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To address low search accuracy and long search time in product quantization (PQ) algorithms for large-
scale datasets, the Adaptive Subspace Dimension Product Quantization (ASDPQ) algorithm is proposed.
It optimizes subspace partitioning by adaptively choosing the number of sub-spaces based on quantization
error comparison, speeding up the search. During training, it uses two encoding patterns and selects the
optimal one for efficient quantization. A high-dimensional data image retrieval model is developed. In
experiments on SIFT and GIST ANN search datasets, ASDPQ outperforms OPQ and PQ algorithms, with
recall rates of 0.84 and 0.97, and search times of 3.135ms and 5.374ms respectively. It also reduces
addition computation by 4.54% and 6.96% compared to PQ. When integrated into an image retrieval
system, it achieves a similarity rate of over 80% and an average shortest retrieval time of 2.63ms,
demonstrating its effectiveness and reliability in high - dimensional data image retrieval.

Povzetek: Za iskanje po visokodimenzionalnih slikovnih podatkih je razvit algoritem Adaptive Subspace
Dimension Product Quantization (ASDPQ), ki dinamicno prilagaja delitev v podprostore glede na napako
kvantizacije in s tem izboljsa hitrost iskanja. ASDPQ uporablja dva vzorca kodiranja ter samodejno izbere
optimalnega, kar omogoca ucinkovitejse kvantiziranje in iskanje najblizjih sosedov v velikih slikovnih

zbirkah.

1 Introduction

In the context of rapid progress in information technology,
cloud computing, big data, artificial intelligence, and other
emerging technologies have been widely applied, which
has led to the generation of massive types of high-
dimensional information in the Internet, including text,
video, images, audio, and sensor data. These data not only
have huge volumes, but also complex structuralfeatures,
manifested as significant characteristics such as high
dimensionality, nonlinearity, and heterogeneity [1-3].
However, these data usually have high-dimensional and
large-scale characteristics, limited storage space, and
users' increasing demand for information retrieval speed
[4-5]. Therefore, developing efficient and accurate high-
dimensional data image search algorithms has become a
key research direction in the academic community.

To tackle low accuracy in traditional high-
dimensional data image retrieval, Yan et al. introduced
multi-view deep neural networks into hash learning,
developing a supervised multi-view hash model with
higher retrieval performance [6]. For security
improvement, Feng et al. proposed a privacy-preserving
image retrieval scheme based on image encryption,
showing excellent encryption and retrieval performance
with higher accuracy [7]. Johnson et al. proposed Product
Quantization (PQ) search methods to reduce computing
resources in image retrieval, achieving 55% of theoretical

peak performance and an 8.5-fold speed increase [8]. Feng
et al. proposed a PQ adversarial generation method to
address deep PQ network shortcomings, creating
adversarial samples to improve retrieval performance [9].
In graph indexing, Wang et al. proposed a connection-
based graph native query difficulty measurement method,
defining Steiner difficulty, which correlated better with
actual query workload across datasets [10]. In water
resource management, Alawsi et al. combined data
preprocessing, artificial neural networks, particle swarm
optimization, shrinkage coefficient, and chaotic gravity
search to construct a hybrid algorithm, outperforming
comparison algorithms in statistical indicators [11].

Since the 21st century, the Approximate Nearest
Neighbor (ANN) search techniqgue has received
widespread attention. Among them, vector quantization-
based algorithms have been broadly utilized in fast image
retrieval due to their effectiveness in encoding high-
dimensional visual features. For example, Yu et al.
proposed PQ networks, residual PQ networks, and
temporal PQ networks, which have achieved state-of-the-
art performance in fast image and video retrieval [12].
Faced with issues such as local sensitive hashing and
limited accuracy in handling item quantities using index-
based methods, Lian et al. proposed a PQ collaborative
filtering method. The results denoted that this method was
significantly superior to state-of-the-art comparison
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algorithms, improving recommendation performance
[13]. Considering the problem of low search efficiency of
traditional algorithms when performing similarity
searches on large-scale time series datasets, Zhang et al.
proposed a dynamic time warping method based on PQ.
The results showed that this method achieved the best
trade-off between query efficiency and retrieval accuracy
compared to traditional methods [14]. To bridge the
semantic gap between open vocabulary and visual content,
Fakhfakh R et al. developed a personalized image retrieval
system framework. This framework selected the most
relevant images based on specified queries, user interests,
and semantic interpretations. The results showed that this
method achieved an average precision of 0.675,
surpassing other works using the same database under
similar conditions [15]. The number of codewords in a
codebook is determined by experience, leading to an
imbalance in the representation capabilities of codewords,
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which results in redundancy or insufficiency and reduces
retrieval performance. To address this issue, Gu L et al.
introduced an entropy-optimized deep weighted PQ
method. The results showed that this method not only
improved retrieval performance but also enhanced the
representation capabilities of codewords and balanced
their allocation [16]. Currently, deep learning-based
hashing and quantization methods heavily rely on
expensive label information in large-scale image retrieval,
failing to fully utilize data resources. To tackle this
problem, Zhao X et al. proposed a self-supervised method
that does not require label information, specifically the
contrast self-supervised weak orthogonal PQ. The results
indicated that this method achieved better performance on
the CIFAR-10, NUS-WIDE, and FLICKR25K datasets
[17]. The summary results of the existing studies are
shown in Table 1.

Table 1: Summary of relevant work.

