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To address low search accuracy and long search time in product quantization (PQ) algorithms for large-

scale datasets, the Adaptive Subspace Dimension Product Quantization (ASDPQ) algorithm is proposed. 

It optimizes subspace partitioning by adaptively choosing the number of sub-spaces based on quantization 

error comparison, speeding up the search. During training, it uses two encoding patterns and selects the 

optimal one for efficient quantization. A high-dimensional data image retrieval model is developed. In 

experiments on SIFT and GIST ANN search datasets, ASDPQ outperforms OPQ and PQ algorithms, with 

recall rates of 0.84 and 0.97, and search times of 3.135ms and 5.374ms respectively. It also reduces 

addition computation by 4.54% and 6.96% compared to PQ. When integrated into an image retrieval 

system, it achieves a similarity rate of over 80% and an average shortest retrieval time of 2.63ms, 

demonstrating its effectiveness and reliability in high - dimensional data image retrieval. 

Povzetek: Za iskanje po visokodimenzionalnih slikovnih podatkih je razvit algoritem Adaptive Subspace 

Dimension Product Quantization (ASDPQ), ki dinamično prilagaja delitev v podprostore glede na napako 

kvantizacije in s tem izboljša hitrost iskanja. ASDPQ uporablja dva vzorca kodiranja ter samodejno izbere 

optimalnega, kar omogoča učinkovitejše kvantiziranje in iskanje najbližjih sosedov v velikih slikovnih 

zbirkah. 

 

1 Introduction 
In the context of rapid progress in information technology, 

cloud computing, big data, artificial intelligence, and other 

emerging technologies have been widely applied, which 

has led to the generation of massive types of high-

dimensional information in the Internet, including text, 

video, images, audio, and sensor data. These data not only 

have huge volumes, but also complex structuralfeatures, 

manifested as significant characteristics such as high 

dimensionality, nonlinearity, and heterogeneity [1-3]. 

However, these data usually have high-dimensional and 

large-scale characteristics, limited storage space, and 

users' increasing demand for information retrieval speed 

[4-5]. Therefore, developing efficient and accurate high-

dimensional data image search algorithms has become a 

key research direction in the academic community. 

To tackle low accuracy in traditional high-

dimensional data image retrieval, Yan et al. introduced 

multi-view deep neural networks into hash learning, 

developing a supervised multi-view hash model with 

higher retrieval performance [6]. For security 

improvement, Feng et al. proposed a privacy-preserving 

image retrieval scheme based on image encryption, 

showing excellent encryption and retrieval performance 

with higher accuracy [7]. Johnson et al. proposed Product 

Quantization (PQ) search methods to reduce computing 

resources in image retrieval, achieving 55% of theoretical  

 

peak performance and an 8.5-fold speed increase [8]. Feng 

et al. proposed a PQ adversarial generation method to 

address deep PQ network shortcomings, creating 

adversarial samples to improve retrieval performance [9].  

In graph indexing, Wang et al. proposed a connection-

based graph native query difficulty measurement method, 

defining Steiner difficulty, which correlated better with 

actual query workload across datasets [10]. In water 

resource management, Alawsi et al. combined data 

preprocessing, artificial neural networks, particle swarm 

optimization, shrinkage coefficient, and chaotic gravity 

search to construct a hybrid algorithm, outperforming 

comparison algorithms in statistical indicators [11]. 

Since the 21st century, the Approximate Nearest 

Neighbor (ANN) search technique has received 

widespread attention. Among them, vector quantization-

based algorithms have been broadly utilized in fast image 

retrieval due to their effectiveness in encoding high-

dimensional visual features. For example, Yu et al. 

proposed PQ networks, residual PQ networks, and 

temporal PQ networks, which have achieved state-of-the-

art performance in fast image and video retrieval [12]. 

