https://doi.org/10.31449/inf.v49i9.9498

Informatica 49 (2025) 315-342 315

HyScaleFlow: An ML-Driven DAG-Based Orchestration
Framework for Real-Time Stream Processing in Hybrid Cloud

Environments

Srinivas Lakkireddy
Independent Researcher, USA
E-mail: reachlakkireddy@gmail.com

Keywords: hybrid cloud orchestration, real-time stream processing, machine learning, fault tolerance, resource

optimization

Received: June 1, 2025

The increasing complexity of real-time data processing across hybrid cloud and edge environments
has revealed significant limitations in existing distributed stream processing systems. While
frameworks like Apache Spark and Flink offer strong scalability and performance, they lack the
orchestration intelligence required to adapt to dynamic workloads, anticipate failures, and optimize
resource usage in heterogeneous environments. Traditional rule-based or reactive orchestration
approaches fail to deliver the responsiveness and fault resilience needed for mission-critical
applications in domains such as loT analytics, innovative infrastructure, and cyber-physical systems.
To address these challenges, this paper presents HyScaleFlow, a scalable and modular framework
that integrates real-time stream processing with machine learning—driven orchestration. The
architecture combines Apache Spark (at the edge) and Apache Flink (in the cloud) with a hybrid DAG-
based orchestration strategy using Apache Airflow and Dagster. A key innovation is the FlowGuard
module, which uses XGBoost models (classifier and regressor) to predict node failures and forecast
resource load based on Prometheus-exported telemetry metrics. These predictions dynamically inform
DAG execution, enabling preemptive scaling, container migration, and workload-aware task routing.
Evaluations were conducted using the NYC Taxi Trip dataset (over 1.1 billion records) on a hybrid
cloud testbed that combines Spark at the edge and Flink in the cloud, orchestrated via
Docker/Kubernetes. Results reveal that HyScaleFlow improves DAG completion rates by 16.8%,
reduces task retry rates by over 60%, and enhances fault recovery times by up to 40%. Additionally,
the framework achieves a 19.5% reduction in cloud execution cost and a 35.9% gain in resource
efficiency. HyScaleFlow demonstrates strong utility for real-time, data-intensive applications by
unifying predictive intelligence with stream processing. It provides a replicable, cost-effective, and
resilient solution for hybrid cloud data engineering, advancing the state of intelligent orchestration.

Povzetek: Studija skusa omogociti zanesljivo, samoprilagodljivo in stroskovno ucinkovito obdelavo
podatkovnih tokov v realnem casu v hibridnih oblacno-robnih okoljih, z avtomatskim zaznavanjem
anomalij, prerazporejanjem virov in preprecevanjem odpovedi za kriticne industrijske in poslovne
aplikacije. HyScaleFlow je hibridni okvir za sprotno obdelavo tokov: Spark na robu, Flink v oblaku,
orkestracija Airflow+Dagster. Modul FlowGuard (XGBoost, Prometheus metrike) napoveduje
odpovedi/nalaganje, sprozi skaliranje/migracije.

1 Introduction

The explosive growth of real-time data generated by
IoT devices, cloud applications, and cyber-physical
systems has led to an increased adoption of distributed
stream processing frameworks, such as Apache Spark
and Apache Flink, in hybrid cloud environments.
These frameworks offer high-throughput, low-latency
processing but lack intelligent orchestration
capabilities to adapt to unpredictable workloads,
resource constraints, and system faults. Traditional
orchestration strategies are primarily static, rule-based,
or reactive, which limits their ability to ensure service
continuity and efficiency in dynamic runtime
conditions [1], [3]. Existing literature highlights the

importance of autoscaling and stream framework
benchmarking in hybrid deployments [12], [13], but
few solutions integrate predictive machine learning
with distributed data engineering pipelines. Moreover,
most approaches do not coordinate multi-engine
deployments across edge-cloud nodes or adapt DAG
execution in real time based on system health metrics
[14].

To address these limitations, this research proposes
HyScaleFlow, a scalable, ML-enhanced framework for
real-time data engineering and orchestration across
hybrid cloud infrastructures. The primary objective is
to design a modular system that enables predictive
failure mitigation, workload-aware scaling, and

https://doi.org/10.31449/inf.v49i9.9659
mailto:reachlakkireddy@gmail.com

316 Informatica 49 (2025) 315-342

efficient task distribution using Apache Spark and
Flink, orchestrated through Airflow, Dagster, and a
novel ML module called FlowGuard. The key novelties
of this research include: (i) integration of dual-stream
processing with hybrid DAG orchestration, (ii)
FlowGuard’s real-time failure and load prediction
using XGBoost models trained on Prometheus-
exported metrics, and (iii) dynamic task routing and
container management across edge and cloud nodes.
These innovations enable intelligent orchestration
beyond static or reactive models, supporting fault
resilience, throughput efficiency, and operational cost
reduction.

The contributions of this paper are threefold: first, it
presents a robust, predictive orchestration architecture
unifying multiple execution engines; second, it
demonstrates significant improvements in execution
metrics such as DAG completion, task retry rates, and
system uptime through experimental validation; third,
it offers a replicable deployment strategy supported by
public datasets and open-source tools, enabling broader
adoption in industry and academia.

In alignment with the proposed framework and its
objectives, this study addresses the following research
questions:

RQIl: Can a machine learning—driven orchestration
strategy improve DAG completion and reduce task
retry rates in hybrid cloud environments?

RQ2: How accurately can system-level telemetry
metrics forecast node failure and workload surges
using XGBoost-based predictive models?

RQ3: To what extent can predictive orchestration
reduce cloud resource costs and improve throughput
efficiency compared to rule-based alternatives?

These questions guide the design, implementation, and
evaluation of HyScaleFlow and form the basis for the
comparative experimental analysis presented in this

paper.

The rest of this paper is organized as follows. Section
2 reviews related work in hybrid stream processing,
orchestration strategies, and ML-driven system
adaptation. Section 3 details the architecture,
FlowGuard algorithm, and orchestration workflow in
HyScaleFlow. Section 4 presents the experimental
setup, performance evaluation, and visualization of
results. Section 5 discusses the findings on existing
works and outlines the system's limitations. Finally,
Section 6 concludes the study and provides directions
for future enhancements to increase generalizability,
efficiency, and scalability.

2 Related work

This literature review explores scalable distributed data
processing, hybrid cloud orchestration, and intelligent

S. Lakkireddy

stream analytics using Al-enabled frameworks. Ullah
et al. [1] compared Hadoop, Spark, and Flink on a
hybrid cloud; Flink was the fastest, and Spark the most
cost-effective. In the future, cross-cloud latency and
scaling may be optimized for improved performance.
Ponnusamy and Gupta [2] investigated the scalability
and effectiveness of data partitioning in cloud
processing; future research might enhance tactics for
real-time cloud analytics. Henning and Hasselbring [3]
scaled benchmarks for stream frameworks, revealing
linear scaling but varying efficiency; further research
may optimize cost-performance trade-offs. Irshad et al.
[4] proposed a secure loT-cloud connection utilizing an
SSCA that incorporates MBRA, PQC, and blockchain,
with performance verified. Further development would
include broader scalability. Islam and Bhuiyan [5]
proposed a scalable green IoT-cloud healthcare
platform that utilizes hierarchical clustering and does
not validate energy measurements; further
sustainability research will be explored in future
studies.

Banimfreg [6] suggested cloud infrastructure for
bioinformatics, and the present advantages were
assessed. Drawbacks included privacy issues with data.
Future work included enhancing security and training.
Lohitha and Pounambal [7] employed push-pull and
publish/subscribe communications; the proposed
scalable IoT-cloud architecture reduces device
overhead and may improve efficiency in the future.
Singh et al. [9] performed better than other databases
when evaluated against databases for financial time-
series in a hybrid cloud; further research should
examine larger datasets and latency measures. Khriji et
al. [10] proposed that REDA is an inexpensive, real-
time, event-driven [oT cloud system that utilizes Kafka
and MQTT; further development may improve
scalability.

Chen et al. [11] utilized NVMs to optimize Big Data
memory utilization, thereby saving energy; further
research can enhance flexibility across a range of
workloads. Razzaq et al. [12] enhanced their approach
with a hybrid burst-aware auto-scaling method; further
research may improve real-time burst prediction and
scalability cost-efficiency. Radhika and Sadasivam
[13] examined hybrid auto-scaling tactics, emphasizing
the difficulties in dynamic resource estimation and
proposing proactive-reactive adaptive methods.
Alsboui et al. [14] highlighted the main obstacles,
categorized and examined distributed intelligence in
the Internet of Things, and suggested future adaptive
hybrid DI solutions. Risco et al. [15] demonstrated
private smart city video processing using a hybrid
serverless platform for elastic scientific operations.

Hu et al. [16] proposed a real-time traffic tile
generation technique based on Apache Flink, which
enhances the scalability and visualization performance
of Intelligent Transportation Systems (ITS).
Mohyuddin and Prehofer [17] offered a practical

HyScaleFlow: An ML-Driven DAG-Based Orchestration...

framework for processing data from autonomous
vehicles and evaluating driving behavior that is
scalable and based on Spark. Rao et al. [18] suggested
utilizing Spark and Flink to mine top-k user
communities in weighted bipartite graphs in a
distributed manner. Dongen and Poel [19] highlighted
recovery times and semantics when assessing fault
tolerance in Spark, Flink, Structured Streaming, and
Kafka Streams. Ashiku et al. [20] investigated the use
of Apache Spark for healthcare big data analytics and
machine learning in effective organ distribution.

Mostafaei et al. [21] examined and suggested fixes for
performance reduction in large data analytics systems
(Storm, Spark, and Flink) caused by geographical
delays. Shaikh et al. [22] extended Apache Flink to
manage geographic data streams and enable spatial
queries. GeoFlink outperforms existing platforms in
terms of performance. Chen et al. [23] gathered and
diagnosed escalator operating data using fault tree
analysis and big data techniques (Flume, Kafka, Flink).
Mostafaei et al. [24] suggested optimizing worker node
placement in geo-distributed stream processing
systems based on additive weighting. Almeida et al.
[25] focused on strategies for managing large amounts
of data and forecasts, while also discussing the
development of real-time systems for analyzing big
data.

Kastrinakis and Petrakis [26] used Flink for speed and
Apache Kafka for real-time and constrained video

Informatica 49 (2025) 315-342 317

processing. Video2Flink is a scalable solution. Chen et
al. [27] examined use examples in finance and health,
real-time analytics, and Al integration, emphasizing
obstacles and potential paths forward. Xu et al. [28]
suggested a Spark-based parallel AC automation
technique for effective DNS log processing with faster
matching. Using Spark, Mallik et al. [29] created a
parallel fuzzy C-median clustering algorithm for
massive data with enhanced scalability and accuracy.
Hassan [30] examined big data technology and
compared the ability of the ARIMA and Weibull
BMTD models to predict internet congestion.

Berberi et al. [31] assessed 16 MLOps products and
provided insights on efficient Al infrastructure and a
strategy for choosing scalable platforms. Zeydan and
Bafalluy [32] identified gaps in applying data
engineering advancements to the telecom industry and
made suggestions for future development and early
adoption. Shahid et al. [33] examined cloud fault
tolerance strategies, categorizing them as Reactive,
Proactive, and Resilient, and emphasized the
importance of Al in recovery. Karthikeyan et al. [34]
proposed the SALDEFT method to reduce
transmission overhead and energy consumption while
enhancing fault tolerance in cloud computing. Alaei et
al. [35] suggested an IDE and ANFIS-based adaptive
fault detection technique for better fault tolerance and
cloud computing workflow scheduling.

