
https://doi.org/10.31449/inf.v49i9.9498 Informatica 49 (2025) 315–342 315

HyScaleFlow: An ML-Driven DAG-Based Orchestration

Framework for Real-Time Stream Processing in Hybrid Cloud

Environments

Srinivas Lakkireddy

Independent Researcher, USA

E-mail: reachlakkireddy@gmail.com

Keywords: hybrid cloud orchestration, real-time stream processing, machine learning, fault tolerance, resource

optimization

Received: June 1, 2025

The increasing complexity of real-time data processing across hybrid cloud and edge environments

has revealed significant limitations in existing distributed stream processing systems. While

frameworks like Apache Spark and Flink offer strong scalability and performance, they lack the

orchestration intelligence required to adapt to dynamic workloads, anticipate failures, and optimize

resource usage in heterogeneous environments. Traditional rule-based or reactive orchestration

approaches fail to deliver the responsiveness and fault resilience needed for mission-critical

applications in domains such as IoT analytics, innovative infrastructure, and cyber-physical systems.

To address these challenges, this paper presents HyScaleFlow, a scalable and modular framework

that integrates real-time stream processing with machine learning–driven orchestration. The

architecture combines Apache Spark (at the edge) and Apache Flink (in the cloud) with a hybrid DAG-

based orchestration strategy using Apache Airflow and Dagster. A key innovation is the FlowGuard

module, which uses XGBoost models (classifier and regressor) to predict node failures and forecast

resource load based on Prometheus-exported telemetry metrics. These predictions dynamically inform

DAG execution, enabling preemptive scaling, container migration, and workload-aware task routing.

Evaluations were conducted using the NYC Taxi Trip dataset (over 1.1 billion records) on a hybrid

cloud testbed that combines Spark at the edge and Flink in the cloud, orchestrated via

Docker/Kubernetes. Results reveal that HyScaleFlow improves DAG completion rates by 16.8%,

reduces task retry rates by over 60%, and enhances fault recovery times by up to 40%. Additionally,

the framework achieves a 19.5% reduction in cloud execution cost and a 35.9% gain in resource

efficiency. HyScaleFlow demonstrates strong utility for real-time, data-intensive applications by

unifying predictive intelligence with stream processing. It provides a replicable, cost-effective, and

resilient solution for hybrid cloud data engineering, advancing the state of intelligent orchestration.

Povzetek: Študija skuša omogočiti zanesljivo, samoprilagodljivo in stroškovno učinkovito obdelavo

podatkovnih tokov v realnem času v hibridnih oblačno-robnih okoljih, z avtomatskim zaznavanjem

anomalij, prerazporejanjem virov in preprečevanjem odpovedi za kritične industrijske in poslovne

aplikacije. HyScaleFlow je hibridni okvir za sprotno obdelavo tokov: Spark na robu, Flink v oblaku,

orkestracija Airflow+Dagster. Modul FlowGuard (XGBoost, Prometheus metrike) napoveduje

odpovedi/nalaganje, sproži skaliranje/migracije.

1 Introduction
The explosive growth of real-time data generated by

IoT devices, cloud applications, and cyber-physical

systems has led to an increased adoption of distributed

stream processing frameworks, such as Apache Spark

and Apache Flink, in hybrid cloud environments.

These frameworks offer high-throughput, low-latency

processing but lack intelligent orchestration

capabilities to adapt to unpredictable workloads,

resource constraints, and system faults. Traditional

orchestration strategies are primarily static, rule-based,

or reactive, which limits their ability to ensure service

continuity and efficiency in dynamic runtime

conditions [1], [3]. Existing literature highlights the

importance of autoscaling and stream framework

benchmarking in hybrid deployments [12], [13], but

few solutions integrate predictive machine learning

with distributed data engineering pipelines. Moreover,

most approaches do not coordinate multi-engine

deployments across edge-cloud nodes or adapt DAG

execution in real time based on system health metrics

[14].

To address these limitations, this research proposes

HyScaleFlow, a scalable, ML-enhanced framework for

real-time data engineering and orchestration across

hybrid cloud infrastructures. The primary objective is

to design a modular system that enables predictive

failure mitigation, workload-aware scaling, and

https://doi.org/10.31449/inf.v49i9.9659
mailto:reachlakkireddy@gmail.com

316 Informatica 49 (2025) 315–342 S. Lakkireddy

efficient task distribution using Apache Spark and

Flink, orchestrated through Airflow, Dagster, and a

novel ML module called FlowGuard. The key novelties

of this research include: (i) integration of dual-stream

processing with hybrid DAG orchestration, (ii)

FlowGuard’s real-time failure and load prediction

using XGBoost models trained on Prometheus-

exported metrics, and (iii) dynamic task routing and

container management across edge and cloud nodes.

These innovations enable intelligent orchestration

beyond static or reactive models, supporting fault

resilience, throughput efficiency, and operational cost

reduction.

The contributions of this paper are threefold: first, it

presents a robust, predictive orchestration architecture

unifying multiple execution engines; second, it

demonstrates significant improvements in execution

metrics such as DAG completion, task retry rates, and

system uptime through experimental validation; third,

it offers a replicable deployment strategy supported by

public datasets and open-source tools, enabling broader

adoption in industry and academia.

In alignment with the proposed framework and its

objectives, this study addresses the following research

questions:

RQ1: Can a machine learning–driven orchestration

strategy improve DAG completion and reduce task

retry rates in hybrid cloud environments?

RQ2: How accurately can system-level telemetry

metrics forecast node failure and workload surges

using XGBoost-based predictive models?

RQ3: To what extent can predictive orchestration

reduce cloud resource costs and improve throughput

efficiency compared to rule-based alternatives?

These questions guide the design, implementation, and

evaluation of HyScaleFlow and form the basis for the

comparative experimental analysis presented in this

paper.

The rest of this paper is organized as follows. Section

2 reviews related work in hybrid stream processing,

orchestration strategies, and ML-driven system

adaptation. Section 3 details the architecture,

FlowGuard algorithm, and orchestration workflow in

HyScaleFlow. Section 4 presents the experimental

setup, performance evaluation, and visualization of

results. Section 5 discusses the findings on existing

works and outlines the system's limitations. Finally,

Section 6 concludes the study and provides directions

for future enhancements to increase generalizability,

efficiency, and scalability.

2 Related work
This literature review explores scalable distributed data

processing, hybrid cloud orchestration, and intelligent

stream analytics using AI-enabled frameworks. Ullah

et al. [1] compared Hadoop, Spark, and Flink on a

hybrid cloud; Flink was the fastest, and Spark the most

cost-effective. In the future, cross-cloud latency and

scaling may be optimized for improved performance.

Ponnusamy and Gupta [2] investigated the scalability

and effectiveness of data partitioning in cloud

processing; future research might enhance tactics for

real-time cloud analytics. Henning and Hasselbring [3]

scaled benchmarks for stream frameworks, revealing

linear scaling but varying efficiency; further research

may optimize cost-performance trade-offs. Irshad et al.

[4] proposed a secure IoT-cloud connection utilizing an

SSCA that incorporates MBRA, PQC, and blockchain,

with performance verified. Further development would

include broader scalability. Islam and Bhuiyan [5]

proposed a scalable green IoT-cloud healthcare

platform that utilizes hierarchical clustering and does

not validate energy measurements; further

sustainability research will be explored in future

studies.

Banimfreg [6] suggested cloud infrastructure for

bioinformatics, and the present advantages were

assessed. Drawbacks included privacy issues with data.

Future work included enhancing security and training.

Lohitha and Pounambal [7] employed push-pull and

publish/subscribe communications; the proposed

scalable IoT-cloud architecture reduces device

overhead and may improve efficiency in the future.

Singh et al. [9] performed better than other databases

when evaluated against databases for financial time-

series in a hybrid cloud; further research should

examine larger datasets and latency measures. Khriji et

al. [10] proposed that REDA is an inexpensive, real-

time, event-driven IoT cloud system that utilizes Kafka

and MQTT; further development may improve

scalability.

Chen et al. [11] utilized NVMs to optimize Big Data

memory utilization, thereby saving energy; further

research can enhance flexibility across a range of

workloads. Razzaq et al. [12] enhanced their approach

with a hybrid burst-aware auto-scaling method; further

research may improve real-time burst prediction and

scalability cost-efficiency. Radhika and Sadasivam

[13] examined hybrid auto-scaling tactics, emphasizing

the difficulties in dynamic resource estimation and

proposing proactive-reactive adaptive methods.

Alsboui et al. [14] highlighted the main obstacles,

categorized and examined distributed intelligence in

the Internet of Things, and suggested future adaptive

hybrid DI solutions. Risco et al. [15] demonstrated

private smart city video processing using a hybrid

serverless platform for elastic scientific operations.

Hu et al. [16] proposed a real-time traffic tile

generation technique based on Apache Flink, which

enhances the scalability and visualization performance

of Intelligent Transportation Systems (ITS).

Mohyuddin and Prehofer [17] offered a practical

HyScaleFlow: An ML-Driven DAG-Based Orchestration… Informatica 49 (2025) 315–342 317

framework for processing data from autonomous

vehicles and evaluating driving behavior that is

scalable and based on Spark. Rao et al. [18] suggested

utilizing Spark and Flink to mine top-k user

communities in weighted bipartite graphs in a

distributed manner. Dongen and Poel [19] highlighted

recovery times and semantics when assessing fault

tolerance in Spark, Flink, Structured Streaming, and

Kafka Streams. Ashiku et al. [20] investigated the use

of Apache Spark for healthcare big data analytics and

machine learning in effective organ distribution.

Mostafaei et al. [21] examined and suggested fixes for

performance reduction in large data analytics systems

(Storm, Spark, and Flink) caused by geographical

delays. Shaikh et al. [22] extended Apache Flink to

manage geographic data streams and enable spatial

queries. GeoFlink outperforms existing platforms in

terms of performance. Chen et al. [23] gathered and

diagnosed escalator operating data using fault tree

analysis and big data techniques (Flume, Kafka, Flink).

Mostafaei et al. [24] suggested optimizing worker node

placement in geo-distributed stream processing

systems based on additive weighting. Almeida et al.

[25] focused on strategies for managing large amounts

of data and forecasts, while also discussing the

development of real-time systems for analyzing big

data.

Kastrinakis and Petrakis [26] used Flink for speed and

Apache Kafka for real-time and constrained video

processing. Video2Flink is a scalable solution. Chen et

al. [27] examined use examples in finance and health,

real-time analytics, and AI integration, emphasizing

obstacles and potential paths forward. Xu et al. [28]

suggested a Spark-based parallel AC automation

technique for effective DNS log processing with faster

matching. Using Spark, Mallik et al. [29] created a

parallel fuzzy C-median clustering algorithm for

massive data with enhanced scalability and accuracy.

Hassan [30] examined big data technology and

compared the ability of the ARIMA and Weibull

BMTD models to predict internet congestion.

Berberi et al. [31] assessed 16 MLOps products and

provided insights on efficient AI infrastructure and a

strategy for choosing scalable platforms. Zeydan and

Bafalluy [32] identified gaps in applying data

engineering advancements to the telecom industry and

made suggestions for future development and early

adoption. Shahid et al. [33] examined cloud fault

tolerance strategies, categorizing them as Reactive,

Proactive, and Resilient, and emphasized the

importance of AI in recovery. Karthikeyan et al. [34]

proposed the SALDEFT method to reduce

transmission overhead and energy consumption while

enhancing fault tolerance in cloud computing. Alaei et

al. [35] suggested an IDE and ANFIS-based adaptive

fault detection technique for better fault tolerance and

cloud computing workflow scheduling.

Table 1: Literature review summary of comparable works related to hyscaleflow

Reference Methodology Key Findings Key Findings Limitations /

Research Gap

Relevance to

HyScaleFlow

Ullah et al.

[1]

Benchmarking

Hadoop, Spark,

and Flink in a

hybrid cloud

Flink is fastest;

Spark is cost-

effective (total

time = 2998 sec

& efficiency

score = 0.53)

Flink is fastest;

Spark is cost-

effective

No orchestration

or ML

integration

Validates

engine

selection for

hybrid

processing

Henning &

Hasselbring

[3]

Microservice-

based stream

processing

evaluation

Shows linear

scaling of cloud-

native

frameworks

Shows linear

scaling of

cloud-native

frameworks

Ignores

hybrid/cloud-

edge deployment

and orchestration

Highlights the

need for hybrid

DAG

orchestration

Razzaq et al.

