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The increasing complexity of real-time data processing across hybrid cloud and edge environments 

has revealed significant limitations in existing distributed stream processing systems. While 

frameworks like Apache Spark and Flink offer strong scalability and performance, they lack the 

orchestration intelligence required to adapt to dynamic workloads, anticipate failures, and optimize 

resource usage in heterogeneous environments. Traditional rule-based or reactive orchestration 

approaches fail to deliver the responsiveness and fault resilience needed for mission-critical 

applications in domains such as IoT analytics, innovative infrastructure, and cyber-physical systems. 

To address these challenges, this paper presents HyScaleFlow, a scalable and modular framework 

that integrates real-time stream processing with machine learning–driven orchestration. The 

architecture combines Apache Spark (at the edge) and Apache Flink (in the cloud) with a hybrid DAG-

based orchestration strategy using Apache Airflow and Dagster. A key innovation is the FlowGuard 

module, which uses XGBoost models (classifier and regressor) to predict node failures and forecast 

resource load based on Prometheus-exported telemetry metrics. These predictions dynamically inform 

DAG execution, enabling preemptive scaling, container migration, and workload-aware task routing. 

Evaluations were conducted using the NYC Taxi Trip dataset (over 1.1 billion records) on a hybrid 

cloud testbed that combines Spark at the edge and Flink in the cloud, orchestrated via 

Docker/Kubernetes. Results reveal that HyScaleFlow improves DAG completion rates by 16.8%, 

reduces task retry rates by over 60%, and enhances fault recovery times by up to 40%.  Additionally, 

the framework achieves a 19.5% reduction in cloud execution cost and a 35.9% gain in resource 

efficiency. HyScaleFlow demonstrates strong utility for real-time, data-intensive applications by 

unifying predictive intelligence with stream processing. It provides a replicable, cost-effective, and 

resilient solution for hybrid cloud data engineering, advancing the state of intelligent orchestration. 

Povzetek: Študija skuša omogočiti zanesljivo, samoprilagodljivo in stroškovno učinkovito obdelavo 

podatkovnih tokov v realnem času v hibridnih oblačno-robnih okoljih, z avtomatskim zaznavanjem 

anomalij, prerazporejanjem virov in preprečevanjem odpovedi za kritične industrijske in poslovne 

aplikacije. HyScaleFlow je hibridni okvir za sprotno obdelavo tokov: Spark na robu, Flink v oblaku, 

orkestracija Airflow+Dagster. Modul FlowGuard (XGBoost, Prometheus metrike) napoveduje 

odpovedi/nalaganje, sproži skaliranje/migracije. 

 

1  Introduction  
The explosive growth of real-time data generated by 

IoT devices, cloud applications, and cyber-physical 

systems has led to an increased adoption of distributed 

stream processing frameworks, such as Apache Spark 

and Apache Flink, in hybrid cloud environments. 

These frameworks offer high-throughput, low-latency 

processing but lack intelligent orchestration 

capabilities to adapt to unpredictable workloads, 

resource constraints, and system faults. Traditional 

orchestration strategies are primarily static, rule-based, 

or reactive, which limits their ability to ensure service 

continuity and efficiency in dynamic runtime 

conditions [1], [3]. Existing literature highlights the 

importance of autoscaling and stream framework 

benchmarking in hybrid deployments [12], [13], but 

few solutions integrate predictive machine learning 

with distributed data engineering pipelines. Moreover, 

most approaches do not coordinate multi-engine 

deployments across edge-cloud nodes or adapt DAG 

execution in real time based on system health metrics 

[14]. 

To address these limitations, this research proposes 

HyScaleFlow, a scalable, ML-enhanced framework for 

real-time data engineering and orchestration across 

hybrid cloud infrastructures. The primary objective is 

to design a modular system that enables predictive 

failure mitigation, workload-aware scaling, and 
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efficient task distribution using Apache Spark and 

Flink, orchestrated through Airflow, Dagster, and a 

novel ML module called FlowGuard. The key novelties 

of this research include: (i) integration of dual-stream 

processing with hybrid DAG orchestration, (ii) 

FlowGuard’s real-time failure and load prediction 

using XGBoost models trained on Prometheus-

exported metrics, and (iii) dynamic task routing and 

container management across edge and cloud nodes. 

These innovations enable intelligent orchestration 

beyond static or reactive models, supporting fault 

resilience, throughput efficiency, and operational cost 

reduction. 

The contributions of this paper are threefold: first, it 

presents a robust, predictive orchestration architecture 

unifying multiple execution engines; second, it 

demonstrates significant improvements in execution 

metrics such as DAG completion, task retry rates, and 

system uptime through experimental validation; third, 

it offers a replicable deployment strategy supported by 

public datasets and open-source tools, enabling broader 

adoption in industry and academia. 

In alignment with the proposed framework and its 

objectives, this study addresses the following research 

questions: 

RQ1: Can a machine learning–driven orchestration 

strategy improve DAG completion and reduce task 

retry rates in hybrid cloud environments? 

RQ2: How accurately can system-level telemetry 

metrics forecast node failure and workload surges 

using XGBoost-based predictive models? 

RQ3: To what extent can predictive orchestration 

reduce cloud resource costs and improve throughput 

efficiency compared to rule-based alternatives? 

These questions guide the design, implementation, and 

evaluation of HyScaleFlow and form the basis for the 

comparative experimental analysis presented in this 

paper. 

The rest of this paper is organized as follows. Section 

2 reviews related work in hybrid stream processing, 

orchestration strategies, and ML-driven system 

adaptation. Section 3 details the architecture, 

FlowGuard algorithm, and orchestration workflow in 

HyScaleFlow. Section 4 presents the experimental 

setup, performance evaluation, and visualization of 

results. Section 5 discusses the findings on existing 

works and outlines the system's limitations. Finally, 

Section 6 concludes the study and provides directions 

for future enhancements to increase generalizability, 

efficiency, and scalability. 

 

2  Related work 
This literature review explores scalable distributed data 

processing, hybrid cloud orchestration, and intelligent 

stream analytics using AI-enabled frameworks. Ullah 

et al. [1] compared Hadoop, Spark, and Flink on a 

hybrid cloud; Flink was the fastest, and Spark the most 

cost-effective. In the future, cross-cloud latency and 

scaling may be optimized for improved performance. 

Ponnusamy and Gupta [2] investigated the scalability 

and effectiveness of data partitioning in cloud 

processing; future research might enhance tactics for 

real-time cloud analytics. Henning and Hasselbring [3] 

scaled benchmarks for stream frameworks, revealing 

linear scaling but varying efficiency; further research 

may optimize cost-performance trade-offs. Irshad et al. 

[4] proposed a secure IoT-cloud connection utilizing an 

SSCA that incorporates MBRA, PQC, and blockchain, 

with performance verified. Further development would 

include broader scalability. Islam and Bhuiyan [5] 

proposed a scalable green IoT-cloud healthcare 

platform that utilizes hierarchical clustering and does 

not validate energy measurements; further 

sustainability research will be explored in future 

studies. 

Banimfreg [6] suggested cloud infrastructure for 

bioinformatics, and the present advantages were 

assessed. Drawbacks included privacy issues with data. 

Future work included enhancing security and training. 

Lohitha and Pounambal [7] employed push-pull and 

publish/subscribe communications; the proposed 

scalable IoT-cloud architecture reduces device 

overhead and may improve efficiency in the future. 

Singh et al. [9] performed better than other databases 

when evaluated against databases for financial time-

series in a hybrid cloud; further research should 

examine larger datasets and latency measures. Khriji et 

al. [10] proposed that REDA is an inexpensive, real-

time, event-driven IoT cloud system that utilizes Kafka 

and MQTT; further development may improve 

scalability. 

Chen et al. [11] utilized NVMs to optimize Big Data 

memory utilization, thereby saving energy; further 

research can enhance flexibility across a range of 

workloads. Razzaq et al. [12] enhanced their approach 

with a hybrid burst-aware auto-scaling method; further 

research may improve real-time burst prediction and 

scalability cost-efficiency. Radhika and Sadasivam 

[13] examined hybrid auto-scaling tactics, emphasizing 

the difficulties in dynamic resource estimation and 

proposing proactive-reactive adaptive methods. 

Alsboui et al. [14] highlighted the main obstacles, 

categorized and examined distributed intelligence in 

the Internet of Things, and suggested future adaptive 

hybrid DI solutions. Risco et al. [15] demonstrated 

private smart city video processing using a hybrid 

serverless platform for elastic scientific operations. 

Hu et al. [16] proposed a real-time traffic tile 

generation technique based on Apache Flink, which 

enhances the scalability and visualization performance 

of Intelligent Transportation Systems (ITS). 

Mohyuddin and Prehofer [17] offered a practical 
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framework for processing data from autonomous 

vehicles and evaluating driving behavior that is 

scalable and based on Spark. Rao et al. [18] suggested 

utilizing Spark and Flink to mine top-k user 

communities in weighted bipartite graphs in a 

distributed manner. Dongen and Poel [19] highlighted 

recovery times and semantics when assessing fault 

tolerance in Spark, Flink, Structured Streaming, and 

Kafka Streams. Ashiku et al. [20] investigated the use 

of Apache Spark for healthcare big data analytics and 

machine learning in effective organ distribution. 

Mostafaei et al. [21] examined and suggested fixes for 

performance reduction in large data analytics systems 

(Storm, Spark, and Flink) caused by geographical 

delays. Shaikh et al. [22] extended Apache Flink to 

manage geographic data streams and enable spatial 

queries. GeoFlink outperforms existing platforms in 

terms of performance. Chen et al. [23] gathered and 

diagnosed escalator operating data using fault tree 

analysis and big data techniques (Flume, Kafka, Flink). 

Mostafaei et al. [24] suggested optimizing worker node 

placement in geo-distributed stream processing 

systems based on additive weighting. Almeida et al. 

[25] focused on strategies for managing large amounts 

of data and forecasts, while also discussing the 

development of real-time systems for analyzing big 

data. 

Kastrinakis and Petrakis [26] used Flink for speed and 

Apache Kafka for real-time and constrained video 

processing. Video2Flink is a scalable solution. Chen et 

al. [27] examined use examples in finance and health, 

real-time analytics, and AI integration, emphasizing 

obstacles and potential paths forward. Xu et al. [28] 

suggested a Spark-based parallel AC automation 

technique for effective DNS log processing with faster 

matching. Using Spark, Mallik et al. [29] created a 

parallel fuzzy C-median clustering algorithm for 

massive data with enhanced scalability and accuracy. 

Hassan [30] examined big data technology and 

compared the ability of the ARIMA and Weibull 

BMTD models to predict internet congestion. 