Table 1: Literature review summary of comparable works related to hyscaleflow

Reference Methodology Key Findings Key Findings | Limitations /| Relevance to
Research Gap HyScaleFlow
Ullah et al. | Benchmarking | Flink is fastest; | Flink is fastest; | No orchestration | Validates
[1] Hadoop, Spark, | Spark is cost- | Spark is cost- | or ML | engine
and Flink in a | effective (total | effective integration selection for
hybrid cloud time = 2998 sec hybrid
& efficiency processing
score = 0.53)
Henning & | Microservice- Shows linear | Shows linear | Ignores Highlights the
Hasselbring | based stream | scaling of cloud- | scaling of | hybrid/cloud- need for hybrid
[3] processing native cloud-native edge deployment | DAG
evaluation frameworks frameworks and orchestration | orchestration
Razzaqetal. | Predictive auto- | Improves cloud | Improves Lacks DAG | Inspires
[12] scaling using | workload cloud orchestration and | FlowGuard’s
burst modeling | efficiency workload edge processing | predictive
(accuracy 92 %) | efficiency scaling logic
Radhika & | Statistical auto- | Demonstrates Demonstrates | No feedback- | Supports ML-
Sadasivam scaling for | dynamic dynamic based based
[13] cloud resource resource orchestration or | adaptation in
applications adaptation adaptation DAG HyScaleFlow
intelligence

318 Informatica 49 (2025) 315-342

S. Lakkireddy

Alsboui et | Survey of | Highlights the | Highlights the | No empirical | Aligns with
al. [14] distributed architectural architectural orchestration system-level
intelligence in | flexibility of | flexibility of | evaluation distribution in
IoT edge-cloud edge-cloud HyScaleFlow
Henning et | Configurable Proactive load | Offers tuning | Does not explore | Justifies the
al. [8] stream balancing using | for stream | ML-driven need for
benchmarking prediction workloads orchestration adaptable
at scale (accuracy = 92 paths orchestration
%) layers
Shahid et al. | Survey of cloud | Offers tuning for | Categorizes No Supports
[33] fault-tolerance stream proactive vs. | implementation | FlowGuard’s
techniques workloads reactive of predictive | fault prediction
models recovery and DAG
(load (msg /sec recovery logic
) = 50000 -
500000)
Categorizes
proactive Vs.
reactive models

Nalini and Khilar [36] proposed using Reinforced Ant
Colony Optimization (RACO) to schedule tasks in
cloud computing more effectively, resulting in a 60%
performance increase. Rehman et al. [37] discussed
cloud computing fault-tolerance tactics, proactive and
reactive techniques, frameworks, and future research
objectives. Taraghi et al. [38] introduced LLL-
CAdViSE, a cloud-based platform that addresses
several experimental factors for assessing low-latency
live video streaming. Fragkoulis et al. [39] examined
the development of stream processing systems,
emphasizing fault tolerance, flexibility, and data
management, and discussed potential future
developments. Ching et al. [40], with future
development potential, AgileDart enhances edge
stream processing by adapting to changing
circumstances, thereby increasing reliability,
scalability, and latency. Guan [42] proposed a hybrid
cloud workflow scheduling procedure supplemented
with a Levy-optimized Slime Mould Algorithm
(SMA), which addresses both efficiency and security
challenges in dynamically resourced cloud systems.
Our approach significantly outperforms a basic
implementation, enhancing task allocation, execution
reliability, and network resilience, leading to more
secure and optimized hybrid cloud infrastructures. Ilias
et al. [43] On the other hand, concerning cryptographic
progress in the context of secure cloud communication,
the authors proposed an integrated framework using
the new post-quantum cryptographic primitives HEDT.
The paper contributes to cloud data security and key
exchange mechanisms by providing quantum-resistant
cloud solutions that protect the reliability of encrypted
data transmission over cloud systems against quantum
computing, thereby reinforcing the independence of
the cloud data and its key exchange mechanisms. Tang

et al. [44] centered on predictive modeling for
Industrial IoT systems, presenting a hybrid deep
learning architecture that fuses Long Short-Term
Memory (LSTM) networks and Transformer models.
Their algorithm boosts energy management system
stability and accurately predicts the state of health
(SoH) and charge for battery management. This model
performs with high precision and versatility, which is
crucial for industrial real-time IoT applications.

Table 1 summarizes key literature relevant to
HyScaleFlow, highlighting their methodologies,
findings, limitations, and how they collectively inform
the framework’s design and research contributions.
The review spans over 40 references covering
performance comparisons of Spark and Flink, fault-
tolerant orchestration, real-time stream optimization,
and hybrid cloud innovations. Several works
emphasize adaptive autoscaling, = ML-based
orchestration, and geo-distributed processing, while
others focus on energy efficiency, loT integration, and
future-ready Al-enhanced orchestration strategies in
hybrid environments.

3 Proposed framework

The proposed HyScaleFlow framework integrates
predictive intelligence with dynamic orchestration to
address the challenges of real-time, distributed data
processing in hybrid cloud environments. It combines
Apache Spark and Apache Flink for edge and cloud
stream processing, utilizing a hybrid DAG
orchestration mechanism that leverages Airflow and
Dagster. The core intelligence module, FlowGuard,
leverages XGBoost models to forecast failures and
workload surges, enabling preemptive task migration,

HyScaleFlow: An ML-Driven DAG-Based Orchestration...

adaptive scaling, and enhanced system efficiency
across heterogencous execution environments.

3.1 System overview

The HyScaleFlow framework is designed as a modular,
distributed data engineering system capable of
executing real-time processing pipelines across a
hybrid cloud infrastructure. It seamlessly integrates
ingestion, processing, orchestration, and intelligent
decision-making to handle high-velocity data streams
with scalability, reliability, and adaptability. The
system leverages edge and cloud computing
environments to optimize latency and resource
availability while ensuring continuous data flow and
pipeline resilience. Figure 1 presents a high-level
architectural view of the entire HyScaleFlow system,
illustrating the interaction between its key components.

Informatica 49 (2025) 315-342 319

The pipeline begins with external data sources such as
the NYC Taxi Trip dataset [41], which emits
timestamped records. These are ingested in real-time
via Apache Kafka, acting as the primary message
broker and buffer. Kafka partitions the incoming
stream based on configured keys, supporting parallel
processing. From Kafka, the data is streamed
simultaneously to both edge and cloud nodes. The edge
node hosts Apache Spark for latency-sensitive batch
and stream tasks, while the cloud node runs Apache
Flink for high-throughput, event-driven stream
analytics. This architecture enables HyScaleFlow to
handle diverse analytics requirements. The edge node
processes latency-sensitive tasks, while the cloud node
manages high-throughput analytical workloads.
Together, they support distributed deployments with
greater flexibility and resilience.

HyScaleFlow System NYC Taxi Trip
Data (Real-
Edge Cloud Time)
Node(s) Node(s) l
T Kafka Broker
Apache

Spark

Apache Flink

FlowGuard

Output Layer

E Processed Data Store

Real-Time Analytics

»

(ML Module) > Dashboard
Monitoring Layer
Prometheus Grafana
(Metrics (Dashboard)
Collector)

Figure 1: HyScaleFlow system architecture for real-time distributed data engineering in hybrid cloud

A hybrid strategy integrating Apache Airflow and
Dagster handles workflow orchestration within the
system. Airflow manages high-level DAG scheduling
and periodic task triggering, whereas Dagster supports
dynamic, type-aware execution paths and task retries
based on data state and system feedback. FlowGuard,
the embedded ML module, informs the orchestration
layer, which receives real-time system health metrics
from Prometheus. Based on its predictions, FlowGuard
issues orchestration triggers that dynamically adapt the
DAG execution, scale task branches, or migrate
containers across nodes.

Processed results are streamed into distributed object
storage systems or visualized in real time through a
Grafana dashboard. This feedback loop enables
continuous monitoring and fine-grained observability
of system components, execution paths, and
orchestration outcomes. The system design prioritizes
modularity, extensibility, and real-time adaptability,
making HyScaleFlow suitable for complex hybrid
cloud deployments where performance and fault
tolerance are critical. Table 2 defines key symbols and
variables used throughout the HyScaleFlow

320 Informatica 49 (2025) 315-342

framework, including data streams, processing rates,
and predictions.

S. Lakkireddy

Table 2: Notations used in the hyscaleflow framework, covering symbols related to data streams, processing
metrics, orchestration logic, and ml-based prediction models

Notation Description
X¢ Data record (event) at time ¢
S = {x4, %y, ..., x;} | Input data stream as a sequence of events
T(x) Timestamp extraction function for event x,
W(t) Watermark function to handle late data

B; Micro-batch of events in Spark for time interval [¢;, t; + 4t)

f(B) Transformation function applied on Spark batch B;
9 (x:) Flink function applied to event x,with key k
h(x;) Key extraction function for partitioning in Flink
Ain Ingestion rate from Kafka into the system
A Effective workload rate per node
Aproc Processing rate of downstream engines (Spark/Flink)
Lingest Ingestion latency (difference between consumption and production timestamps)
C Per-node processing capacity
D Number of parallel executors or task managers
G=V,E) Directed Acyclic Graph for task orchestration (nodes V, edges E)
T; Individual task node in the DAG
dep(T;) Set of upstream tasks dependent for T;'s execution
R; Runtime status of task T; (e.g., success, fail)
x. €ER? Feature vector at time t for FlowGuard input
Xij Standardized value of feature j at sample i
Ve Predicted failure probability from FlowGuard (binary classifier output)
T Threshold for failure alert trigger (e.g., 0.7)
Triq Predicted resource usage for next time step from regression model

3.2 Data ingestion and streaming pipeline
HyScaleFlow handles data ingestion and streaming
pipelines, starting with continuously sourcing high-
velocity data from outside sources like the NYC Taxi
Trip dataset, an example of timestamped, hectic
geospatial and transactional data entries. The records
are produced near or simulated near real-time and are
inputted into the system via a distributed message
broker—in our case, Apache Kafka. Kafka, as the first
buffer layer that creates the data separation between
producers and processing engines, guarantees that
streams are transmitted in a fault-tolerant, sequenced,
and scalable manner.

We model each incoming data record Xx; at timestamp
t as a tuple of structured attributes like pickup time,
drop-off location, passenger count, and fare value. An
event stream can be defined as S=
{x,%, ..., x; },,where each x, € R correspond to a
vector in d -dimensional feature space. These records
are partitioned into different Kafka topics with some
key stuff (vendor ID, pickup zone, etc.) so that they can
be processed in parallel streams. Kafka handles at-
least-once delivery guarantees and offset tracking for
stream replay on failure.

Connector APIs: Connector APIs are used by both
Apache Spark and Apache Flink to consume the Kafka
stream. For event-time processing, every consumer
consumes data from a partitioned topic and finds a
timestamp extraction function, T(x:) — t.
Watermarking strategy W (t) is introduced to deal with
the out-of-order events by providing the system with a
threshold of maximum delay. That one is
x; considered late if t < W (t),, which is used to drop
or reroute stale inputs to different queues.

Let us denote the throughput of the ingestion layer as
Ain, and the effective consumption rate of the
processing engines as A,.,.. Thus, to prevent the
backlogs from accumulating, it must hold that the
system should maintain that to satisfy Eq. 1.

Aproc = Ain (1)
If those constraints are violated, it indicates a potential
bottleneck, which triggers alerts and adjustments via

FlowGuard. The system also monitors latency using
Eq. 2.

HyScaleFlow: An ML-Driven DAG-Based Orchestration...

Lingest = teonsume — tproduce

2)

Where tproquce 18 the Kafka publish timestamp, and
teonsume 1S the timestamp when the record is read by
the consumer One of the core input features in
flowguard's predictive model is this latency metric. In
summary, the ingestion and streaming pipeline in
HyScaleFlow delivers timestamp-aligned, reliable, and
parallel inflow of data to a hybrid cloud environment,
which serves as the building blocks for scalable
distributed data engineering.

3.3 Distributed processing in hybrid cloud

nodes

We propose a design of distributed hybrid cloud
execution nodes in the HyScaleFlow framework,
where different execution nodes could be set up so that
the latency-sensitive tasks can be distributed on the
edge infrastructure. In contrast, the cloud environments
can be used to maximize the computational power of
mass-scale operations. New data streams from the
Kafka broker get routed in real-time to both the edge
nodes with Apache Spark and the cloud nodes with
Apache Flink. This two-pronged approach allows for
both real-time local processing and aggregate stream
processing, with the ability to react and scale.