Faced with issues such as local sensitive hashing and 

limited accuracy in handling item quantities using index-

based methods, Lian et al. proposed a PQ collaborative 

filtering method. The results denoted that this method was 

significantly superior to state-of-the-art comparison 
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algorithms, improving recommendation performance 

[13]. Considering the problem of low search efficiency of 

traditional algorithms when performing similarity 

searches on large-scale time series datasets, Zhang et al. 

proposed a dynamic time warping method based on PQ. 

The results showed that this method achieved the best 

trade-off between query efficiency and retrieval accuracy 

compared to traditional methods [14]. To bridge the 

semantic gap between open vocabulary and visual content, 

Fakhfakh R et al. developed a personalized image retrieval 

system framework. This framework selected the most 

relevant images based on specified queries, user interests, 

and semantic interpretations. The results showed that this 

method achieved an average precision of 0.675, 

surpassing other works using the same database under 

similar conditions [15]. The number of codewords in a 

codebook is determined by experience, leading to an 

imbalance in the representation capabilities of codewords, 

which results in redundancy or insufficiency and reduces 

retrieval performance. To address this issue, Gu L et al. 

introduced an entropy-optimized deep weighted PQ 

method. The results showed that this method not only 

improved retrieval performance but also enhanced the 

representation capabilities of codewords and balanced 

their allocation [16]. Currently, deep learning-based 

hashing and quantization methods heavily rely on 

expensive label information in large-scale image retrieval, 

failing to fully utilize data resources. To tackle this 

problem, Zhao X et al. proposed a self-supervised method 

that does not require label information, specifically the 

contrast self-supervised weak orthogonal PQ. The results 

indicated that this method achieved better performance on 

the CIFAR-10, NUS-WIDE, and FLICKR25K datasets 

[17]. The summary results of the existing studies are 

shown in Table 1. 

Table 1: Summary of relevant work. 

Author's name Algorithm name Method description Evaluation indicators Methodological flaws 

Yan C et al. [6] 
Supervise the multi-view 

hash model 

The multi-view deep neural 
network is introduced into the 

field of hash learning 

Image retrieval 

performance 
Low accuracy 

Feng Q et al. [7] 
Image retrieval scheme for 
privacy protection based on 

image encryption 

Develop a privacy protection 
image retrieval scheme based on 

image encryption 

Encryption and retrieval 
performance, retrieval 

accuracy 

Security is not sufficient, 

especially in the process 
of data transmission and 

storage vulnerable to 

attacks 

Johnson J et al. [8] 

Vigorous search, 

approximate search and 

compressed domain search 
methods for PQ 

The methods of violent search, 

approximate search and 

compressed domain search are 
proposed for PQ 

The nearest neighbor 
implementation runs at 

speed 

The consumption of 

computing resources is 

large, which makes it 
difficult to meet the real-

time retrieval 

requirements of large-
scale data 

Feng Y et al. [9] 
PQ adversarial generation 

method 

A PQ adversarial generation 
method is proposed to mislead 

the target product quantitative 

retrieval model 

High dimensional data 

image retrieval 
performance 

Deep PQ network has 

defects in fast image 

retrieval and is 
vulnerable to adversarial 

sample attacks 

Wang Z et al [10] 

A difficulty measurement 

method for connected graph 

native queries 

A new connection-based graph 
native query difficulty 

measurement method is 

proposed, and the Steiner 
difficulty is defined 

The correlation between 

Steiner difficulty and 

actual query workload 

The response 

performance of the 
traditional map index 

varies greatly for 

different queries, 
resulting in unstable 

service quality 

Alawsi M A et al. 
[11] 

Hybrid algorithm 
(combining data 

preprocessing, artificial 

neural network, particle 
swarm optimization based on 

contraction coefficient and 

chaotic gravity search 
algorithm) 

The data preprocessing and 

artificial neural network are 

combined with particle swarm 
optimization based on 

contraction coefficient and 

chaotic gravity search algorithm 

Performance of various 
statistical indicators 

The algorithm is 

complex, the calculation 

cost is high, and it is 
mainly aimed at a 

specific field (water 

resources management) 