Berberi et al. [31] assessed 16 MLOps products and 

provided insights on efficient AI infrastructure and a 

strategy for choosing scalable platforms. Zeydan and 

Bafalluy [32] identified gaps in applying data 

engineering advancements to the telecom industry and 

made suggestions for future development and early 

adoption. Shahid et al. [33] examined cloud fault 

tolerance strategies, categorizing them as Reactive, 

Proactive, and Resilient, and emphasized the 

importance of AI in recovery. Karthikeyan et al. [34] 

proposed the SALDEFT method to reduce 

transmission overhead and energy consumption while 

enhancing fault tolerance in cloud computing. Alaei et 

al. [35] suggested an IDE and ANFIS-based adaptive 

fault detection technique for better fault tolerance and 

cloud computing workflow scheduling.

 

Table 1: Literature review summary of comparable works related to hyscaleflow 

Reference Methodology Key Findings Key Findings Limitations / 

Research Gap 

Relevance to 

HyScaleFlow 

Ullah et al. 

[1] 

Benchmarking 

Hadoop, Spark, 

and Flink in a 

hybrid cloud 

Flink is fastest; 

Spark is cost-

effective   ( total 

time = 2998 sec 

& efficiency 

score = 0.53)  

Flink is fastest; 

Spark is cost-

effective 

No orchestration 

or ML 

integration 

Validates 

engine 

selection for 

hybrid 

processing 

Henning & 

Hasselbring 

[3] 

Microservice-

based stream 

processing 

evaluation 

Shows linear 

scaling of cloud-

native 

frameworks  

Shows linear 

scaling of 

cloud-native 

frameworks 

Ignores 

hybrid/cloud-

edge deployment 

and orchestration 

Highlights the 

need for hybrid 

DAG 

orchestration 

Razzaq et al. 

[12] 

Predictive auto-

scaling using 

burst modeling 

Improves cloud 

workload 

efficiency  

(accuracy 92 % )  

Improves 

cloud 

workload 

efficiency 

Lacks DAG 

orchestration and 

edge processing 

Inspires 

FlowGuard’s 

predictive 

scaling logic 

Radhika & 

Sadasivam 

[13] 

Statistical auto-

scaling for 

cloud 

applications 

Demonstrates 

dynamic 

resource 

adaptation 

Demonstrates 

dynamic 

resource 

adaptation 

No feedback-

based 

orchestration or 

DAG 

intelligence 

Supports ML-

based 

adaptation in 

HyScaleFlow 
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Alsboui et 

al. [14] 

Survey of 

distributed 

intelligence in 

IoT 

Highlights the 

architectural 

flexibility of 

edge-cloud 

Highlights the 

architectural 

flexibility of 

edge-cloud 

No empirical 

orchestration 

evaluation 

Aligns with 

system-level 

distribution in 

HyScaleFlow 

Henning et 

al. [8] 

Configurable 

stream 

benchmarking 

at scale 

Proactive load 

balancing using 

prediction  

(accuracy = 92 

% )  

Offers tuning 

for stream 

workloads 

Does not explore 

ML-driven 

orchestration 

paths 

Justifies the 

need for 

adaptable 

orchestration 

layers 

Shahid et al. 

[33] 

Survey of cloud 

fault-tolerance 

techniques 

Offers tuning for 

stream 

workloads  

( load (msg /sec 

) = 50000  - 

500000)  

Categorizes 

proactive vs. 

reactive 

models 

No 

implementation 

of predictive 

recovery 

Supports 

FlowGuard’s 

fault prediction 

and DAG 

recovery logic 

  Categorizes 

proactive vs. 

reactive models 

   

Nalini and Khilar [36] proposed using Reinforced Ant 

Colony Optimization (RACO) to schedule tasks in 

cloud computing more effectively, resulting in a 60% 

performance increase. Rehman et al. [37] discussed 

cloud computing fault-tolerance tactics, proactive and 

reactive techniques, frameworks, and future research 

objectives. Taraghi et al. [38] introduced LLL-

CAdViSE, a cloud-based platform that addresses 

several experimental factors for assessing low-latency 

live video streaming. Fragkoulis et al. [39] examined 

the development of stream processing systems, 

emphasizing fault tolerance, flexibility, and data 

management, and discussed potential future 

developments. Ching et al. [40], with future 

development potential, AgileDart enhances edge 

stream processing by adapting to changing 

circumstances, thereby increasing reliability, 

scalability, and latency. Guan [42] proposed a hybrid 

cloud workflow scheduling procedure supplemented 

with a Levy-optimized Slime Mould Algorithm 

(SMA), which addresses both efficiency and security 

challenges in dynamically resourced cloud systems. 

Our approach significantly outperforms a basic 

implementation, enhancing task allocation, execution 

reliability, and network resilience, leading to more 

secure and optimized hybrid cloud infrastructures. Ilias 

et al. [43] On the other hand, concerning cryptographic 

progress in the context of secure cloud communication, 

the authors proposed an integrated framework using 

the new post-quantum cryptographic primitives HEDT. 

The paper contributes to cloud data security and key 

exchange mechanisms by providing quantum-resistant 

cloud solutions that protect the reliability of encrypted 

data transmission over cloud systems against quantum 

computing, thereby reinforcing the independence of 

the cloud data and its key exchange mechanisms. Tang 

et al. [44] centered on predictive modeling for 

Industrial IoT systems, presenting a hybrid deep 

learning architecture that fuses Long Short-Term 

Memory (LSTM) networks and Transformer models. 

Their algorithm boosts energy management system 

stability and accurately predicts the state of health 

(SoH) and charge for battery management. This model 

performs with high precision and versatility, which is 

crucial for industrial real-time IoT applications. 

Table 1 summarizes key literature relevant to 

HyScaleFlow, highlighting their methodologies, 

findings, limitations, and how they collectively inform 

the framework’s design and research contributions. 

The review spans over 40 references covering 

performance comparisons of Spark and Flink, fault-

tolerant orchestration, real-time stream optimization, 

and hybrid cloud innovations. Several works 

emphasize adaptive autoscaling, ML-based 

orchestration, and geo-distributed processing, while 

others focus on energy efficiency, IoT integration, and 

future-ready AI-enhanced orchestration strategies in 

hybrid environments. 

3  Proposed framework 
The proposed HyScaleFlow framework integrates 

predictive intelligence with dynamic orchestration to 

address the challenges of real-time, distributed data 

processing in hybrid cloud environments. It combines 

Apache Spark and Apache Flink for edge and cloud 

stream processing, utilizing a hybrid DAG 

orchestration mechanism that leverages Airflow and 

Dagster. The core intelligence module, FlowGuard, 

leverages XGBoost models to forecast failures and 

workload surges, enabling preemptive task migration, 
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adaptive scaling, and enhanced system efficiency 

across heterogeneous execution environments. 

3.1 System overview 
The HyScaleFlow framework is designed as a modular, 

distributed data engineering system capable of 

executing real-time processing pipelines across a 

hybrid cloud infrastructure. It seamlessly integrates 

ingestion, processing, orchestration, and intelligent 

decision-making to handle high-velocity data streams 

with scalability, reliability, and adaptability. The 

system leverages edge and cloud computing 

environments to optimize latency and resource 

availability while ensuring continuous data flow and 

pipeline resilience. Figure 1 presents a high-level 

architectural view of the entire HyScaleFlow system, 

illustrating the interaction between its key components. 

The pipeline begins with external data sources such as 

the NYC Taxi Trip dataset [41], which emits 

timestamped records. These are ingested in real-time 

via Apache Kafka, acting as the primary message 

broker and buffer. Kafka partitions the incoming 

stream based on configured keys, supporting parallel 

processing. From Kafka, the data is streamed 

simultaneously to both edge and cloud nodes. The edge 

node hosts Apache Spark for latency-sensitive batch 

and stream tasks, while the cloud node runs Apache 

Flink for high-throughput, event-driven stream 

analytics. This architecture enables HyScaleFlow to 

handle diverse analytics requirements. The edge node 

processes latency-sensitive tasks, while the cloud node 

manages high-throughput analytical workloads. 

Together, they support distributed deployments with 

greater flexibility and resilience. 

 

Figure 1: HyScaleFlow system architecture for real-time distributed data engineering in hybrid cloud 

A hybrid strategy integrating Apache Airflow and 

Dagster handles workflow orchestration within the 

system. Airflow manages high-level DAG scheduling 

and periodic task triggering, whereas Dagster supports 

dynamic, type-aware execution paths and task retries 

based on data state and system feedback. FlowGuard, 

the embedded ML module, informs the orchestration 

layer, which receives real-time system health metrics 

from Prometheus. Based on its predictions, FlowGuard 

issues orchestration triggers that dynamically adapt the 

DAG execution, scale task branches, or migrate 

containers across nodes. 

Processed results are streamed into distributed object 

storage systems or visualized in real time through a 

Grafana dashboard. This feedback loop enables 

continuous monitoring and fine-grained observability 

of system components, execution paths, and 

orchestration outcomes. The system design prioritizes 

modularity, extensibility, and real-time adaptability, 

making HyScaleFlow suitable for complex hybrid 

cloud deployments where performance and fault 

tolerance are critical. Table 2 defines key symbols and 

variables used throughout the HyScaleFlow 

HyScaleFlow System 

Edge 

Node(s) 

Cloud 

Node(s) 

NYC Taxi Trip 

Data (Real-

Time) 

Kafka Broker 
Apache 

Spark 
Apache Flink 

Apache 

Airflow 
Dagster 

FlowGuard 

(ML Module) 

        Monitoring Layer 

Prometheus 

(Metrics 

Collector) 

Grafana 

(Dashboard) 

Output Layer 

Processed Data Store 

Real-Time Analytics 

Dashboard 
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framework, including data streams, processing rates, 

and predictions. 

 

Table 2: Notations used in the hyscaleflow framework, covering symbols related to data streams, processing 

metrics, orchestration logic, and ml-based prediction models 

Notation Description 

𝑥𝑡 Data record (event) at time 𝑡 

𝑆 = {𝑥1, 𝑥2, … , 𝑥𝑡} Input data stream as a sequence of events 

𝑇(𝑥𝑡) Timestamp extraction function for event 𝑥𝑡 

𝑊(𝑡) Watermark function to handle late data 

𝐵𝑖  Micro-batch of events in Spark for time interval [𝑡𝑖 , 𝑡𝑖 + 𝛥𝑡)  

𝑓(𝐵𝑖) Transformation function applied on Spark batch 𝐵𝑖  

𝑔𝑘(𝑥𝑡) Flink function applied to event 𝑥𝑡with key 𝑘 

ℎ(𝑥𝑡) Key extraction function for partitioning in Flink 

𝜆𝑖𝑛  Ingestion rate from Kafka into the system 

𝜆 Effective workload rate per node  

𝜆𝑝𝑟𝑜𝑐 Processing rate of downstream engines (Spark/Flink) 

𝐿𝑖𝑛𝑔𝑒𝑠𝑡  Ingestion latency (difference between consumption and production timestamps) 

𝐶 Per-node processing capacity 

𝑝 Number of parallel executors or task managers 

𝐺 = (𝑉, 𝐸) Directed Acyclic Graph for task orchestration (nodes 𝑉, edges 𝐸) 

𝑇𝑖  Individual task node in the DAG 

𝑑𝑒𝑝(𝑇𝑖) Set of upstream tasks dependent for 𝑇𝑖 's execution 

𝑅𝑖 Runtime status of task 𝑇𝑖  (e.g., success, fail) 

𝑥𝑡 ∈ ℝ𝑑 Feature vector at time 𝑡 for FlowGuard input 

𝑥𝑖𝑗
′  Standardized value of feature 𝑗 at sample 𝑖 

𝑦̂𝑡 Predicted failure probability from FlowGuard (binary classifier output) 

𝜏 Threshold for failure alert trigger (e.g., 0.7) 

𝑟̂𝑡+1 Predicted resource usage for next time step from regression model 

 

3.2 Data ingestion and streaming pipeline 
HyScaleFlow handles data ingestion and streaming 

pipelines, starting with continuously sourcing high-

velocity data from outside sources like the NYC Taxi 

Trip dataset, an example of timestamped, hectic 

geospatial and transactional data entries. The records 

are produced near or simulated near real-time and are 

inputted into the system via a distributed message 

broker—in our case, Apache Kafka. Kafka, as the first 

buffer layer that creates the data separation between 

producers and processing engines, guarantees that 

streams are transmitted in a fault-tolerant, sequenced, 

and scalable manner. 