Author's name

Algorithm name

Method description

Evaluation indicators

Methodological flaws

Yan C et al. [6]

Supervise the multi-view

hash model

The multi-view deep neural
network is introduced into the
field of hash learning

Image retrieval

performance

Low accuracy

Image retrieval scheme for

Develop a privacy protection

Encryption and retrieval

Security is not sufficient,
especially in the process

methods for PQ

proposed for PQ

speed

Feng Qetal. [7] privacy protection based on | image retrieval scheme based on | performance, retrieval | of data transmission and
image encryption image encryption accuracy storage vulnerable to
attacks
The consumption of
Vigorous search, | The methods of violent search, . Computmg_ resources is
. . The nearest neighbor | large, which makes it
approximate search and | approximate search and | . . A
Johnson J et al. [8] - - implementation runs at | difficult to meet the real-
compressed domain search | compressed domain search are

time retrieval
requirements of large-
scale data

Feng Y etal. [9]

PQ adversarial generation
method

A PQ adversarial generation
method is proposed to mislead
the target product quantitative
retrieval model

High dimensional data
image retrieval
performance

Deep PQ network has
defects in fast image
retrieval and is
vulnerable to adversarial
sample attacks

A new connection-based graph

The response
performance of the

[11]

swarm optimization based on
contraction coefficient and

based on
coefficient  and

optimization
contraction

statistical indicators

A difficulty measurement | native query difficulty | The correlation between | traditional map index
Wang Z et al [10] method for connected graph | measurement method is | Steiner difficulty and | varies greatly for
native queries proposed, and the Steiner | actual query workload different queries,
difficulty is defined resulting in  unstable
service quality
Hybrid algorithm
(combining data | The data preprocessing and The algorithm is
preprocessing, artificial | artificial neural network are complex, the calculation
Alawsi M A et al. | neural network, particle | combined with particle swarm | Performance of various | cost is high, and it is

aimed at a
field (water

mainly
specific

network

proposed

retrieval performance

chaotic  gravity  search | chaotic gravity search algorithm resources management)
algorithm)
PQ network, residual PQ | PQ network, residual PQ network . .

Yu Tetal. [12] network and time PQ | and time PQ network are Fast image and video /

Local sensitive hashing
and index-based methods

retrieval accuracy

. PQ collaborative filtering | The PQ collaborative filtering | Recommended ; S
Lian D et al. [13] ; deal with a limited
method method is proposed performance number of items and low
accuracy
. . . q - . hod The trade-off between Tradltlopal i glgonthms
Zhang H et al [14] Dynamic  time  warping | A dynamic time warping metho query efficiency and are inefficient in
method based on PQ based on PQ is proposed searching large-scale

time series data sets
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image

Fakhfakh R et al. | Personalized image retrieval
proposed  to

[15] system framework

The framework of personalized
retrieval
select
according to query, user interest
and semantic interpretation

It is difficult to bridge the
semantic gap between
open vocabulary and
visual content

system is

images | Average mean accuracy

Energy optimization deep

Gu L etal. [16] weighted PQ method

An entropy optimization deep
weighted PQ method is proposed

The number of code
words in a codebook
depends on experience,
and the representation
capacity of code words is
unbalanced

Search
code
representation
capability, and code
word allocation balance

performance,
word

Compare the self-supervised

Zhao X etal. 17] weak orthogonal PQ

A self-supervised method is
proposed that does not require
labeled information

Hashing and quantization
methods based on deep

Function learning rely too much on
expensive tag
information

In summary, despite progress in high-dimensional
data image retrieval with intelligent algorithms, there are
application drawbacks. High-dimensional data's sparsity
and complexity lead to high computational costs, limiting
retrieval speed and real-time performance. The "curse of
dimensionality” increases noise, affecting retrieval
accuracy. Besides, the algorithm's insufficient
understanding of image semantics makes it hard to capture
user intent accurately, causing retrieval results to deviate
from expectations.

Applying PQ to high-dimensional data image
retrieval faces low accuracy (due to fixed sub-space
partitioning not adapting to complex data structure,
causing large quantization errors) and long retrieval times
(from unnecessary computation in large-scale data
processing). The proposed ASDPQ algorithm
dynamically adjusts sub-space partitioning by adaptively
selecting dimensions based on data’s local characteristics,
using finer dimensions in dense areas for accuracy and
coarser ones in sparse areas to reduce complexity and
time, thus enhancing image retrieval performance.

Based on this, the following clear research objectives
are proposed: (1) Reduce retrieval time: Improvement of
PQ algorithm by adaptive subspace selection reduces
computational complexity and speeds up high-
dimensional data retrieval. (2) Improve recall rate: The
process of subspace division and quantization coding is
optimized to improve the accuracy of image retrieval and
ensure that the target image is accurately found in large-
scale datasets. (3) Minimize computational overhead: By
improving the design of the algorithm, unnecessary
computations are reduced and the efficiency of the
algorithm is improved to make it more suitable for
resource-limited environments.