This edge node runs Spark Structured Streaming jobs
in which streaming data is divided into small time
intervals. At that form the micro-batches. Events
within a micro-batch B; are such that {x;;, x5, ..., Xin }
their timestamps fall within the interval [t;, t; + At).
Given a transformation function f, the outcome of
batch processing is defined as in Eq. 3.

yi = f(By) = f({xi1, Xizy o Xin })
3)

These outputs are checkpointed to HDFS for fault
recovery and job replay capability. With its query
execution engine, Spark guarantees stateful stream
processing with exactly-once semantics.

Meanwhile, the cloud node deals with the stream
simultaneously using Apache Flink, which works on an
event-at-a-time basis in a very fine-grained state. Every
records x; coming is processed right away and stored
in keyed state backends. Assume that the keyed
function g, (x;) is a transformation on record x; with
key k, then it can be expressed as in Eq. 4.

ze = g (xt), where k = h(x;) (4)

Where h(x;) is the function for extracting keys A
function g, might even consist of aggregations, say
windowed sums or joins, or pattern matching on event
streams. Flink uses watermarking policies W (t) (c.f.

Informatica 49 (2025) 315-342 321

ingestion layer) to trigger processing windows and deal
with late events.

Operator-level parallelism is preserved to scale across
task slots for both Spark and Flink. Now, let us denote
the number of executors/task managers p by, and the
workload rate per node by A. Total per-node capacity
C which must hold on to condition in Eq. 5 to keep
processing stable.

C=

SRR

(&)

Once there's underutilization or overload detected,
HyScaleFlow C triggers horizontal scaling by
modifying p or migrate containerized jobs between
nodes by FlowGuard through Prometheus monitoring.

In Eq. 5, A denotes the per-node workload rate, which
can be estimated by dividing the global ingestion rate
(Ain) across the number of executors or task managers
(p). Thus, A = Ain / p, ensuring that the total load
remains below the aggregate processing capacity C.

This hybrid setup allows local Spark events (e.g., surge
detection in a city borough) to be reaped quickly, while
Flink uses the same pipeline for large-scale continuous
computations (e.g., real-time analytics over taxi zones
distributed across the entire city). The design of this
distributed processing methodology, supplemented by
intelligent orchestration, ultimately makes up the
computational architecture of HyScaleFlow.

3.4 Hybrid orchestration strategy

Hybrid orchestration is a strategy where we combine
the strengths of two orchestration tools—Apache
Airflow and Dagster—to provide the flexibility,
scalability, and robustness required for large-scale,
adaptive execution of distributed data pipelines across
hybrid cloud environments in the HyScaleFlow
framework. Airflow, on the one hand, offers mature,
DAG-based task scheduling with deep UI support and
scheduling policies; Dagster, on the other hand,
enables dynamic, data-aware pipeline execution, real-
time introspection, and type-checked task
management. Such a two-layer orchestration puzzle
can be solved with a layered abstraction, with Airflow
managing macro-level task dependencies and Dagster
governing fine-grained pipeline evolution and other
retries.

Each job pipeline is represented as a Directed Acyclic
Graph G = (V, E)— with as the set of tasks V and F S
V' X V as task dependence. Consider atask T; € V, and
dep(T;) c V the set of upstream dependencies of T;.
This means that the orchestration constraint ensures
that it satisfies the condition in Eq. 6.

322 Informatica 49 (2025) 315-342

VT; € V,T; executes only if VT; €
dep(T;), Tj is completed (6)

Static DAGs G are managed by Airflow, which triggers
pipelines according to scheduled intervals,
success/failure states, and external event sensors.
Dagster, on the other hand, enables dynamic
reconfiguration of tasks in the same pipeline during
runtime based on the quality or availability of the
intermediate data. For example, if a Spark job produces
partial outputs because some data arrived late,
Dagster’s event-based trigger functionality could allow
some downstream tasks to rerun without restarting the
entire pipeline.

R; denotes the runtime status of the task T; (success,
fail, retry, etc.). Dagster implements conditional
logic, such as R; = fail if and the task is retryable as
in Eq. 7.

TL.("H) = retry(Ti("))until R; = success orn =

Ninax (7

Npax 18 the maximum number of retries per task.
Powered by FlowGuard’s ML outputs, the integration
layer also enables DAGs to be influenced dynamically.
For example, FlowGuard predicting an overload can
prompt Airflow to scale parallel task branches (e.g.,
divide an enormous data aggregation task into
subtasks). In contrast, a predicted failure risk may defer
execution or reroute tasks to more stable nodes.

S. Lakkireddy

Prometheus usage (for logging and monitoring)—
Prometheus is a system and service monitoring system
that collects orchestration metadata like task execution
time, success rates, and retry counts. These metrics are
used for both visualization in Grafana in real time and
back into FlowGuard for continuous model
improvement.

By combining the best of both worlds, HyScaleFlow
has a hybrid orchestration strategy that balances
Airflow’s reliability and deterministic DAG engine
with Dagster’s dynamic control flow, driven by
reusable decision logic powered by ML.

3.5 FlowGuard: ML-based orchestration
optimization

Within the HyScaleFlow framework, the FlowGuard
module, shown in Figure 2, helps to make intelligent
orchestration decisions by continuously identifying
risk of failure and forecasting workloads. FlowGuard,
integrated as a sidecar microservice, consumes system
health metrics exported by Prometheus from hybrid
cloud nodes and processing engines, serving the needs
of large-scale production systems, such as CPU usage,
memory consumption, network I/O, pod restarts, and
end-to-end stream latency. The data collected serves as
the input x, € R? at time ¢t element of double-struck
cap R to the d at time t, with each dimension
representing a particular resource or performance
metric.

Prometheus Metrics

Preprocessing Unit

ML Model

- 0 0 i I
» CPU %, Memory %, I/O, Pod |—p Scaling + Feature > FlowGuard: XGBoost Model
Restarts, Latency Aggregation
Trained to predict: Failure Risk or Load Score
Prediction Output
Output 1 Output 2
Failure Risk: Low / High Predicted Load: %

If risk high

\ 4

Decision Engine

If load high

\4

To Trigger Container
Migration

Action Interface to
Airflow/Dagster

To Scale Orchestration
DAG

Figure 2: FlowGuard — ML-Based failure and load prediction module for orchestration optimization

HyScaleFlow: An ML-Driven DAG-Based Orchestration...

The preprocessing stage converts raw metric logs into
a structured input matrix. X € R™%, and n is the
number of past observations. We standardize each
feature by Eq. 8.

_ Xij=H
xiy == ®)

In the equations, u; and o; are the mean and the
standard deviations of feature j, allowing all input
features to be on the same scale.

FlowGuard is using an XGBoost classifier for binary
classification of node failure prediction. y, € {0,1}
Define the failure label at time t as, where one
represents that the system is in a high-risk state.
Therefore, the model learns a function fp: R¢ — [0,1]
asin Eq. 9.

Ve = fo(xt))

Where J, It is the predicted failure probability. If, ¥, >
T where 7 If a threshold (e.g., 0.7) is met, FlowGuard
sends a predictive migration or deferral signal to the
orchestration layer.

FlowGuard does the same using the same XGBoost
model family: in our case, we have FlowGuard lying in
regression mode for load forecasting. Based on the
metrics defined, it shows predicted how much resource
will utilized 7;,; € R pagailand the next time interval
as in Eq. 10.

P41 = f¢(xt) (10)
Where f, is the regression model fitted to the training
set. If ;4 surpasses the node capacity threshold C (see
in 5), it also activates DAG scaling or task relocation
to nodes when available.

Informatica 49 (2025) 315-342 323

FlowGuard prediction outputs—either a flag indicating
failure risk or an estimate of resource usage—are then
passed as inputs into the hybrid orchestration strategy
through a decision interface. These can translate to
actions like container evacuation, task throttling,
priority changes, or backup executor instantiations.
This mechanism is closed, monitored, and logged for
transparency and to improve the model over time.

With FlowGuard integrated, HyScaleFlow can
proactively manage resource utilization, prevent task
failures, and dynamically adjust orchestration to
optimize resource utilization, transforming the system
into an intelligent, adaptive, and fault-resilient system
in real-time hybrid cloud environments.

Imagine a DAG for processing city-scale taxi analytics,
with task T2 depending on successful completion of T
1 (data cleaning), and T3 depending on both T 1 and T
2 (zone-level aggregation). By default, Airflow will
execute the tasks in a linear/sequential order.
Nonetheless, if FlowGuard anticipates a high failure
likelihood for the cloud node processing T2, the
orchestration layer will trigger T2 to be rerouted by
preemptively re-assigning T2 to a standby cloud node,
and then re-directing T3 into two tasks T3a
(responsible for partial edge aggregation) and T3b
(perform cloud final aggregation). This adaptive DAG
re-organizing keeps the pipeline in tact so as to support
failure-resilient, low-latency execution.

3.6 Proposed algorithms

The FlowGuard-based algorithm is a predictive
orchestration component within HyScaleFlow,
enabling intelligent, real-time decision-making. By
analyzing system metrics using XGBoost models, it
forecasts node failures and resource loads. These
predictions guide adaptive DAG scaling, task
migration, and container orchestration, enhancing the
system’s fault tolerance, scalability, and resource
efficiency in hybrid cloud environments.

Algorithm: FlowGuard-Based Failure and Load Prediction

Input:
Real-time metrics stream x; from Prometheus
Trained XGBoost models: f, (classifier), f,
Thresholds: failure 7, capacity C

Output:

Receive input feature vector x, € R%
Xtj—Hj

Apply standardization: x; ;=

Predict failure risk: §; = f, (x{)
If y, > 1, then:
a. Trigger failure mitigation signal

LD~

5. Else:
a. Predict load: #4y1 = f-(x()

Action trigger for orchestration (migrate, scale, defer)

for each feature j

b. Notify orchestration to migrate or delay affected tasks

b. If #4411 > C, trigger DAG scaling or task offloading

324 Informatica 49 (2025) 315-342

S. Lakkireddy

6. Log prediction, action, and system state
7. Return orchestration directive to Airflow/Dagster
8. End

Algorithm 1: FlowGuard-based failure and load prediction

Algorithm 1 serves as the intelligent decision-making
core of the HyScaleFlow framework. It continuously
analyzes real-time system telemetry data collected via
Prometheus. It predicts two critical outcomes: (i) the
likelihood of imminent node failure and (ii) future
resource load on edge and cloud nodes. The algorithm
uses standardized input vectors representing CPU
usage, memory consumption, pod restart counts, and
latency metrics. These features are processed through
two separate XGBoost models: a binary classifier for
fault prediction and a regressor for load forecasting.

When the classifier detects that the failure probability
exceeds a specified threshold, it preemptively triggers
orchestration adjustments, such as deferring task
execution, migrating containers, or rerouting data
flows. Conversely, if the classifier output is expected,
the regressor predicts resource usage in the next
interval. If predicted CPU/memory usage is expected
to exceed a configured threshold, the system

proactively scales down DAGs or offloads tasks to
alternate nodes.

The algorithm ensures minimal latency in response
time and avoids reactive failures, improving DAG
stability, system uptime, and cost efficiency. It is
tightly integrated with the hybrid orchestration layer
(Airflow + Dagster) and is retrained periodically using
new metric logs, ensuring adaptability to changing
workloads and infrastructure behavior.

The complexity of FlowGuard inference is mainly
influenced by the XGBoost models. The time
complexity for predicting once for a dataset with n
samples and T trees (where each tree has depth d) is
roughly O(T-d) per sample. As the model is pre-trained
and deployed as a light service, the runtime prediction
latency is small. In our experience, FlowGuard can
make inferences in order of sub-millisecond per task,
thereby incurring little overhead with orchestration
decisions.