We model each incoming data record 𝑥𝑡 at timestamp 

𝑡 as a tuple of structured attributes like pickup time, 

drop-off location, passenger count, and fare value. An 

event stream can be defined as 𝑆 =
{𝑥1, 𝑥2, … , 𝑥𝑡},,where each 𝑥𝑡 ∈ ℝ𝑑 correspond to a 

vector in 𝑑 -dimensional feature space. These records 

are partitioned into different Kafka topics with some 

key stuff (vendor ID, pickup zone, etc.) so that they can 

be processed in parallel streams. Kafka handles at-

least-once delivery guarantees and offset tracking for 

stream replay on failure. 

Connector APIs: Connector APIs are used by both 

Apache Spark and Apache Flink to consume the Kafka 

stream. For event-time processing, every consumer 

consumes data from a partitioned topic and finds a 

timestamp extraction function, 𝑇(𝑥𝑡) → 𝑡. 

Watermarking strategy 𝑊(𝑡) is introduced to deal with 

the out-of-order events by providing the system with a 

threshold of maximum delay. That one is  

𝑥𝑡  considered late if 𝑡 < 𝑊(𝑡),, which is used to drop 

or reroute stale inputs to different queues. 

Let us denote the throughput of the ingestion layer as  

𝜆𝑖𝑛, and the effective consumption rate of the 

processing engines as 𝜆𝑝𝑟𝑜𝑐. Thus, to prevent the 

backlogs from accumulating, it must hold that the 

system should maintain that to satisfy Eq. 1.  

𝜆𝑝𝑟𝑜𝑐 ≥ 𝜆𝑖𝑛                   (1) 

If those constraints are violated, it indicates a potential 

bottleneck, which triggers alerts and adjustments via 

FlowGuard. The system also monitors latency using 

Eq. 2.  
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                                   𝐿𝑖𝑛𝑔𝑒𝑠𝑡 = 𝑡𝑐𝑜𝑛𝑠𝑢𝑚𝑒 − 𝑡𝑝𝑟𝑜𝑑𝑢𝑐𝑒                 

(2) 

Where 𝑡𝑝𝑟𝑜𝑑𝑢𝑐𝑒  is the Kafka publish timestamp, and 

𝑡𝑐𝑜𝑛𝑠𝑢𝑚𝑒   is the timestamp when the record is read by 

the consumer One of the core input features in 

flowguard's predictive model is this latency metric. In 

summary, the ingestion and streaming pipeline in 

HyScaleFlow delivers timestamp-aligned, reliable, and 

parallel inflow of data to a hybrid cloud environment, 

which serves as the building blocks for scalable 

distributed data engineering. 

3.3 Distributed processing in hybrid cloud 

nodes 
We propose a design of distributed hybrid cloud 

execution nodes in the HyScaleFlow framework, 

where different execution nodes could be set up so that 

the latency-sensitive tasks can be distributed on the 

edge infrastructure. In contrast, the cloud environments 

can be used to maximize the computational power of 

mass-scale operations. New data streams from the 

Kafka broker get routed in real-time to both the edge 

nodes with Apache Spark and the cloud nodes with 

Apache Flink. This two-pronged approach allows for 

both real-time local processing and aggregate stream 

processing, with the ability to react and scale. 

This edge node runs Spark Structured Streaming jobs 

in which streaming data is divided into small time 

intervals. 𝛥𝑡 that form the micro-batches. Events 

within a micro-batch 𝐵𝑖  are such that {𝑥𝑖1, 𝑥𝑖2, … , 𝑥𝑖𝑛} 

their timestamps  fall within the interval [𝑡𝑖 , 𝑡𝑖 + 𝛥𝑡). 

Given a transformation function 𝑓, the outcome of 

batch processing is defined as in Eq. 3.  

                           𝑦𝑖 = 𝑓(𝐵𝑖) = 𝑓({𝑥𝑖1, 𝑥𝑖2, … , 𝑥𝑖𝑛})    

(3) 

These outputs are checkpointed to HDFS for fault 

recovery and job replay capability. With its query 

execution engine, Spark guarantees stateful stream 

processing with exactly-once semantics. 

Meanwhile, the cloud node deals with the stream 

simultaneously using Apache Flink, which works on an 

event-at-a-time basis in a very fine-grained state. Every 

records 𝑥𝑡  coming  is processed right away and stored 

in keyed state backends. Assume that the keyed 

function 𝑔𝑘(𝑥𝑡) is a transformation on record 𝑥𝑡 with 

key 𝑘, then it can be expressed as in Eq. 4.  

  𝑧𝑡 = 𝑔𝑘(𝑥𝑡),                    where 𝑘 = ℎ(𝑥𝑡)     (4) 

Where ℎ(𝑥𝑡) is the function for extracting keys A 

function 𝑔𝑘 might even consist of aggregations, say 

windowed sums or joins, or pattern matching on event 

streams. Flink uses watermarking policies 𝑊(𝑡) (c.f. 

ingestion layer) to trigger processing windows and deal 

with late events. 

Operator-level parallelism is preserved to scale across 

task slots for both Spark and Flink. Now, let us denote 

the number of executors/task managers  𝑝  by, and the 

workload rate per node by 𝜆. Total per-node capacity  

𝐶  which must hold on to condition in Eq. 5 to keep 

processing stable.  

               𝐶 ≥
𝜆

𝑝
                           (5) 

Once there's underutilization or overload detected, 

HyScaleFlow 𝐶 triggers horizontal scaling   by 

modifying 𝑝 or migrate containerized jobs between 

nodes by FlowGuard through Prometheus monitoring. 

In Eq. 5, λ denotes the per-node workload rate, which 

can be estimated by dividing the global ingestion rate 

(λin) across the number of executors or task managers 

(p). Thus, λ ≈ λin / p, ensuring that the total load 

remains below the aggregate processing capacity C. 

This hybrid setup allows local Spark events (e.g., surge 

detection in a city borough) to be reaped quickly, while 

Flink uses the same pipeline for large-scale continuous 

computations (e.g., real-time analytics over taxi zones 

distributed across the entire city). The design of this 

distributed processing methodology, supplemented by 

intelligent orchestration, ultimately makes up the 

computational architecture of HyScaleFlow. 

3.4 Hybrid orchestration strategy 
Hybrid orchestration is a strategy where we combine 

the strengths of two orchestration tools—Apache 

Airflow and Dagster—to provide the flexibility, 

scalability, and robustness required for large-scale, 

adaptive execution of distributed data pipelines across 

hybrid cloud environments in the HyScaleFlow 

framework. Airflow, on the one hand, offers mature, 

DAG-based task scheduling with deep UI support and 

scheduling policies; Dagster, on the other hand, 

enables dynamic, data-aware pipeline execution, real-

time introspection, and type-checked task 

management. Such a two-layer orchestration puzzle 

can be solved with a layered abstraction, with Airflow 

managing macro-level task dependencies and Dagster 

governing fine-grained pipeline evolution and other 

retries. 

Each job pipeline is represented as a Directed Acyclic 

Graph  𝐺 = (𝑉, 𝐸)— with as the set of tasks 𝑉 and 𝐸 ⊆
𝑉 × 𝑉 as task dependence. Consider a task 𝑇𝑖 ∈ 𝑉, and 

𝑑𝑒𝑝(𝑇𝑖) ⊂ 𝑉 the set of upstream dependencies of 𝑇𝑖 . 

This means that the orchestration constraint ensures 

that it satisfies the condition in Eq. 6.  
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∀𝑇𝑖 ∈ 𝑉, 𝑇𝑖  𝑒𝑥𝑒𝑐𝑢𝑡𝑒𝑠 𝑜𝑛𝑙𝑦 𝑖𝑓 ∀𝑇𝑗 ∈

𝑑𝑒𝑝(𝑇𝑖),  𝑇𝑗  𝑖𝑠 𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒𝑑       (6) 

Static DAGs 𝐺 are managed by Airflow, which triggers 

pipelines according to scheduled intervals, 

success/failure states, and external event sensors. 

Dagster, on the other hand, enables dynamic 

reconfiguration of tasks in the same pipeline during 

runtime based on the quality or availability of the 

intermediate data. For example, if a Spark job produces 

partial outputs because some data arrived late, 

Dagster’s event-based trigger functionality could allow 

some downstream tasks to rerun without restarting the 

entire pipeline. 

𝑅𝑖  denotes  the runtime status of the task 𝑇𝑖   (success, 

fail, retry,  etc.). Dagster implements conditional 

logic, such as 𝑅𝑖 = 𝑓𝑎𝑖𝑙 if and the task is retryable as 

in Eq. 7.  

𝑇𝑖
(𝑛+1)

= 𝑟𝑒𝑡𝑟𝑦(𝑇𝑖
(𝑛)

)𝑢𝑛𝑡𝑖𝑙 𝑅𝑖 = 𝑠𝑢𝑐𝑐𝑒𝑠𝑠 𝑜𝑟 𝑛 =

𝑁𝑚𝑎𝑥                   (7) 

𝑁𝑚𝑎𝑥  is the maximum number of retries per task. 

Powered by FlowGuard’s ML outputs, the integration 

layer also enables DAGs to be influenced dynamically. 

For example, FlowGuard predicting an overload can 

prompt Airflow to scale parallel task branches (e.g., 

divide an enormous data aggregation task into 

subtasks). In contrast, a predicted failure risk may defer 

execution or reroute tasks to more stable nodes. 

Prometheus usage (for logging and monitoring)—

Prometheus is a system and service monitoring system 

that collects orchestration metadata like task execution 

time, success rates, and retry counts. These metrics are 

used for both visualization in Grafana in real time and 

back into FlowGuard for continuous model 

improvement. 