[12]

Predictive auto-

scaling using

burst modeling

Improves cloud

workload

efficiency

(accuracy 92 %)

Improves

cloud

workload

efficiency

Lacks DAG

orchestration and

edge processing

Inspires

FlowGuard’s

predictive

scaling logic

Radhika &

Sadasivam

[13]

Statistical auto-

scaling for

cloud

applications

Demonstrates

dynamic

resource

adaptation

Demonstrates

dynamic

resource

adaptation

No feedback-

based

orchestration or

DAG

intelligence

Supports ML-

based

adaptation in

HyScaleFlow

318 Informatica 49 (2025) 315–342 S. Lakkireddy

Alsboui et

al. [14]

Survey of

distributed

intelligence in

IoT

Highlights the

architectural

flexibility of

edge-cloud

Highlights the

architectural

flexibility of

edge-cloud

No empirical

orchestration

evaluation

Aligns with

system-level

distribution in

HyScaleFlow

Henning et

al. [8]

Configurable

stream

benchmarking

at scale

Proactive load

balancing using

prediction

(accuracy = 92

%)

Offers tuning

for stream

workloads

Does not explore

ML-driven

orchestration

paths

Justifies the

need for

adaptable

orchestration

layers

Shahid et al.

[33]

Survey of cloud

fault-tolerance

techniques

Offers tuning for

stream

workloads

(load (msg /sec

) = 50000 -

500000)

Categorizes

proactive vs.

reactive

models

No

implementation

of predictive

recovery

Supports

FlowGuard’s

fault prediction

and DAG

recovery logic

 Categorizes

proactive vs.

reactive models

Nalini and Khilar [36] proposed using Reinforced Ant

Colony Optimization (RACO) to schedule tasks in

cloud computing more effectively, resulting in a 60%

performance increase. Rehman et al. [37] discussed

cloud computing fault-tolerance tactics, proactive and

reactive techniques, frameworks, and future research

objectives. Taraghi et al. [38] introduced LLL-

CAdViSE, a cloud-based platform that addresses

several experimental factors for assessing low-latency

live video streaming. Fragkoulis et al. [39] examined

the development of stream processing systems,

emphasizing fault tolerance, flexibility, and data

management, and discussed potential future

developments. Ching et al. [40], with future

development potential, AgileDart enhances edge

stream processing by adapting to changing

circumstances, thereby increasing reliability,

scalability, and latency. Guan [42] proposed a hybrid

cloud workflow scheduling procedure supplemented

with a Levy-optimized Slime Mould Algorithm

(SMA), which addresses both efficiency and security

challenges in dynamically resourced cloud systems.

Our approach significantly outperforms a basic

implementation, enhancing task allocation, execution

reliability, and network resilience, leading to more

secure and optimized hybrid cloud infrastructures. Ilias

et al. [43] On the other hand, concerning cryptographic

progress in the context of secure cloud communication,

the authors proposed an integrated framework using

the new post-quantum cryptographic primitives HEDT.

The paper contributes to cloud data security and key

exchange mechanisms by providing quantum-resistant

cloud solutions that protect the reliability of encrypted

data transmission over cloud systems against quantum

computing, thereby reinforcing the independence of

the cloud data and its key exchange mechanisms. Tang

et al. [44] centered on predictive modeling for

Industrial IoT systems, presenting a hybrid deep

learning architecture that fuses Long Short-Term

Memory (LSTM) networks and Transformer models.

Their algorithm boosts energy management system

stability and accurately predicts the state of health

(SoH) and charge for battery management. This model

performs with high precision and versatility, which is

crucial for industrial real-time IoT applications.

Table 1 summarizes key literature relevant to

HyScaleFlow, highlighting their methodologies,

findings, limitations, and how they collectively inform

the framework’s design and research contributions.

The review spans over 40 references covering

performance comparisons of Spark and Flink, fault-

tolerant orchestration, real-time stream optimization,

and hybrid cloud innovations. Several works

emphasize adaptive autoscaling, ML-based

orchestration, and geo-distributed processing, while

others focus on energy efficiency, IoT integration, and

future-ready AI-enhanced orchestration strategies in

hybrid environments.

3 Proposed framework
The proposed HyScaleFlow framework integrates

predictive intelligence with dynamic orchestration to

address the challenges of real-time, distributed data

processing in hybrid cloud environments. It combines

Apache Spark and Apache Flink for edge and cloud

stream processing, utilizing a hybrid DAG

orchestration mechanism that leverages Airflow and

Dagster. The core intelligence module, FlowGuard,

leverages XGBoost models to forecast failures and

workload surges, enabling preemptive task migration,

HyScaleFlow: An ML-Driven DAG-Based Orchestration… Informatica 49 (2025) 315–342 319

adaptive scaling, and enhanced system efficiency

across heterogeneous execution environments.

3.1 System overview
The HyScaleFlow framework is designed as a modular,

distributed data engineering system capable of

executing real-time processing pipelines across a

hybrid cloud infrastructure. It seamlessly integrates

ingestion, processing, orchestration, and intelligent

decision-making to handle high-velocity data streams

with scalability, reliability, and adaptability. The

system leverages edge and cloud computing

environments to optimize latency and resource

availability while ensuring continuous data flow and

pipeline resilience. Figure 1 presents a high-level

architectural view of the entire HyScaleFlow system,

illustrating the interaction between its key components.

The pipeline begins with external data sources such as

the NYC Taxi Trip dataset [41], which emits

timestamped records. These are ingested in real-time

via Apache Kafka, acting as the primary message

broker and buffer. Kafka partitions the incoming

stream based on configured keys, supporting parallel

processing. From Kafka, the data is streamed

simultaneously to both edge and cloud nodes. The edge

node hosts Apache Spark for latency-sensitive batch

and stream tasks, while the cloud node runs Apache

Flink for high-throughput, event-driven stream

analytics. This architecture enables HyScaleFlow to

handle diverse analytics requirements. The edge node

processes latency-sensitive tasks, while the cloud node

manages high-throughput analytical workloads.

Together, they support distributed deployments with

greater flexibility and resilience.

Figure 1: HyScaleFlow system architecture for real-time distributed data engineering in hybrid cloud

A hybrid strategy integrating Apache Airflow and

Dagster handles workflow orchestration within the

system. Airflow manages high-level DAG scheduling

and periodic task triggering, whereas Dagster supports

dynamic, type-aware execution paths and task retries

based on data state and system feedback. FlowGuard,

the embedded ML module, informs the orchestration

layer, which receives real-time system health metrics

from Prometheus. Based on its predictions, FlowGuard

issues orchestration triggers that dynamically adapt the

DAG execution, scale task branches, or migrate

containers across nodes.

Processed results are streamed into distributed object

storage systems or visualized in real time through a

Grafana dashboard. This feedback loop enables

continuous monitoring and fine-grained observability

of system components, execution paths, and

orchestration outcomes. The system design prioritizes

modularity, extensibility, and real-time adaptability,

making HyScaleFlow suitable for complex hybrid

cloud deployments where performance and fault

tolerance are critical. Table 2 defines key symbols and

variables used throughout the HyScaleFlow

HyScaleFlow System

Edge

Node(s)

Cloud

Node(s)

NYC Taxi Trip

Data (Real-

Time)

Kafka Broker
Apache

Spark
Apache Flink

Apache

Airflow
Dagster

FlowGuard

(ML Module)

 Monitoring Layer

Prometheus

(Metrics

Collector)

Grafana

(Dashboard)

Output Layer

Processed Data Store

Real-Time Analytics

Dashboard

320 Informatica 49 (2025) 315–342 S. Lakkireddy

framework, including data streams, processing rates,

and predictions.

Table 2: Notations used in the hyscaleflow framework, covering symbols related to data streams, processing

metrics, orchestration logic, and ml-based prediction models

Notation Description

𝑥𝑡 Data record (event) at time 𝑡

𝑆 = {𝑥1, 𝑥2, … , 𝑥𝑡} Input data stream as a sequence of events

𝑇(𝑥𝑡) Timestamp extraction function for event 𝑥𝑡

𝑊(𝑡) Watermark function to handle late data

𝐵𝑖 Micro-batch of events in Spark for time interval [𝑡𝑖 , 𝑡𝑖 + 𝛥𝑡)

𝑓(𝐵𝑖) Transformation function applied on Spark batch 𝐵𝑖

𝑔𝑘(𝑥𝑡) Flink function applied to event 𝑥𝑡with key 𝑘

ℎ(𝑥𝑡) Key extraction function for partitioning in Flink

𝜆𝑖𝑛 Ingestion rate from Kafka into the system

𝜆 Effective workload rate per node

𝜆𝑝𝑟𝑜𝑐 Processing rate of downstream engines (Spark/Flink)

𝐿𝑖𝑛𝑔𝑒𝑠𝑡 Ingestion latency (difference between consumption and production timestamps)

𝐶 Per-node processing capacity

𝑝 Number of parallel executors or task managers

𝐺 = (𝑉, 𝐸) Directed Acyclic Graph for task orchestration (nodes 𝑉, edges 𝐸)

𝑇𝑖 Individual task node in the DAG

𝑑𝑒𝑝(𝑇𝑖) Set of upstream tasks dependent for 𝑇𝑖 's execution

𝑅𝑖 Runtime status of task 𝑇𝑖 (e.g., success, fail)

𝑥𝑡 ∈ ℝ𝑑 Feature vector at time 𝑡 for FlowGuard input

𝑥𝑖𝑗
′ Standardized value of feature 𝑗 at sample 𝑖

𝑦̂𝑡 Predicted failure probability from FlowGuard (binary classifier output)

𝜏 Threshold for failure alert trigger (e.g., 0.7)

𝑟̂𝑡+1 Predicted resource usage for next time step from regression model

3.2 Data ingestion and streaming pipeline
HyScaleFlow handles data ingestion and streaming

pipelines, starting with continuously sourcing high-

velocity data from outside sources like the NYC Taxi

Trip dataset, an example of timestamped, hectic

geospatial and transactional data entries. The records

are produced near or simulated near real-time and are

inputted into the system via a distributed message

broker—in our case, Apache Kafka. Kafka, as the first

buffer layer that creates the data separation between

producers and processing engines, guarantees that

streams are transmitted in a fault-tolerant, sequenced,

and scalable manner.

We model each incoming data record 𝑥𝑡 at timestamp

𝑡 as a tuple of structured attributes like pickup time,

drop-off location, passenger count, and fare value. An

event stream can be defined as 𝑆 =
{𝑥1, 𝑥2, … , 𝑥𝑡},,where each 𝑥𝑡 ∈ ℝ𝑑 correspond to a

vector in 𝑑 -dimensional feature space. These records

are partitioned into different Kafka topics with some

key stuff (vendor ID, pickup zone, etc.) so that they can

be processed in parallel streams. Kafka handles at-

least-once delivery guarantees and offset tracking for

stream replay on failure.

Connector APIs: Connector APIs are used by both

Apache Spark and Apache Flink to consume the Kafka

stream. For event-time processing, every consumer

consumes data from a partitioned topic and finds a

timestamp extraction function, 𝑇(𝑥𝑡) → 𝑡.

Watermarking strategy 𝑊(𝑡) is introduced to deal with

the out-of-order events by providing the system with a

threshold of maximum delay. That one is

𝑥𝑡 considered late if 𝑡 < 𝑊(𝑡),, which is used to drop

or reroute stale inputs to different queues.

Let us denote the throughput of the ingestion layer as

𝜆𝑖𝑛, and the effective consumption rate of the

processing engines as 𝜆𝑝𝑟𝑜𝑐. Thus, to prevent the

backlogs from accumulating, it must hold that the

system should maintain that to satisfy Eq. 1.

𝜆𝑝𝑟𝑜𝑐 ≥ 𝜆𝑖𝑛 (1)

If those constraints are violated, it indicates a potential

bottleneck, which triggers alerts and adjustments via

FlowGuard. The system also monitors latency using

Eq. 2.

HyScaleFlow: An ML-Driven DAG-Based Orchestration… Informatica 49 (2025) 315–342 321

 𝐿𝑖𝑛𝑔𝑒𝑠𝑡 = 𝑡𝑐𝑜𝑛𝑠𝑢𝑚𝑒 − 𝑡𝑝𝑟𝑜𝑑𝑢𝑐𝑒

(2)

Where 𝑡𝑝𝑟𝑜𝑑𝑢𝑐𝑒 is the Kafka publish timestamp, and

𝑡𝑐𝑜𝑛𝑠𝑢𝑚𝑒 is the timestamp when the record is read by

the consumer One of the core input features in

flowguard's predictive model is this latency metric. In

summary, the ingestion and streaming pipeline in

HyScaleFlow delivers timestamp-aligned, reliable, and

parallel inflow of data to a hybrid cloud environment,

which serves as the building blocks for scalable

distributed data engineering.