Algorithm: Hybrid DAG Execution Controller

1. ForeachtaskT; € V:

Else, hold T; until all R; are satisfied

2. [Iffailure risk y, > 1:
a. Identify affected task subset Vy S V
b. For each Ty € Vf, set Ry = deferred

3. Else if predicted load ft + 1 > C:
a. Select load-heavy task T, € V

Input: DAG G = (V, E), task statuses R; (monitored), FlowGuard outputs y;,ft+1, C (capacity)
Output: Updated DAG G' with orchestration directives

If VT; € dep(T;), R; = success, mark T; as executable

c. Update DAG: G’ = G \ V; U V{, where V/ reroutes to backup nodes

b. Split T; into {T}4, T3, ..., Ty} With updated dependencies E|

c. Form scaled DAG: G' = (VU {T}q, ..., T} \ {T1}, E VE; \ edges(T}))
4. For any task T; € V with R; = fail and retry budget n < N4, :

Retry Ti(nﬂ) = retry(Ti(n))
5. Submit updated DAG G' to orchestrator (Airflow/Dagster)

Log state {R;, J;,T+4+1} to Prometheus for feedback learning
7. End

o

Algorithm 2: Hybrid DAG execution controller

Algorithm 2 is responsible for executing and Based on runtime metrics collected by Prometheus, the

orchestrating distributed processing tasks for edge and
cloud environments in the HyScaleFlow framework. It
works by assigning each node in the DAG to the proper
execution engine — Apache Spark for the edge and
Apache Flink for the cloud — according to
characteristics including data locality, sensitivity to
latency and the load of the system. The algorithm starts
by consuming an application-specific DAG from the
orchestration layer (Airflow or Dagster). This DAG is
read, and its tasks and dependencies are parsed out,
noting the available resources.

orchestrator determines the readiness and whether the
queue is too long for nodes, and assigns tasks
accordingly. The algorithm triggers on-demand Spark
DAG operators like map, reduce, windowed
aggregation at the edge for preprocess, and relieves
high-latency/resource-consuming tasks like join,
complex stateful operation to Flink in the cloud. It
makes DAGs DAG consistent by tracking lineage and
checkpointing states between engines.

By separating scheduling logic from static execution
placements, this approach permits tasks to be migrated
or rerouted mid-execution in order to adapt to system

HyScaleFlow: An ML-Driven DAG-Based Orchestration...

health, as reported by FlowGuard. This adaptive model
enhances the responsiveness of the system and reduces
failures, the operator load, and resource imbalance,

Informatica 49 (2025) 315-342 325

thereby ensuring reliable and scalable orchestration
for hybrid deployments.

Algorithm: Kafka Stream Router for Hybrid Processing
Input: Incoming event x;, key extraction function h(x;)
loads 1,, A,

1. Extract routing key: k = h(x;)
2. Check current loads 4., A,
3. IfA, <C.andk € K,:
Route x; —» Spark@Edge
4. ElseifA, < C,and k € K_:
Route x; = Flink@Cloud
5. Else:
a. If 1, < A., route x; - Spark@Edge
b. Else route x; —» Flink@Cloud
6. Log routing decision with timestamp ¢t
7. End

Output: Routing decision: send x; to edge (Spark) or cloud (Flink)

, load thresholds C, (edge), C. (cloud), current node

Algorithm 3: Kafka stream router for hybrid processing

Algorithm 3 processes real-time event routing between
edge and cloud nodes through checking routing key
and current node load. It guards that latency sensitive
data goes to the Spark (edge) while high-frequency
events are routed to Flink (cloud) comparing to the
threshold values. It does not handle task migration and
scaling—that are invoked by FlowGuard and
scheduled by Algorithm 2. This algorithm builds on the
hybrid orchestration engine and benefits directly from
the output of FlowGuard that predicts upcoming
failures and resource scarcity using its telemetry (e.g.,
CPU usage, memory, and execution latency).

When there is a new task, the algorithm estimates the
node level metrics and prediction flags of FlowGuard.
When it is predicted that a node will become congested,
as well as the fact that it will fail, the tasks are either
queued to be redirected or rerouted to an available
stand-by node. For workloads with bursty demand, it
performs dynamic horizontal scaling by spawning
more containers or executor instances at the edge (for
Spark) or cloud (for Flink) based on the data flow
context and desired execution SLAs.

The novel approach integrates a cost-aware decision
mechanism which chooses execution paths to
minimize cost and latency while preserving DAG
structure. Task status checkpoints are implemented to
guarantee low performance impact during redirection
for live migration. It also takes care of deallocation of
containers when the system load gets stabilized to save
the resources.

Through consistent and continuous observability of the
system and proactive monitoring and management to
the anticipated fluctuations, the method guarantees
high availability of resources, maximum resource

utilization, and minimized task failure rates, greatly
improving the scalability and resilience of the
HyScaleFlow orchestration.

3.7 End-to-end execution flow

The complete run-through of the entire HyScaleFlow
framework, the coordinated lifecycle of real-time data
flows from ingestion-processing-orchestration-
feedback across a hybrid cloud environment. This flow
pathway illustrates the interaction between subsystems
such as Kafka, the distributed processing engine,
orchestration tools, and the FlowGuard module to
accomplish scalable and fault-tolerant stream
processing.

At the top level, the execution starts with data flows in
the real world, like NYC Taxi Trip records, arriving
continuously at the Kafka ingestion layer where they
are published. Events x, are serialized and sent as
messages to the Kafka topic, allowing both edge and
cloud nodes to consume in parallel. Additionally,
Kafka preserves the timing order of the stream and
splits the data into partitions where it can be processed
in parallel paths.

When new data arrives, the hybrid routing logic
decides whether the stream should be processed by
Apache Spark on the edge for latency-sensitive
workloads or using Apache Flink on the cloud for
global-scale analytical workloads. In Spark, processing
occurs through batch-based micro-windows (Equation
3), while in Flink, the processing is record-level
(Equation 4). They checkpoint intermediate results (for
fault tolerance) and pass them to the orchestration
layer.

326 Informatica 49 (2025) 315-342 S. Lakkireddy

Real-Time Data
Arrival

Kafka Ingestion Layer

Hybrid
Routing
Decision

Spark Processing at Edge Flink Processing at Cloud

—>| ML Prediction Trigger | |
(FlowGuard) P —

v

Trigger Container
Migration or DAG Scaling

Conditional
Orchestration
Decision

continue processing

Store Processed Results

Monitoring Feedback

End Node

Figure 3: End-to-end execution flow of the hyscaleflow framework

System health metrics (e.g., CPU utilization, pod Prometheus into FlowGuard. The inputs x; of the
restarts, latency) are constantly streamed by FlowGuard model for predicting the failure probability

HyScaleFlow: An ML-Driven DAG-Based Orchestration...

¥: (Equation 9) or future load 7;,,; These metrics form
(Equation 10). Using these predictions, FlowGuard
drives the orchestration layer, which consists of
Airflow and Dagster, to scale the DAG tasks, retry
failed tasks, or relocate the containerized jobs.

The orchestration decisions are then used to drive the
continued execution: e.g., auto-scaling of a Flink job
with more parallelism p and redistribution of the
workload over cloud and edge nodes, to satisfy the
process constraint C = A/p (Equation 5). Depending
on the processing, results are written to a distributed
object store (HDFS/S3, etc) or shown on real-time
dashboards.

Lastly, the system sends the metadata for each
execution cycle contained in Prometheus, including
processing time, action triggers, resource utilization,
etc. It completes the feedback loop by returning
updated telemetry into FlowGuard for
retraining/adaptation. The seamless workflow depicted
in Figure 3 allows HyScaleFlow to be continuously
responsive, self-correcting, and self-scaling, no matter
the unpredictable workloads and stresses faced by the
system in hybrid cloud deployments.

4 Experimental results

This section presents the experimental evaluation of
the HyScaleFlow framework using the NYC Taxi Trip
dataset [41] in a simulated hybrid cloud environment.
The performance of Apache Spark and Flink is
compared across edge and cloud nodes, while the
effectiveness of the FlowGuard module in enabling
adaptive orchestration is analyzed. Metrics such as

Informatica 49 (2025) 315-342 327

latency, throughput, prediction accuracy, resource
usage, and fault recovery are reported to demonstrate
the scalability and resilience of the proposed system.

4.1 Experimental setup

The experimental setup was conducted in a hybrid
cloud test environment with one edge node and two
cloud nodes. The edge node was configured on a local
virtual machine with 8 vCPUs, 16 GB RAM, and
Ubuntu 22.04 LTS. The cloud nodes were hosted using
t3.xlarge instances on a public cloud platform, each
with 4 vCPUs and 16 GB RAM. To maintain
consistency and reduce variability, identical software
environments were provisioned across all nodes,
including Java 11, Python 3.10, and Docker containers
for service deployment.

Apache Kafka version 3.6.0 was deployed with a single
broker and three partitions, enabling simulated real-
time ingestion of the NYC Taxi Trip dataset at a fixed
rate of 5,000 records per second. The producer was
implemented using the Kafka Python library, and data
was partitioned based on pickup zones to support
parallelism. Apache Spark 3.4.1 was installed on the
edge node and configured in Structured Streaming
mode, using a micro-batch interval of five seconds.
Apache Flink version 1.17.1 was deployed on a cloud
node and executed event-time stream processing tasks
using watermarking and keyed operators to capture
fine-grained stream behavior. Table 3 shows a
configuration summary of the experimental setup used
to deploy and evaluate HyScaleFlow, detailing tools,
versions, and deployment roles.

Table 3: Experimental environment and configuration details

Component Configuration/Tool Version Description
Edge Node Virtual Machine (8 vCPU, 16 GB RAM) Ubuntu Spark deployment and latency-sensitive
22.04 processing
Cloud Node AWS EC2 t3.xlarge (4 vCPU, 16 GB RAM) Ubuntu Flink deployment for event-driven processing
22.04
Message Broker Apache Kafka 3.6.0 Ingestion layer with three partitions and one
broker
Ingestion Rate Python + kafka-python - 5,000 records/sec using NYC Taxi Trip Dataset
Stream Processors Apache Spark (Structured Streaming), Apache Flink (Event | 3.4.11.17.1 Spark on edge; Flink on cloud with
Time) watermarking
Orchestration Apache Airflow Dagster 273158 DAG scheduling and dynamic pipeline
execution
Monitoring Tools Prometheus Grafana 2.49.110.2.3 | Metrics collection and real-time visualization
ML Module XGBoost (Classifier + Regressor) Scikit-learn 1.7.6 1.3.2 Used in FlowGuard for failure and load
prediction
Kubernetes Kubernetes + Helm 1.28 Container management for all system
Orchestration components
Replicability GitHub Repository - Dockerfiles, configs, and training scripts
provided

328 Informatica 49 (2025) 315-342

Table 3 Workflow orchestration was handled by
integrating Apache Airflow 2.7.3 for static DAG
scheduling and Dagster 1.5.8 for reactive and type-
aware execution. Prometheus version 2.49.1
continuously collected system-level metrics such as
CPU utilization, memory consumption, and container
restart counts from each processing node. Grafana
version 10.2.3 created a real-time monitoring
dashboard, which visualized latency trends, resource
utilization, and orchestration events across the pipeline.
FlowGuard, the machine learning module integrated
within the HyScaleFlow framework, was implemented
using XGBoost 1.7.6 and Scikit-learn 1.3.2. The
classifier was trained using 70% of the Prometheus-
exported time-series metric data, while the remaining
30% was used for evaluation. For failure prediction, the
XGBoost classifier used the following
hyperparameters: 100 estimators, a learning rate of 0.1,
maximum tree depth of 6, subsample and column
sample ratios of 0.8, and the log-loss evaluation metric.
The regression model for resource usage forecasting
was configured with 150 estimators, a learning rate of
0.05, a maximum depth of 5, and the RMSE evaluation
metric.

The prototype was deployed using Kubernetes version
1.28, with Helm-based templates managing the
deployment of Spark, Flink, Airflow, Dagster, and
FlowGuard containers. All services are communicated
over native connectors or REST APIs. To ensure full
replicability, the Dockerfiles, Kubernetes manifests,
XGBoost training scripts, and pipeline orchestration
templates have been made available in a public GitHub
repository, enabling other researchers to reproduce the
results with minimal configuration effort.