By combining the best of both worlds, HyScaleFlow 

has a hybrid orchestration strategy that balances 

Airflow’s reliability and deterministic DAG engine 

with Dagster’s dynamic control flow, driven by 

reusable decision logic powered by ML. 

3.5 FlowGuard: ML-based orchestration 

optimization 
Within the HyScaleFlow framework, the FlowGuard 

module, shown in Figure 2, helps to make intelligent 

orchestration decisions by continuously identifying 

risk of failure and forecasting workloads. FlowGuard, 

integrated as a sidecar microservice, consumes system 

health metrics exported by Prometheus from hybrid 

cloud nodes and processing engines, serving the needs 

of large-scale production systems, such as CPU usage, 

memory consumption, network I/O, pod restarts, and 

end-to-end stream latency. The data collected serves as 

the input 𝑥𝑡 ∈ ℝ𝑑 at time 𝑡  element of double-struck 

cap R to the d  at time t, with each dimension 

representing a particular resource or performance 

metric.  

 

Figure 2: FlowGuard – ML-Based failure and load prediction module for orchestration optimization 
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The preprocessing stage converts raw metric logs into 

a structured input matrix. 𝑋 ∈ ℝ𝑛×𝑑, and 𝑛 is the 

number of past observations. We standardize each 

feature by Eq. 8.  

     𝑥𝑖𝑗
′ =

𝑥𝑖𝑗−𝜇𝑗

𝜎𝑗 
                       (8) 

In the equations, 𝜇𝑗 and 𝜎𝑗  are the mean and the 

standard deviations of feature 𝑗, allowing all input 

features to be on the same scale. 

FlowGuard is using an XGBoost classifier for binary 

classification of node failure prediction. 𝑦𝑡 ∈ {0,1}  

Define the failure label at time t as, where one 

represents that the system is in a high-risk state. 

Therefore, the model learns a function 𝑓𝜃: ℝ𝑑 → [0,1 ] 
as in Eq. 9.  

       𝑦̂𝑡 = 𝑓𝑜(𝑥𝑡)                            (9) 

Where 𝑦̂𝑡 It is the predicted failure probability. If, 𝑦̂𝑡 >
𝜏  where 𝜏 If a threshold (e.g., 0.7) is met, FlowGuard 

sends a predictive migration or deferral signal to the 

orchestration layer. 

FlowGuard does the same using the same XGBoost 

model family: in our case, we have FlowGuard lying in 

regression mode for load forecasting. Based on the 

metrics defined, it shows predicted how much resource 

will utilized 𝑟̂𝑡+1 ∈ ℝ pagailand the next time interval 

as in Eq. 10.  

         𝑟̂𝑡+1 = 𝑓𝜙(𝑥𝑡)                                      (10) 

Where 𝑓𝜙  is the regression model fitted to the training 

set. If 𝑟̂𝑡+1 surpasses the node capacity threshold 𝐶 (see 

in 5), it also activates DAG scaling or task relocation 

to nodes when available. 

FlowGuard prediction outputs—either a flag indicating 

failure risk or an estimate of resource usage—are then 

passed as inputs into the hybrid orchestration strategy 

through a decision interface. These can translate to 

actions like container evacuation, task throttling, 

priority changes, or backup executor instantiations. 

This mechanism is closed, monitored, and logged for 

transparency and to improve the model over time. 

With FlowGuard integrated, HyScaleFlow can 

proactively manage resource utilization, prevent task 

failures, and dynamically adjust orchestration to 

optimize resource utilization, transforming the system 

into an intelligent, adaptive, and fault-resilient system 

in real-time hybrid cloud environments. 

Imagine a DAG for processing city-scale taxi analytics, 

with task T2 depending on successful completion of T 

1 (data cleaning), and T3 depending on both T 1 and T 

2 (zone-level aggregation). By default, Airflow will 

execute the tasks in a linear/sequential order. 

Nonetheless, if FlowGuard anticipates a high failure 

likelihood for the cloud node processing T2, the 

orchestration layer will trigger T2 to be rerouted by 

preemptively re-assigning T2 to a standby cloud node, 

and then re-directing T3 into two tasks T3a 

(responsible for partial edge aggregation) and T3b 

(perform cloud final aggregation). This adaptive DAG 

re-organizing keeps the pipeline in tact so as to support 

failure-resilient, low-latency execution. 

3.6 Proposed algorithms 
The FlowGuard-based algorithm is a predictive 

orchestration component within HyScaleFlow, 

enabling intelligent, real-time decision-making. By 

analyzing system metrics using XGBoost models, it 

forecasts node failures and resource loads. These 

predictions guide adaptive DAG scaling, task 

migration, and container orchestration, enhancing the 

system’s fault tolerance, scalability, and resource 

efficiency in hybrid cloud environments. 

Algorithm: FlowGuard-Based Failure and Load Prediction 

Input: 

Real-time metrics stream 𝑥𝑡 from Prometheus 

Trained XGBoost models: 𝑓𝑜 (classifier), 𝑓𝑟 

Thresholds: failure 𝜏, capacity 𝐶 

Output: 

Action trigger for orchestration (migrate, scale, defer) 

 

1. Receive input feature vector 𝑥𝑡 ∈ ℝ𝑑 

2. Apply standardization: 𝑥𝑡𝑗
′ =

𝑥𝑡𝑗−𝜇𝑗

𝜎𝑗
 for each feature 𝑗 

3. Predict failure risk: 𝑦̂𝑡 = 𝑓𝑜(𝑥𝑡
′) 

4. If 𝑦̂𝑡 > 𝜏, then: 

 a. Trigger failure mitigation signal 

 b. Notify orchestration to migrate or delay affected tasks 

5. Else: 

 a. Predict load: 𝑟̂𝑡+1 = 𝑓𝑟(𝑥𝑡
′)  

 b. If 𝑟̂𝑡+1 > 𝐶, trigger DAG scaling or task offloading 
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6. Log prediction, action, and system state 

7. Return orchestration directive to Airflow/Dagster 

8. End 

Algorithm 1: FlowGuard-based failure and load prediction 

Algorithm 1 serves as the intelligent decision-making 

core of the HyScaleFlow framework. It continuously 

analyzes real-time system telemetry data collected via 

Prometheus. It predicts two critical outcomes: (i) the 

likelihood of imminent node failure and (ii) future 

resource load on edge and cloud nodes. The algorithm 

uses standardized input vectors representing CPU 

usage, memory consumption, pod restart counts, and 

latency metrics. These features are processed through 

two separate XGBoost models: a binary classifier for 

fault prediction and a regressor for load forecasting. 

When the classifier detects that the failure probability 

exceeds a specified threshold, it preemptively triggers 

orchestration adjustments, such as deferring task 

execution, migrating containers, or rerouting data 

flows. Conversely, if the classifier output is expected, 

the regressor predicts resource usage in the next 

interval. If predicted CPU/memory usage is expected 

to exceed a configured threshold, the system 

proactively scales down DAGs or offloads tasks to 

alternate nodes. 

The algorithm ensures minimal latency in response 

time and avoids reactive failures, improving DAG 

stability, system uptime, and cost efficiency. It is 

tightly integrated with the hybrid orchestration layer 

(Airflow + Dagster) and is retrained periodically using 

new metric logs, ensuring adaptability to changing 

workloads and infrastructure behavior. 

The complexity of FlowGuard inference is mainly 

influenced by the XGBoost models. The time 

complexity for predicting once for a dataset with n 

samples and T trees (where each tree has depth d) is 

roughly O(T·d) per sample. As the model is pre-trained 

and deployed as a light service, the runtime prediction 

latency is small. In our experience, FlowGuard can 

make inferences in order of sub-millisecond per task, 

thereby incurring little overhead with orchestration 

decisions.

Algorithm: Hybrid DAG Execution Controller 

Input: DAG 𝐺 = (𝑉, 𝐸), task statuses 𝑅𝑖 (monitored), FlowGuard outputs 𝑦̂𝑡,ft+1,  𝐶 (capacity) 

Output: Updated DAG 𝐺′ with orchestration directives 

1. For each task 𝑇𝑖 ∈ 𝑉: 

 If ∀𝑇𝑗 ∈ 𝑑𝑒𝑝(𝑇𝑖), 𝑅𝑗 = 𝑠𝑢𝑐𝑐𝑒𝑠𝑠, mark 𝑇𝑖  as executable 

 Else, hold 𝑇𝑖  until all 𝑅𝑗 are satisfied  

2. If failure risk 𝑦̂𝑡 > 𝜏: 

 a. Identify affected task subset 𝑉𝑓 ⊆ 𝑉  

 b. For each 𝑇𝑘 ∈ 𝑉𝑓, set 𝑅𝑘 = 𝑑𝑒𝑓𝑒𝑟𝑟𝑒𝑑  

 c. Update DAG: 𝐺′ = 𝐺 ∖ 𝑉𝑓 ∪ 𝑉𝑓
′, where 𝑉𝑓

′ reroutes to backup nodes 

3. Else if predicted load 𝑓𝑡 + 1 > 𝐶: 

 a. Select load-heavy task 𝑇𝑙 ∈ 𝑉 

 b. Split 𝑇𝑙  into {𝑇𝑙1 , 𝑇𝑙2, … , 𝑇𝑙𝑚}  with updated dependencies 𝐸𝑙   

 c. Form scaled DAG: 𝐺′ = (𝑉 ∪ {𝑇𝑙1, … , 𝑇𝑙𝑚}  ∖ {𝑇𝑙},  𝐸 ∪ 𝐸𝑙 ∖ 𝑒𝑑𝑔𝑒𝑠(𝑇𝑙))  

4. For any task 𝑇𝑖 ∈ 𝑉 with 𝑅𝑖 = 𝑓𝑎𝑖𝑙 and retry budget 𝑛 < 𝑁𝑚𝑎𝑥: 

 Retry 𝑇𝑖
(𝑛+1)

= 𝑟𝑒𝑡𝑟𝑦(𝑇𝑖
(𝑛)

)  

5. Submit updated DAG 𝐺′ to orchestrator (Airflow/Dagster) 

6. Log state {𝑅𝑖, 𝑦̂𝑡 , 𝑟̂𝑡+1}  to Prometheus for feedback learning 

7. End 

Algorithm 2: Hybrid DAG execution controller 

Algorithm 2 is responsible for executing and 

orchestrating distributed processing tasks for edge and 

cloud environments in the HyScaleFlow framework. It 

works by assigning each node in the DAG to the proper 

execution engine — Apache Spark for the edge and 

Apache Flink for the cloud — according to 

characteristics including data locality, sensitivity to 

latency and the load of the system. The algorithm starts 

by consuming an application-specific DAG from the 

orchestration layer (Airflow or Dagster). This DAG is 

read, and its tasks and dependencies are parsed out, 

noting the available resources. 