3.3 Distributed processing in hybrid cloud

nodes
We propose a design of distributed hybrid cloud

execution nodes in the HyScaleFlow framework,

where different execution nodes could be set up so that

the latency-sensitive tasks can be distributed on the

edge infrastructure. In contrast, the cloud environments

can be used to maximize the computational power of

mass-scale operations. New data streams from the

Kafka broker get routed in real-time to both the edge

nodes with Apache Spark and the cloud nodes with

Apache Flink. This two-pronged approach allows for

both real-time local processing and aggregate stream

processing, with the ability to react and scale.

This edge node runs Spark Structured Streaming jobs

in which streaming data is divided into small time

intervals. 𝛥𝑡 that form the micro-batches. Events

within a micro-batch 𝐵𝑖 are such that {𝑥𝑖1, 𝑥𝑖2, … , 𝑥𝑖𝑛}

their timestamps fall within the interval [𝑡𝑖 , 𝑡𝑖 + 𝛥𝑡).

Given a transformation function 𝑓, the outcome of

batch processing is defined as in Eq. 3.

 𝑦𝑖 = 𝑓(𝐵𝑖) = 𝑓({𝑥𝑖1, 𝑥𝑖2, … , 𝑥𝑖𝑛})

(3)

These outputs are checkpointed to HDFS for fault

recovery and job replay capability. With its query

execution engine, Spark guarantees stateful stream

processing with exactly-once semantics.

Meanwhile, the cloud node deals with the stream

simultaneously using Apache Flink, which works on an

event-at-a-time basis in a very fine-grained state. Every

records 𝑥𝑡 coming is processed right away and stored

in keyed state backends. Assume that the keyed

function 𝑔𝑘(𝑥𝑡) is a transformation on record 𝑥𝑡 with

key 𝑘, then it can be expressed as in Eq. 4.

 𝑧𝑡 = 𝑔𝑘(𝑥𝑡), where 𝑘 = ℎ(𝑥𝑡) (4)

Where ℎ(𝑥𝑡) is the function for extracting keys A

function 𝑔𝑘 might even consist of aggregations, say

windowed sums or joins, or pattern matching on event

streams. Flink uses watermarking policies 𝑊(𝑡) (c.f.

ingestion layer) to trigger processing windows and deal

with late events.

Operator-level parallelism is preserved to scale across

task slots for both Spark and Flink. Now, let us denote

the number of executors/task managers 𝑝 by, and the

workload rate per node by 𝜆. Total per-node capacity

𝐶 which must hold on to condition in Eq. 5 to keep

processing stable.

 𝐶 ≥
𝜆

𝑝
 (5)

Once there's underutilization or overload detected,

HyScaleFlow 𝐶 triggers horizontal scaling by

modifying 𝑝 or migrate containerized jobs between

nodes by FlowGuard through Prometheus monitoring.

In Eq. 5, λ denotes the per-node workload rate, which

can be estimated by dividing the global ingestion rate

(λin) across the number of executors or task managers

(p). Thus, λ ≈ λin / p, ensuring that the total load

remains below the aggregate processing capacity C.

This hybrid setup allows local Spark events (e.g., surge

detection in a city borough) to be reaped quickly, while

Flink uses the same pipeline for large-scale continuous

computations (e.g., real-time analytics over taxi zones

distributed across the entire city). The design of this

distributed processing methodology, supplemented by

intelligent orchestration, ultimately makes up the

computational architecture of HyScaleFlow.

3.4 Hybrid orchestration strategy
Hybrid orchestration is a strategy where we combine

the strengths of two orchestration tools—Apache

Airflow and Dagster—to provide the flexibility,

scalability, and robustness required for large-scale,

adaptive execution of distributed data pipelines across

hybrid cloud environments in the HyScaleFlow

framework. Airflow, on the one hand, offers mature,

DAG-based task scheduling with deep UI support and

scheduling policies; Dagster, on the other hand,

enables dynamic, data-aware pipeline execution, real-

time introspection, and type-checked task

management. Such a two-layer orchestration puzzle

can be solved with a layered abstraction, with Airflow

managing macro-level task dependencies and Dagster

governing fine-grained pipeline evolution and other

retries.

Each job pipeline is represented as a Directed Acyclic

Graph 𝐺 = (𝑉, 𝐸)— with as the set of tasks 𝑉 and 𝐸 ⊆
𝑉 × 𝑉 as task dependence. Consider a task 𝑇𝑖 ∈ 𝑉, and

𝑑𝑒𝑝(𝑇𝑖) ⊂ 𝑉 the set of upstream dependencies of 𝑇𝑖 .

This means that the orchestration constraint ensures

that it satisfies the condition in Eq. 6.

322 Informatica 49 (2025) 315–342 S. Lakkireddy

∀𝑇𝑖 ∈ 𝑉, 𝑇𝑖 𝑒𝑥𝑒𝑐𝑢𝑡𝑒𝑠 𝑜𝑛𝑙𝑦 𝑖𝑓 ∀𝑇𝑗 ∈

𝑑𝑒𝑝(𝑇𝑖), 𝑇𝑗 𝑖𝑠 𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒𝑑 (6)

Static DAGs 𝐺 are managed by Airflow, which triggers

pipelines according to scheduled intervals,

success/failure states, and external event sensors.

Dagster, on the other hand, enables dynamic

reconfiguration of tasks in the same pipeline during

runtime based on the quality or availability of the

intermediate data. For example, if a Spark job produces

partial outputs because some data arrived late,

Dagster’s event-based trigger functionality could allow

some downstream tasks to rerun without restarting the

entire pipeline.

𝑅𝑖 denotes the runtime status of the task 𝑇𝑖 (success,

fail, retry, etc.). Dagster implements conditional

logic, such as 𝑅𝑖 = 𝑓𝑎𝑖𝑙 if and the task is retryable as

in Eq. 7.

𝑇𝑖
(𝑛+1)

= 𝑟𝑒𝑡𝑟𝑦(𝑇𝑖
(𝑛)

)𝑢𝑛𝑡𝑖𝑙 𝑅𝑖 = 𝑠𝑢𝑐𝑐𝑒𝑠𝑠 𝑜𝑟 𝑛 =

𝑁𝑚𝑎𝑥 (7)

𝑁𝑚𝑎𝑥 is the maximum number of retries per task.

Powered by FlowGuard’s ML outputs, the integration

layer also enables DAGs to be influenced dynamically.

For example, FlowGuard predicting an overload can

prompt Airflow to scale parallel task branches (e.g.,

divide an enormous data aggregation task into

subtasks). In contrast, a predicted failure risk may defer

execution or reroute tasks to more stable nodes.

Prometheus usage (for logging and monitoring)—

Prometheus is a system and service monitoring system

that collects orchestration metadata like task execution

time, success rates, and retry counts. These metrics are

used for both visualization in Grafana in real time and

back into FlowGuard for continuous model

improvement.

By combining the best of both worlds, HyScaleFlow

has a hybrid orchestration strategy that balances

Airflow’s reliability and deterministic DAG engine

with Dagster’s dynamic control flow, driven by

reusable decision logic powered by ML.

3.5 FlowGuard: ML-based orchestration

optimization
Within the HyScaleFlow framework, the FlowGuard

module, shown in Figure 2, helps to make intelligent

orchestration decisions by continuously identifying

risk of failure and forecasting workloads. FlowGuard,

integrated as a sidecar microservice, consumes system

health metrics exported by Prometheus from hybrid

cloud nodes and processing engines, serving the needs

of large-scale production systems, such as CPU usage,

memory consumption, network I/O, pod restarts, and

end-to-end stream latency. The data collected serves as

the input 𝑥𝑡 ∈ ℝ𝑑 at time 𝑡 element of double-struck

cap R to the d at time t, with each dimension

representing a particular resource or performance

metric.

Figure 2: FlowGuard – ML-Based failure and load prediction module for orchestration optimization

Prometheus Metrics

CPU %, Memory %, I/O, Pod

Restarts, Latency

Preprocessing Unit

Scaling + Feature

Aggregation

ML Model

FlowGuard: XGBoost Model

Trained to predict: Failure Risk or Load Score

Prediction Output

Output 1

Failure Risk: Low / High
Output 2

Predicted Load: %

Decision Engine

To Trigger Container

Migration
To Scale Orchestration

DAG
Action Interface to

Airflow/Dagster

If risk high If load high

HyScaleFlow: An ML-Driven DAG-Based Orchestration… Informatica 49 (2025) 315–342 323

The preprocessing stage converts raw metric logs into

a structured input matrix. 𝑋 ∈ ℝ𝑛×𝑑, and 𝑛 is the

number of past observations. We standardize each

feature by Eq. 8.

 𝑥𝑖𝑗
′ =

𝑥𝑖𝑗−𝜇𝑗

𝜎𝑗
 (8)

In the equations, 𝜇𝑗 and 𝜎𝑗 are the mean and the

standard deviations of feature 𝑗, allowing all input

features to be on the same scale.

FlowGuard is using an XGBoost classifier for binary

classification of node failure prediction. 𝑦𝑡 ∈ {0,1}

Define the failure label at time t as, where one

represents that the system is in a high-risk state.

Therefore, the model learns a function 𝑓𝜃: ℝ𝑑 → [0,1]
as in Eq. 9.

 𝑦̂𝑡 = 𝑓𝑜(𝑥𝑡) (9)

Where 𝑦̂𝑡 It is the predicted failure probability. If, 𝑦̂𝑡 >
𝜏 where 𝜏 If a threshold (e.g., 0.7) is met, FlowGuard

sends a predictive migration or deferral signal to the

orchestration layer.

FlowGuard does the same using the same XGBoost

model family: in our case, we have FlowGuard lying in

regression mode for load forecasting. Based on the

metrics defined, it shows predicted how much resource

will utilized 𝑟̂𝑡+1 ∈ ℝ pagailand the next time interval

as in Eq. 10.

 𝑟̂𝑡+1 = 𝑓𝜙(𝑥𝑡) (10)

Where 𝑓𝜙 is the regression model fitted to the training

set. If 𝑟̂𝑡+1 surpasses the node capacity threshold 𝐶 (see

in 5), it also activates DAG scaling or task relocation

to nodes when available.

FlowGuard prediction outputs—either a flag indicating

failure risk or an estimate of resource usage—are then

passed as inputs into the hybrid orchestration strategy

through a decision interface. These can translate to

actions like container evacuation, task throttling,

priority changes, or backup executor instantiations.

This mechanism is closed, monitored, and logged for

transparency and to improve the model over time.

With FlowGuard integrated, HyScaleFlow can

proactively manage resource utilization, prevent task

failures, and dynamically adjust orchestration to

optimize resource utilization, transforming the system

into an intelligent, adaptive, and fault-resilient system

in real-time hybrid cloud environments.

Imagine a DAG for processing city-scale taxi analytics,

with task T2 depending on successful completion of T

1 (data cleaning), and T3 depending on both T 1 and T

2 (zone-level aggregation). By default, Airflow will

execute the tasks in a linear/sequential order.

Nonetheless, if FlowGuard anticipates a high failure

likelihood for the cloud node processing T2, the

orchestration layer will trigger T2 to be rerouted by

preemptively re-assigning T2 to a standby cloud node,

and then re-directing T3 into two tasks T3a

(responsible for partial edge aggregation) and T3b

(perform cloud final aggregation). This adaptive DAG

re-organizing keeps the pipeline in tact so as to support

failure-resilient, low-latency execution.

3.6 Proposed algorithms
The FlowGuard-based algorithm is a predictive

orchestration component within HyScaleFlow,

enabling intelligent, real-time decision-making. By

analyzing system metrics using XGBoost models, it

forecasts node failures and resource loads. These

predictions guide adaptive DAG scaling, task

migration, and container orchestration, enhancing the

system’s fault tolerance, scalability, and resource

efficiency in hybrid cloud environments.