Yu T et al. [12] 

PQ network, residual PQ 

network and time PQ 

network 

PQ network, residual PQ network 

and time PQ network are 

proposed 

Fast image and video 
retrieval performance 

/ 

Lian D et al. [13] 
PQ collaborative filtering 

method 

The PQ collaborative filtering 

method is proposed 

Recommended 

performance 

Local sensitive hashing 
and index-based methods 

deal with a limited 
number of items and low 

accuracy 

Zhang H et al [14] 
Dynamic time warping 
method based on PQ 

A dynamic time warping method 
based on PQ is proposed 

The trade-off between 

query efficiency and 

retrieval accuracy 

Traditional algorithms 

are inefficient in 
searching large-scale 

time series data sets 
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Fakhfakh R et al. 

[15] 

Personalized image retrieval 

system framework 

The framework of personalized 

image retrieval system is 
proposed to select images 

according to query, user interest 

and semantic interpretation 

Average mean accuracy 

It is difficult to bridge the 

semantic gap between 

open vocabulary and 
visual content 

Gu L et al. [16] 
Energy optimization deep 
weighted PQ method 

An entropy optimization deep 
weighted PQ method is proposed 

Search performance, 
code word 

representation 

capability, and code 
word allocation balance 

The number of code 

words in a codebook 

depends on experience, 
and the representation 

capacity of code words is 

unbalanced 

Zhao X et al. [17] 
Compare the self-supervised 
weak orthogonal PQ  

A self-supervised method is 

proposed that does not require 

labeled information 

 Function  

Hashing and quantization 
methods based on deep 

learning rely too much on 

expensive tag 
information 

 

In summary, despite progress in high-dimensional 

data image retrieval with intelligent algorithms, there are 

application drawbacks. High-dimensional data's sparsity 

and complexity lead to high computational costs, limiting 

retrieval speed and real-time performance. The "curse of 

dimensionality" increases noise, affecting retrieval 

accuracy. Besides, the algorithm's insufficient 

understanding of image semantics makes it hard to capture 

user intent accurately, causing retrieval results to deviate 

from expectations. 

Applying PQ to high-dimensional data image 

retrieval faces low accuracy (due to fixed sub-space 

partitioning not adapting to complex data structure, 

causing large quantization errors) and long retrieval times 

(from unnecessary computation in large-scale data 

processing). The proposed ASDPQ algorithm 

dynamically adjusts sub-space partitioning by adaptively 

selecting dimensions based on data's local characteristics, 

using finer dimensions in dense areas for accuracy and 

coarser ones in sparse areas to reduce complexity and 

time, thus enhancing image retrieval performance. 

Based on this, the following clear research objectives 

are proposed: (1) Reduce retrieval time: Improvement of 

PQ algorithm by adaptive subspace selection reduces 

computational complexity and speeds up high-

dimensional data retrieval. (2) Improve recall rate: The 

process of subspace division and quantization coding is 

optimized to improve the accuracy of image retrieval and 

ensure that the target image is accurately found in large-

scale datasets. (3) Minimize computational overhead: By 

improving the design of the algorithm, unnecessary 

computations are reduced and the efficiency of the 

algorithm is improved to make it more suitable for 

resource-limited environments. 

To achieve these objectives, the research first 

improves the Adaptive Subspace Dimension Product 

Quantization (ASDPQ) algorithm by adaptively selecting 

dimensions of sub-spaces. Then, by combining content-

based image retrieval methods, a new image retrieval 

model suitable for high-dimensional data is proposed. The 

ASDPQ algorithm's core innovation is its adaptive 

subspace selection mechanism, setting it apart from 

existing methods. Traditional PQ algorithms have fixed 

sub-spaces and dimensions, lacking flexibility. ASDPQ 

dynamically adjusts subspace dimensions based on data 

characteristics, comparing quantization errors to select the 

best dimension combination. For complex high-

dimensional image data, it chooses different dimensions 

for sub-spaces according to local features, improving 

search accuracy, reducing computational load, and 

enhancing overall performance. This study aims to solve 

the efficiency problem in high-dimensional image data 

retrieval, improve the performance and practicality of 

image retrieval, provide new ideas and methods for the 

current image retrieval field, and promote the 

development and application of image retrieval 

technology. 