To achieve these objectives, the research first
improves the Adaptive Subspace Dimension Product
Quantization (ASDPQ) algorithm by adaptively selecting
dimensions of sub-spaces. Then, by combining content-
based image retrieval methods, a new image retrieval
model suitable for high-dimensional data is proposed. The
ASDPQ algorithm's core innovation is its adaptive
subspace selection mechanism, setting it apart from
existing methods. Traditional PQ algorithms have fixed
sub-spaces and dimensions, lacking flexibility. ASDPQ
dynamically adjusts subspace dimensions based on data
characteristics, comparing quantization errors to select the
best dimension combination. For complex high-

dimensional image data, it chooses different dimensions
for sub-spaces according to local features, improving
search accuracy, reducing computational load, and
enhancing overall performance. This study aims to solve
the efficiency problem in high-dimensional image data
retrieval, improve the performance and practicality of
image retrieval, provide new ideas and methods for the

current image retrieval field, and promote the
development and application of image retrieval
technology.

2 Methods and materials

2.1 ASDPQ algorithm design

The PQ algorithm is crucial for high-dimensional data
image retrieval, quantifying and decomposing high -
dimensional vectors into low-dimensional sub-spaces to
reduce storage and computational complexity, improving
retrieval speed while maintaining accuracy [18-19].
However, traditional PQ algorithms have naive spatial
partitioning, sub-optimal subspace partitioning, and lack
candidate set selection based on quantization errors during
ANN search, limiting accuracy. They also perform poorly
in anomaly detection when normal and abnormal data are
mixed [20]. In response to the above issues, the research
combined with the characteristics of the vector
distribution of the dataset optimized the query distance
table stage in the algorithm and proposed an improved PQ
algorithm. This algorithm adaptively selected the
dimension of sub-spaces by comparing quantization
errors, reduced the number of vector sub-spaces in the
dataset, and accelerated the search speed. Compared with
the standard PQ method, it has fewer sub-spaces, which
can accelerate the search speed during the search process,
as shown in Figure 1.

In Figure 1, based on the comparison of quantization
errors between Mode 1 and Mode 2, ASDPQ adaptively
selects the appropriate subspace dimension for coding.
The algorithm adopts two encoding modes, quantizes the
raw data through PQ, and saves the parameters. The input
data is divided into different subvectors, encoded using
different codebooks, and recorded for replacement.
Choosing a mode with small quantization error may adjust
the number of sub-spaces. The algorithm trains two PQ
codebooks to adaptively partition and encode the dataset
vectors into sub-spaces. In indexing and retrieval, the
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Euclidean distance between the query vector and the
dataset vector is calculated using the ADC method to
achieve similarity matching. The implementation process

Input sub
vector
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of the ASDPQ algorithm in this design is shown in Figure
2.

t 1ASDPQ @ :

New sub
vector
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Index 1

> Query vector Online phase

Quantization

Mode 2 v | Set the overall | : |Total encoding
coding mode g mode
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square distance of each |«
subspace

Look-up
table

Figure 2: Flowchart of ASDPQ algorithm index establishment and retrieval process.

In Figure 2, the process adopts two encoding modes
with different numbers of sub-spaces and clusters. In the
training of the algorithm, the dataset is first trained in two
different modes, namely mode one and mode two. These
two modes have differences in the setting of the number
of sub-spaces and cluster classes k / k, to adapt to

different data features and quantization requirements.
After the training is completed, the system will save the
generated index, codebook, and quantization error
information. The index is used for fast data retrieval, while
the codebook stores the cluster centers of each subspace.
The quantization error records the size of the error
introduced during the quantization. The D-dimensional
dataset is decomposed into M sub-vectors using the K-

means algorithm, and the subspace codebooks C_, and

C,,, are trained and encoded. Finally, the sub-codebooks

are integrated to obtain the PQ total codebook, as shown
in formula (1).

X m :{Xi D(m71)+1, Xi D(m—l)+2 yeeny Xi'm}T ,
M Y M
m=12,...M (1)
le = lel ><CmI2 X"'XCmINIl
CmZ = szl ><sz2 XX CmZM2
In formula (1), C

subcodebooks Cr, (i=1,2,---,M,), each containing K,

is composed of M,

ml

codewords; C_, is composed of M, subcodebooks C!

m2?

each containing k, codewords. From this, it can be seen
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that C_, contains M, times k, codewords, and the same
applies to C_,. M, represents the number of sub-spaces
in pattern one, while M, represents the number of sub-
spaces in pattern two. k; is the number of codewords in
the sub-codebook of pattern one (256), and k, is the
number of codewords in the sub-codebook of pattern two
(512), as shown in formula (2).
Co™ ={Cout Co--+Cout |

mil * ~mi2 10 Mmlkg

Coa" ={Cral - Crrzp -+ Corot. |

m2

O]

In the training process based on ASDPQ algorithm,
two encoding modes are first trained on the dataset to
optimize quantization performance and improve retrieval
efficiency. Specifically, in pattern one, each dataset vector
X will be quantized into M, indices for representation.

This quantization process divides the high-dimensional
vector space into multiple sub-spaces and quantizes them
separately in each subspace, thereby representing the
original vector as a combination of multiple subspace
indices, as shown in formula (3).