Algorithm: FlowGuard-Based Failure and Load Prediction

Input:

Real-time metrics stream 𝑥𝑡 from Prometheus

Trained XGBoost models: 𝑓𝑜 (classifier), 𝑓𝑟

Thresholds: failure 𝜏, capacity 𝐶

Output:

Action trigger for orchestration (migrate, scale, defer)

1. Receive input feature vector 𝑥𝑡 ∈ ℝ𝑑

2. Apply standardization: 𝑥𝑡𝑗
′ =

𝑥𝑡𝑗−𝜇𝑗

𝜎𝑗
 for each feature 𝑗

3. Predict failure risk: 𝑦̂𝑡 = 𝑓𝑜(𝑥𝑡
′)

4. If 𝑦̂𝑡 > 𝜏, then:

 a. Trigger failure mitigation signal

 b. Notify orchestration to migrate or delay affected tasks

5. Else:

 a. Predict load: 𝑟̂𝑡+1 = 𝑓𝑟(𝑥𝑡
′)

 b. If 𝑟̂𝑡+1 > 𝐶, trigger DAG scaling or task offloading

324 Informatica 49 (2025) 315–342 S. Lakkireddy

6. Log prediction, action, and system state

7. Return orchestration directive to Airflow/Dagster

8. End

Algorithm 1: FlowGuard-based failure and load prediction

Algorithm 1 serves as the intelligent decision-making

core of the HyScaleFlow framework. It continuously

analyzes real-time system telemetry data collected via

Prometheus. It predicts two critical outcomes: (i) the

likelihood of imminent node failure and (ii) future

resource load on edge and cloud nodes. The algorithm

uses standardized input vectors representing CPU

usage, memory consumption, pod restart counts, and

latency metrics. These features are processed through

two separate XGBoost models: a binary classifier for

fault prediction and a regressor for load forecasting.

When the classifier detects that the failure probability

exceeds a specified threshold, it preemptively triggers

orchestration adjustments, such as deferring task

execution, migrating containers, or rerouting data

flows. Conversely, if the classifier output is expected,

the regressor predicts resource usage in the next

interval. If predicted CPU/memory usage is expected

to exceed a configured threshold, the system

proactively scales down DAGs or offloads tasks to

alternate nodes.

The algorithm ensures minimal latency in response

time and avoids reactive failures, improving DAG

stability, system uptime, and cost efficiency. It is

tightly integrated with the hybrid orchestration layer

(Airflow + Dagster) and is retrained periodically using

new metric logs, ensuring adaptability to changing

workloads and infrastructure behavior.

The complexity of FlowGuard inference is mainly

influenced by the XGBoost models. The time

complexity for predicting once for a dataset with n

samples and T trees (where each tree has depth d) is

roughly O(T·d) per sample. As the model is pre-trained

and deployed as a light service, the runtime prediction

latency is small. In our experience, FlowGuard can

make inferences in order of sub-millisecond per task,

thereby incurring little overhead with orchestration

decisions.

Algorithm: Hybrid DAG Execution Controller

Input: DAG 𝐺 = (𝑉, 𝐸), task statuses 𝑅𝑖 (monitored), FlowGuard outputs 𝑦̂𝑡,ft+1, 𝐶 (capacity)

Output: Updated DAG 𝐺′ with orchestration directives

1. For each task 𝑇𝑖 ∈ 𝑉:

 If ∀𝑇𝑗 ∈ 𝑑𝑒𝑝(𝑇𝑖), 𝑅𝑗 = 𝑠𝑢𝑐𝑐𝑒𝑠𝑠, mark 𝑇𝑖 as executable

 Else, hold 𝑇𝑖 until all 𝑅𝑗 are satisfied

2. If failure risk 𝑦̂𝑡 > 𝜏:

 a. Identify affected task subset 𝑉𝑓 ⊆ 𝑉

 b. For each 𝑇𝑘 ∈ 𝑉𝑓, set 𝑅𝑘 = 𝑑𝑒𝑓𝑒𝑟𝑟𝑒𝑑

 c. Update DAG: 𝐺′ = 𝐺 ∖ 𝑉𝑓 ∪ 𝑉𝑓
′, where 𝑉𝑓

′ reroutes to backup nodes

3. Else if predicted load 𝑓𝑡 + 1 > 𝐶:

 a. Select load-heavy task 𝑇𝑙 ∈ 𝑉

 b. Split 𝑇𝑙 into {𝑇𝑙1 , 𝑇𝑙2, … , 𝑇𝑙𝑚} with updated dependencies 𝐸𝑙

 c. Form scaled DAG: 𝐺′ = (𝑉 ∪ {𝑇𝑙1, … , 𝑇𝑙𝑚} ∖ {𝑇𝑙}, 𝐸 ∪ 𝐸𝑙 ∖ 𝑒𝑑𝑔𝑒𝑠(𝑇𝑙))

4. For any task 𝑇𝑖 ∈ 𝑉 with 𝑅𝑖 = 𝑓𝑎𝑖𝑙 and retry budget 𝑛 < 𝑁𝑚𝑎𝑥:

 Retry 𝑇𝑖
(𝑛+1)

= 𝑟𝑒𝑡𝑟𝑦(𝑇𝑖
(𝑛)

)

5. Submit updated DAG 𝐺′ to orchestrator (Airflow/Dagster)

6. Log state {𝑅𝑖, 𝑦̂𝑡 , 𝑟̂𝑡+1} to Prometheus for feedback learning

7. End

Algorithm 2: Hybrid DAG execution controller

Algorithm 2 is responsible for executing and

orchestrating distributed processing tasks for edge and

cloud environments in the HyScaleFlow framework. It

works by assigning each node in the DAG to the proper

execution engine — Apache Spark for the edge and

Apache Flink for the cloud — according to

characteristics including data locality, sensitivity to

latency and the load of the system. The algorithm starts

by consuming an application-specific DAG from the

orchestration layer (Airflow or Dagster). This DAG is

read, and its tasks and dependencies are parsed out,

noting the available resources.

Based on runtime metrics collected by Prometheus, the

orchestrator determines the readiness and whether the

queue is too long for nodes, and assigns tasks

accordingly. The algorithm triggers on-demand Spark

DAG operators like map, reduce, windowed

aggregation at the edge for preprocess, and relieves

high-latency/resource-consuming tasks like join,

complex stateful operation to Flink in the cloud. It

makes DAGs DAG consistent by tracking lineage and

checkpointing states between engines.

By separating scheduling logic from static execution

placements, this approach permits tasks to be migrated

or rerouted mid-execution in order to adapt to system

HyScaleFlow: An ML-Driven DAG-Based Orchestration… Informatica 49 (2025) 315–342 325

health, as reported by FlowGuard. This adaptive model

enhances the responsiveness of the system and reduces

failures, the operator load, and resource imbalance,

thereby ensuring reliable and scalable orchestration

for hybrid deployments.

Algorithm: Kafka Stream Router for Hybrid Processing

Input: Incoming event 𝑥𝑡, key extraction function ℎ(𝑥𝑡), load thresholds 𝐶𝑒 (edge), 𝐶𝑐 (cloud), current node

loads 𝜆𝑒 , 𝜆𝑐

Output: Routing decision: send 𝑥𝑡 to edge (Spark) or cloud (Flink)

1. Extract routing key: 𝑘 = ℎ(𝑥𝑡)

2. Check current loads 𝜆𝑒 , 𝜆𝑐

3. If 𝜆𝑒 < 𝐶𝑒 and 𝑘 ∈ 𝐾𝑒:

 Route 𝑥𝑡 → 𝑆𝑝𝑎𝑟𝑘@𝐸𝑑𝑔𝑒

4. Else if 𝜆𝑐 < 𝐶𝑐 and 𝑘 ∈ 𝐾𝑐:

 Route 𝑥𝑡 → 𝐹𝑙𝑖𝑛𝑘@𝐶𝑙𝑜𝑢𝑑

5. Else:

 a. If 𝜆𝑒 < 𝜆𝑐, route 𝑥𝑡 → 𝑆𝑝𝑎𝑟𝑘@𝐸𝑑𝑔𝑒

 b. Else route 𝑥𝑡 → 𝐹𝑙𝑖𝑛𝑘@𝐶𝑙𝑜𝑢𝑑

6. Log routing decision with timestamp 𝑡

7. End

Algorithm 3: Kafka stream router for hybrid processing

Algorithm 3 processes real-time event routing between

edge and cloud nodes through checking routing key

and current node load. It guards that latency sensitive

data goes to the Spark (edge) while high-frequency

events are routed to Flink (cloud) comparing to the

threshold values. It does not handle task migration and

scaling—that are invoked by FlowGuard and

scheduled by Algorithm 2. This algorithm builds on the

hybrid orchestration engine and benefits directly from

the output of FlowGuard that predicts upcoming

failures and resource scarcity using its telemetry (e.g.,

CPU usage, memory, and execution latency).

When there is a new task, the algorithm estimates the

node level metrics and prediction flags of FlowGuard.

When it is predicted that a node will become congested,

as well as the fact that it will fail, the tasks are either

queued to be redirected or rerouted to an available

stand-by node. For workloads with bursty demand, it

performs dynamic horizontal scaling by spawning

more containers or executor instances at the edge (for

Spark) or cloud (for Flink) based on the data flow

context and desired execution SLAs.

The novel approach integrates a cost-aware decision

mechanism which chooses execution paths to

minimize cost and latency while preserving DAG

structure. Task status checkpoints are implemented to

guarantee low performance impact during redirection

for live migration. It also takes care of deallocation of

containers when the system load gets stabilized to save

the resources.

Through consistent and continuous observability of the

system and proactive monitoring and management to

the anticipated fluctuations, the method guarantees

high availability of resources, maximum resource

utilization, and minimized task failure rates, greatly

improving the scalability and resilience of the

HyScaleFlow orchestration.

3.7 End-to-end execution flow
The complete run-through of the entire HyScaleFlow

framework, the coordinated lifecycle of real-time data

flows from ingestion-processing-orchestration-

feedback across a hybrid cloud environment. This flow

pathway illustrates the interaction between subsystems

such as Kafka, the distributed processing engine,

orchestration tools, and the FlowGuard module to

accomplish scalable and fault-tolerant stream

processing.

At the top level, the execution starts with data flows in

the real world, like NYC Taxi Trip records, arriving

continuously at the Kafka ingestion layer where they

are published. Events 𝑥𝑡 are serialized and sent as

messages to the Kafka topic, allowing both edge and

cloud nodes to consume in parallel. Additionally,

Kafka preserves the timing order of the stream and

splits the data into partitions where it can be processed

in parallel paths.

When new data arrives, the hybrid routing logic

decides whether the stream should be processed by

Apache Spark on the edge for latency-sensitive

workloads or using Apache Flink on the cloud for

global-scale analytical workloads. In Spark, processing

occurs through batch-based micro-windows (Equation

3), while in Flink, the processing is record-level

(Equation 4). They checkpoint intermediate results (for

fault tolerance) and pass them to the orchestration

layer.

326 Informatica 49 (2025) 315–342 S. Lakkireddy

Figure 3: End-to-end execution flow of the hyscaleflow framework

System health metrics (e.g., CPU utilization, pod

restarts, latency) are constantly streamed by

Prometheus into FlowGuard. The inputs 𝑥𝑡 of the

FlowGuard model for predicting the failure probability

Real-Time Data

Arrival

Kafka Ingestion Layer

Hybrid

Routing

Decision

ML Prediction Trigger

(FlowGuard)

Conditional

Orchestration

Decision

Store Processed Results

Monitoring Feedback

End Node

Spark Processing at Edge

Flink Processing at Cloud

Trigger Container

Migration or DAG Scaling

continue processing

HyScaleFlow: An ML-Driven DAG-Based Orchestration… Informatica 49 (2025) 315–342 327

𝑦̂𝑡 (Equation 9) or future load 𝑟̂𝑡+1 These metrics form

(Equation 10). Using these predictions, FlowGuard

drives the orchestration layer, which consists of

Airflow and Dagster, to scale the DAG tasks, retry

failed tasks, or relocate the containerized jobs.

The orchestration decisions are then used to drive the

continued execution: e.g., auto-scaling of a Flink job

with more parallelism 𝑝 and redistribution of the

workload over cloud and edge nodes, to satisfy the

process constraint 𝐶 ≥ 𝜆/𝑝 (Equation 5). Depending

on the processing, results are written to a distributed

object store (HDFS/S3, etc) or shown on real-time

dashboards.

Lastly, the system sends the metadata for each

execution cycle contained in Prometheus, including

processing time, action triggers, resource utilization,

etc. It completes the feedback loop by returning

updated telemetry into FlowGuard for

retraining/adaptation. The seamless workflow depicted

in Figure 3 allows HyScaleFlow to be continuously

responsive, self-correcting, and self-scaling, no matter

the unpredictable workloads and stresses faced by the

system in hybrid cloud deployments.

4 Experimental results
This section presents the experimental evaluation of

the HyScaleFlow framework using the NYC Taxi Trip

dataset [41] in a simulated hybrid cloud environment.