2 Methods and materials 

2.1 ASDPQ algorithm design 

The PQ algorithm is crucial for high-dimensional data 

image retrieval, quantifying and decomposing high - 

dimensional vectors into low-dimensional sub-spaces to 

reduce storage and computational complexity, improving 

retrieval speed while maintaining accuracy [18-19]. 

However, traditional PQ algorithms have naive spatial 

partitioning, sub-optimal subspace partitioning, and lack 

candidate set selection based on quantization errors during 

ANN search, limiting accuracy. They also perform poorly 

in anomaly detection when normal and abnormal data are 

mixed [20]. In response to the above issues, the research 

combined with the characteristics of the vector 

distribution of the dataset optimized the query distance 

table stage in the algorithm and proposed an improved PQ 

algorithm. This algorithm adaptively selected the 

dimension of sub-spaces by comparing quantization 

errors, reduced the number of vector sub-spaces in the 

dataset, and accelerated the search speed. Compared with 

the standard PQ method, it has fewer sub-spaces, which 

can accelerate the search speed during the search process, 

as shown in Figure 1. 

In Figure 1, based on the comparison of quantization 

errors between Mode 1 and Mode 2, ASDPQ adaptively 

selects the appropriate subspace dimension for coding. 

The algorithm adopts two encoding modes, quantizes the 

raw data through PQ, and saves the parameters. The input 

data is divided into different subvectors, encoded using 

different codebooks, and recorded for replacement. 

Choosing a mode with small quantization error may adjust 

the number of sub-spaces. The algorithm trains two PQ 

codebooks to adaptively partition and encode the dataset 

vectors into sub-spaces. In indexing and retrieval, the 
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Euclidean distance between the query vector and the 

dataset vector is calculated using the ADC method to 

achieve similarity matching. The implementation process 

of the ASDPQ algorithm in this design is shown in Figure 

2. 
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Figure 1: Schematic diagram of sub-vectors. 
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Figure 2: Flowchart of ASDPQ algorithm index establishment and retrieval process. 

In Figure 2, the process adopts two encoding modes 

with different numbers of sub-spaces and clusters. In the 

training of the algorithm, the dataset is first trained in two 

different modes, namely mode one and mode two. These 

two modes have differences in the setting of the number 

of sub-spaces and cluster classes 1k / 2k to adapt to 

different data features and quantization requirements. 

After the training is completed, the system will save the 

generated index, codebook, and quantization error 

information. The index is used for fast data retrieval, while 

the codebook stores the cluster centers of each subspace. 

The quantization error records the size of the error 

introduced during the quantization. The D-dimensional 

dataset is decomposed into M  sub-vectors using the K-

means algorithm, and the subspace codebooks 
ml

C
 
and 

2m
C

 
are trained and encoded. Finally, the sub-codebooks 

are integrated to obtain the PQ total codebook, as shown 

in formula (1). 
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In formula (1), ml
C  is composed of 1M  

subcodebooks ( )i

ml 1C i 1,2, ,M= , each containing 1k  

codewords; 2m
C  is composed of 2M  subcodebooks j

m2C , 

each containing 2k  codewords. From this, it can be seen 
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that 
2m

C  contains 
2M  times 

2k  codewords, and the same 

applies to 
ml

C . 
1M  represents the number of sub-spaces 

in pattern one, while 
2M  represents the number of sub-

spaces in pattern two. 
1k  is the number of codewords in 

the sub-codebook of pattern one (256), and 
2k  is the 

number of codewords in the sub-codebook of pattern two 

(512), as shown in formula (2). 