Based on runtime metrics collected by Prometheus, the 

orchestrator determines the readiness and whether the 

queue is too long for nodes, and assigns tasks 

accordingly. The algorithm triggers on-demand Spark 

DAG operators like map, reduce, windowed 

aggregation at the edge for preprocess, and relieves 

high-latency/resource-consuming tasks like join, 

complex stateful operation to Flink in the cloud. It 

makes DAGs DAG consistent by tracking lineage and 

checkpointing states between engines. 

By separating scheduling logic from static execution 

placements, this approach permits tasks to be migrated 

or rerouted mid-execution in order to adapt to system 
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health, as reported by FlowGuard. This adaptive model 

enhances the responsiveness of the system and reduces 

failures, the operator load, and resource imbalance, 

thereby ensuring reliable and scalable orchestration 

for hybrid deployments.

 

Algorithm: Kafka Stream Router for Hybrid Processing 

Input: Incoming event 𝑥𝑡, key extraction function ℎ(𝑥𝑡), load thresholds 𝐶𝑒 (edge), 𝐶𝑐 (cloud), current node 

loads 𝜆𝑒 , 𝜆𝑐  

Output: Routing decision: send 𝑥𝑡 to edge (Spark) or cloud (Flink) 

1. Extract routing key: 𝑘 = ℎ(𝑥𝑡)  

2. Check current loads 𝜆𝑒 , 𝜆𝑐 

3. If 𝜆𝑒 < 𝐶𝑒 and 𝑘 ∈ 𝐾𝑒: 

 Route 𝑥𝑡 → 𝑆𝑝𝑎𝑟𝑘@𝐸𝑑𝑔𝑒  

4. Else if 𝜆𝑐 < 𝐶𝑐 and 𝑘 ∈ 𝐾𝑐: 

 Route 𝑥𝑡 → 𝐹𝑙𝑖𝑛𝑘@𝐶𝑙𝑜𝑢𝑑  

5. Else: 

 a. If 𝜆𝑒 < 𝜆𝑐, route 𝑥𝑡 → 𝑆𝑝𝑎𝑟𝑘@𝐸𝑑𝑔𝑒 

 b. Else route 𝑥𝑡 → 𝐹𝑙𝑖𝑛𝑘@𝐶𝑙𝑜𝑢𝑑  

6. Log routing decision with timestamp 𝑡 

7. End 

Algorithm 3: Kafka stream router for hybrid processing 

Algorithm 3 processes real-time event routing between 

edge and cloud nodes through checking routing key 

and current node load. It guards that latency sensitive 

data goes to the Spark (edge) while high-frequency 

events are routed to Flink (cloud) comparing to the 

threshold values. It does not handle task migration and 

scaling—that are invoked by FlowGuard and 

scheduled by Algorithm 2. This algorithm builds on the 

hybrid orchestration engine and benefits directly from 

the output of FlowGuard that predicts upcoming 

failures and resource scarcity using its telemetry (e.g., 

CPU usage, memory, and execution latency). 

When there is a new task, the algorithm estimates the 

node level metrics and prediction flags of FlowGuard. 

When it is predicted that a node will become congested, 

as well as the fact that it will fail, the tasks are either 

queued to be redirected or rerouted to an available 

stand-by node. For workloads with bursty demand, it 

performs dynamic horizontal scaling by spawning 

more containers or executor instances at the edge (for 

Spark) or cloud (for Flink) based on the data flow 

context and desired execution SLAs. 

The novel approach integrates a cost-aware decision 

mechanism which chooses execution paths to 

minimize cost and latency while preserving DAG 

structure. Task status checkpoints are implemented to 

guarantee low performance impact during redirection 

for live migration. It also takes care of deallocation of 

containers when the system load gets stabilized to save 

the resources. 

Through consistent and continuous observability of the 

system and proactive monitoring and management to 

the anticipated fluctuations, the method guarantees 

high availability of resources, maximum resource 

utilization, and minimized task failure rates, greatly 

improving the scalability and resilience of the 

HyScaleFlow orchestration. 

 

3.7 End-to-end execution flow  
The complete run-through of the entire HyScaleFlow 

framework, the coordinated lifecycle of real-time data 

flows from ingestion-processing-orchestration-

feedback across a hybrid cloud environment. This flow 

pathway illustrates the interaction between subsystems 

such as Kafka, the distributed processing engine, 

orchestration tools, and the FlowGuard module to 

accomplish scalable and fault-tolerant stream 

processing. 

At the top level, the execution starts with data flows in 

the real world, like NYC Taxi Trip records, arriving 

continuously at the Kafka ingestion layer where they 

are published. Events 𝑥𝑡 are serialized and sent as 

messages to the Kafka topic, allowing both edge and 

cloud nodes to consume in parallel. Additionally, 

Kafka preserves the timing order of the stream and 

splits the data into partitions where it can be processed 

in parallel paths. 

When new data arrives, the hybrid routing logic 

decides whether the stream should be processed by 

Apache Spark on the edge for latency-sensitive 

workloads or using Apache Flink on the cloud for 

global-scale analytical workloads. In Spark, processing 

occurs through batch-based micro-windows (Equation 

3), while in Flink, the processing is record-level 

(Equation 4). They checkpoint intermediate results (for 

fault tolerance) and pass them to the orchestration 

layer. 
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Figure 3: End-to-end execution flow of the hyscaleflow framework 

System health metrics (e.g., CPU utilization, pod 
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𝑦̂𝑡 (Equation 9) or future load 𝑟̂𝑡+1  These metrics form 

(Equation 10). Using these predictions, FlowGuard 

drives the orchestration layer, which consists of 

Airflow and Dagster, to scale the DAG tasks, retry 

failed tasks, or relocate the containerized jobs. 

The orchestration decisions are then used to drive the 

continued execution: e.g., auto-scaling of a Flink job 

with more parallelism 𝑝 and redistribution of the 

workload over cloud and edge nodes, to satisfy the 

process constraint  𝐶 ≥ 𝜆/𝑝 (Equation 5). Depending 

on the processing, results are written to a distributed 

object store (HDFS/S3, etc) or shown on real-time 

dashboards. 

Lastly, the system sends the metadata for each 

execution cycle contained in Prometheus, including 

processing time, action triggers, resource utilization, 

etc. It completes the feedback loop by returning 

updated telemetry into FlowGuard for 

retraining/adaptation. The seamless workflow depicted 

in Figure 3 allows HyScaleFlow to be continuously 

responsive, self-correcting, and self-scaling, no matter 

the unpredictable workloads and stresses faced by the 

system in hybrid cloud deployments. 

 

4  Experimental results 
This section presents the experimental evaluation of 

the HyScaleFlow framework using the NYC Taxi Trip 

dataset [41] in a simulated hybrid cloud environment. 

The performance of Apache Spark and Flink is 

compared across edge and cloud nodes, while the 

effectiveness of the FlowGuard module in enabling 

adaptive orchestration is analyzed. Metrics such as 

latency, throughput, prediction accuracy, resource 

usage, and fault recovery are reported to demonstrate 

the scalability and resilience of the proposed system. 

 

4.1 Experimental setup 
The experimental setup was conducted in a hybrid 

cloud test environment with one edge node and two 

cloud nodes. The edge node was configured on a local 

virtual machine with 8 vCPUs, 16 GB RAM, and 

Ubuntu 22.04 LTS. The cloud nodes were hosted using 

t3.xlarge instances on a public cloud platform, each 

with 4 vCPUs and 16 GB RAM. To maintain 

consistency and reduce variability, identical software 

environments were provisioned across all nodes, 

including Java 11, Python 3.10, and Docker containers 

for service deployment. 

Apache Kafka version 3.6.0 was deployed with a single 

broker and three partitions, enabling simulated real-

time ingestion of the NYC Taxi Trip dataset at a fixed 

rate of 5,000 records per second. The producer was 

implemented using the Kafka Python library, and data 

was partitioned based on pickup zones to support 

parallelism. Apache Spark 3.4.1 was installed on the 

edge node and configured in Structured Streaming 

mode, using a micro-batch interval of five seconds. 

Apache Flink version 1.17.1 was deployed on a cloud 

node and executed event-time stream processing tasks 

using watermarking and keyed operators to capture 

fine-grained stream behavior. Table 3 shows a 

configuration summary of the experimental setup used 

to deploy and evaluate HyScaleFlow, detailing tools, 

versions, and deployment roles. 

 

Table 3: Experimental environment and configuration details 

Component Configuration/Tool Version Description 

Edge Node Virtual Machine (8 vCPU, 16 GB RAM) Ubuntu 

22.04 

Spark deployment and latency-sensitive 

processing 

Cloud Node AWS EC2 t3.xlarge (4 vCPU, 16 GB RAM) Ubuntu 

22.04 

Flink deployment for event-driven processing 

Message Broker Apache Kafka 3.6.0 Ingestion layer with three partitions and one 

broker 

Ingestion Rate Python + kafka-python – 5,000 records/sec using NYC Taxi Trip Dataset 

Stream Processors Apache Spark (Structured Streaming), Apache Flink (Event 

Time) 

3.4.1 1.17.1 Spark on edge; Flink on cloud with 

watermarking 

Orchestration Apache Airflow Dagster 2.7.3 1.5.8 DAG scheduling and dynamic pipeline 

execution 

Monitoring Tools Prometheus Grafana 2.49.1 10.2.3 Metrics collection and real-time visualization 

ML Module XGBoost (Classifier + Regressor) Scikit-learn 1.7.6 1.3.2 Used in FlowGuard for failure and load 

prediction 

Kubernetes 

Orchestration 

Kubernetes + Helm 1.28 Container management for all system 

components 

Replicability GitHub Repository – Dockerfiles, configs, and training scripts 

provided 
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Table 3 Workflow orchestration was handled by 

integrating Apache Airflow 2.7.3 for static DAG 

scheduling and Dagster 1.5.8 for reactive and type-

aware execution. Prometheus version 2.49.1 

continuously collected system-level metrics such as 

CPU utilization, memory consumption, and container 

restart counts from each processing node. Grafana 

version 10.2.3 created a real-time monitoring 

dashboard, which visualized latency trends, resource 

utilization, and orchestration events across the pipeline. 

FlowGuard, the machine learning module integrated 

within the HyScaleFlow framework, was implemented 

using XGBoost 1.7.6 and Scikit-learn 1.3.2. The 

classifier was trained using 70% of the Prometheus-

exported time-series metric data, while the remaining 

30% was used for evaluation. For failure prediction, the 

XGBoost classifier used the following 

hyperparameters: 100 estimators, a learning rate of 0.1, 

maximum tree depth of 6, subsample and column 

sample ratios of 0.8, and the log-loss evaluation metric. 

The regression model for resource usage forecasting 

was configured with 150 estimators, a learning rate of 

0.05, a maximum depth of 5, and the RMSE evaluation 

metric. 

The prototype was deployed using Kubernetes version 

1.28, with Helm-based templates managing the 

deployment of Spark, Flink, Airflow, Dagster, and 

FlowGuard containers. All services are communicated 

over native connectors or REST APIs. To ensure full 

replicability, the Dockerfiles, Kubernetes manifests, 

XGBoost training scripts, and pipeline orchestration 

templates have been made available in a public GitHub 

repository, enabling other researchers to reproduce the 

results with minimal configuration effort. 