The performance of Apache Spark and Flink is

compared across edge and cloud nodes, while the

effectiveness of the FlowGuard module in enabling

adaptive orchestration is analyzed. Metrics such as

latency, throughput, prediction accuracy, resource

usage, and fault recovery are reported to demonstrate

the scalability and resilience of the proposed system.

4.1 Experimental setup
The experimental setup was conducted in a hybrid

cloud test environment with one edge node and two

cloud nodes. The edge node was configured on a local

virtual machine with 8 vCPUs, 16 GB RAM, and

Ubuntu 22.04 LTS. The cloud nodes were hosted using

t3.xlarge instances on a public cloud platform, each

with 4 vCPUs and 16 GB RAM. To maintain

consistency and reduce variability, identical software

environments were provisioned across all nodes,

including Java 11, Python 3.10, and Docker containers

for service deployment.

Apache Kafka version 3.6.0 was deployed with a single

broker and three partitions, enabling simulated real-

time ingestion of the NYC Taxi Trip dataset at a fixed

rate of 5,000 records per second. The producer was

implemented using the Kafka Python library, and data

was partitioned based on pickup zones to support

parallelism. Apache Spark 3.4.1 was installed on the

edge node and configured in Structured Streaming

mode, using a micro-batch interval of five seconds.

Apache Flink version 1.17.1 was deployed on a cloud

node and executed event-time stream processing tasks

using watermarking and keyed operators to capture

fine-grained stream behavior. Table 3 shows a

configuration summary of the experimental setup used

to deploy and evaluate HyScaleFlow, detailing tools,

versions, and deployment roles.

Table 3: Experimental environment and configuration details

Component Configuration/Tool Version Description

Edge Node Virtual Machine (8 vCPU, 16 GB RAM) Ubuntu

22.04

Spark deployment and latency-sensitive

processing

Cloud Node AWS EC2 t3.xlarge (4 vCPU, 16 GB RAM) Ubuntu

22.04

Flink deployment for event-driven processing

Message Broker Apache Kafka 3.6.0 Ingestion layer with three partitions and one

broker

Ingestion Rate Python + kafka-python – 5,000 records/sec using NYC Taxi Trip Dataset

Stream Processors Apache Spark (Structured Streaming), Apache Flink (Event

Time)

3.4.1 1.17.1 Spark on edge; Flink on cloud with

watermarking

Orchestration Apache Airflow Dagster 2.7.3 1.5.8 DAG scheduling and dynamic pipeline

execution

Monitoring Tools Prometheus Grafana 2.49.1 10.2.3 Metrics collection and real-time visualization

ML Module XGBoost (Classifier + Regressor) Scikit-learn 1.7.6 1.3.2 Used in FlowGuard for failure and load

prediction

Kubernetes

Orchestration

Kubernetes + Helm 1.28 Container management for all system

components

Replicability GitHub Repository – Dockerfiles, configs, and training scripts

provided

328 Informatica 49 (2025) 315–342 S. Lakkireddy

Table 3 Workflow orchestration was handled by

integrating Apache Airflow 2.7.3 for static DAG

scheduling and Dagster 1.5.8 for reactive and type-

aware execution. Prometheus version 2.49.1

continuously collected system-level metrics such as

CPU utilization, memory consumption, and container

restart counts from each processing node. Grafana

version 10.2.3 created a real-time monitoring

dashboard, which visualized latency trends, resource

utilization, and orchestration events across the pipeline.

FlowGuard, the machine learning module integrated

within the HyScaleFlow framework, was implemented

using XGBoost 1.7.6 and Scikit-learn 1.3.2. The

classifier was trained using 70% of the Prometheus-

exported time-series metric data, while the remaining

30% was used for evaluation. For failure prediction, the

XGBoost classifier used the following

hyperparameters: 100 estimators, a learning rate of 0.1,

maximum tree depth of 6, subsample and column

sample ratios of 0.8, and the log-loss evaluation metric.

The regression model for resource usage forecasting

was configured with 150 estimators, a learning rate of

0.05, a maximum depth of 5, and the RMSE evaluation

metric.

The prototype was deployed using Kubernetes version

1.28, with Helm-based templates managing the

deployment of Spark, Flink, Airflow, Dagster, and

FlowGuard containers. All services are communicated

over native connectors or REST APIs. To ensure full

replicability, the Dockerfiles, Kubernetes manifests,

XGBoost training scripts, and pipeline orchestration

templates have been made available in a public GitHub

repository, enabling other researchers to reproduce the

results with minimal configuration effort.

Two models, namely a classifier model for failure

prediction and a regressor for load forecasting model,

were utilized in the FlowGuard module. Both models

were trained using telemetry data from Prometheus on

a variety of runs. Data were split in a 70:30 train-test

chronologically to preserve the time dependencies.

Feature selection was domain-driven (based on CPU

usage, memory usage, pod restarts, and latency). Of

these latter ones, CPU usages and latency have shown

that CPU usage and latency has the most impact over

model predictions, observed through XGBoost feature

importance plots. To avoid overfitting, 5-fold cross-

validation was conducted on the training set, and early

stopping was employed according to validation loss.

These belong in Section 4.1, and have been included as

such.

4.2 Performance evaluation of processing

engines
The performance evaluation of the processing engines

focuses on comparing Apache Spark, deployed at the

edge node, and Apache Flink, executed in the cloud

node, within the HyScaleFlow framework. Spark was

configured in Structured Streaming mode using a

micro-batch interval of 5 seconds, while Flink operated

in event-driven mode with event-time processing and

watermarking enabled. The evaluation was conducted

using the same input stream from Kafka to ensure

fairness, and both engines processed identical

partitions of the NYC Taxi Trip dataset.

Latency was a key differentiating metric. Spark

exhibited slightly higher end-to-end processing latency

due to micro-batching delays. On average, Spark

recorded a latency of 2.7 seconds per batch, whereas

Flink achieved an average event processing latency of

1.3 seconds. This latency reduction in Flink is

attributed to its continuous, record-at-a-time

processing model and internal operator chaining,

which minimize overhead.

Stream throughput was also measured to assess

scalability. Flink processed approximately 5,800

records/sec compared to Spark’s 4,950 records/sec

under the same workload. This gap is primarily due to

Flink’s pipelined operator model and asynchronous

checkpointing, which maintain high availability

without blocking the dataflow. Resource utilization

was recorded using Prometheus. Spark consumes more

memory but fewer CPU cycles, reflecting its micro-

batch model that periodically activates processing. In

contrast, Flink exhibited consistent CPU utilization

(76%) with a lower memory footprint due to

incremental state handling. To summarize the key

findings, Table 4 presents the comparative

performance metrics:

Table 4: Performance comparison of apache spark and flink in hyscaleflow

Metric Apache Spark (Edge) Apache Flink (Cloud)

Average End-to-End Latency 2.7 sec 1.3 sec

Stream Throughput 4,950 records/sec 5,800 records/sec

Average CPU Utilization 58% 76%

Average Memory Usage 9.8 GB 6.5 GB

Processing Model Micro-batch (5 sec interval) Event-driven (record-at-a-time)

Checkpointing Overhead Moderate (periodic) Low (asynchronous)

HyScaleFlow: An ML-Driven DAG-Based Orchestration… Informatica 49 (2025) 315–342 329

Table 4 compares the performance of Apache Spark

and Flink in the HyScaleFlow framework based on

latency, throughput, and resource usage. Flink

demonstrates superior efficiency in event-driven

processing, while Spark offers stable batch-stream

performance, validating the hybrid deployment

strategy for balancing latency and computational

scalability.

Figure 4: Comparative performance of apache spark and apache flink in the hyscaleflow framework across

latency, throughput, cpu usage, and memory usage

Figure 4 presents a detailed comparative performance

analysis between Apache Spark and Apache Flink as

deployed in the HyScaleFlow framework, evaluated

across four critical metrics. Subfigure (a) illustrates

end-to-end processing latency, where Flink

demonstrates a significantly lower average latency of

1.3 seconds compared to Spark's 2.7 seconds. This

reduction is attributed to Flink’s event-driven

architecture, which processes records individually and

continuously, unlike Spark’s micro-batch model,

which introduces interval-based delays.

Subfigure (b) displays the average stream throughput.

Flink processes approximately 5,800 records per

second, surpassing Spark’s 4,950 records/sec. This

throughput advantage stems from Flink’s pipelined

operators and asynchronous checkpointing, which

reduce blocking overhead and enable high-volume,

sustained data flow. While capable, Spark processes

data in bursts aligned with its batch intervals, limiting

its real-time responsiveness.

Subfigure (c) compares CPU utilization across the two

engines. Flink maintains a more consistent average

CPU usage of 76%, indicating its continuously active

processing loop. Spark shows a lower average CPU

usage of 58%, reflecting its batch-execution model,

where CPU usage fluctuates based on the batch cycle.

This lower utilization may conserve energy but limit its

responsiveness to rapidly changing data.

Subfigure (d) shows memory usage, with Spark

recording an average of 9.8 GB compared to Flink’s

6.5 GB. Spark’s memory-intensive execution is largely

due to its in-memory caching and micro-batch queuing,

whereas Flink’s incremental state handling and

efficient state backend reduce its memory footprint.

The figure demonstrates Flink’s superiority in low-

latency and high-throughput scenarios with better CPU

efficiency, making it ideal for continuous, real-time

applications. In contrast, Spark provides robust batch-

streaming capabilities with more conservative resource

usage, validating the hybrid deployment strategy used

in HyScaleFlow to optimize processing across edge

and cloud environments.

4.3 FlowGuard prediction accuracy
The FlowGuard module’s predictive capability was

evaluated on historical system metrics collected via

Prometheus during live streaming execution. Two

XGBoost models were trained and tested: a binary

classifier for failure prediction and a regression model

for forecasting resource load. The classifier used a

labeled dataset with system health events marked as

"failure" or "stable," while the regression model

330 Informatica 49 (2025) 315–342 S. Lakkireddy

predicted the CPU utilization in the next time window

based on the current and recent telemetry.

The binary classifier achieved high predictive

performance, as shown in the confusion matrix and

associated metrics. The model maintained strong recall

and precision, ensuring minimal missed failure

predictions and a low false alarm rate. Table 5

summarizes the evaluation.

Table 5: FlowGuard classifier performance for failure prediction

Metric Value

Accuracy 94.2%

Precision 91.6%

Recall 95.4%

F1-Score 93.4%

True Positives (TP) 477

True Negatives (TN) 453

False Positives (FP) 43

False Negatives (FN) 23

For load forecasting, the XGBoost regressor was tested

using a rolling prediction window of 60 seconds,

predicting CPU usage for the next 5-second interval.

The model achieved good generalization with low error

rates and high explanatory power. Table 6 reports the

results.

Table 6: FlowGuard regressor performance for load forecasting

Metric Value

Mean Squared Error (MSE) 2.83

Mean Absolute Error (MAE) 1.24

Coefficient of Determination (R²) 0.913

FlowGuard's predictive signals were tightly integrated

with the orchestration layer. When deployed in live

tests, the system with FlowGuard exhibited a 16.8%

improvement in DAG completion rate, increasing from

82.6% to 96.5% under dynamic load and fault

conditions compared to the baseline orchestration

without ML integration. Specifically, DAG completion

rates improved from 82.6% to 96.5% under simulated

failure and high-load scenarios. These results validate

that FlowGuard achieves high predictive accuracy and

contributes to improved system resilience and

orchestration efficiency.

HyScaleFlow: An ML-Driven DAG-Based Orchestration… Informatica 49 (2025) 315–342 331

Figure 5: FlowGuard prediction accuracy for failure detection and load forecasting

Figure 5 presents the evaluation results of the

FlowGuard module's machine learning models used for

failure prediction and resource load forecasting within

the HyScaleFlow framework. Subfigure (a) displays

the performance of the XGBoost classifier trained to

identify potential node failures. The model achieved an

accuracy of 94.2%, precision of 91.6%, recall of

95.4%, and an F1-score of 93.4%, demonstrating its

effectiveness in minimizing false negatives and

maintaining a low false positive rate. These metrics

indicate that FlowGuard reliably identifies high-risk

operational states, enabling preemptive orchestration

interventions such as container migration or task

deferral.

Subfigure (b) depicts the performance of the regression

model used to forecast near-future CPU utilization. The

model achieved a mean squared error (MSE) of 2.83, a

mean absolute error (MAE) of 1.24, and an R² score of

91.3%, indicating strong predictive capability. The low

error margins and high coefficient of determination

suggest that the model is able to accurately anticipate

load trends, which is critical for dynamic DAG scaling

and resource optimization. Together, these results

validate FlowGuard’s dual functionality—detecting

failures and forecasting loads—both of which

significantly contribute to improving orchestration

responsiveness, task success rates, and overall system

stability.