 

 
1

2

1 12

2 21 22 2

, , ,

, , ,

m m m m

k

m m m m

k

 = 


= 

ml ml m ml

m m m m

C C C C

C C C C
 (2) 

In the training process based on ASDPQ algorithm, 

two encoding modes are first trained on the dataset to 

optimize quantization performance and improve retrieval 

efficiency. Specifically, in pattern one, each dataset vector 

ix  will be quantized into 1M  indices for representation. 

This quantization process divides the high-dimensional 

vector space into multiple sub-spaces and quantizes them 

separately in each subspace, thereby representing the 

original vector as a combination of multiple subspace 

indices, as shown in formula (3). 
lh

i mliX C , i 1,2, ,n = =  (3) 

In formula (3), 
iX  is the i th component of the 

quantized vector X ' , 
lh  is the codeword index closest to 

the component 
iX  of the original vector obtained by 

searching in the sub-codebook 
ml

C , and lh

mliC  is the i th 

component of the codeword indexed as 
lh  in the sub-

codebook 
ml

C . The research will select an appropriate 

encoding mode based on the size of the quantization error, 

then perform quantization processing on the query vector, 

and finally calculate the query distance table. Using these 

tables, the squared distances between the query vector and 

the vectors in the data set are approximated, summed to 

obtain the total approximate squared distance, and sorted 

to determine the nearest neighbours, thus completing the 

approximate nearest-neighbour search to obtain the total 

approximate squared distance, ( ), iDis q X , as shown in in 

formula (4). 

( ) ( )
2

1

, ,
M

i m i

m

Dis q X Dis q X
=

=  (4) 

In formula (4), 
iX  indicates the ANN sought, and q  

denotes the query vector. The ASDPQ algorithm obtains 

the minimum value by sorting the total approximate 

square distance, completing the index establishment. In 

ANN search, the ASDPQ code is used to calculate the 

Euclidean distance between the query vector and the 

dataset vector, ensuring the same ranking without 

calculating the square root. In the retrieval process of 

ASDPQ algorithm, the entire calculation process is 

divided into two parts: constructing the distance table and 

searching for the calculated distance. Firstly, the dataset 

q  is divided into 
1M  or 

2M  sub-vectors, and the squared 

Euclidean distance between the query vector sub-vectors 

and the corresponding codewords in the codebook is 

calculated and stored in the query distance table, as shown 

in formula (5). 
2

j

m2 i m2

2 2

D (i, j) q C ,

i 1,2, ,M , j 1,2, , k

= −

= =
 (5) 

In formula (5), m2D (i, j)  represents the distance 

between the i  sub-vector iq  of the query vector and the 

j  codeword in the pattern two sub-codebook m2C . 2k  is 

the number of codewords in the subcode book m2C . The 

study utilizes a pre-constructed lookup table to obtain the 

nearest neighbor distance through calculation and sorting. 

Through the above design, the pseudo-code of ASDPQ 

algorithm can be obtained, as shown in Figure 3. 

The ASDPQ algorithm first divides the dataset into 

two modes during the training phase, and then constructs 

sub-codebooks for each mode to form a complete 

codebook. In the retrieval stage, the query vector is broken 

down into sub-vectors, and the nearest codeword is 

identified from the corresponding sub-codebook. The 

approximate distance between the query vector and each 

vector in the dataset is calculated, and the results are sorted 

to obtain the nearest neighbor. 
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Algorithm ASDPQ

Input: Dataset X, query vector q

Output: Nearest neighbors of q

// Training phase

1. Split X into two modes: Mode1 and Mode2

2. For Mode1:

   - Cluster into M1 sub - codebooks C_ml^i, i = 1..M1, each with k1 codewords

3. For Mode2:

   - Cluster into M2 sub - codebooks C_m2^j, j = 1..M2, each with k2 codewords

4. Combine sub - codebooks to form C_ml and C_m2

// Search phase

5. For each sub - vector x_i of query q:

   - Find nearest codeword in corresponding sub - codebook

6. Calculate approximate distances D(q, X_i)

7. Sort and return nearest neighbors

 

Figure 3: Pseudo-code of ASDPQ algorithm (Image source: Author's own drawing). 