Two models, namely a classifier model for failure 

prediction and a regressor for load forecasting model, 

were utilized in the FlowGuard module. Both models 

were trained using telemetry data from Prometheus on 

a variety of runs. Data were split in a 70:30 train-test 

chronologically to preserve the time dependencies. 

Feature selection was domain-driven (based on CPU 

usage, memory usage, pod restarts, and latency). Of 

these latter ones, CPU usages and latency have shown 

that CPU usage and latency has the most impact over 

model predictions, observed through XGBoost feature 

importance plots. To avoid overfitting, 5-fold cross-

validation was conducted on the training set, and early 

stopping was employed according to validation loss. 

These belong in Section 4.1, and have been included as 

such. 

4.2 Performance evaluation of processing 

engines 
The performance evaluation of the processing engines 

focuses on comparing Apache Spark, deployed at the 

edge node, and Apache Flink, executed in the cloud 

node, within the HyScaleFlow framework. Spark was 

configured in Structured Streaming mode using a 

micro-batch interval of 5 seconds, while Flink operated 

in event-driven mode with event-time processing and 

watermarking enabled. The evaluation was conducted 

using the same input stream from Kafka to ensure 

fairness, and both engines processed identical 

partitions of the NYC Taxi Trip dataset. 

Latency was a key differentiating metric. Spark 

exhibited slightly higher end-to-end processing latency 

due to micro-batching delays. On average, Spark 

recorded a latency of 2.7 seconds per batch, whereas 

Flink achieved an average event processing latency of 

1.3 seconds. This latency reduction in Flink is 

attributed to its continuous, record-at-a-time 

processing model and internal operator chaining, 

which minimize overhead. 

Stream throughput was also measured to assess 

scalability. Flink processed approximately 5,800 

records/sec compared to Spark’s 4,950 records/sec 

under the same workload. This gap is primarily due to 

Flink’s pipelined operator model and asynchronous 

checkpointing, which maintain high availability 

without blocking the dataflow. Resource utilization 

was recorded using Prometheus. Spark consumes more 

memory but fewer CPU cycles, reflecting its micro-

batch model that periodically activates processing. In 

contrast, Flink exhibited consistent CPU utilization 

(76%) with a lower memory footprint due to 

incremental state handling. To summarize the key 

findings, Table 4 presents the comparative 

performance metrics: 

Table 4: Performance comparison of apache spark and flink in hyscaleflow 

Metric Apache Spark (Edge) Apache Flink (Cloud) 

Average End-to-End Latency 2.7 sec 1.3 sec 

Stream Throughput 4,950 records/sec 5,800 records/sec 

Average CPU Utilization 58% 76% 

Average Memory Usage 9.8 GB 6.5 GB 

Processing Model Micro-batch (5 sec interval) Event-driven (record-at-a-time) 

Checkpointing Overhead Moderate (periodic) Low (asynchronous) 
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Table 4 compares the performance of Apache Spark 

and Flink in the HyScaleFlow framework based on 

latency, throughput, and resource usage. Flink 

demonstrates superior efficiency in event-driven 

processing, while Spark offers stable batch-stream 

performance, validating the hybrid deployment 

strategy for balancing latency and computational 

scalability. 

 

Figure 4: Comparative performance of apache spark and apache flink in the hyscaleflow framework across 

latency, throughput, cpu usage, and memory usage 

Figure 4 presents a detailed comparative performance 

analysis between Apache Spark and Apache Flink as 

deployed in the HyScaleFlow framework, evaluated 

across four critical metrics. Subfigure (a) illustrates 

end-to-end processing latency, where Flink 

demonstrates a significantly lower average latency of 

1.3 seconds compared to Spark's 2.7 seconds. This 

reduction is attributed to Flink’s event-driven 

architecture, which processes records individually and 

continuously, unlike Spark’s micro-batch model, 

which introduces interval-based delays. 

Subfigure (b) displays the average stream throughput. 

Flink processes approximately 5,800 records per 

second, surpassing Spark’s 4,950 records/sec. This 

throughput advantage stems from Flink’s pipelined 

operators and asynchronous checkpointing, which 

reduce blocking overhead and enable high-volume, 

sustained data flow. While capable, Spark processes 

data in bursts aligned with its batch intervals, limiting 

its real-time responsiveness.  

Subfigure (c) compares CPU utilization across the two 

engines. Flink maintains a more consistent average 

CPU usage of 76%, indicating its continuously active 

processing loop. Spark shows a lower average CPU 

usage of 58%, reflecting its batch-execution model, 

where CPU usage fluctuates based on the batch cycle. 

This lower utilization may conserve energy but limit its 

responsiveness to rapidly changing data. 

Subfigure (d) shows memory usage, with Spark 

recording an average of 9.8 GB compared to Flink’s 

6.5 GB. Spark’s memory-intensive execution is largely 

due to its in-memory caching and micro-batch queuing, 

whereas Flink’s incremental state handling and 

efficient state backend reduce its memory footprint. 

The figure demonstrates Flink’s superiority in low-

latency and high-throughput scenarios with better CPU 

efficiency, making it ideal for continuous, real-time 

applications. In contrast, Spark provides robust batch-

streaming capabilities with more conservative resource 

usage, validating the hybrid deployment strategy used 

in HyScaleFlow to optimize processing across edge 

and cloud environments. 

4.3 FlowGuard prediction accuracy 
The FlowGuard module’s predictive capability was 

evaluated on historical system metrics collected via 

Prometheus during live streaming execution. Two 

XGBoost models were trained and tested: a binary 

classifier for failure prediction and a regression model 

for forecasting resource load. The classifier used a 

labeled dataset with system health events marked as 

"failure" or "stable," while the regression model 
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predicted the CPU utilization in the next time window 

based on the current and recent telemetry. 

The binary classifier achieved high predictive 

performance, as shown in the confusion matrix and 

associated metrics. The model maintained strong recall 

and precision, ensuring minimal missed failure 

predictions and a low false alarm rate. Table 5 

summarizes the evaluation. 

 

Table 5: FlowGuard classifier performance for failure prediction 

Metric Value 

Accuracy 94.2% 

Precision 91.6% 

Recall 95.4% 

F1-Score 93.4% 

True Positives (TP) 477 

True Negatives (TN) 453 

False Positives (FP) 43 

False Negatives (FN) 23 

For load forecasting, the XGBoost regressor was tested 

using a rolling prediction window of 60 seconds, 

predicting CPU usage for the next 5-second interval. 

The model achieved good generalization with low error 

rates and high explanatory power. Table 6 reports the 

results.  

Table 6: FlowGuard regressor performance for load forecasting 

Metric Value 

Mean Squared Error (MSE) 2.83 

Mean Absolute Error (MAE) 1.24 

Coefficient of Determination (R²) 0.913 

FlowGuard's predictive signals were tightly integrated 

with the orchestration layer. When deployed in live 

tests, the system with FlowGuard exhibited a 16.8% 

improvement in DAG completion rate, increasing from 

82.6% to 96.5% under dynamic load and fault 

conditions compared to the baseline orchestration 

without ML integration. Specifically, DAG completion 

rates improved from 82.6% to 96.5% under simulated 

failure and high-load scenarios. These results validate 

that FlowGuard achieves high predictive accuracy and 

contributes to improved system resilience and 

orchestration efficiency. 
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Figure 5: FlowGuard prediction accuracy for failure detection and load forecasting 

Figure 5 presents the evaluation results of the 

FlowGuard module's machine learning models used for 

failure prediction and resource load forecasting within 

the HyScaleFlow framework. Subfigure (a) displays 

the performance of the XGBoost classifier trained to 

identify potential node failures. The model achieved an 

accuracy of 94.2%, precision of 91.6%, recall of 

95.4%, and an F1-score of 93.4%, demonstrating its 

effectiveness in minimizing false negatives and 

maintaining a low false positive rate. These metrics 

indicate that FlowGuard reliably identifies high-risk 

operational states, enabling preemptive orchestration 

interventions such as container migration or task 

deferral. 

Subfigure (b) depicts the performance of the regression 

model used to forecast near-future CPU utilization. The 

model achieved a mean squared error (MSE) of 2.83, a 

mean absolute error (MAE) of 1.24, and an R² score of 

91.3%, indicating strong predictive capability. The low 

error margins and high coefficient of determination 

suggest that the model is able to accurately anticipate 

load trends, which is critical for dynamic DAG scaling 

and resource optimization. Together, these results 

validate FlowGuard’s dual functionality—detecting 

failures and forecasting loads—both of which 

significantly contribute to improving orchestration 

responsiveness, task success rates, and overall system 

stability. 

4.4 Orchestration adaptability and DAG 

scalability 
The evaluation of orchestration adaptability and DAG 

scalability in the HyScaleFlow framework focuses on 

measuring the impact of FlowGuard's ML-driven 

decisions on task execution outcomes. Two 

experimental conditions were established: one with 

FlowGuard integrated into the hybrid orchestration 

layer (Airflow + Dagster) and another using traditional 

rule-based orchestration without predictive 

intelligence. Identical streaming workloads from the 

NYC Taxi Trip dataset were executed in both 

conditions to ensure consistency. 

In the FlowGuard-enabled setup, tasks within dynamic 

DAGs adapted in real-time to system load and fault 

signals. Under simulated burst load and failure 

scenarios, the DAGs scaled more responsively, and 

execution branches were reconfigured without 

restarting the entire workflow. Conversely, in the 

baseline configuration, static DAGs frequently 

required full retries and exhibited higher task failure 

rates under stress. The comparative results are 

summarized in Table 7. 

Table 7: DAG execution metrics with and without flowguard integration 

Metric Without 

FlowGuard 

With 

FlowGuard 

Improvement 

(%) 

DAG Completion Rate 82.6% 96.5% +16.8% 

Average Task Completion 

Time 

7.4 sec 5.8 sec –21.6% 
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Task Retry Rate 18.3% 6.9% –62.3% 

Reactive DAG Scaling Success N/A 94.2% – 

Fault Recovery Time 14.5 sec 9.3 sec –35.8% 

The results clearly show that FlowGuard significantly 

improves the robustness and efficiency of 

orchestration. DAG completion rates increased by 

nearly 17%, indicating better workflow stability under 

dynamic conditions. Average task completion time 

decreased due to reduced retry delays and intelligent 

scaling. Retry rates dropped by over 60%, reflecting 

fewer unexpected execution failures. Additionally, 

FlowGuard-enabled orchestration achieved over 94% 

success in scaling DAG branches during runtime 

overloads, showcasing the effectiveness of hybrid 

orchestration when driven by real-time predictions.  

These findings validate the value of integrating 

predictive orchestration logic with traditional DAG 

schedulers. The intelligent orchestration pathway, 

facilitated by FlowGuard, enables HyScaleFlow to 

dynamically adapt to workload and system states, 

resulting in higher reliability and operational efficiency 

in hybrid cloud data engineering environments. 