4.4 Orchestration adaptability and DAG

scalability
The evaluation of orchestration adaptability and DAG

scalability in the HyScaleFlow framework focuses on

measuring the impact of FlowGuard's ML-driven

decisions on task execution outcomes. Two

experimental conditions were established: one with

FlowGuard integrated into the hybrid orchestration

layer (Airflow + Dagster) and another using traditional

rule-based orchestration without predictive

intelligence. Identical streaming workloads from the

NYC Taxi Trip dataset were executed in both

conditions to ensure consistency.

In the FlowGuard-enabled setup, tasks within dynamic

DAGs adapted in real-time to system load and fault

signals. Under simulated burst load and failure

scenarios, the DAGs scaled more responsively, and

execution branches were reconfigured without

restarting the entire workflow. Conversely, in the

baseline configuration, static DAGs frequently

required full retries and exhibited higher task failure

rates under stress. The comparative results are

summarized in Table 7.

Table 7: DAG execution metrics with and without flowguard integration

Metric Without

FlowGuard

With

FlowGuard

Improvement

(%)

DAG Completion Rate 82.6% 96.5% +16.8%

Average Task Completion

Time

7.4 sec 5.8 sec –21.6%

332 Informatica 49 (2025) 315–342 S. Lakkireddy

Task Retry Rate 18.3% 6.9% –62.3%

Reactive DAG Scaling Success N/A 94.2% –

Fault Recovery Time 14.5 sec 9.3 sec –35.8%

The results clearly show that FlowGuard significantly

improves the robustness and efficiency of

orchestration. DAG completion rates increased by

nearly 17%, indicating better workflow stability under

dynamic conditions. Average task completion time

decreased due to reduced retry delays and intelligent

scaling. Retry rates dropped by over 60%, reflecting

fewer unexpected execution failures. Additionally,

FlowGuard-enabled orchestration achieved over 94%

success in scaling DAG branches during runtime

overloads, showcasing the effectiveness of hybrid

orchestration when driven by real-time predictions.

These findings validate the value of integrating

predictive orchestration logic with traditional DAG

schedulers. The intelligent orchestration pathway,

facilitated by FlowGuard, enables HyScaleFlow to

dynamically adapt to workload and system states,

resulting in higher reliability and operational efficiency

in hybrid cloud data engineering environments.

Figure 6: Orchestration adaptability and DAG scalability with and without flowguard

Figure 6 visually illustrates the behavioral

improvements in orchestration and task execution

dynamics when FlowGuard is integrated into the

HyScaleFlow framework. Each subplot captures a

distinct performance dimension, emphasizing the

impact of predictive orchestration. The subfigures

collectively show a noticeable shift in execution

quality and system responsiveness, particularly under

high-load and failure-prone conditions. The visual

contrast across metrics demonstrates how real-time

ML-guided adjustments lead to smoother, more

adaptive pipeline behavior.

4.5 Fault tolerance and recovery analysis
The fault tolerance and recovery analysis in the

HyScaleFlow framework focuses on evaluating how

Spark and Flink respond to node or task failures, and

how the integration of FlowGuard enhances

preemptive mitigation and system recovery. The

evaluation was conducted under controlled fault

injection experiments, where processing nodes were

intentionally overloaded or terminated to simulate real-

world failures. Metrics were collected on recovery

time, task rescheduling latency, and system uptime,

both with and without FlowGuard’s predictive

intervention.

HyScaleFlow: An ML-Driven DAG-Based Orchestration… Informatica 49 (2025) 315–342 333

Apache Spark, which relies on lineage-based

recomputation, demonstrated moderate recovery speed

but higher memory and recomputation overhead. In

contrast, Apache Flink, with its checkpoint-based state

recovery, achieved faster resumption of stream tasks,

particularly when asynchronous checkpoints were

enabled. However, without FlowGuard, both systems

suffered from delayed recovery due to reactive

orchestration and task retries after failure occurrence.

When FlowGuard was enabled, node failures were

predicted based on resource saturation patterns and

restart events. The system was able to preemptively

migrate containers or reassign tasks before complete

failure, thereby reducing downtime and improving

recovery consistency. Table 8 summarizes these

findings.

Table 8: Fault tolerance and recovery metrics with and without flowguard

Metric Spark (No

FG)

Spark (With

FG)

Flink (No

FG)

Flink (With

FG)

Average Recovery Time (sec) 16.8 10.1 11.3 6.7

Task Rescheduling Latency (sec) 6.2 3.1 4.7 2.4

Preemptive Migration Success

Rate

N/A 92.4% N/A 95.1%

System Uptime During Fault (%) 87.1% 96.2% 91.5% 98.6%

The integration of FlowGuard resulted in a 35–40%

reduction in recovery time for both Spark and Flink by

enabling proactive orchestration rather than post-

failure response. Task rescheduling latency also

decreased significantly, improving workflow

continuity. Importantly, system uptime during failure

conditions was enhanced by over 9% for Spark and 7%

for Flink, validating the effectiveness of FlowGuard in

maintaining service availability and reducing

operational disruptions in hybrid cloud environments.

Figure 7: Fault tolerance and recovery metrics for spark and flink with and without flowguard

Figure 7 offers a visual breakdown of how FlowGuard

enhances the fault handling behavior of Spark and

Flink within HyScaleFlow. Subfigure (a) illustrates the

reduction in recovery time when predictive

orchestration is applied, while subfigure (b) shows

significantly faster task rescheduling under

FlowGuard. Subfigures (c) and (d) highlight

improvements in proactive fault migration and

sustained system availability, emphasizing the role of

ML-driven mitigation in maintaining uninterrupted

data stream processing.

334 Informatica 49 (2025) 315–342 S. Lakkireddy

4.6 Resource utilization and cost analysis
The resource utilization and cost analysis evaluates

how dynamic task routing, predictive orchestration,

and hybrid node allocation in the HyScaleFlow

framework contribute to system efficiency and cost-

effectiveness. The study was conducted by executing

equivalent workloads under two configurations: one

using static, rule-based orchestration without

FlowGuard, and the other leveraging intelligent,

adaptive orchestration guided by FlowGuard. Metrics

were collected for CPU and memory usage per node,

processing throughput per resource unit, and

cumulative execution cost based on standard cloud

pricing models.

Dynamic task routing enabled by FlowGuard allowed

workloads to be redirected in real time to either edge or

cloud nodes based on predictive load estimates. This

significantly reduced unnecessary resource usage

spikes and improved task distribution. With

FlowGuard, Spark tasks running on edge consumed

less memory (i.e., 9.3 GB instead of 10.1 GB) than

those running on worker nodes, due to the in-memory

queuing and redundant buffering that is minimized

with predictive task allocation, while still achieving the

low latency benefits of location-sensitive operations.

Flink tasks in the cloud scaled better under high-

volume throughput but benefited from being

preemptively scaled down during low-load windows.

Table 9: Average resource utilization per node

Node Type Configuration CPU Utilization

(%)

Memory Usage

(GB)

Throughput

(records/sec)

Edge

(Spark)

Without

FlowGuard

54.3 10.1 4,200

Edge

(Spark)

With FlowGuard 60.5 9.3 4,900

Cloud

(Flink)

Without

FlowGuard

71.6 7.5 5,100

Cloud

(Flink)

With FlowGuard 78.8 6.2 5,850

Cost analysis was derived using AWS pricing models

for t3.xlarge cloud nodes and equivalent resource-

equivalent VMs for the edge. Dynamic scaling reduced

the number of active containers and optimized memory

allocation, lowering compute-hour charges. Tables 9

and 10 summarize the resource and cost benefits

observed.

Table 10: Execution cost comparison with and without flowguard

Cost Component Without FlowGuard With FlowGuard Reduction (%)

Edge VM Runtime (hours) 10.0 7.5 –25.0%

Cloud Node Runtime (hours) 10.0 8.1 –19.0%

Estimated Cloud Cost (USD) $6.40 $5.15 –19.5%

Total Resource Efficiency (records/sec/core) 145.8 198.2 +35.9%

These results confirm that FlowGuard improves

orchestration accuracy and fault tolerance, enhances

resource efficiency, and reduces operational costs. By

intelligently routing tasks and scaling execution based

on predicted load, HyScaleFlow achieves better

throughput per core, improved memory utilization, and

measurable financial savings in hybrid cloud

deployments.

HyScaleFlow: An ML-Driven DAG-Based Orchestration… Informatica 49 (2025) 315–342 335

Figure 8: Resource utilization and cost comparison with and without flowguard

Figure 8 visually emphasizes the efficiency benefits of

integrating FlowGuard into the HyScaleFlow

orchestration pipeline. Subfigures (a) through (c)

demonstrate a consistent pattern of optimized resource

usage across CPU, memory, and throughput when

FlowGuard is enabled. Subfigure (d) consolidates

execution cost and efficiency metrics, showcasing how

predictive scaling strategies translate into tangible

operational savings and better utilization of

computational resources in hybrid cloud deployments.

FlowGuard Runtime Overhead. For estimating the run-

time cost of FlowGuard models, we measured the

inference latency and resource cost of the classifier and

the regressor. For 5000 prediction jobs, the average

inference time was 11.8 ms per job at the edge node

(Intel i7, 16GB RAM), and a CPU usage rise below

3%. The memory footprint was consistent; this test

provides evidence that ML components can be run

inline in orchestrators without increasing scheduling

latency or reducing node availability.

4.7 Summary of experimental findings
The experimental evaluation of the HyScaleFlow

framework demonstrated significant improvements in

system responsiveness, scalability, and orchestration

efficiency when FlowGuard was integrated. The hybrid

orchestration strategy, backed by predictive ML

models, consistently outperformed static, rule-based

workflows regarding latency reduction, fault

resilience, adaptive scaling, and resource cost savings.

Table 11 has a consolidated summary of the key

findings from the various performance dimensions

explored in the previous sections.

Table 11: Summary of experimental results and observations

Evaluation

Aspect

Metric / Observation Without

FlowGuard

With

FlowGuard

Improvement

Processing

Latency

Avg. End-to-End Latency

(Spark / Flink)

2.7 s / 1.3 s 2.7 s / 1.3 s No change

Stream

Throughput

Peak Throughput

(records/sec)

5100 5850 +14.7%

336 Informatica 49 (2025) 315–342 S. Lakkireddy

Fault Recovery Avg. Recovery Time (Spark /

Flink)

16.8 s / 11.3 s 10.1 s / 6.7 s –39.9% / –

40.7%

Orchestration

Success

DAG Completion Rate 82.6% 96.5% +16.8%

Task Stability Retry Rate 18.3% 6.9% –62.3%

DAG Adaptability Dynamic Scaling Success N/A 94.2% –

System Uptime During Fault Scenarios 87.1% 98.6% +11.5%

Cost Efficiency Cloud Cost per Workflow

(USD)

$6.40 $5.15 –19.5%

Resource

Efficiency

Throughput per Core 145.8 r/s/core 198.2 r/s/core +35.9%

Throughput Events per second (EPS) 4700 EPS 5890 EPS +25.3%

The integration of FlowGuard significantly enhanced

orchestration adaptability through proactive fault

detection and dynamic DAG scaling. The system

showed higher throughput per core, better task

reliability, and reduced rescheduling delays,

contributing to improved scalability and

responsiveness. Fault recovery and uptime metrics

validated that predictive mitigation mechanisms

outperform reactive recovery strategies. Additionally,

the system achieved measurable cost reductions

through more intelligent container placement and task

routing, making HyScaleFlow suitable for scalable and

cost-sensitive hybrid cloud deployments.

The achieved gains, with 94.2% accuracy in failure

prediction and 16.8% in DAG completion, surpass

those of the predictor in [12], which addresses burst-

aware autoscaling but does not support orchestration-

level adaptation. Also, the 48% recovery efficiency

obtained in HyScaleFlow, which enables a 40%

reduction in fault recovery time, goes beyond the

theoretical categories in [33], thus showing the

practical gain of ML-based orchestration in live hybrid

transport.

4.8 Comparison with existing methods
This section presents a comparative evaluation of the

proposed HyScaleFlow framework against selected

existing methods that address hybrid cloud processing,

orchestration, and intelligent resource management.

The comparison highlights differences in architecture,

scalability, orchestration adaptability, and machine

learning integration, emphasizing how HyScaleFlow

advances beyond traditional frameworks by offering a

unified, real-time, and ML-driven orchestration

solution.