X/ =Ch., i=12-n (3)

In formula (3), X{ is the i th component of the
quantized vector X', h, is the codeword index closest to
the component X, of the original vector obtained by
o and CM.is the ith
component of the codeword indexed as h, in the sub-

codebook C_, . The research will select an appropriate

encoding mode based on the size of the quantization error,
then perform quantization processing on the query vector,
and finally calculate the query distance table. Using these
tables, the squared distances between the query vector and
the vectors in the data set are approximated, summed to
obtain the total approximate squared distance, and sorted
to determine the nearest neighbours, thus completing the
approximate nearest-neighbour search to obtain the total

approximate squared distance, Dis(q, X;), asshown inin
formula (4).

searching in the sub-codebook C
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Dis(q,Xi)zﬁDism (a,X;) (4)

In formula (4), X, indicates the ANN sought, and g

denotes the query vector. The ASDPQ algorithm obtains
the minimum value by sorting the total approximate
square distance, completing the index establishment. In
ANN search, the ASDPQ code is used to calculate the
Euclidean distance between the query vector and the
dataset vector, ensuring the same ranking without
calculating the square root. In the retrieval process of
ASDPQ algorithm, the entire calculation process is
divided into two parts: constructing the distance table and
searching for the calculated distance. Firstly, the dataset

q isdivided into M, or M, sub-vectors, and the squared

Euclidean distance between the query vector sub-vectors
and the corresponding codewords in the codebook is
calculated and stored in the query distance table, as shown
in formula (5).

D,.,(i.J) = ~CL,[ .
i=1,2,M,, j=12Kk,

®)

In formula (5), Dm2(i,)) represents the distance
between the | sub-vector 0; of the query vector and the
J codeword in the pattern two sub-codebook Cp; . K, is

the number of codewords in the subcode book C,. The
study utilizes a pre-constructed lookup table to obtain the
nearest neighbor distance through calculation and sorting.
Through the above design, the pseudo-code of ASDPQ
algorithm can be obtained, as shown in Figure 3.

The ASDPQ algorithm first divides the dataset into
two modes during the training phase, and then constructs
sub-codebooks for each mode to form a complete
codebook. In the retrieval stage, the query vector is broken
down into sub-vectors, and the nearest codeword is
identified from the corresponding sub-codebook. The
approximate distance between the query vector and each
vector in the dataset is calculated, and the results are sorted
to obtain the nearest neighbor.
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Algorithm ASDPQ

Input: Dataset X, query vector q
Output: Nearest neighbors of g
/I Training phase

2. For Model:

3. For Mode2:

Il Search phase
5. For each sub - vector x_i of query q:

6. Calculate approximate distances D(q, X_i)
7. Sort and return nearest neighbors

1. Split X into two modes: Model and Mode2
- Cluster into M1 sub - codebooks C_mlI~i, i = 1..M1, each with k1 codewords

- Cluster into M2 sub - codebooks C_m2%j, j = 1..M2, each with k2 codewords
4. Combine sub - codebooks to form C_ml and C_m2

- Find nearest codeword in corresponding sub - codebook

Figure 3: Pseudo-code of ASDPQ algorithm (Image source: Author's own drawing).

Sub-space dimensions significantly impact the
ASDPQ algorithm's retrieval performance. A low-
dimension reduces computational complexity and time but
causes feature loss, increasing quantization errors and
lowering precision (recall, mAP) as key features are hard
to retain. A high-dimension preserves features well but
increases computational load, storage costs, time, and may
harm stability due to overfitting. ASDPQ avoids
traditional dimensionality reduction. Its adaptive
mechanism analyzes data and dynamically sets
dimensions by comparing quantization errors under
different sub-space divisions.

2.2 Construction of high-dimensional data
image retrieval model based on
ASDPQ algorithm

After designing the ASDPQ algorithm, a high-
dimensional data image retrieval model based on it is
proposed to boost image retrieval performance. Image
retrieval technology has evolved from text-based (TBIR)
to content-based. TBIR uses text descriptions for image
search, combining natural language processing and
computer vision, but has drawbacks like time-consuming
manual annotation and diverse Chinese descriptions
causing inefficiency. Content-based retrieval extracts and
compares image features with database images [21].
Based on this, a content-based image retrieval method is
studied, combined with the designed ASDPQ algorithm,
to propose an image retrieval model suitable for high-
dimensional data. The overall architecture of the model is
denoted in Figure 4.

Figure 4 shows the model's two-stage processing:
offline and online. The offline stage builds the dataset
feature library and index codebook. The online stage
uploads user query images and returns similar results via
feature matching. For image retrieval, the model extracts

HSV, SIFT, and GIST features. SIFT feature points, local
extrema detected in different scale spaces, are scale - and
rotation-invariant and stable against lighting and noise,
crucial for image matching and object recognition. The
implementation of SIFT algorithm is denoted in Figure 5.

In Figure 5, after inputting the image to be retrieved,
the model extracts its feature points and establishes a
feature point set. Feature matching is achieved by
calculating the distance between feature point sets, where
the smaller the distance, the higher the similarity.
Matching must reach the set image registration rate
threshold to be considered successful, otherwise it will be
retrieved again. GIST feature extraction first constructs a
two-dimensional Gabor filter bank, which utilizes its good
frequency and directional selectivity to filter the image
and extract local texture and edge information. Next, by
performing scale and rotation transformations on Gabor
filters, multi-scale and multi-directional filter banks are
generated to capture the features of the image at different
scales and directions, as denoted in formula (6).

O (X, ¥) =0 (X, y") 0 >1
x'=a""(xcosh,ycos6)
y'=a " (-xsin®,ysino)

0=nn/(n+1)

(6)

m

In formula (6), © means the rotation angle, o~
denotes the dilation scale factor, and M and " represent
the scale and direction of the Gabor filter, respectively.
After the above processing, the image is divided into k
small blocks, each of which is filtered using Gabor filter
banks and converted into 4 x 8 data. The entire image is

then converted into 4 x 8 x k data. In HSV feature

extraction, the image is converted to the HSV color space
and the hue, saturation, and brightness feature values of
each pixel are extracted.
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Figure 4: Overall architecture diagram of high-dimensional data image retrieval model based on ASDPQ algorithm.
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Figure 5: Implementation process of SIFT algorithm.