 
Figure 6: Orchestration adaptability and DAG scalability with and without flowguard 

Figure 6 visually illustrates the behavioral 

improvements in orchestration and task execution 

dynamics when FlowGuard is integrated into the 

HyScaleFlow framework. Each subplot captures a 

distinct performance dimension, emphasizing the 

impact of predictive orchestration. The subfigures 

collectively show a noticeable shift in execution 

quality and system responsiveness, particularly under 

high-load and failure-prone conditions. The visual 

contrast across metrics demonstrates how real-time 

ML-guided adjustments lead to smoother, more 

adaptive pipeline behavior. 

4.5 Fault tolerance and recovery analysis 
The fault tolerance and recovery analysis in the 

HyScaleFlow framework focuses on evaluating how 

Spark and Flink respond to node or task failures, and 

how the integration of FlowGuard enhances 

preemptive mitigation and system recovery. The 

evaluation was conducted under controlled fault 

injection experiments, where processing nodes were 

intentionally overloaded or terminated to simulate real-

world failures. Metrics were collected on recovery 

time, task rescheduling latency, and system uptime, 

both with and without FlowGuard’s predictive 

intervention. 
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Apache Spark, which relies on lineage-based 

recomputation, demonstrated moderate recovery speed 

but higher memory and recomputation overhead. In 

contrast, Apache Flink, with its checkpoint-based state 

recovery, achieved faster resumption of stream tasks, 

particularly when asynchronous checkpoints were 

enabled. However, without FlowGuard, both systems 

suffered from delayed recovery due to reactive 

orchestration and task retries after failure occurrence. 

When FlowGuard was enabled, node failures were 

predicted based on resource saturation patterns and 

restart events. The system was able to preemptively 

migrate containers or reassign tasks before complete 

failure, thereby reducing downtime and improving 

recovery consistency. Table 8 summarizes these 

findings. 

Table 8: Fault tolerance and recovery metrics with and without flowguard 

Metric Spark (No 

FG) 

Spark (With 

FG) 

Flink (No 

FG) 

Flink (With 

FG) 

Average Recovery Time (sec) 16.8 10.1 11.3 6.7 

Task Rescheduling Latency (sec) 6.2 3.1 4.7 2.4 

Preemptive Migration Success 

Rate 

N/A 92.4% N/A 95.1% 

System Uptime During Fault (%) 87.1% 96.2% 91.5% 98.6% 

The integration of FlowGuard resulted in a 35–40% 

reduction in recovery time for both Spark and Flink by 

enabling proactive orchestration rather than post-

failure response. Task rescheduling latency also 

decreased significantly, improving workflow 

continuity. Importantly, system uptime during failure 

conditions was enhanced by over 9% for Spark and 7% 

for Flink, validating the effectiveness of FlowGuard in 

maintaining service availability and reducing 

operational disruptions in hybrid cloud environments. 

 

Figure 7: Fault tolerance and recovery metrics for spark and flink with and without flowguard 

Figure 7 offers a visual breakdown of how FlowGuard 

enhances the fault handling behavior of Spark and 

Flink within HyScaleFlow. Subfigure (a) illustrates the 

reduction in recovery time when predictive 

orchestration is applied, while subfigure (b) shows 

significantly faster task rescheduling under 

FlowGuard. Subfigures (c) and (d) highlight 

improvements in proactive fault migration and 

sustained system availability, emphasizing the role of 

ML-driven mitigation in maintaining uninterrupted 

data stream processing. 
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4.6 Resource utilization and cost analysis 
The resource utilization and cost analysis evaluates 

how dynamic task routing, predictive orchestration, 

and hybrid node allocation in the HyScaleFlow 

framework contribute to system efficiency and cost-

effectiveness. The study was conducted by executing 

equivalent workloads under two configurations: one 

using static, rule-based orchestration without 

FlowGuard, and the other leveraging intelligent, 

adaptive orchestration guided by FlowGuard. Metrics 

were collected for CPU and memory usage per node, 

processing throughput per resource unit, and 

cumulative execution cost based on standard cloud 

pricing models. 

Dynamic task routing enabled by FlowGuard allowed 

workloads to be redirected in real time to either edge or 

cloud nodes based on predictive load estimates. This 

significantly reduced unnecessary resource usage 

spikes and improved task distribution. With 

FlowGuard, Spark tasks running on edge consumed 

less memory (i.e., 9.3 GB instead of 10.1 GB) than 

those running on worker nodes, due to the in-memory 

queuing and redundant buffering that is minimized 

with predictive task allocation, while still achieving the 

low latency benefits of location-sensitive operations. 

Flink tasks in the cloud scaled better under high-

volume throughput but benefited from being 

preemptively scaled down during low-load windows. 

Table 9: Average resource utilization per node 

Node Type Configuration CPU Utilization 

(%) 

Memory Usage 

(GB) 

Throughput 

(records/sec) 

Edge 

(Spark) 

Without 

FlowGuard 

54.3 10.1 4,200 

Edge 

(Spark) 

With FlowGuard 60.5 9.3 4,900 

Cloud 

(Flink) 

Without 

FlowGuard 

71.6 7.5 5,100 

Cloud 

(Flink) 

With FlowGuard 78.8 6.2 5,850 

Cost analysis was derived using AWS pricing models 

for t3.xlarge cloud nodes and equivalent resource-

equivalent VMs for the edge. Dynamic scaling reduced 

the number of active containers and optimized memory 

allocation, lowering compute-hour charges. Tables 9 

and 10 summarize the resource and cost benefits 

observed.  

 

Table 10: Execution cost comparison with and without flowguard 

Cost Component Without FlowGuard With FlowGuard Reduction (%) 

Edge VM Runtime (hours) 10.0 7.5 –25.0% 

Cloud Node Runtime (hours) 10.0 8.1 –19.0% 

Estimated Cloud Cost (USD) $6.40 $5.15 –19.5% 

Total Resource Efficiency (records/sec/core) 145.8 198.2 +35.9% 

These results confirm that FlowGuard improves 

orchestration accuracy and fault tolerance, enhances 

resource efficiency, and reduces operational costs. By 

intelligently routing tasks and scaling execution based 

on predicted load, HyScaleFlow achieves better 

throughput per core, improved memory utilization, and 

measurable financial savings in hybrid cloud 

deployments. 
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Figure 8: Resource utilization and cost comparison with and without flowguard 

Figure 8 visually emphasizes the efficiency benefits of 

integrating FlowGuard into the HyScaleFlow 

orchestration pipeline. Subfigures (a) through (c) 

demonstrate a consistent pattern of optimized resource 

usage across CPU, memory, and throughput when 

FlowGuard is enabled. Subfigure (d) consolidates 

execution cost and efficiency metrics, showcasing how 

predictive scaling strategies translate into tangible 

operational savings and better utilization of 

computational resources in hybrid cloud deployments. 

FlowGuard Runtime Overhead. For estimating the run-

time cost of FlowGuard models, we measured the 

inference latency and resource cost of the classifier and 

the regressor. For 5000 prediction jobs, the average 

inference time was 11.8 ms per job at the edge node 

(Intel i7, 16GB RAM), and a CPU usage rise below 

3%. The memory footprint was consistent; this test 

provides evidence that ML components can be run 

inline in orchestrators without increasing scheduling 

latency or reducing node availability. 

4.7 Summary of experimental findings 
The experimental evaluation of the HyScaleFlow 

framework demonstrated significant improvements in 

system responsiveness, scalability, and orchestration 

efficiency when FlowGuard was integrated. The hybrid 

orchestration strategy, backed by predictive ML 

models, consistently outperformed static, rule-based 

workflows regarding latency reduction, fault 

resilience, adaptive scaling, and resource cost savings. 

Table 11 has a consolidated summary of the key 

findings from the various performance dimensions 

explored in the previous sections. 

 

Table 11: Summary of experimental results and observations 

Evaluation 

Aspect 

Metric / Observation Without 

FlowGuard 

With 

FlowGuard 

Improvement 

Processing 

Latency 

Avg. End-to-End Latency 

(Spark / Flink) 

2.7 s / 1.3 s 2.7 s / 1.3 s No change 

Stream 

Throughput 

Peak Throughput 

(records/sec) 

5100 5850 +14.7% 
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Fault Recovery Avg. Recovery Time (Spark / 

Flink) 

16.8 s / 11.3 s 10.1 s / 6.7 s –39.9% / –

40.7% 

Orchestration 

Success 

DAG Completion Rate 82.6% 96.5% +16.8% 

Task Stability Retry Rate 18.3% 6.9% –62.3% 

DAG Adaptability Dynamic Scaling Success N/A 94.2% – 

System Uptime During Fault Scenarios 87.1% 98.6% +11.5% 

Cost Efficiency Cloud Cost per Workflow 

(USD) 

$6.40 $5.15 –19.5% 

Resource 

Efficiency 

Throughput per Core 145.8 r/s/core 198.2 r/s/core +35.9% 

Throughput Events per second (EPS) 4700 EPS 5890 EPS +25.3% 

The integration of FlowGuard significantly enhanced 

orchestration adaptability through proactive fault 

detection and dynamic DAG scaling. The system 

showed higher throughput per core, better task 

reliability, and reduced rescheduling delays, 

contributing to improved scalability and 

responsiveness. Fault recovery and uptime metrics 

validated that predictive mitigation mechanisms 

outperform reactive recovery strategies. Additionally, 

the system achieved measurable cost reductions 

through more intelligent container placement and task 

routing, making HyScaleFlow suitable for scalable and 

cost-sensitive hybrid cloud deployments. 

The achieved gains, with 94.2% accuracy in failure 

prediction and 16.8% in DAG completion, surpass 

those of the predictor in [12], which addresses burst-

aware autoscaling but does not support orchestration-

level adaptation. Also, the 48% recovery efficiency 

obtained in HyScaleFlow, which enables a 40% 

reduction in fault recovery time, goes beyond the 

theoretical categories in [33], thus showing the 

practical gain of ML-based orchestration in live hybrid 

transport. 

4.8 Comparison with existing methods 
This section presents a comparative evaluation of the 

proposed HyScaleFlow framework against selected 

existing methods that address hybrid cloud processing, 

orchestration, and intelligent resource management. 

The comparison highlights differences in architecture, 

scalability, orchestration adaptability, and machine 

learning integration, emphasizing how HyScaleFlow 

advances beyond traditional frameworks by offering a 

unified, real-time, and ML-driven orchestration 

solution. 

Table 12: Comparative analysis of selected related works and hyscaleflow 

Reference 

& Authors 

System / 

Framework 

Architectur

e 

Orchestratio

n Strategy 

ML 

Integratio

n 

Evaluation 

Focus 

Distinction 

from 

HyScaleFlow 

[1] Ullah et 

al. 