Two models, namely a classifier model for failure
prediction and a regressor for load forecasting model,
were utilized in the FlowGuard module. Both models
were trained using telemetry data from Prometheus on
a variety of runs. Data were split in a 70:30 train-test
chronologically to preserve the time dependencies.
Feature selection was domain-driven (based on CPU
usage, memory usage, pod restarts, and latency). Of
these latter ones, CPU usages and latency have shown
that CPU usage and latency has the most impact over

S. Lakkireddy

model predictions, observed through XGBoost feature
importance plots. To avoid overfitting, 5-fold cross-
validation was conducted on the training set, and early
stopping was employed according to validation loss.
These belong in Section 4.1, and have been included as
such.

4.2 Performance evaluation of processing
engines

The performance evaluation of the processing engines
focuses on comparing Apache Spark, deployed at the
edge node, and Apache Flink, executed in the cloud
node, within the HyScaleFlow framework. Spark was
configured in Structured Streaming mode using a
micro-batch interval of 5 seconds, while Flink operated
in event-driven mode with event-time processing and
watermarking enabled. The evaluation was conducted
using the same input stream from Kafka to ensure
fairness, and both engines processed identical
partitions of the NYC Taxi Trip dataset.

Latency was a key differentiating metric. Spark
exhibited slightly higher end-to-end processing latency
due to micro-batching delays. On average, Spark
recorded a latency of 2.7 seconds per batch, whereas
Flink achieved an average event processing latency of
1.3 seconds. This latency reduction in Flink is
attributed to its continuous, record-at-a-time
processing model and internal operator chaining,
which minimize overhead.

Stream throughput was also measured to assess
scalability. Flink processed approximately 5,800
records/sec compared to Spark’s 4,950 records/sec
under the same workload. This gap is primarily due to
Flink’s pipelined operator model and asynchronous
checkpointing, which maintain high availability
without blocking the dataflow. Resource utilization
was recorded using Prometheus. Spark consumes more
memory but fewer CPU cycles, reflecting its micro-
batch model that periodically activates processing. In
contrast, Flink exhibited consistent CPU utilization
(76%) with a lower memory footprint due to
incremental state handling. To summarize the key
findings, Table 4 presents the comparative
performance metrics:

Table 4: Performance comparison of apache spark and flink in hyscaleflow

Metric Apache Spark (Edge) Apache Flink (Cloud)
Average End-to-End Latency 2.7 sec 1.3 sec

Stream Throughput 4,950 records/sec 5,800 records/sec
Average CPU Utilization 58% 76%

Average Memory Usage 9.8 GB 6.5 GB

Processing Model

Micro-batch (5 sec interval)

Event-driven (record-at-a-time)

Checkpointing Overhead

Moderate (periodic)

Low (asynchronous)

HyScaleFlow: An ML-Driven DAG-Based Orchestration...

Table 4 compares the performance of Apache Spark
and Flink in the HyScaleFlow framework based on
latency, throughput, and resource usage. Flink
demonstrates superior efficiency in event-driven

Informatica 49 (2025) 315-342 329

processing, while Spark offers stable batch-stream
performance, validating the hybrid deployment
strategy for balancing latency and computational
scalability.

Comparative Performance of Apache Spark and Flink in HyScaleFlow

(a) Latency (s)

27

Spark

(c) CPU Usage (%) 76

Flink

Spark

Value

(b) Throughput (records/sec) sgqq

6000

5000

4000

3000

2000

1000}

Flink

Spark

9.8 (d) Memory Usage (GB)

Value

Flink

Spark

Figure 4: Comparative performance of apache spark and apache flink in the hyscaleflow framework across
latency, throughput, cpu usage, and memory usage

Figure 4 presents a detailed comparative performance
analysis between Apache Spark and Apache Flink as
deployed in the HyScaleFlow framework, evaluated
across four critical metrics. Subfigure (a) illustrates
end-to-end processing latency, where Flink
demonstrates a significantly lower average latency of
1.3 seconds compared to Spark's 2.7 seconds. This
reduction is attributed to Flink’s event-driven
architecture, which processes records individually and
continuously, unlike Spark’s micro-batch model,
which introduces interval-based delays.

Subfigure (b) displays the average stream throughput.
Flink processes approximately 5,800 records per
second, surpassing Spark’s 4,950 records/sec. This
throughput advantage stems from Flink’s pipelined
operators and asynchronous checkpointing, which
reduce blocking overhead and enable high-volume,
sustained data flow. While capable, Spark processes
data in bursts aligned with its batch intervals, limiting
its real-time responsiveness.

Subfigure (c) compares CPU utilization across the two
engines. Flink maintains a more consistent average
CPU usage of 76%, indicating its continuously active
processing loop. Spark shows a lower average CPU
usage of 58%, reflecting its batch-execution model,
where CPU usage fluctuates based on the batch cycle.

This lower utilization may conserve energy but limit its
responsiveness to rapidly changing data.

Subfigure (d) shows memory usage, with Spark
recording an average of 9.8 GB compared to Flink’s
6.5 GB. Spark’s memory-intensive execution is largely
due to its in-memory caching and micro-batch queuing,
whereas Flink’s incremental state handling and
efficient state backend reduce its memory footprint.

The figure demonstrates Flink’s superiority in low-
latency and high-throughput scenarios with better CPU
efficiency, making it ideal for continuous, real-time
applications. In contrast, Spark provides robust batch-
streaming capabilities with more conservative resource
usage, validating the hybrid deployment strategy used
in HyScaleFlow to optimize processing across edge
and cloud environments.

4.3 FlowGuard prediction accuracy

The FlowGuard module’s predictive capability was
evaluated on historical system metrics collected via
Prometheus during live streaming execution. Two
XGBoost models were trained and tested: a binary
classifier for failure prediction and a regression model
for forecasting resource load. The classifier used a
labeled dataset with system health events marked as
"failure" or "stable," while the regression model

330 Informatica 49 (2025) 315-342

predicted the CPU utilization in the next time window
based on the current and recent telemetry.

The binary classifier achieved high predictive
performance, as shown in the confusion matrix and

S. Lakkireddy

associated metrics. The model maintained strong recall
and precision, ensuring minimal missed failure
predictions and a low false alarm rate. Table 5
summarizes the evaluation.

Table 5: FlowGuard classifier performance for failure prediction

Metric Value
Accuracy 94.2%
Precision 91.6%
Recall 95.4%
F1-Score 93.4%
True Positives (TP) 477
True Negatives (TN) 453
False Positives (FP) 43
False Negatives (FN) 23

For load forecasting, the XGBoost regressor was tested
using a rolling prediction window of 60 seconds,
predicting CPU usage for the next 5-second interval.

The model achieved good generalization with low error
rates and high explanatory power. Table 6 reports the
results.

Table 6: FlowGuard regressor performance for load forecasting

Metric Value
Mean Squared Error (MSE) 2.83
Mean Absolute Error (MAE) 1.24
Coefficient of Determination (R?) 0.913

FlowGuard's predictive signals were tightly integrated
with the orchestration layer. When deployed in live
tests, the system with FlowGuard exhibited a 16.8%
improvement in DAG completion rate, increasing from
82.6% to 96.5% under dynamic load and fault
conditions compared to the baseline orchestration

without ML integration. Specifically, DAG completion
rates improved from 82.6% to 96.5% under simulated
failure and high-load scenarios. These results validate
that FlowGuard achieves high predictive accuracy and
contributes to improved system resilience and
orchestration efficiency.

HyScaleFlow: An ML-Driven DAG-Based Orchestration...

Informatica 49 (2025) 315-342 331

FlowGuard Prediction Accuracy for Failure Detection and Load Forecasting

(a) FlowGuard Classifier Performance
94.2%

100 95.4%
01.6% 93.4%

801

e0

40

Percentage (%)

201

Accuracy Precision Recall F1-Score

(b) FlowGuard Regressor Performance
91.3%

1001

801

60

401

Value / Percentage

20¢

124
MAE

Figure 5: FlowGuard prediction accuracy for failure detection and load forecasting

Figure 5 presents the evaluation results of the
FlowGuard module's machine learning models used for
failure prediction and resource load forecasting within
the HyScaleFlow framework. Subfigure (a) displays
the performance of the XGBoost classifier trained to
identify potential node failures. The model achieved an
accuracy of 94.2%, precision of 91.6%, recall of
95.4%, and an Fl-score of 93.4%, demonstrating its
effectiveness in minimizing false negatives and
maintaining a low false positive rate. These metrics
indicate that FlowGuard reliably identifies high-risk
operational states, enabling preemptive orchestration
interventions such as container migration or task
deferral.

Subfigure (b) depicts the performance of the regression
model used to forecast near-future CPU utilization. The
model achieved a mean squared error (MSE) of 2.83, a
mean absolute error (MAE) of 1.24, and an R? score of
91.3%, indicating strong predictive capability. The low
error margins and high coefficient of determination
suggest that the model is able to accurately anticipate
load trends, which is critical for dynamic DAG scaling
and resource optimization. Together, these results
validate FlowGuard’s dual functionality—detecting
failures and forecasting loads—both of which
significantly contribute to improving orchestration

responsiveness, task success rates, and overall system
stability.

4.4 Orchestration adaptability and DAG

scalability

The evaluation of orchestration adaptability and DAG
scalability in the HyScaleFlow framework focuses on
measuring the impact of FlowGuard's ML-driven
decisions on task execution outcomes. Two
experimental conditions were established: one with
FlowGuard integrated into the hybrid orchestration
layer (Airflow + Dagster) and another using traditional
rule-based orchestration ~ without predictive
intelligence. Identical streaming workloads from the
NYC Taxi Trip dataset were executed in both
conditions to ensure consistency.

In the FlowGuard-enabled setup, tasks within dynamic
DAGs adapted in real-time to system load and fault
signals. Under simulated burst load and failure
scenarios, the DAGs scaled more responsively, and
execution branches were reconfigured without
restarting the entire workflow. Conversely, in the
baseline configuration, static DAGs frequently
required full retries and exhibited higher task failure
rates under stress. The comparative results are
summarized in Table 7.

Table 7: DAG execution metrics with and without flowguard integration

Metric Without With Improvement
FlowGuard FlowGuard (%)

DAG Completion Rate 82.6% 96.5% +16.8%

Average Task Completion | 7.4 sec 5.8 sec -21.6%

Time

332 Informatica 49 (2025) 315-342

S. Lakkireddy

Task Retry Rate 18.3% 6.9% —62.3%
Reactive DAG Scaling Success | N/A 94.2% -
Fault Recovery Time 14.5 sec 9.3 sec -35.8%

The results clearly show that FlowGuard significantly
improves the robustness and efficiency of
orchestration. DAG completion rates increased by
nearly 17%, indicating better workflow stability under
dynamic conditions. Average task completion time
decreased due to reduced retry delays and intelligent
scaling. Retry rates dropped by over 60%, reflecting
fewer unexpected execution failures. Additionally,
FlowGuard-enabled orchestration achieved over 94%
success in scaling DAG branches during runtime

overloads, showcasing the effectiveness of hybrid
orchestration when driven by real-time predictions.

These findings validate the value of integrating
predictive orchestration logic with traditional DAG
schedulers. The intelligent orchestration pathway,
facilitated by FlowGuard, enables HyScaleFlow to
dynamically adapt to workload and system states,
resulting in higher reliability and operational efficiency
in hybrid cloud data engineering environments.

Orchestration Adaptability and DAG Scalability with and without FlowGuard

(a) DAG Completion Rate é%g
100 i

82.6

Value
w = w (=2 ~

Value

With FG
(d) DAG Scaling Success (%)
942

Without FG Without FG

14

80 12

10
60

Value
Value

40

20

0.0
Without FG

With FG

Without FG

(b) Aﬁrage Task Completion Time (s)

18 3(:) Task Retry Rate (%)

17.5
28 15.0
125
2100

Va

7.5
5.0
2.5

With FG With FG

Without FG

(e) Fault Recovery Time (s)
145

With FG

Figure 6: Orchestration adaptability and DAG scalability with and without flowguard

Figure 6 visually illustrates the behavioral
improvements in orchestration and task execution
dynamics when FlowGuard is integrated into the
HyScaleFlow framework. Each subplot captures a
distinct performance dimension, emphasizing the
impact of predictive orchestration. The subfigures
collectively show a noticeable shift in execution
quality and system responsiveness, particularly under
high-load and failure-prone conditions. The visual
contrast across metrics demonstrates how real-time
ML-guided adjustments lead to smoother, more
adaptive pipeline behavior.