The high-dimensional data image retrieval model
based on ASDPQ algorithm achieves efficient retrieval
through two-stage offline and online operations. The
model first performs feature extraction on the image
dataset to obtain high-dimensional feature representations
for each image. Then, the ASDPQ algorithm is used to
quantify the features and generate indexes and codebooks
for the image dataset. This process compresses high-
dimensional data into low-dimensional representations
while preserving key feature information, providing
efficient data support for subsequent retrieval. After the
user uploads the query image, the model first performs
HSV color, SIFT, and GIST feature extraction on the
query image to obtain its high-dimensional feature
representation. The study sequentially connects vectors of
different features (e.g., 128 - D SIFT, 180-D HSV, and
960-D GIST) to form a long final image feature vector
(1268-D in the example). Each feature vector is
normalized using Z-score before fusion. The feature

combination is chosen for their complementary nature in
expressing different image aspects (local details, color,
and global structure). This multi-feature fusion
comprehensively describes image content, improving
image retrieval accuracy.

Finally, utilizing advanced ASDPQ algorithm, the
query features submitted by users are accurately matched
with features pre-stored in a large dataset. Through this
matching process, the similarity between the query and the
features of each dataset is calculated and sorted in
descending order of similarity, ultimately returning the
image result that is most similar to the user's query. This
model is suitable for large-scale high-dimensional data
scenarios and has high practicality and efficiency in the
field of image retrieval.

High-dimensional data image retrieval is widely used,
with data often containing sensitive info like biometric
features and medical images, and leaks having serious
effects. The ASDPQ algorithm can boost privacy
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protection. In sensitive image retrieval, it encrypts original
images during preprocessing, then performs adaptive
subspace operations on encrypted data to create an
encrypted index. During retrieval, the query image is
encrypted and matched with the index, keeping the
process encrypted to prevent plain-text exposure. Its
adaptive feature adjusts subspace dimensions based on
data, precisely segmenting and quantizing large-scale
sensitive data, reducing privacy breach risks while
maintaining efficiency and privacy.

3 Results

3.1 Experimental setup and ASDPQ
algorithm training

To validate the ASDPQ algorithm, SIFT and GIST ANN
search datasets were used. SIFT has high-dimensional
(128-512) feature vectors for precise, computation-
intensive tasks, with a large training set and dataset library
(millions/billions of vectors). The SIFT dataset has 1
million 128-dimensional descriptors (100,000 for training,

L. Luetal.

10,000 for testing). GIST has lower-dimensional (up to
960) vectors focusing on global image description, with
500,000 training and 1,000 query descriptors. The SIFT
dataset (feature vector dimensions: 128 - 512) was chosen
for precise, computation-intensive applications and to
validate the algorithm in high-dimensional scenarios. The
GIST dataset, with relatively lower feature vector
dimensions focusing on global image description, was
selected to contrast with SIFT and comprehensively
evaluate the ASDPQ algorithm's performance across
different high-dimensional data types.

In data preprocessing, features were normalized using
Z-score to have a mean of 0 and standard deviation of 1
before training and testing. The dataset was split into an
80% training set and 20% test set, randomly repeated 10
times to assess performance stability. For recall
calculation, ground truth was the 100 nearest neighbors of
the query point found by brute-force search under
Euclidean distance. All experiments were repeated 10
times, and average and standard deviation results were
reported for performance stability. The experimental
operating environment and parameter design are denoted
in Table 2.

Table 2: Experimental operating environment and parameter design.

Experimental environment Setting items
CUDA version 11.4.0
Central processing unit NVIDIARTX4090Ti
Memory 16.00GB
Operating environment Batch size 8
Initial value of learning rate 0.001
Optimizer Adam
Software environment MatlabR2018a
Parameter settings Mode 1 The subspace !s 8 and the number of clusters !s 256
Mode 2 The subspace is 4 and the number of clusters is 512
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Figure 6: ASDPQ algorithm training results.

The comparison methods chosen for this test were PQ
and Optimized Product Quantization (OPQ). Specifically,
the study utilized the PQ and OPQ implementations
provided by the Faiss library. The Faiss library, developed
by Facebook Al Research, is designed for efficient
similarity search and dense vector clustering. For the PQ
algorithm, the study selected 128 sub-spaces, each
containing 256 cluster centers. For the OPQ algorithm, the

same subspace dimensions and number of clusters as PQ
were used, and the optimization steps of OPQ were
applied. All algorithms' hyperparameters were optimized
through a grid search to ensure fair comparisons under
identical conditions.

In the experimental setup, grid search was used for
hyperparameter tuning of the ASDPQ algorithm. Key
hyperparameters  like subspace dimensions and
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guantization coding parameters were set with possible
value ranges, and candidate values were determined based
on data and experience. Grid search explored these
combinations to find the optimal ones for the algorithm's
performance on the validation set. To ensure fairness, all
comparison algorithms' hyperparameters were also tuned
using grid search for an objective comparison under
identical conditions. The evaluation indicators selected
wee the recall rate for evaluating search accuracy, as well
as the search time and computational savings for
evaluating search speed. For the ASDPQ algorithm, the
training results are shown in Figure 6.