Sub-space dimensions significantly impact the 

ASDPQ algorithm's retrieval performance. A low-

dimension reduces computational complexity and time but 

causes feature loss, increasing quantization errors and 

lowering precision (recall, mAP) as key features are hard 

to retain. A high-dimension preserves features well but 

increases computational load, storage costs, time, and may 

harm stability due to overfitting. ASDPQ avoids 

traditional dimensionality reduction. Its adaptive 

mechanism analyzes data and dynamically sets 

dimensions by comparing quantization errors under 

different sub-space divisions. 

2.2 Construction of high-dimensional data 

image retrieval model based on 

ASDPQ algorithm 

After designing the ASDPQ algorithm, a high-

dimensional data image retrieval model based on it is 

proposed to boost image retrieval performance. Image 

retrieval technology has evolved from text-based (TBIR) 

to content-based. TBIR uses text descriptions for image 

search, combining natural language processing and 

computer vision, but has drawbacks like time-consuming 

manual annotation and diverse Chinese descriptions 

causing inefficiency. Content-based retrieval extracts and 

compares image features with database images [21]. 

Based on this, a content-based image retrieval method is 

studied, combined with the designed ASDPQ algorithm, 

to propose an image retrieval model suitable for high-

dimensional data. The overall architecture of the model is 

denoted in Figure 4. 

Figure 4 shows the model's two-stage processing: 

offline and online. The offline stage builds the dataset 

feature library and index codebook. The online stage 

uploads user query images and returns similar results via 

feature matching. For image retrieval, the model extracts 

HSV, SIFT, and GIST features. SIFT feature points, local 

extrema detected in different scale spaces, are scale - and 

rotation-invariant and stable against lighting and noise, 

crucial for image matching and object recognition. The 

implementation of SIFT algorithm is denoted in Figure 5. 

In Figure 5, after inputting the image to be retrieved, 

the model extracts its feature points and establishes a 

feature point set. Feature matching is achieved by 

calculating the distance between feature point sets, where 

the smaller the distance, the higher the similarity. 

Matching must reach the set image registration rate 

threshold to be considered successful, otherwise it will be 

retrieved again. GIST feature extraction first constructs a 

two-dimensional Gabor filter bank, which utilizes its good 

frequency and directional selectivity to filter the image 

and extract local texture and edge information. Next, by 

performing scale and rotation transformations on Gabor 

filters, multi-scale and multi-directional filter banks are 

generated to capture the features of the image at different 

scales and directions, as denoted in formula (6). 

( ) ( )

( )

( )

( )

, ', ' , 1

' cos , cos

' sin , sin

/ 1

m
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m

m
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x x y

y x y

n n

−

−

−

 =  


=   


=  −  
  =  +

 (6) 

In formula (6),   means the rotation angle, 
m−  

denotes the dilation scale factor, and m  and n  represent 

the scale and direction of the Gabor filter, respectively. 

After the above processing, the image is divided into k 

small blocks, each of which is filtered using Gabor filter 

banks and converted into 4 × 8 data. The entire image is 

then converted into 4 ×  8 ×  k data. In HSV feature 

extraction, the image is converted to the HSV color space 

and the hue, saturation, and brightness feature values of 

each pixel are extracted. 
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Figure 4: Overall architecture diagram of high-dimensional data image retrieval model based on ASDPQ algorithm. 
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Figure 5: Implementation process of SIFT algorithm. 