4.5 Fault tolerance and recovery analysis
The fault tolerance and recovery analysis in the
HyScaleFlow framework focuses on evaluating how
Spark and Flink respond to node or task failures, and
how the integration of FlowGuard enhances
preemptive mitigation and system recovery. The
evaluation was conducted under controlled fault
injection experiments, where processing nodes were
intentionally overloaded or terminated to simulate real-
world failures. Metrics were collected on recovery
time, task rescheduling latency, and system uptime,
both with and without FlowGuard’s predictive
intervention.

HyScaleFlow: An ML-Driven DAG-Based Orchestration...

Apache Spark, which relies on lineage-based
recomputation, demonstrated moderate recovery speed
but higher memory and recomputation overhead. In
contrast, Apache Flink, with its checkpoint-based state
recovery, achieved faster resumption of stream tasks,
particularly when asynchronous checkpoints were
enabled. However, without FlowGuard, both systems
suffered from delayed recovery due to reactive
orchestration and task retries after failure occurrence.

Informatica 49 (2025) 315-342 333

When FlowGuard was enabled, node failures were
predicted based on resource saturation patterns and
restart events. The system was able to preemptively
migrate containers or reassign tasks before complete
failure, thereby reducing downtime and improving
recovery consistency. Table 8 summarizes these
findings.

Table 8: Fault tolerance and recovery metrics with and without flowguard

Metric Spark (No | Spark (With | Flink (No | Flink (With
FG) FG) FG) FG)

Average Recovery Time (sec) 16.8 10.1 11.3 6.7

Task Rescheduling Latency (sec) | 6.2 3.1 4.7 24

Preemptive Migration Success | N/A 92.4% N/A 95.1%

Rate

System Uptime During Fault (%) | 87.1% 96.2% 91.5% 98.6%

The integration of FlowGuard resulted in a 35-40%
reduction in recovery time for both Spark and Flink by
enabling proactive orchestration rather than post-
failure response. Task rescheduling latency also
decreased significantly, improving workflow

continuity. Importantly, system uptime during failure
conditions was enhanced by over 9% for Spark and 7%
for Flink, validating the effectiveness of FlowGuard in
maintaining service availability and reducing
operational disruptions in hybrid cloud environments.

Fault Tolerance and Recovery Metrics for Spark and Flink With and Without FlowGuard

(a) Average Recovery Time (sec)

Flink Flink+FG

Spark

Spark+FG

(c) Preemptive Migration Success Rate (%)

02.4 95.1

60

Value

40

201

0.0 0.0

Spark Flink Flink+FG

Spark+FG

(b) Task Rescheduling Latency (sec)

Flink

(d) System Uptime During Fault (%)
100 96.2

Flink+FG

Spark+FG

928.6
81.5

80

60

Value

40

20

Flink

Spark Spark+FG Flink+FG

Figure 7: Fault tolerance and recovery metrics for spark and flink with and without flowguard

Figure 7 offers a visual breakdown of how FlowGuard
enhances the fault handling behavior of Spark and
Flink within HyScaleFlow. Subfigure (a) illustrates the
reduction in recovery time when predictive
orchestration is applied, while subfigure (b) shows
significantly ~ faster task rescheduling under
FlowGuard. Subfigures (c) and (d) highlight

improvements in proactive fault migration and
sustained system availability, emphasizing the role of
ML-driven mitigation in maintaining uninterrupted
data stream processing.

334 Informatica 49 (2025) 315-342

4.6 Resource utilization and cost analysis
The resource utilization and cost analysis evaluates
how dynamic task routing, predictive orchestration,
and hybrid node allocation in the HyScaleFlow
framework contribute to system efficiency and cost-
effectiveness. The study was conducted by executing
equivalent workloads under two configurations: one
using static, rule-based orchestration without
FlowGuard, and the other leveraging intelligent,
adaptive orchestration guided by FlowGuard. Metrics
were collected for CPU and memory usage per node,
processing throughput per resource unit, and
cumulative execution cost based on standard cloud
pricing models.

S. Lakkireddy

Dynamic task routing enabled by FlowGuard allowed
workloads to be redirected in real time to either edge or
cloud nodes based on predictive load estimates. This
significantly reduced unnecessary resource usage
spikes and improved task distribution. With
FlowGuard, Spark tasks running on edge consumed
less memory (i.e., 9.3 GB instead of 10.1 GB) than
those running on worker nodes, due to the in-memory
queuing and redundant buffering that is minimized
with predictive task allocation, while still achieving the
low latency benefits of location-sensitive operations.
Flink tasks in the cloud scaled better under high-
volume throughput but benefited from being
preemptively scaled down during low-load windows.

Table 9: Average resource utilization per node

Node Type | Configuration CPU Utilization | Memory Usage | Throughput
(%) (GB) (records/sec)

Edge Without 54.3 10.1 4,200

(Spark) FlowGuard

Edge With FlowGuard 60.5 9.3 4,900

(Spark)

Cloud Without 71.6 7.5 5,100

(Flink) FlowGuard

Cloud With FlowGuard 78.8 6.2 5,850

(Flink)

Cost analysis was derived using AWS pricing models
for t3.xlarge cloud nodes and equivalent resource-
equivalent VMs for the edge. Dynamic scaling reduced
the number of active containers and optimized memory

allocation, lowering compute-hour charges. Tables 9
and 10 summarize the resource and cost benefits
observed.

Table 10: Execution cost comparison with and without flowguard

Cost Component Without FlowGuard | With FlowGuard | Reduction (%)
Edge VM Runtime (hours) 10.0 7.5 -25.0%
Cloud Node Runtime (hours) 10.0 8.1 —19.0%
Estimated Cloud Cost (USD) $6.40 $5.15 -19.5%
Total Resource Efficiency (records/sec/core) | 145.8 198.2 +35.9%

These results confirm that FlowGuard improves
orchestration accuracy and fault tolerance, enhances
resource efficiency, and reduces operational costs. By
intelligently routing tasks and scaling execution based

on predicted load, HyScaleFlow achieves better
throughput per core, improved memory utilization, and
measurable financial savings in hybrid cloud
deployments.

HyScaleFlow: An ML-Driven DAG-Based Orchestration...

Informatica 49 (2025) 315-342 335

Resource Utilization and Cost Comparison With and Without FlowGuard

(a) CPU Utilization

Spark (No FG) Spark (FG) Flink (No FG) Flink (FG)

(c) Stream Throughput
6000
5000

4000

3000

Records/sec

2000

1000

Flink (FG)

Spark (No FG)

Spark (FG) Flink (No FG)

(b) Memory Usage

Flink (No FG) Flink (FG)

Spark (No FG)
(d) Cost and Resource Efficiency

Spark (FG)

USD / Records/sec/core
< o
w o

w
o

N
o

Cost (No FG) Cost (FG) Efficiency (No FG) Efficiency (FG)

Figure 8: Resource utilization and cost comparison with and without flowguard

Figure 8 visually emphasizes the efficiency benefits of
integrating FlowGuard into the HyScaleFlow
orchestration pipeline. Subfigures (a) through (c)
demonstrate a consistent pattern of optimized resource
usage across CPU, memory, and throughput when
FlowGuard is enabled. Subfigure (d) consolidates
execution cost and efficiency metrics, showcasing how
predictive scaling strategies translate into tangible
operational savings and Dbetter utilization of
computational resources in hybrid cloud deployments.

FlowGuard Runtime Overhead. For estimating the run-
time cost of FlowGuard models, we measured the
inference latency and resource cost of the classifier and
the regressor. For 5000 prediction jobs, the average
inference time was 11.8 ms per job at the edge node
(Intel 17, 16GB RAM), and a CPU usage rise below

3%. The memory footprint was consistent; this test
provides evidence that ML components can be run
inline in orchestrators without increasing scheduling
latency or reducing node availability.

4.7 Summary of experimental findings

The experimental evaluation of the HyScaleFlow
framework demonstrated significant improvements in
system responsiveness, scalability, and orchestration
efficiency when FlowGuard was integrated. The hybrid
orchestration strategy, backed by predictive ML
models, consistently outperformed static, rule-based
workflows regarding latency reduction, fault
resilience, adaptive scaling, and resource cost savings.
Table 11 has a consolidated summary of the key
findings from the various performance dimensions
explored in the previous sections.

Table 11: Summary of experimental results and observations

Evaluation Metric / Observation Without With Improvement
Aspect FlowGuard FlowGuard

Processing Avg. End-to-End Latency | 2.7s/13s 2.7s/13s No change
Latency (Spark / Flink)

Stream Peak Throughput | 5100 5850 +14.7%
Throughput (records/sec)

336 Informatica 49 (2025) 315-342

S. Lakkireddy

Fault Recovery Avg. Recovery Time (Spark / | 16.8s/11.3 s 10.1s/6.7s -39.9% / -
Flink) 40.7%

Orchestration DAG Completion Rate 82.6% 96.5% +16.8%

Success

Task Stability Retry Rate 18.3% 6.9% —62.3%

DAG Adaptability | Dynamic Scaling Success N/A 94.2% -

System Uptime During Fault Scenarios 87.1% 98.6% +11.5%

Cost Efficiency Cloud Cost per Workflow | $6.40 $5.15 -19.5%
(USD)

Resource Throughput per Core 145.8 r/s/core 198.2 r/s/core +35.9%

Efficiency

Throughput Events per second (EPS) 4700 EPS 5890 EPS +25.3%

The integration of FlowGuard significantly enhanced
orchestration adaptability through proactive fault
detection and dynamic DAG scaling. The system
showed higher throughput per core, better task
reliability, and reduced rescheduling delays,
contributing to improved scalability and
responsiveness. Fault recovery and uptime metrics
validated that predictive mitigation mechanisms
outperform reactive recovery strategies. Additionally,
the system achieved measurable cost reductions
through more intelligent container placement and task
routing, making HyScaleFlow suitable for scalable and
cost-sensitive hybrid cloud deployments.

The achieved gains, with 94.2% accuracy in failure
prediction and 16.8% in DAG completion, surpass
those of the predictor in [12], which addresses burst-
aware autoscaling but does not support orchestration-

level adaptation. Also, the 48% recovery efficiency
obtained in HyScaleFlow, which enables a 40%
reduction in fault recovery time, goes beyond the
theoretical categories in [33], thus showing the
practical gain of ML-based orchestration in live hybrid
transport.

4.8 Comparison with existing methods

This section presents a comparative evaluation of the
proposed HyScaleFlow framework against selected
existing methods that address hybrid cloud processing,
orchestration, and intelligent resource management.
The comparison highlights differences in architecture,
scalability, orchestration adaptability, and machine
learning integration, emphasizing how HyScaleFlow
advances beyond traditional frameworks by offering a
unified, real-time, and ML-driven orchestration
solution.

Table 12: Comparative analysis of selected related works and hyscaleflow

Reference System /| Architectur | Orchestratio | ML Evaluation Distinction
& Authors | Framework | e n Strategy Integratio | Focus from
n HyScaleFlow
[1] Ullah et | Spark, Flink, | Hybrid None None Runtime Does not
al. Hadoop in | Cloud Benchmarkin | include
Hybrid g orchestration
Cloud or ML-based
adaptation
[3] Henning | Stream Cloud None None Scalability & | Focuses on
& Frameworks Efficiency microservice-
Hasselbring | as Cloud based
Microservice deployment,
s not predictive
routing
[12] Razzaq | Hybrid Auto- | Cloud Rule-based Predictive | Autoscaling Lacks multi-
et al. Scaled Smart Auto-scaling | Burst Efficiency engine
Model orchestration

HyScaleFlow: An ML-Driven DAG-Based Orchestration...

