of the proposed
model. The proposed methodology demonstrated an aggre-
gate accuracy of 94%, which exceeds the performance met-
rics of the conventional k-nearest neighbor (kNN) classifier
(88%), support vector machines (SVM, 86%), and multi-
nominal logistic regression (MLR, 83%). As the study il-
lustrates, the model under consideration demonstrates a su-
perior level of class-level performance, particularly with re-
spect to differentiating between vegetation types, such as
broccoli, celery, and vineyard classes.
The categories identified are particularly conducive to

analysis due to the inherent fine-grained spectral and spatial
patterns characteristic of this phenomenon. This enhance-
ment in performance can be ascribed to the advanced con-
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figuration of the network architecture, which encompasses
the integration of ten convolutional layers, in conjunction
with batch normalization and dropout mechanisms. These
augmentations have been shown to enhance the efficacy of
feature extraction while concomitantly preventing the oc-
currence of overfitting. In comparison with shallow CNN
models, the depth of our network enables hierarchical fea-
ture learning, thereby facilitating the capture of both low-
and high-level spatial features.
With respect to computational efficiency, the proposed

model necessitates a greater investment of training time due
to its complexity and parameter density. However, this in-
vestment is justified, as the training process remains man-
ageable (approximately 120 minutes per epoch on a GPU)
and the subsequent inference is efficient once trained. It
is noteworthy that the total number of trainable parame-
ters (approximately 630,000) is reasonable in comparison
to the most advanced deep architectures currently available,
thereby ensuring a balanced compromise between achiev-
ing the desired level of accuracy and optimizing resource
allocation.
In summary, the proposed architecture is designed to bal-

ance three primary objectives: accuracy, generalization,
and computational feasibility. These characteristics posi-
tion the architecture as a suitable candidate for practical ap-
plications in the domain of large-scale remote sensing.

Table 7: Published benchmarks on Salinas dataset (selected
studies)

Study Architecture Accuracy Notes
Chen et al. (2016) 3-layer CNN 91.5% Shallow network,

limited spatial mod-
eling

Zhao and Du (2016) Spectral–spatial
deep model

92.8% Combines 1D and
2D filtering

Vaddi et al. (2020) Integrated 1D-2D
CNN

93.4% Hybrid model; high
complexity

This work Deep 2D CNN (10
layers)

94.0% Strong regular-
ization; efficient
architecture

As demonstrated in Table reftab:benchmark, the pro-
posed deep 2D-CNN demonstrates a competitive perfor-
mance in comparison to previously published methods on
the Salinas dataset. While other studies such as the ones by
Chen et al. (2016) and Zhao and Du (2016) have demon-
strated accuracies within the 91–93 percent range, the pro-
posed architecture in this study has been shown to outper-
form these benchmarks. This is achieved without signifi-
cantly increasing the required training time and without the
need for a more complex model compared to hybrid or 3D
approaches. This underscores its viability for practical im-
plementation in large-scale HSI classification.

4 Conclusion
This study presents a new technique using convolutional
neural networks, 2D-CNN, for classifying hyperspectral
images (HDSIs). Firstly, the data is normalised for the
extraction of both spatial and spectral features. The pro-

posed 2D CNN architecture consists of three sets of convo-
lutional and pooling layers, with batch normalization (BN)
and dropout mechanisms incorporated to improve general-
ization and reduce overfitting. The classification approach
has been evaluated on the Salinas Valley dataset, where
it outperformed a traditional K-Nearest Neighbors (KNN)
baseline. Future work will expand the evaluation to ad-
ditional benchmark datasets. While the proposed method
demonstrates strong classification performance on the Sali-
nas dataset, the evaluation is currently limited to this sin-
gle agricultural context. As hyperspectral image character-
istics may vary across different geographical and spectral
domains, further testing on additional benchmark datasets
is essential to assess generalizability.
Future work will include experiments on the Pavia Univer-
sity and Indian Pines datasets, which contain more diverse
land cover types and urban scenes. These datasets will al-
low us to validate the robustness of the proposed architec-
ture in handling different spatial-spectral distributions and
scene complexities.
Future work will focus on reducing the running time of

the algorithm and applying the proposed method to a wider
range of HSI datasets using 3D CNNs. We will also in-
vestigate the merging of 1D and 2D CNNs and 2D and 3D
CNNs.
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