From Figure 6 (a), overall, both OPQ and PQ
algorithms reached their maximum return values after
1,000 episodes. The ASDPQ algorithm reached its
maximum return value after 500 episodes, and the speed
of obtaining return value was faster. Among them,
compared with PQ and OPQ algorithms, ASDPQ had
more stable data changes, indicating that the proposed
algorithm performed better. From Figure 6 (b), both OPQ
and PQ algorithms gradually stabilized after 1,000
episodes, and there was ineffective path learning during
the learning. ASDPQ learned along the path with the
highest value and gradually stabilized after 327 episodes,
indicating that the ASDPQ algorithm had better search
performance and experimental results at the same episode.

To assess the ASDPQ algorithm's scalability, the
study examined its computational complexity (training:
O(d-n+k-d-logn) , search: O(d-logk) , with k sub-
spaces) across datasets of size n and dimension d. The PQ
algorithm has training complexity O(d-n) and search

complexity O(d-k) , while the OPQ algorithm has similar

complexities with an extra optimization step. ASDPQ
maintains high search accuracy with comparable
complexity to PQ and OPQ, demonstrating good
scalability.

3.2 ASDPQ algorithm performance testing

After completing algorithm training, a comparative
analysis was carried out on the recall rates of ASDPQ
algorithm with OPQ and PQ algorithms to test the search
accuracy of the raised algorithm. The recall tests of each
algorithm on SIFT and GIST datasets are shown in Figure
7.

From Figure 7 (a), in the SIFT dataset, overall, as the
number of iterations increased, the recall rates of ASDPQ
algorithm and other compared algorithms gradually
increased and tended to stabilize. The maximum recall
rates of ASDPQ algorithm and traditional OPQ and PQ
algorithms were 0.84, 0.78, and 076, respectively. Among
them, the ASDPQ algorithm had the best recall
performance and converged the fastest, with a 7.7%
improvement compared to the traditional OPQ algorithm.
By calculating the 95% confidence interval, it can be
confirmed that the recall rate of ASDPQ algorithm is
significantly higher than that of PQ and OPQ algorithms
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(p<0.05). From Figure 7 (b), on the GIST dataset, overall,
as the number of iterations increased, the recall rates of
ASDPQ algorithm and other compared algorithms
gradually increased and tended to stabilize. The max recall
rates of ASDPQ algorithm and traditional OPQ and PQ
algorithms were 0.97, 0.94, and 0.88, respectively. Among
them, the ASDPQ algorithm had the best recall
performance, which was 3.2% higher than the traditional
OPQ algorithm. Similarly, by calculating the 95%
confidence interval, it can be confirmed that the recall rate
of ASDPQ algorithm is significantly higher than that of
PQ and OPQ algorithms (p<0.05). The above results
indicate that the ASDPQ algorithm has higher search
accuracy and better performance than other compared
algorithms, and can be effectively applied in high-
dimensional data image retrieval. The search time test
results of ANN search with different algorithms on SIFT
and GIST datasets are denoted in Table 3.

According to Table 3, the search time of ASDPQ
algorithm on SIFT and GIST datasets was 3.135ms and
5.374ms, respectively, and the performance was better
than the comparison algorithms OPQ and PQ. Among
them, in the SIFT dataset, the ASDPQ algorithm
performed the best, improving by 20.4% and 21.3%
respectively compared to traditional OPQ and PQ
algorithms. Although the ASDPQ took a longer time in the
‘computing distance table/ms' phase, this was due to the
more complex adaptive subspace partitioning and
encoding operations performed by ASDPQ to adapt to the
characteristics of the dataset vectors. While these
operations increased the time cost during the computation
of the distance table, they reduced unnecessary
computations in subsequent queries and searches due to
more precise subspace partitioning and encoding, thus
shortening the overall search time. The results denote that
the ASDPQ algorithm has superior performance in search
speed and can achieve fast retrieval of high-dimensional
data images. Next, the study analyzed the computational
savings of different algorithms, as shown in Figure 8.

Figures 8 (a) and 8 (b) show the comparison of
computational complexity on the SIFT dataset and GIST
dataset, respectively. From Figure 8 (a), on the SIFT
dataset, both OPQ and ASDPQ algorithms saved addition
computation compared to PQ algorithm. Among them, the
ASDPQ algorithm saved 4.54% of the addition
computation and had the best effect. From Figure 8 (b), on
the GIST dataset, similar to the PQ algorithm, both OPQ
and ASDPQ algorithms saved the amount of addition
computation. Among them, the ASDPQ algorithm saved
6.96% of the addition computation and had the best effect.
The above results show that the ASDPQ algorithm
designed by the research performs better than the
comparative algorithm in terms of search speed
performance, and can be effectively applied to high-
dimensional data image retrieval. At the same time, the
ASDPQ algorithm achieves a good balance between recall
rate and computing saving, which not only improves the
search accuracy, but also reduces the computing cost.
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Table 3: Search time and acceleration ratio test results of different algorithms on SIFT and GIST datasets.

Data set SIFT GIST
Methods PQ OPQ ASDPQ PQ OPQ ASDPQ
Distance calculation table/ms 0.355 0.423 0.555 0.574 1.477 1.794
Distance query table/ms 3.625 2.536 2.580 5.02 3.66 3.58
Search time/ms 3.981 3.959 3.135 5.594 5.437 5.374
Compared to the acceleration ratio of PQ 0.55% 21.3% 2.8% 3.9%
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Figure 8: Comparison of computational savings between different algorithms.