Informatica 49 (2025) 315-342 337

Campus and hybrid
System data routing
[13] Proactive- Cloud Dynamic Statistical Scaling Does not
Radhika & | Reactive Autoscaling Prediction | Accuracy involve DAG-
Sadasivam Autoscaling based
orchestration
or streaming
pipelines
[14] Alsboui | Distributed Edge-Cloud | Conceptual Theoretical | Architectural | Provides an
et al. Intelligence Routing Al Models | Taxonomy IoT-oriented
in IoT view, lacks
implementatio
n and
orchestration
validation
Proposed: Spark + | Hybrid Hybrid DAG | XGBoost Latency, Unified
HyScaleFlo | Flink with | Edge-Cloud | (Airflow + | (Failure + | Fault dataflow, real-
W FlowGuard Dagster) Load Tolerance, time feedback,
Prediction) | Cost, DAG | ML-driven
Performance | preemptive
orchestration

Table 12 provides a detailed comparative analysis between
the proposed HyScaleFlow framework and five closely
related works, selected from the reviewed literature. The
comparison spans key dimensions including system
architecture, orchestration strategy, machine learning
integration, evaluation criteria, and distinctive
contributions.

Ullah et al. [1] evaluated the performance of Spark, Flink,
and Hadoop in hybrid cloud deployments. Their study is
relevant in terms of benchmarking distributed engines, but
it lacks orchestration logic and does not incorporate any
adaptive or predictive mechanisms. HyScaleFlow builds
on these foundational observations by integrating multi-
engine orchestration with ML-guided decision-making.

Henning and Hasselbring [3] benchmarked stream
processing frameworks deployed as microservices in
cloud-only setups. While their work focuses on scalability
and efficiency, it does not address hybrid cloud challenges
or introduce any orchestration or ML components. In
contrast, HyScaleFlow extends beyond pure
benchmarking by actively managing real-time workloads
across cloud and edge environments.

Razzaq et al. [12] introduced a hybrid auto-scaling
approach using predictive models to anticipate burst
workloads in a smart campus setting. Their use of ML for
autoscaling aligns with the FlowGuard module in
HyScaleFlow. However, their solution remains limited to
cloud environments and lacks integration with distributed
stream processing or DAG-based orchestration systems.

Radhika and Sadasivam [13] proposed proactive-reactive
autoscaling using statistical forecasting. While this
strategy shows promise for elasticity, it does not

incorporate workflow-level orchestration or real-time
feedback from system telemetry, both of which are central
to HyScaleFlow’s design. Moreover, their work does not
involve task-level adaptation based on DAG semantics.

Alsboui et al. [14] explored distributed intelligence in [oT
systems, proposing architectural concepts for edge-cloud
integration and adaptive behavior. Although thematically
similar to HyScaleFlow in terms of distributed
architecture, their work 1is conceptual and lacks
experimental validation, implementation details, and
orchestration performance metrics.

In contrast to all these, HyScaleFlow distinguishes itself
through its hybrid orchestration layer (Airflow + Dagster),
real-time telemetry feedback via Prometheus, and ML-
based orchestration via FlowGuard using XGBoost for
failure prediction and load forecasting. It is the only
framework among those compared that combines multi-
engine stream processing, predictive adaptation, cost-
aware resource efficiency, and complete DAG execution
tracking in a hybrid edge-cloud environment.

5 Discussion

The rapid proliferation of real-time data-intensive
applications across hybrid cloud and edge environments
has led to the growing demand for scalable, responsive,
and intelligent orchestration systems. Existing distributed
stream processing frameworks, such as Apache Spark and
Flink, offer strong processing capabilities but fall short in
handling dynamic system behaviors, fault tolerance, and
workload volatility without external orchestration layers.
A review of the state-of-the-art reveals that while some

338 Informatica 49 (2025) 315-342

research has addressed performance benchmarking or
autoscaling in isolation, there remains a clear gap in
integrating predictive intelligence with real-time
distributed data engineering across hybrid architectures.
Most existing approaches either rely on static orchestration
rules, lack fault anticipation, or fail to provide unified
multi-engine coordination.

This gap necessitates the development of novel machine
learning—driven orchestration strategies that can anticipate
system bottlenecks, adapt DAG execution paths
dynamically, and optimize resource usage without manual
intervention. The proposed HyScaleFlow framework
addresses this by introducing an intelligent orchestration
module, FlowGuard, that leverages XGBoost models to
predict both node-level failures and load surges. The
architecture is uniquely designed to combine the strengths
of Apache Airflow and Dagster, ensuring both scheduled
and reactive orchestration, and enabling dynamic task
routing between edge and cloud environments.

Experimental evaluations demonstrate significant
improvements in system responsiveness, fault recovery,
DAG completion rate, and cost efficiency. Results show
that FlowGuard’s predictive capabilities reduce task retry
rates, improve uptime during failure scenarios, and
enhance throughput per core, thereby overcoming key
limitations of existing reactive and rule-based systems.
The integration of ML within the orchestration pipeline
proves critical in enabling scalable, fault-resilient, and
resource-aware stream processing. The implications of this
research are substantial for domains requiring continuous,
intelligent dataflow management, including IoT, smart
cities, and cyber-physical systems.

The existing approaches, e.g, Razzaq et al. [12] and Shahid
et al. [33], which are more reactive in that they primarily
provide fault- tolerance or burst- aware scaling,
HyScaleFlow’s FlowGuard enables predictive
orchestration, where failures can be anticipated and the
execution path of the DAG is dynamically adapted to
reactively or proactively respond to the emergent failures.
For instance, [12] uses a burst prediction model but it does
not interoperate with a DAG-level orchestration over
multi-engine sites. Similarly, Shahid et al. [33] also
classify the fault-tolerance methods, but do not deploy a
predictive recovery methods. HyScaleFlow on the other
hand, reduces the recovery time up to 35% to 40% and task
retry rate by 62.3% due to its strategy of employing two
ML model. Moreover, Ullah et al. [1] Compare benchmark
performance between Spark and Flink, but lack in
orchestration and load prediction. HyScaleFlow extends
this work by presenting its hybrid orchestration proposal
and achieving +14.7% throughput with dynamic
workloads. These comparisons also highlight the power of
the PSOTA's ability to seamlessly integrate scalability,
fault tolerance and preemptive orchestration beyond the
state-of-the-art.

The current HyScaleFow implementation assumes that
there is a trusted hybrid infrastructure where all
communication between components (Kafka, Spark,

S. Lakkireddy

Flink, FlowGuard) takes place on secure channels. But in
real-world implementations, we have to deal with
problems like exposed telemetry data, unauthorized access
to orchestration APIs, and data leakage towards the edge-
cloud boundary. Additional features in the future will
include end-to-end encryption, role-based access control,
and secure container orchestration to round out a holistic
security architecture.

While the proposed framework addresses numerous
limitations of prior art, Section 5.1 outlines the specific
limitations of the present study.

5.1 Limitations of the study

While the proposed HyScaleFlow framework
demonstrates significant improvements in orchestration
intelligence and system efficiency, the current study has
three notable limitations. First, FlowGuard's prediction
models are trained offline and may require periodic
retraining for evolving workloads. Second, the system was
evaluated using a single dataset and fixed ingestion rates,
limiting generalizability to diverse data sources. Third,
while the framework supports hybrid orchestration, it does
not yet include fine-grained cost-based task placement
strategies across multiple cloud providers. Although both
Spark and Flink were strategically chosen for edge and
cloud tiers respectively according to processing patterns
and latency/resource exchanges, an experimental
investigation of contrasting role placement (e.g., Flink on
edge, Spark in cloud) still represents a juicy subject for
future research. The ablation analysis can also be used to
better tune the task-to-resource mapping in hybrid
deployment.

HyScaleFlow demonstrated competitive results up to
5,800 records/sec, and it is interesting to run further
experiments (e.g., 10k or 50k records/sec) to determine its
scaling limits and saturation point. We believe this is one
of the key areas in need of future work in understanding
how well-the programmability of the data plane translate
into meaningful fault coverage at scale under various
workloads.

Current pricing estimates were obtained using AWS on-
demand pricing, to ensure consistent, reproducible
benchmark conditions. In future work, a finer-grained cost
sensitivity analysis with spot and reserved price-based
costs will be considered to capture the operational
variability in cloud economics and contribute to the
deployability of deployments.

Future work can address these aspects to enhance
adaptability, dataset diversity, and economic optimization
in large-scale hybrid cloud deployments.

6 Conclusion and future work

This paper presented HyScaleFlow, a scalable and
intelligent framework for real-time distributed data
engineering in hybrid cloud environments. By integrating
Apache Spark and Flink with a hybrid orchestration

HyScaleFlow: An ML-Driven DAG-Based Orchestration...

strategy (Airflow and Dagster) and the FlowGuard ML
module, the system effectively addresses critical
challenges in fault tolerance, workload adaptation, and
resource efficiency. Extensive experiments using the NYC
Taxi Trip dataset demonstrated significant improvements
in task completion rates, recovery time, throughput, and
cost efficiency, validating the robustness and adaptability
of the proposed methodology. The research fills existing
gaps in the literature by introducing predictive, ML-driven
orchestration into multi-engine streaming pipelines,
offering a unified solution that extends beyond static rule-
based models. It provides a modular, generalizable
architecture suitable for real-time applications in smart
cities, industrial IoT, and edge analytics. Future work will
focus on enhancing FlowGuard’s adaptability through
online learning techniques and extending support for
workload-aware, cost-optimized task placement across
heterogeneous cloud providers. Additionally, evaluating
the framework under diverse datasets and varying
ingestion rates will further validate its generalizability.
These advancements will position HyScaleFlow as a
comprehensive orchestration solution for dynamic, large-
scale, and cost-sensitive hybrid cloud ecosystems, building
upon the strong foundation established in this study.

References
[1] Faheem Ullah, Shagun Dhingra, Xiaoyu Xia, and M.
Ali Babar. (2024). Evaluation of distributed data
processing frameworks in hybrid clouds. Elsevier.
224, pp.1-14.
https://doi.org/10.1016/j.jnca.2024.103837

Sivakumar Ponnusamy, and Pankaj Gupta. (2024).
Scalable data partitioning techniques for distributed
data processing in Cloud Environments: A
Review. IEEE. 12, pp.26735 - 26746.
DOI:10.1109/ACCESS.2024.3365810

Soren Henning, and Wilhelm Hasselbring. (2024).
Benchmarking scalability of stream processing
frameworks deployed as microservices in the
cloud. Elsevier. 208, pp.1-17.
https://doi.org/10.1016/j.jss.2023.111879

Reyazur Rashid Irshad, Shahid Hussain, Ihtisham
Hussain, Jamal Abdul Nasir, Asim Zeb, Khaled M.
Alalayah, Ahmed Abdu Alattab, Adil Yousif, and
Ibrahim M. Alwayle. (2024). IoT-Enabled Secure
and Scalable Cloud Architecture for Multi-User
Systems: A Hybrid Post-Quantum Cryptographic and
Blockchain-Based Approach Toward a Trustworthy
Cloud Computing. /[EEE. 11, pp.105479 - 105498.
DOI:10.1109/ACCESS.2023.3318755

[5] Md. Motaharul Islam, and Zaheed Ahmed Bhuiyan.
(2023). An integrated scalable framework for cloud
and IoT based green healthcare system. /EEE. 11,
pp-22266 - 22282.