Table 12: Comparative analysis of selected related works and hyscaleflow

Reference

& Authors

System /

Framework

Architectur

e

Orchestratio

n Strategy

ML

Integratio

n

Evaluation

Focus

Distinction

from

HyScaleFlow

[1] Ullah et

al.

Spark, Flink,

Hadoop in

Hybrid

Cloud

Hybrid

Cloud

None None Runtime

Benchmarkin

g

Does not

include

orchestration

or ML-based

adaptation

[3] Henning

&

Hasselbring

Stream

Frameworks

as Cloud

Microservice

s

Cloud None None Scalability &

Efficiency

Focuses on

microservice-

based

deployment,

not predictive

routing

[12] Razzaq

et al.

Hybrid Auto-

Scaled Smart

Cloud Rule-based

Auto-scaling

Predictive

Burst

Model

Autoscaling

Efficiency

Lacks multi-

engine

orchestration

HyScaleFlow: An ML-Driven DAG-Based Orchestration… Informatica 49 (2025) 315–342 337

Campus

System

and hybrid

data routing

[13]

Radhika &

Sadasivam

Proactive-

Reactive

Autoscaling

Cloud Dynamic

Autoscaling

Statistical

Prediction

Scaling

Accuracy

Does not

involve DAG-

based

orchestration

or streaming

pipelines

[14] Alsboui

et al.

Distributed

Intelligence

in IoT

Edge-Cloud Conceptual

Routing

Theoretical

AI Models

Architectural

Taxonomy

Provides an

IoT-oriented

view, lacks

implementatio

n and

orchestration

validation

Proposed:

HyScaleFlo

w

Spark +

Flink with

FlowGuard

Hybrid

Edge-Cloud

Hybrid DAG

(Airflow +

Dagster)

XGBoost

(Failure +

Load

Prediction)

Latency,

Fault

Tolerance,

Cost, DAG

Performance

Unified

dataflow, real-

time feedback,

ML-driven

preemptive

orchestration

Table 12 provides a detailed comparative analysis between

the proposed HyScaleFlow framework and five closely

related works, selected from the reviewed literature. The

comparison spans key dimensions including system

architecture, orchestration strategy, machine learning

integration, evaluation criteria, and distinctive

contributions.

Ullah et al. [1] evaluated the performance of Spark, Flink,

and Hadoop in hybrid cloud deployments. Their study is

relevant in terms of benchmarking distributed engines, but

it lacks orchestration logic and does not incorporate any

adaptive or predictive mechanisms. HyScaleFlow builds

on these foundational observations by integrating multi-

engine orchestration with ML-guided decision-making.

Henning and Hasselbring [3] benchmarked stream

processing frameworks deployed as microservices in

cloud-only setups. While their work focuses on scalability

and efficiency, it does not address hybrid cloud challenges

or introduce any orchestration or ML components. In

contrast, HyScaleFlow extends beyond pure

benchmarking by actively managing real-time workloads

across cloud and edge environments.

Razzaq et al. [12] introduced a hybrid auto-scaling

approach using predictive models to anticipate burst

workloads in a smart campus setting. Their use of ML for

autoscaling aligns with the FlowGuard module in

HyScaleFlow. However, their solution remains limited to

cloud environments and lacks integration with distributed

stream processing or DAG-based orchestration systems.

Radhika and Sadasivam [13] proposed proactive-reactive

autoscaling using statistical forecasting. While this

strategy shows promise for elasticity, it does not

incorporate workflow-level orchestration or real-time

feedback from system telemetry, both of which are central

to HyScaleFlow’s design. Moreover, their work does not

involve task-level adaptation based on DAG semantics.

Alsboui et al. [14] explored distributed intelligence in IoT

systems, proposing architectural concepts for edge-cloud

integration and adaptive behavior. Although thematically

similar to HyScaleFlow in terms of distributed

architecture, their work is conceptual and lacks

experimental validation, implementation details, and

orchestration performance metrics.

In contrast to all these, HyScaleFlow distinguishes itself

through its hybrid orchestration layer (Airflow + Dagster),

real-time telemetry feedback via Prometheus, and ML-

based orchestration via FlowGuard using XGBoost for

failure prediction and load forecasting. It is the only

framework among those compared that combines multi-

engine stream processing, predictive adaptation, cost-

aware resource efficiency, and complete DAG execution

tracking in a hybrid edge-cloud environment.

5 Discussion

The rapid proliferation of real-time data-intensive

applications across hybrid cloud and edge environments

has led to the growing demand for scalable, responsive,

and intelligent orchestration systems. Existing distributed

stream processing frameworks, such as Apache Spark and

Flink, offer strong processing capabilities but fall short in

handling dynamic system behaviors, fault tolerance, and

workload volatility without external orchestration layers.

A review of the state-of-the-art reveals that while some

338 Informatica 49 (2025) 315–342 S. Lakkireddy

research has addressed performance benchmarking or

autoscaling in isolation, there remains a clear gap in

integrating predictive intelligence with real-time

distributed data engineering across hybrid architectures.

Most existing approaches either rely on static orchestration

rules, lack fault anticipation, or fail to provide unified

multi-engine coordination.

This gap necessitates the development of novel machine

learning–driven orchestration strategies that can anticipate

system bottlenecks, adapt DAG execution paths

dynamically, and optimize resource usage without manual

intervention. The proposed HyScaleFlow framework

addresses this by introducing an intelligent orchestration

module, FlowGuard, that leverages XGBoost models to

predict both node-level failures and load surges. The

architecture is uniquely designed to combine the strengths

of Apache Airflow and Dagster, ensuring both scheduled

and reactive orchestration, and enabling dynamic task

routing between edge and cloud environments.

Experimental evaluations demonstrate significant

improvements in system responsiveness, fault recovery,

DAG completion rate, and cost efficiency. Results show

that FlowGuard’s predictive capabilities reduce task retry

rates, improve uptime during failure scenarios, and

enhance throughput per core, thereby overcoming key

limitations of existing reactive and rule-based systems.

The integration of ML within the orchestration pipeline

proves critical in enabling scalable, fault-resilient, and

resource-aware stream processing. The implications of this

research are substantial for domains requiring continuous,

intelligent dataflow management, including IoT, smart

cities, and cyber-physical systems.

The existing approaches, e.g, Razzaq et al. [12] and Shahid

et al. [33], which are more reactive in that they primarily

provide fault- tolerance or burst- aware scaling,

HyScaleFlow’s FlowGuard enables predictive

orchestration, where failures can be anticipated and the

execution path of the DAG is dynamically adapted to

reactively or proactively respond to the emergent failures.

For instance, [12] uses a burst prediction model but it does

not interoperate with a DAG-level orchestration over

multi-engine sites. Similarly, Shahid et al. [33] also

classify the fault-tolerance methods, but do not deploy a

predictive recovery methods. HyScaleFlow on the other

hand, reduces the recovery time up to 35% to 40% and task

retry rate by 62.3% due to its strategy of employing two

ML model. Moreover, Ullah et al. [1] Compare benchmark

performance between Spark and Flink, but lack in

orchestration and load prediction. HyScaleFlow extends

this work by presenting its hybrid orchestration proposal

and achieving +14.7% throughput with dynamic

workloads. These comparisons also highlight the power of

the PSOTA's ability to seamlessly integrate scalability,

fault tolerance and preemptive orchestration beyond the

state-of-the-art.

The current HyScaleFow implementation assumes that

there is a trusted hybrid infrastructure where all

communication between components (Kafka, Spark,

Flink, FlowGuard) takes place on secure channels. But in

real-world implementations, we have to deal with

problems like exposed telemetry data, unauthorized access

to orchestration APIs, and data leakage towards the edge-

cloud boundary. Additional features in the future will

include end-to-end encryption, role-based access control,

and secure container orchestration to round out a holistic

security architecture.

While the proposed framework addresses numerous

limitations of prior art, Section 5.1 outlines the specific

limitations of the present study.

5.1 Limitations of the study
While the proposed HyScaleFlow framework

demonstrates significant improvements in orchestration

intelligence and system efficiency, the current study has

three notable limitations. First, FlowGuard's prediction

models are trained offline and may require periodic

retraining for evolving workloads. Second, the system was

evaluated using a single dataset and fixed ingestion rates,

limiting generalizability to diverse data sources. Third,

while the framework supports hybrid orchestration, it does

not yet include fine-grained cost-based task placement

strategies across multiple cloud providers. Although both

Spark and Flink were strategically chosen for edge and

cloud tiers respectively according to processing patterns

and latency/resource exchanges, an experimental

investigation of contrasting role placement (e.g., Flink on

edge, Spark in cloud) still represents a juicy subject for

future research. The ablation analysis can also be used to

better tune the task-to-resource mapping in hybrid

deployment.

HyScaleFlow demonstrated competitive results up to

5,800 records/sec, and it is interesting to run further

experiments (e.g., 10k or 50k records/sec) to determine its

scaling limits and saturation point. We believe this is one

of the key areas in need of future work in understanding

how well-the programmability of the data plane translate

into meaningful fault coverage at scale under various

workloads.

Current pricing estimates were obtained using AWS on-

demand pricing, to ensure consistent, reproducible

benchmark conditions. In future work, a finer-grained cost

sensitivity analysis with spot and reserved price-based

costs will be considered to capture the operational

variability in cloud economics and contribute to the

deployability of deployments.

Future work can address these aspects to enhance

adaptability, dataset diversity, and economic optimization

in large-scale hybrid cloud deployments.

6 Conclusion and future work
This paper presented HyScaleFlow, a scalable and

intelligent framework for real-time distributed data

engineering in hybrid cloud environments. By integrating

Apache Spark and Flink with a hybrid orchestration

HyScaleFlow: An ML-Driven DAG-Based Orchestration… Informatica 49 (2025) 315–342 339

strategy (Airflow and Dagster) and the FlowGuard ML

module, the system effectively addresses critical

challenges in fault tolerance, workload adaptation, and

resource efficiency. Extensive experiments using the NYC

Taxi Trip dataset demonstrated significant improvements

in task completion rates, recovery time, throughput, and

cost efficiency, validating the robustness and adaptability

of the proposed methodology. The research fills existing

gaps in the literature by introducing predictive, ML-driven

orchestration into multi-engine streaming pipelines,

offering a unified solution that extends beyond static rule-

based models. It provides a modular, generalizable

architecture suitable for real-time applications in smart

cities, industrial IoT, and edge analytics. Future work will

focus on enhancing FlowGuard’s adaptability through

online learning techniques and extending support for

workload-aware, cost-optimized task placement across

heterogeneous cloud providers. Additionally, evaluating

the framework under diverse datasets and varying

ingestion rates will further validate its generalizability.

These advancements will position HyScaleFlow as a

comprehensive orchestration solution for dynamic, large-

scale, and cost-sensitive hybrid cloud ecosystems, building

upon the strong foundation established in this study.

References

[1] Faheem Ullah, Shagun Dhingra, Xiaoyu Xia, and M.

Ali Babar. (2024). Evaluation of distributed data

processing frameworks in hybrid clouds. Elsevier.

224, pp.1-14.

https://doi.org/10.1016/j.jnca.2024.103837

[2] Sivakumar Ponnusamy, and Pankaj Gupta. (2024).

Scalable data partitioning techniques for distributed

data processing in Cloud Environments: A

Review. IEEE. 12, pp.26735 - 26746.

DOI:10.1109/ACCESS.2024.3365810

[3] Sören Henning, and Wilhelm Hasselbring. (2024).

Benchmarking scalability of stream processing

frameworks deployed as microservices in the

cloud. Elsevier. 208, pp.1-17.

https://doi.org/10.1016/j.jss.2023.111879

[4] Reyazur Rashid Irshad, Shahid Hussain, Ihtisham

Hussain, Jamal Abdul Nasir, Asim Zeb, Khaled M.

Alalayah, Ahmed Abdu Alattab, Adil Yousif, and

Ibrahim M. Alwayle. (2024). IoT-Enabled Secure

and Scalable Cloud Architecture for Multi-User

Systems: A Hybrid Post-Quantum Cryptographic and

Blockchain-Based Approach Toward a Trustworthy

Cloud Computing. IEEE. 11, pp.105479 - 105498.

DOI:10.1109/ACCESS.2023.3318755

[5] Md. Motaharul Islam, and Zaheed Ahmed Bhuiyan.

(2023). An integrated scalable framework for cloud

and IoT based green healthcare system. IEEE. 11,

pp.22266 - 22282.