Spark, Flink, 

Hadoop in 

Hybrid 

Cloud 

Hybrid 

Cloud 

None None Runtime 

Benchmarkin

g 

Does not 

include 

orchestration 

or ML-based 

adaptation 

[3] Henning 

& 

Hasselbring 

Stream 

Frameworks 

as Cloud 

Microservice

s 

Cloud None None Scalability & 

Efficiency 

Focuses on 

microservice-

based 

deployment, 

not predictive 

routing 

[12] Razzaq 

et al. 

Hybrid Auto-

Scaled Smart 

Cloud Rule-based 

Auto-scaling 

Predictive 

Burst 

Model 

Autoscaling 

Efficiency 

Lacks multi-

engine 

orchestration 
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Campus 

System 

and hybrid 

data routing 

[13] 

Radhika & 

Sadasivam 

Proactive-

Reactive 

Autoscaling 

Cloud Dynamic 

Autoscaling 

Statistical 

Prediction 

Scaling 

Accuracy 

Does not 

involve DAG-

based 

orchestration 

or streaming 

pipelines 

[14] Alsboui 

et al. 

Distributed 

Intelligence 

in IoT 

Edge-Cloud Conceptual 

Routing 

Theoretical 

AI Models 

Architectural 

Taxonomy 

Provides an 

IoT-oriented 

view, lacks 

implementatio

n and 

orchestration 

validation 

Proposed: 

HyScaleFlo

w 

Spark + 

Flink with 

FlowGuard 

Hybrid 

Edge-Cloud 

Hybrid DAG 

(Airflow + 

Dagster) 

XGBoost 

(Failure + 

Load 

Prediction) 

Latency, 

Fault 

Tolerance, 

Cost, DAG 

Performance 

Unified 

dataflow, real-

time feedback, 

ML-driven 

preemptive 

orchestration 

Table 12 provides a detailed comparative analysis between 

the proposed HyScaleFlow framework and five closely 

related works, selected from the reviewed literature. The 

comparison spans key dimensions including system 

architecture, orchestration strategy, machine learning 

integration, evaluation criteria, and distinctive 

contributions. 

Ullah et al. [1] evaluated the performance of Spark, Flink, 

and Hadoop in hybrid cloud deployments. Their study is 

relevant in terms of benchmarking distributed engines, but 

it lacks orchestration logic and does not incorporate any 

adaptive or predictive mechanisms. HyScaleFlow builds 

on these foundational observations by integrating multi-

engine orchestration with ML-guided decision-making. 

Henning and Hasselbring [3] benchmarked stream 

processing frameworks deployed as microservices in 

cloud-only setups. While their work focuses on scalability 

and efficiency, it does not address hybrid cloud challenges 

or introduce any orchestration or ML components. In 

contrast, HyScaleFlow extends beyond pure 

benchmarking by actively managing real-time workloads 

across cloud and edge environments. 

Razzaq et al. [12] introduced a hybrid auto-scaling 

approach using predictive models to anticipate burst 

workloads in a smart campus setting. Their use of ML for 

autoscaling aligns with the FlowGuard module in 

HyScaleFlow. However, their solution remains limited to 

cloud environments and lacks integration with distributed 

stream processing or DAG-based orchestration systems. 

Radhika and Sadasivam [13] proposed proactive-reactive 

autoscaling using statistical forecasting. While this 

strategy shows promise for elasticity, it does not 

incorporate workflow-level orchestration or real-time 

feedback from system telemetry, both of which are central 

to HyScaleFlow’s design. Moreover, their work does not 

involve task-level adaptation based on DAG semantics. 

Alsboui et al. [14] explored distributed intelligence in IoT 

systems, proposing architectural concepts for edge-cloud 

integration and adaptive behavior. Although thematically 

similar to HyScaleFlow in terms of distributed 

architecture, their work is conceptual and lacks 

experimental validation, implementation details, and 

orchestration performance metrics. 

In contrast to all these, HyScaleFlow distinguishes itself 

through its hybrid orchestration layer (Airflow + Dagster), 

real-time telemetry feedback via Prometheus, and ML-

based orchestration via FlowGuard using XGBoost for 

failure prediction and load forecasting. It is the only 

framework among those compared that combines multi-

engine stream processing, predictive adaptation, cost-

aware resource efficiency, and complete DAG execution 

tracking in a hybrid edge-cloud environment. 

 

5  Discussion 

The rapid proliferation of real-time data-intensive 

applications across hybrid cloud and edge environments 

has led to the growing demand for scalable, responsive, 

and intelligent orchestration systems. Existing distributed 

stream processing frameworks, such as Apache Spark and 

Flink, offer strong processing capabilities but fall short in 

handling dynamic system behaviors, fault tolerance, and 

workload volatility without external orchestration layers. 

A review of the state-of-the-art reveals that while some 
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research has addressed performance benchmarking or 

autoscaling in isolation, there remains a clear gap in 

integrating predictive intelligence with real-time 

distributed data engineering across hybrid architectures. 

Most existing approaches either rely on static orchestration 

rules, lack fault anticipation, or fail to provide unified 

multi-engine coordination. 

This gap necessitates the development of novel machine 

learning–driven orchestration strategies that can anticipate 

system bottlenecks, adapt DAG execution paths 

dynamically, and optimize resource usage without manual 

intervention. The proposed HyScaleFlow framework 

addresses this by introducing an intelligent orchestration 

module, FlowGuard, that leverages XGBoost models to 

predict both node-level failures and load surges. The 

architecture is uniquely designed to combine the strengths 

of Apache Airflow and Dagster, ensuring both scheduled 

and reactive orchestration, and enabling dynamic task 

routing between edge and cloud environments. 

Experimental evaluations demonstrate significant 

improvements in system responsiveness, fault recovery, 

DAG completion rate, and cost efficiency. Results show 

that FlowGuard’s predictive capabilities reduce task retry 

rates, improve uptime during failure scenarios, and 

enhance throughput per core, thereby overcoming key 

limitations of existing reactive and rule-based systems. 

The integration of ML within the orchestration pipeline 

proves critical in enabling scalable, fault-resilient, and 

resource-aware stream processing. The implications of this 

research are substantial for domains requiring continuous, 

intelligent dataflow management, including IoT, smart 

cities, and cyber-physical systems.  

The existing approaches, e.g, Razzaq et al. [12] and Shahid 

et al. [33], which are more reactive in that they primarily 

provide fault- tolerance or burst- aware scaling, 

HyScaleFlow’s FlowGuard enables predictive 

orchestration, where failures can be anticipated and the 

execution path of the DAG is dynamically adapted to 

reactively or proactively respond to the emergent failures. 

For instance, [12] uses a burst prediction model but it does 

not interoperate with a DAG-level orchestration over 

multi-engine sites. Similarly, Shahid et al. [33] also 

classify the fault-tolerance methods, but do not deploy a 

predictive recovery methods. HyScaleFlow on the other 

hand, reduces the recovery time up to 35% to 40% and task 

retry rate by 62.3% due to its strategy of employing two 

ML model. Moreover, Ullah et al. [1] Compare benchmark 

performance between Spark and Flink, but lack in 

orchestration and load prediction. HyScaleFlow extends 

this work by presenting its hybrid orchestration proposal 

and achieving +14.7% throughput with dynamic 

workloads. These comparisons also highlight the power of 

the PSOTA's ability to seamlessly integrate scalability, 

fault tolerance and preemptive orchestration beyond the 

state-of-the-art. 

The current HyScaleFow implementation assumes that 

there is a trusted hybrid infrastructure where all 

communication between components (Kafka, Spark, 

Flink, FlowGuard) takes place on secure channels. But in 

real-world implementations, we have to deal with 

problems like exposed telemetry data, unauthorized access 

to orchestration APIs, and data leakage towards the edge-

cloud boundary. Additional features in the future will 

include end-to-end encryption, role-based access control, 

and secure container orchestration to round out a holistic 

security architecture. 

While the proposed framework addresses numerous 

limitations of prior art, Section 5.1 outlines the specific 

limitations of the present study. 

5.1 Limitations of the study 
While the proposed HyScaleFlow framework 

demonstrates significant improvements in orchestration 

intelligence and system efficiency, the current study has 

three notable limitations. First, FlowGuard's prediction 

models are trained offline and may require periodic 

retraining for evolving workloads. Second, the system was 

evaluated using a single dataset and fixed ingestion rates, 

limiting generalizability to diverse data sources. Third, 

while the framework supports hybrid orchestration, it does 

not yet include fine-grained cost-based task placement 

strategies across multiple cloud providers. Although both 

Spark and Flink were strategically chosen for edge and 

cloud tiers respectively according to processing patterns 

and latency/resource exchanges, an experimental 

investigation of contrasting role placement (e.g., Flink on 

edge, Spark in cloud) still represents a juicy subject for 

future research. The ablation analysis can also be used to 

better tune the task-to-resource mapping in hybrid 

deployment. 

HyScaleFlow demonstrated competitive results up to 

5,800 records/sec, and it is interesting to run further 

experiments (e.g., 10k or 50k records/sec) to determine its 

scaling limits and saturation point. We believe this is one 

of the key areas in need of future work in understanding 

how well-the programmability of the data plane translate 

into meaningful fault coverage at scale under various 

workloads. 

Current pricing estimates were obtained using AWS on-

demand pricing, to ensure consistent, reproducible 

benchmark conditions. In future work, a finer-grained cost 

sensitivity analysis with spot and reserved price-based 

costs will be considered to capture the operational 

variability in cloud economics and contribute to the 

deployability of deployments. 

Future work can address these aspects to enhance 

adaptability, dataset diversity, and economic optimization 

in large-scale hybrid cloud deployments. 

 

6  Conclusion and future work  
This paper presented HyScaleFlow, a scalable and 

intelligent framework for real-time distributed data 

engineering in hybrid cloud environments. By integrating 

Apache Spark and Flink with a hybrid orchestration 
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strategy (Airflow and Dagster) and the FlowGuard ML 

module, the system effectively addresses critical 

challenges in fault tolerance, workload adaptation, and 

resource efficiency. Extensive experiments using the NYC 

Taxi Trip dataset demonstrated significant improvements 

in task completion rates, recovery time, throughput, and 

cost efficiency, validating the robustness and adaptability 

of the proposed methodology. The research fills existing 

gaps in the literature by introducing predictive, ML-driven 

orchestration into multi-engine streaming pipelines, 

offering a unified solution that extends beyond static rule-

based models. It provides a modular, generalizable 

architecture suitable for real-time applications in smart 

cities, industrial IoT, and edge analytics. Future work will 

focus on enhancing FlowGuard’s adaptability through 

online learning techniques and extending support for 

workload-aware, cost-optimized task placement across 

heterogeneous cloud providers. Additionally, evaluating 

the framework under diverse datasets and varying 

ingestion rates will further validate its generalizability. 

These advancements will position HyScaleFlow as a 

comprehensive orchestration solution for dynamic, large-

scale, and cost-sensitive hybrid cloud ecosystems, building 

upon the strong foundation established in this study. 
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