DOI:10.1109/ACCESS.2023.3250849

(7]

(8]

(9]

[10]

[11]

[12]

[13]

[14]

[15]

Informatica 49 (2025) 315-342 339

Bayan H. Banimfreg. (2023). A comprehensive
review and conceptual framework for cloud
computing adoption in bioinformatics. Elsevier. 3,
pp.1-13.
https://doi.org/10.1016/j.health.2023.100190

N. Sai Lohitha, and M. Pounambal. (2023).
Integrated publish/subscribe and push-pull method
for cloud based IoT framework for real time data
processing. Elsevier. 27, pp-1-9.
https://doi.org/10.1016/j.measen.2023.100699

S” oren Henning, and WilhelmHasselbring. (2022). A
configurable method for benchmarking scalability of
cloud-native applications. Springer. 27(143), pp.1-
42. https://doi.org/10.1007/s10664-022-10162-1

Baldeep Singh, Randall Martyr, Thomas Medland,
Jamie Astin, Gordon Hunter, and Jean-Christophe
Nebel. (2022). Cloud based evaluation of databases
for stock market data. Springer. 11(53), pp.1-17.
https://doi.org/10.1186/s13677-022-00323-4

Sabrine Khriji, Yahia Benbelgacem, Rym Chéour,
Dhouha El Houssaini, and Olfa Kanoun. (1-28).
Design and implementation of a cloud-based event-
driven architecture for real-time data processing in
wireless sensor networks. Springer. 78, p.3374—
3401. https://doi.org/10.1007/s11227-021-03955-6

Lei Chen, Jiacheng Zhao, Chenxi Wang, Ting Cao,
Johnzigman, Haris Volos, Onurmutlu, Fang Lv,
Xiaobing Feng, Guogingharryxu, and Huimin Cui.
(2022). Unified holistic memory management
supporting multiple big data processing frameworks
over hybrid memories. ACM. 39(1-4), pp.1-38.
https://doi.org/10.1145/3511211

Razzaq, M. A., Mahar, J. A., Ahmad, M., Saher, N.,
Mehmood, A., & Choi, G. S. (2021). Hybrid Auto-
Scaled Service-Cloud-Based Predictive Workload
Modeling and Analysis for Smart Campus System.
IEEE Access, 9, 42081-42089.
doi:10.1109/access.2021.3065597

Radhika, E. G., & Sudha Sadasivam, G. (2021). A
review on prediction based autoscaling techniques
for heterogeneous applications in cloud environment.
Materials Today: Proceedings, 45, 2793-2800. doi:
10.1016/j.matpr.2020.11.789

Alsboui, T., Qin, Y., Hill, R., & Al-Aqrabi, H.
(2021). Distributed Intelligence in the Internet of
Things: Challenges and Opportunities. SN Computer
Science, 2(4). doi:10.1007/s42979-021-00677-7

Risco, S., Molto, G., Naranjo, D. M., & Blanquer, I.
(2021). Serverless Workflows for Containerised
Applications in the Cloud Continuum. Journal of
Grid Computing, 19(3). doi:10.1007/s10723-021-
09570-2

Hu, L., Zhang, F., Qin, M., Fu, Z., Chen, Z., Du, Z.,
& Liu, R. (2021). A Dynamic Pyramid Tilling

https://doi.org/10.1016/j.jnca.2024.103837
https://doi.org/10.1016/j.jss.2023.111879
https://doi.org/10.1016/j.health.2023.100190
https://doi.org/10.1016/j.measen.2023.100699
https://doi.org/10.1007/s10664-022-10162-1
https://doi.org/10.1186/s13677-022-00323-4
https://doi.org/10.1007/s11227-021-03955-6
https://doi.org/10.1145/3511211

340 Informatica 49 (2025) 315-342

Method for Traffic Data Stream Based on Flink.
IEEE Transactions on Intelligent Transportation
Systems, 1-10. doi:10.1109/tits.2021.3060576

[17] Mohyuddin, S., & Prehofer, C. (2021). A Scalable
Data Analytics Framework for Connected Vehicles
Using Apache Spark. 2021 International Symposium
on Electrical, Electronics and Information
Engineering. doi:10.1145/3459104.3459156

[18] Ramalingeswara Rao, T., Ghosh, S. K., & Goswami,
A. (2020). Mining user—user communities for a
weighted bipartite network using spark GraphFrames
and Flink Gelly. The Journal of Supercomputing.
doi:10.1007/s11227-020-03488-4

[19] Van Dongen, G., & Poel, D. V. D. (2021). A
Performance Analysis of Fault Recovery in Stream
Processing Frameworks. IEEE Access, 9, 93745—
93763. doi:10.1109/access.2021.3093208

[20] Ashiku, L., Al-Amin, M., Madria, S., & Dagli, C.
(2021). Machine Learning Models and Big Data
Tools for Evaluating Kidney Acceptance. Procedia
Computer Science, 185, 177-184. doi:
10.1016/j.procs.2021.05.019

[21] Habib Mostafaei, Georgios Smaragdakis, Thomas
Zinner, and Anja Feldmann. (2022). Delay-resistant
geo-distributed analytics. [EEE. 19(4), pp.4734 -
4749. DOI:10.1109/TNSM.2022.3192710

[22] Salman Ahmed Shaikh, Hiroyuki Kitagawa,
Akiyoshi Matono, Komal Mariam, and Kyoung-
Sook Kim. (2022). GeoFlink: an efficient and
scalable spatial data stream management
system. /IEEE. 10, pp-24909 - 24935.

DOI:10.1109/ACCESS.2022.3154063

[23] Jianhao Chen, Zhuangzhuang Zhang, Xiyang Jiang,
Jianpeng Huang, and Yifei Tong. (2022). Research
on escalator data acquisition and transmission based
on big data platform. Elsevier. 208, pp.532-538.
https://doi.org/10.1016/j.procs.2022.10.073

[24] Habib Mostafaei, Shafi Afridi, and Jemal Abawajy.
(2022). Network-aware worker placement for wide-
area streaming analytics. Elsevier. 136, pp.270-281.
https://doi.org/10.1016/j.future.2022.06.009
partitioning in Apache Flink and the cloud. Springer.
34(42), pp.1-15. https://doi.org/10.1007/s00138-
023-01391-5

[25] Ana Almeida, Susana Bras, Susana Sargento, and
Filipe Cabral Pinto. (2023). Time series big data: a
survey on data stream frameworks, analysis and
algorithms. Springer. 10(83), pp-1-32.
https://doi.org/10.1186/s40537-023-00760-1

[26] Dimitrios Kastrinakis, and Euripides G.M. Petrakis.
(2023). Video2Flink: real-time video partitioning in
Apache Flink and the cloud. Springer. 34(42), pp.1-
15. https://doi.org/10.1007/s00138-023-01391-5

S. Lakkireddy

[27] Weisi Chen, Zoran Milosevic, Fethi A. Rabhi, and

Andrew Berry. (2023). Real-time analytics:
Concepts, architectures, and ML/AI
considerations. /[EEE. 11, pp.71634 - 71657.

DOI:10.1109/ACCESS.2023.3295694

[28] Guojian Xu, Mingyang Song, Zhenggang Leng, and
Zhenhong Jia. (2023). Simulation Research on Fast
Matching of Big Data Based on Spark. /EFE. 11,
pp-32628 - 32635.
DOI:10.1109/ACCESS.2023.3262989

[29] Moksud Alam Mallik, Nurul Fariza Zulkurnain,
Sumrana Siddiqui, and Rashel Sarkar. (2024). The
Parallel Fuzzy C-Median Clustering Algorithm
Using Spark for the Big Data. /[EEE. 12, pp.151785 -

151804. DOI:10.1109/ACCESS.2024.3463712

[30] Mohamed Yusuf Hassan. (2024). Applications of
Bigdata Technologies in the Comparison of BMTD
and ARIMA Models for the Prediction of Internet
Congestion. /EEE. 12, pp.56642 - 56651.

DOI:10.1109/ACCESS.2024.3389041

[31] Lisana Berberi, Valentin Kozlov, Giang Nguyen,
Judith Sainz-Pardo Diaz, Amanda Calatrava,
German Molté, Viet Tran, and Alvaro Lopez Garcia.
(2025). Machine learning operations landscape:
platforms and tools. Springer. 58(167), pp.1-37.

https://doi.org/10.1007/s10462-025-11164-3

[32] Engin Zeydan, and Josep Mangues-Bafalluy. (2022).
Recent advances in data engineering for
networking. I[EEE. 10, pp.34449 - 34496.
DOI:10.1109/ACCESS.2022.3162863

[33] Shahid, M. A., Islam, N., Alam, M. M., Mazliham, M.
S., & Musa, S. (2021). Towards Resilient Method:
An exhaustive survey of fault tolerance methods in
the cloud computing environment. Computer Science
Review, 40, 100398. doi:
10.1016/j.cosrev.2021.100398

[34] Karthikeyan, L., Vijayakumaran, C., Chitra, S., &
Arumugam, S. (2021). SALDEFT: Self-Adaptive
Learning Differential Evolution Based Optimal
Physical Machine Selection for Fault Tolerance
Problem in Cloud. Wireless Personal
Communications, 118(2), 1453-1480.
https://doi.org/10.1007/s11277-021-08089-9

[35] Alaei, M., Khorsand, R., & Ramezanpour, M. (2020).
An adaptive fault detector strategy for scientific
workflow scheduling based on improved differential
evolution algorithm in cloud. Applied Soft
Computing, 106895. doi:
10.1016/j.as0c.2020.106895

[36] Nalini, J., & Khilar, P. M. (2021). Reinforced Ant
Colony Optimization for Fault Tolerant Task
Allocation in Cloud Environments. Wireless
Personal Communications. doi:10.1007/s11277-021-
08830-4

https://doi.org/10.1016/j.procs.2022.10.073
https://doi.org/10.1016/j.future.2022.06.009
https://doi.org/10.1007/s00138-023-01391-5
https://doi.org/10.1007/s00138-023-01391-5
https://doi.org/10.1186/s40537-023-00760-1
https://doi.org/10.1007/s10462-025-11164-3

HyScaleFlow: An ML-Driven DAG-Based Orchestration...

[37] A. U. Rehman, Rui L. Aguiar, and Jodo Paulo
Barraca. (2022). Fault-tolerance in the scope of cloud
computing. /EEE. 10, pp.63422 - 63441.
DOI:10.1109/ACCESS.2022.3182211

[38] Babak Taraghi, Hermann Hellwagner, and Christian
Timmerer. (2023). LLL-CAdViSE: live low-latency
cloud-based adaptive video streaming evaluation
framework. [EEE. 11, pp.25723 - 25734,
DOI:10.1109/ACCESS.2023.3257099

[39] Marios Fragkoulis, Paris Carbone, Vasiliki Kalavri,
and Asterios Katsifodimos. (2024). A survey on the
evolution of stream processing systems. Springer.
33, p.507-541. https://doi.org/10.1007/s00778-023-
00819-8

[40] Cheng-Wei Ching, Xin Chen, Chaeeun Kim, Tongze
Wang, Dong Chen, Dilma Da Silva, and Liting Hu.
(2025). AgileDART: An Agile and Scalable Edge
Stream Processing Engine. IEEE. 24(5), pp.4510 -
4528. DOI:10.1109/TMC.2025.3526143

[41] New York City Taxi and Limousine Commission
(NYC TLC), 2024. TLC Trip Record Data. [online]
Available at: https://www.nyc.gov/site/tlc/about/tlc-
trip-record-data.page

[42] Guan, J. (2025). Enhanced Network Security Hybrid
Cloud Workflow Scheduling Using Levy-Optimized
Slime Mould Algorithm. Informatica, 49(18).

[43] Ilias, Shaik Mohammad, V. Ceronmani Sharmila, and
V. Sathya Durga. "An Integrated Framework with
Enhanced Primitives for Post-Quantum
Cryptography: HEDT and ECSIDH for Cloud Data
Security and Key Exchange." Informatica 49.11
(2025).

[44] Tang, Haili, and Zefeng Ding. "A Hybrid LSTM-
Transformer Approach for State of Health and
Charge Prediction in Industrial IoT-Based Battery
Management Systems." Informatica 49, no. 22
(2025).

Informatica 49 (2025) 315-342 341

https://doi.org/10.1007/s00778-023-00819-8
https://doi.org/10.1007/s00778-023-00819-8
https://www.nyc.gov/site/tlc/about/tlc-trip-record-data.page
https://www.nyc.gov/site/tlc/about/tlc-trip-record-data.page

342 Informatica 49 (2025) 315-342 S. Lakkireddy