DOI:10.1109/ACCESS.2023.3250849

[6] Bayan H. Banimfreg. (2023). A comprehensive

review and conceptual framework for cloud

computing adoption in bioinformatics. Elsevier. 3,

pp.1-13.

https://doi.org/10.1016/j.health.2023.100190

[7] N. Sai Lohitha, and M. Pounambal. (2023).

Integrated publish/subscribe and push-pull method

for cloud based IoT framework for real time data

processing. Elsevier. 27, pp.1-9.

https://doi.org/10.1016/j.measen.2023.100699

[8] S¨ oren Henning, and WilhelmHasselbring. (2022). A

configurable method for benchmarking scalability of

cloud-native applications. Springer. 27(143), pp.1-

42. https://doi.org/10.1007/s10664-022-10162-1

[9] Baldeep Singh, Randall Martyr, Thomas Medland,

Jamie Astin, Gordon Hunter, and Jean-Christophe

Nebel. (2022). Cloud based evaluation of databases

for stock market data. Springer. 11(53), pp.1-17.

https://doi.org/10.1186/s13677-022-00323-4

[10] Sabrine Khriji, Yahia Benbelgacem, Rym Chéour,

Dhouha El Houssaini, and Olfa Kanoun. (1-28).

Design and implementation of a cloud-based event-

driven architecture for real-time data processing in

wireless sensor networks. Springer. 78, p.3374–

3401. https://doi.org/10.1007/s11227-021-03955-6

[11] Lei Chen, Jiacheng Zhao, Chenxi Wang, Ting Cao,

Johnzigman, Haris Volos, Onurmutlu, Fang Lv,

Xiaobing Feng, Guoqingharryxu, and Huimin Cui.

(2022). Unified holistic memory management

supporting multiple big data processing frameworks

over hybrid memories. ACM. 39(1-4), pp.1-38.

https://doi.org/10.1145/3511211

[12] Razzaq, M. A., Mahar, J. A., Ahmad, M., Saher, N.,

Mehmood, A., & Choi, G. S. (2021). Hybrid Auto-

Scaled Service-Cloud-Based Predictive Workload

Modeling and Analysis for Smart Campus System.

IEEE Access, 9, 42081–42089.

doi:10.1109/access.2021.3065597

[13] Radhika, E. G., & Sudha Sadasivam, G. (2021). A

review on prediction based autoscaling techniques

for heterogeneous applications in cloud environment.

Materials Today: Proceedings, 45, 2793–2800. doi:

10.1016/j.matpr.2020.11.789

[14] Alsboui, T., Qin, Y., Hill, R., & Al-Aqrabi, H.

(2021). Distributed Intelligence in the Internet of

Things: Challenges and Opportunities. SN Computer

Science, 2(4). doi:10.1007/s42979-021-00677-7

[15] Risco, S., Moltó, G., Naranjo, D. M., & Blanquer, I.

(2021). Serverless Workflows for Containerised

Applications in the Cloud Continuum. Journal of

Grid Computing, 19(3). doi:10.1007/s10723-021-

09570-2

[16] Hu, L., Zhang, F., Qin, M., Fu, Z., Chen, Z., Du, Z.,

& Liu, R. (2021). A Dynamic Pyramid Tilling

https://doi.org/10.1016/j.jnca.2024.103837
https://doi.org/10.1016/j.jss.2023.111879
https://doi.org/10.1016/j.health.2023.100190
https://doi.org/10.1016/j.measen.2023.100699
https://doi.org/10.1007/s10664-022-10162-1
https://doi.org/10.1186/s13677-022-00323-4
https://doi.org/10.1007/s11227-021-03955-6
https://doi.org/10.1145/3511211

340 Informatica 49 (2025) 315–342 S. Lakkireddy

Method for Traffic Data Stream Based on Flink.

IEEE Transactions on Intelligent Transportation

Systems, 1–10. doi:10.1109/tits.2021.3060576

[17] Mohyuddin, S., & Prehofer, C. (2021). A Scalable

Data Analytics Framework for Connected Vehicles

Using Apache Spark. 2021 International Symposium

on Electrical, Electronics and Information

Engineering. doi:10.1145/3459104.3459156

[18] Ramalingeswara Rao, T., Ghosh, S. K., & Goswami,

A. (2020). Mining user–user communities for a

weighted bipartite network using spark GraphFrames

and Flink Gelly. The Journal of Supercomputing.

doi:10.1007/s11227-020-03488-4

[19] Van Dongen, G., & Poel, D. V. D. (2021). A

Performance Analysis of Fault Recovery in Stream

Processing Frameworks. IEEE Access, 9, 93745–

93763. doi:10.1109/access.2021.3093208

[20] Ashiku, L., Al-Amin, M., Madria, S., & Dagli, C.

(2021). Machine Learning Models and Big Data

Tools for Evaluating Kidney Acceptance. Procedia

Computer Science, 185, 177–184. doi:

10.1016/j.procs.2021.05.019

 [21] Habib Mostafaei, Georgios Smaragdakis, Thomas

Zinner, and Anja Feldmann. (2022). Delay-resistant

geo-distributed analytics. IEEE. 19(4), pp.4734 -

4749. DOI:10.1109/TNSM.2022.3192710

[22] Salman Ahmed Shaikh, Hiroyuki Kitagawa,

Akiyoshi Matono, Komal Mariam, and Kyoung-

Sook Kim. (2022). GeoFlink: an efficient and

scalable spatial data stream management

system. IEEE. 10, pp.24909 - 24935.

DOI:10.1109/ACCESS.2022.3154063

[23] Jianhao Chen, Zhuangzhuang Zhang, Xiyang Jiang,

Jianpeng Huang, and Yifei Tong. (2022). Research

on escalator data acquisition and transmission based

on big data platform. Elsevier. 208, pp.532-538.

https://doi.org/10.1016/j.procs.2022.10.073

[24] Habib Mostafaei, Shafi Afridi, and Jemal Abawajy.

(2022). Network-aware worker placement for wide-

area streaming analytics. Elsevier. 136, pp.270-281.

https://doi.org/10.1016/j.future.2022.06.009

 partitioning in Apache Flink and the cloud. Springer.

34(42), pp.1-15. https://doi.org/10.1007/s00138-

023-01391-5

[25] Ana Almeida, Susana Brás, Susana Sargento, and

Filipe Cabral Pinto. (2023). Time series big data: a

survey on data stream frameworks, analysis and

algorithms. Springer. 10(83), pp.1-32.

https://doi.org/10.1186/s40537-023-00760-1

[26] Dimitrios Kastrinakis, and Euripides G.M. Petrakis.

(2023). Video2Flink: real-time video partitioning in

Apache Flink and the cloud. Springer. 34(42), pp.1-

15. https://doi.org/10.1007/s00138-023-01391-5

[27] Weisi Chen, Zoran Milosevic, Fethi A. Rabhi, and

Andrew Berry. (2023). Real-time analytics:

Concepts, architectures, and ML/AI

considerations. IEEE. 11, pp.71634 - 71657.

DOI:10.1109/ACCESS.2023.3295694

[28] Guojian Xu, Mingyang Song, Zhenggang Leng, and

Zhenhong Jia. (2023). Simulation Research on Fast

Matching of Big Data Based on Spark. IEEE. 11,

pp.32628 - 32635.

DOI:10.1109/ACCESS.2023.3262989

[29] Moksud Alam Mallik, Nurul Fariza Zulkurnain,

Sumrana Siddiqui, and Rashel Sarkar. (2024). The

Parallel Fuzzy C-Median Clustering Algorithm

Using Spark for the Big Data. IEEE. 12, pp.151785 -

151804. DOI:10.1109/ACCESS.2024.3463712

[30] Mohamed Yusuf Hassan. (2024). Applications of

Bigdata Technologies in the Comparison of BMTD

and ARIMA Models for the Prediction of Internet

Congestion. IEEE. 12, pp.56642 - 56651.

DOI:10.1109/ACCESS.2024.3389041

[31] Lisana Berberi, Valentin Kozlov, Giang Nguyen,

Judith Sáinz-Pardo Díaz, Amanda Calatrava,

Germán Moltó, Viet Tran, and Álvaro López García.

(2025). Machine learning operations landscape:

platforms and tools. Springer. 58(167), pp.1-37.

https://doi.org/10.1007/s10462-025-11164-3

[32] Engin Zeydan, and Josep Mangues-Bafalluy. (2022).

Recent advances in data engineering for

networking. IEEE. 10, pp.34449 - 34496.

DOI:10.1109/ACCESS.2022.3162863

[33] Shahid, M. A., Islam, N., Alam, M. M., Mazliham, M.

S., & Musa, S. (2021). Towards Resilient Method:

An exhaustive survey of fault tolerance methods in

the cloud computing environment. Computer Science

Review, 40, 100398. doi:

10.1016/j.cosrev.2021.100398

[34] Karthikeyan, L., Vijayakumaran, C., Chitra, S., &

Arumugam, S. (2021). SALDEFT: Self-Adaptive

Learning Differential Evolution Based Optimal

Physical Machine Selection for Fault Tolerance

Problem in Cloud. Wireless Personal

Communications, 118(2), 1453–1480.

https://doi.org/10.1007/s11277-021-08089-9

[35] Alaei, M., Khorsand, R., & Ramezanpour, M. (2020).

An adaptive fault detector strategy for scientific

workflow scheduling based on improved differential

evolution algorithm in cloud. Applied Soft

Computing, 106895. doi:

10.1016/j.asoc.2020.106895

[36] Nalini, J., & Khilar, P. M. (2021). Reinforced Ant

Colony Optimization for Fault Tolerant Task

Allocation in Cloud Environments. Wireless

Personal Communications. doi:10.1007/s11277-021-

08830-4

https://doi.org/10.1016/j.procs.2022.10.073
https://doi.org/10.1016/j.future.2022.06.009
https://doi.org/10.1007/s00138-023-01391-5
https://doi.org/10.1007/s00138-023-01391-5
https://doi.org/10.1186/s40537-023-00760-1
https://doi.org/10.1007/s10462-025-11164-3

HyScaleFlow: An ML-Driven DAG-Based Orchestration… Informatica 49 (2025) 315–342 341

[37] A. U. Rehman, Rui L. Aguiar, and João Paulo

Barraca. (2022). Fault-tolerance in the scope of cloud

computing. IEEE. 10, pp.63422 - 63441.

DOI:10.1109/ACCESS.2022.3182211

[38] Babak Taraghi, Hermann Hellwagner, and Christian

Timmerer. (2023). LLL-CAdViSE: live low-latency

cloud-based adaptive video streaming evaluation

framework. IEEE. 11, pp.25723 - 25734.

DOI:10.1109/ACCESS.2023.3257099

[39] Marios Fragkoulis, Paris Carbone, Vasiliki Kalavri,

and Asterios Katsifodimos. (2024). A survey on the

evolution of stream processing systems. Springer.

33, p.507–541. https://doi.org/10.1007/s00778-023-

00819-8

[40] Cheng-Wei Ching, Xin Chen, Chaeeun Kim, Tongze

Wang, Dong Chen, Dilma Da Silva, and Liting Hu.

(2025). AgileDART: An Agile and Scalable Edge

Stream Processing Engine. IEEE. 24(5), pp.4510 -

4528. DOI:10.1109/TMC.2025.3526143

[41] New York City Taxi and Limousine Commission

(NYC TLC), 2024. TLC Trip Record Data. [online]

Available at: https://www.nyc.gov/site/tlc/about/tlc-

trip-record-data.page

[42] Guan, J. (2025). Enhanced Network Security Hybrid

Cloud Workflow Scheduling Using Levy-Optimized

Slime Mould Algorithm. Informatica, 49(18).

[43] Ilias, Shaik Mohammad, V. Ceronmani Sharmila, and

V. Sathya Durga. "An Integrated Framework with

Enhanced Primitives for Post-Quantum

Cryptography: HEDT and ECSIDH for Cloud Data

Security and Key Exchange." Informatica 49.11

(2025).

[44] Tang, Haili, and Zefeng Ding. "A Hybrid LSTM-

Transformer Approach for State of Health and

Charge Prediction in Industrial IoT-Based Battery

Management Systems." Informatica 49, no. 22

(2025).

https://doi.org/10.1007/s00778-023-00819-8
https://doi.org/10.1007/s00778-023-00819-8
https://www.nyc.gov/site/tlc/about/tlc-trip-record-data.page
https://www.nyc.gov/site/tlc/about/tlc-trip-record-data.page

342 Informatica 49 (2025) 315–342 S. Lakkireddy