Table 4: Comparison results of ASDPQ algorithm and mainstream high-dimensional data retrieval algorithms.

Data sedalaorithm SIFT GIST
ata setaligorithms Precision F1 score mAP Precision F1 score mAP
ASDPQ 0.84 0.82 0.80 0.97 0.96 0.95
DON 0.78 0.76 0.75 0.94 0.93 0.92
GCNH 0.80 0.78 0.77 0.95 0.94 0.93
SSDPQ 0.81 0.79 0.78 0.96 0.95 0.94
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Figure 9: Comparison results of image similarity and retrieval time returned by each system.



High-Dimensional Image Retrieval via Adaptive Subspace...

Finally, the study selected the Deep Quantization
Network (DQN), Graph Convolutional Network-Based
Hashing Algorithm (GCNH), and Self-Supervised Deep
Product Quantization (SSDPQ) as comparison algorithms.
The accuracy, mAP, and F1 score were used as evaluation
metrics to test the ASDPQ algorithm. The test results are
presented in Table 4.

As shown in Table 4, the ASDPQ algorithm
outperformed the latest technologies on both the SIFT and
GIST datasets in terms of accuracy, F1 score, and mAP.
The performance advantage was more pronounced on the
SIFT dataset, indicating its better adaptability to high-
dimensional data. It also excelled on the GIST dataset,
demonstrating its stability and efficiency in searching for
data with varying feature dimensions. Overall, the
ASDPQ algorithm demonstrates superior performance.

3.3 Application performance testing of high-
dimensional data image retrieval
model
After completing the algorithm performance testing, to
further verify the practicality and reliability of the

proposed high-dimensional data image retrieval model
based on ASDPQ algorithm, Matlab was used to integrate
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the proposed model into a certain image retrieval system
for system integration testing. In system integration
testing, a high-dimensional data image retrieval model
based on the ASDPQ algorithm is integrated into an image
retrieval system. For comparison, two baseline systems
are developed: the Original System, based on the
traditional PQ algorithm using Faiss library
implementation, and the Contrast System, based on the
OPQ algorithm also using Faiss implementation. The PQ
algorithm had 128 sub-spaces with 256 cluster centers
each, and the OPQ algorithm used the same dimensions
and clusters with extra optimization. Hyperparameters of
all systems were optimized via grid search for fair
comparisons. The retrieval system was designed with
seven key components. During testing, the Oxford
University building dataset (5,062 detailed photos of
Oxford buildings with diverse perspectives, lighting,
weather, and seasonal changes, along with rich
annotations) was chosen, offering valuable, high - quality
data for system development and improvement. The
similarity and retrieval time of the returned images
between the statistical research model and the original
system, as well as the contrast system, are shown in Figure
9.

Table 5: Standard deviation data of different systems in multiple runs.

Number of images System Simlarity Std.Dev Time Std.Dev(ms)
5 Original system 2.1 0.5

5 Contrast system 2.3 0.6

5 Ours 1.8 0.4

10 Original system 2.4 0.7

10 Contrast system 2.6 0.8

10 Ours 2.0 0.5

15 Original system 2.7 0.9

15 Contrast system 2.9 1.0

15 Ours 2.2 0.6

20 Original system 3.0 1.1

20 Contrast system 3.2 1.2

20 Ours 2.4 0.7

Table 6: mAP and precision@k results of different systems

System mMAP Precision@5 Precision@10
Original system 0.72 0.68 0.65

Contrast system 0.75 0.70 0.68

Ours 0.80 0.75 0.72

3
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Figure 10: Visual display of retrieval results for each system.

Figures 9 (a) and 9 (b) show the similarity and
retrieval time calculation results of the images returned by
each system. From Figure 9 (a), overall, as the number of
images increased, the similarity of the images returned by
each system gradually decreased. Among them, the image
similarity of the research model was the highest, reaching

over 80%, which was 19.6% higher than the average
similarity of the original system. From Figure 9 (b),
overall, as the number of images increased, the retrieval
time of each system returning images gradually increased,
but the changes in the research system were relatively
stable. Among them, the retrieval time of the research
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model was the shortest, with an average of 2.63ms, which
was 15.5% shorter than that of the original system. The
research results indicated that the research model
performed the best in returning image similarity and
retrieval time, achieving the expected results, proving the
practicality and reliability of the high-dimensional data
image retrieval model based on ASDPQ algorithm. The
standard deviation data of different systems in multiple
runs are shown in Table 5.

From Table 5, the standard deviation of the similarity
and retrieval time of the research model was relatively
small, indicating that its performance was more stable.
The mAP and precision@Kk results of different systems are
shown in Table 6.

From Table 6, the research model was better than
other systems in mAP, Precision@5, and Precision@10
indicators, which further proved its superiority. To
visually display the test results, the study visualized the
most similar images retrieved by each system, as shown in
Figure 10. In this study, the selection of “the most similar
image" was based on the cosine similarity index.
Specifically, for each query image, the cosine similarity
between the query image and all images in the data set was
calculated, and the image with the highest similarity score
was selected as the "most similar image”.

L. Luetal.

From Figure 10, compared with the original system
and the comparison system, the images returned by the
research model had higher similarity with the original
images in terms of architectural features, environmental
features, colour features, etc. The findings denoted the
feasibility of the research raised image retrieval model for
high dimensional data based on ASDPQ algorithm to be
applied on image retrieval system. The cosine similarity
scores of the most similar images returned by different
systems are shown in Table 7.

From the cosine similarity scores in Table 7, the
similarity scores of the most similar images returned by
the research model were generally higher than those of the
original system and the comparison system, which further
proved its effectiveness.

To assess the ASDPQ algorithm's practicality and
scalability, this study applied it to a large e-commerce
platform with a vast image database of over 5 million
product images across categories like clothing and
electronics. Each image has high-dimensional features (up
to 512+ dimensions). The ASDPQ algorithm was
implemented to improve user experience in searching for
product images. GCNH and SSDPQ algorithms were
selected as comparison algorithms, and the results are
presented in Table 8.

Table 7: Cosine similarity scores of the most similar images returned by different systems.

Query image Original system (Cosine similarity) Comparison system(Cosine Similarity) Ours(Cosine similarity)
Imagel 0.75 0.78 0.82

Image2 0.70 0.73 0.79

Image3 0.72 0.75 0.80

Image4 0.68 0.71 0.77

Image5 0.73 0.76 0.81

Table 8: Application effect of ASDPQ algorithm on large-scale data sets.

Algorithm Retrieval time (ms) Recall mAP

ASDPQ 8.5 0.88 0.86

SSDPQ 12.3 0.82 0.79

GCNH 10.1 0.85 0.83

As Table 8 indicates, the ASDPQ algorithm On the SIFT and GIST datasets, ASDPQ exhibited the

outperformed comparison algorithms in large-scale e-
commerce image databases. With a 8.5ms retrieval time,
it responded quickly to user image searches. Its recall rate
of 0.88 and mAP of 0.86 were higher, showing more
accurate product image retrieval. This is thanks to its
adaptive mechanism that handles high-dimensional data,
reduces complexity, and enhances  accuracy,
demonstrating excellent applicability and performance.

4 Discussion

This study proposed the ASDPQ algorithm for high-
dimensional data image retrieval. Compared with
traditional PQ and OPQ algorithms, ASDPQ had
significant advantages in search accuracy and speed [22].
The ASDPQ algorithm optimized sub-space partitioning
by adaptively selecting the number of sub-spaces using
quantization error comparison. When processing high-
dimensional data, it effectively reduced the number of
vector quantum spaces in the dataset, thereby reducing
computational complexity and accelerating search speed.

best recall rate, significantly reducing search time and
making it highly efficient in processing large-scale high-
dimensional data. This algorithm could adaptively adjust
the number of sub-spaces and clustering classes based on
the characteristics of the dataset, providing high flexibility
and performing well on different types of datasets. For the
SIFT dataset, selecting fewer sub-spaces and more
clusters could improve recall and search speed. For the
GIST dataset, adjusting parameters to better fit global
descriptive features can achieve excellent performance. In
addition, ASDPQ performed well in reducing
computational load, saving 4.54% of addition operations
on the SIFT dataset and 6.96% on the GIST dataset
compared to the PQ algorithm. This allowed for more
efficient use of computing resources when processing
large-scale  datasets, thereby improving retrieval
efficiency [23].

In summary, the ASDPQ algorithm efficiently
processes and rapidly retrieves high-dimensional data by
adaptively selecting subspace dimensions and cluster
categories. Its advantages are evident in handling various
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types of datasets, significantly reducing computational
costs. Therefore, the ASDPQ algorithm has broad
application prospects in the field of high-dimensional data
image retrieval.

5 Conclusion

With the growth of computer technology and Internet
applications, retrieving high - dimensional data images
quickly and accurately is urgent. To address PQ
algorithm's low accuracy and long search time on large-
scale datasets, this paper proposed the ASDPQ algorithm
and an image retrieval model for high-dimensional data.
On the SIFT and GIST datasets, ASDPQ had the highest
recall rates (0.84 and 0.97), improving by 7.7% and 3.2%
over OPQ. Its search times (3.135ms and 5.374ms) were
better than OPQ and PQ. Compared to PQ, ASDPQ saved
4.54% and 6.96% in addition computation. The research
model's image similarity was over 80%, 19.6% higher
than the original system's average. In addition, the
retrieval time of the system was also optimal. The research
method proved effective and reliable for high-dimensional
data image retrieval. However, the search algorithm
design has limitations, not fully considering the
correlation between multiple query vectors in a short time,
which may involve temporal, spatial, or semantic
continuity. Ignoring this can reduce retrieval efficiency or
accuracy. Future plans include introducing a dynamic
caching system for frequently-occurring query results and
using incremental update technology to improve retrieval
efficiency for similar queries. Furthermore, as the data
dimensions continue to increase and multimodal data
(such as the joint retrieval of images, text, and audio)
becomes more prevalent, the ASDPQ algorithm faces new
challenges. While current algorithms demonstrate certain
performance advantages when handling higher-
dimensional data, the computational complexity and
storage requirements may significantly increase. Future
research could explore more efficient dimensionality
reduction methods, combined with the ASDPQ
algorithm's adaptive subspace dimension selection
mechanism, to better handle ultra-high-dimensional data.
For multimodal data retrieval, it is essential to study how
to effectively integrate the features of different modalities
and improve the ASDPQ algorithm to adapt to the
characteristics of the multimodal feature space, thereby
achieving efficient cross-modal retrieval.
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