The high-dimensional data image retrieval model 

based on ASDPQ algorithm achieves efficient retrieval 

through two-stage offline and online operations. The 

model first performs feature extraction on the image 

dataset to obtain high-dimensional feature representations 

for each image. Then, the ASDPQ algorithm is used to 

quantify the features and generate indexes and codebooks 

for the image dataset. This process compresses high-

dimensional data into low-dimensional representations 

while preserving key feature information, providing 

efficient data support for subsequent retrieval. After the 

user uploads the query image, the model first performs 

HSV color, SIFT, and GIST feature extraction on the 

query image to obtain its high-dimensional feature 

representation. The study sequentially connects vectors of 

different features (e.g., 128 - D SIFT, 180-D HSV, and 

960-D GIST) to form a long final image feature vector 

(1268-D in the example). Each feature vector is 

normalized using Z-score before fusion. The feature 

combination is chosen for their complementary nature in 

expressing different image aspects (local details, color, 

and global structure). This multi-feature fusion 

comprehensively describes image content, improving 

image retrieval accuracy. 

Finally, utilizing advanced ASDPQ algorithm, the 

query features submitted by users are accurately matched 

with features pre-stored in a large dataset. Through this 

matching process, the similarity between the query and the 

features of each dataset is calculated and sorted in 

descending order of similarity, ultimately returning the 

image result that is most similar to the user's query. This 

model is suitable for large-scale high-dimensional data 

scenarios and has high practicality and efficiency in the 

field of image retrieval. 

High-dimensional data image retrieval is widely used, 

with data often containing sensitive info like biometric 

features and medical images, and leaks having serious 

effects. The ASDPQ algorithm can boost privacy 
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protection. In sensitive image retrieval, it encrypts original 

images during preprocessing, then performs adaptive 

subspace operations on encrypted data to create an 

encrypted index. During retrieval, the query image is 

encrypted and matched with the index, keeping the 

process encrypted to prevent plain-text exposure. Its 

adaptive feature adjusts subspace dimensions based on 

data, precisely segmenting and quantizing large-scale 

sensitive data, reducing privacy breach risks while 

maintaining efficiency and privacy. 

3 Results 

3.1 Experimental setup and ASDPQ 

algorithm training 

To validate the ASDPQ algorithm, SIFT and GIST ANN 

search datasets were used. SIFT has high-dimensional 

(128-512) feature vectors for precise, computation-

intensive tasks, with a large training set and dataset library 

(millions/billions of vectors). The SIFT dataset has 1 

million 128-dimensional descriptors (100,000 for training, 

10,000 for testing). GIST has lower-dimensional (up to 

960) vectors focusing on global image description, with 

500,000 training and 1,000 query descriptors. The SIFT 

dataset (feature vector dimensions: 128 - 512) was chosen 

for precise, computation-intensive applications and to 

validate the algorithm in high-dimensional scenarios. The 

GIST dataset, with relatively lower feature vector 

dimensions focusing on global image description, was 

selected to contrast with SIFT and comprehensively 

evaluate the ASDPQ algorithm's performance across 

different high-dimensional data types. 

In data preprocessing, features were normalized using 

Z-score to have a mean of 0 and standard deviation of 1 

before training and testing. The dataset was split into an 

80% training set and 20% test set, randomly repeated 10 

times to assess performance stability. For recall 

calculation, ground truth was the 100 nearest neighbors of 

the query point found by brute-force search under 

Euclidean distance. All experiments were repeated 10 

times, and average and standard deviation results were 

reported for performance stability. The experimental 

operating environment and parameter design are denoted 

in Table 2. 

Table 2: Experimental operating environment and parameter design. 

Experimental environment Setting items 

Operating environment 

CUDA version 11.4.0 

Central processing unit NVIDIARTX4090Ti 

Memory 16.00GB 

Batch size 8 

Initial value of learning rate 0.001 

Optimizer Adam 

Software environment MatlabR2018a 

Parameter settings 
Mode 1 The subspace is 8 and the number of clusters is 256 

Mode 2 The subspace is 4 and the number of clusters is 512 
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Figure 6: ASDPQ algorithm training results. 

The comparison methods chosen for this test were PQ 

and Optimized Product Quantization (OPQ). Specifically, 

the study utilized the PQ and OPQ implementations 

provided by the Faiss library. The Faiss library, developed 

by Facebook AI Research, is designed for efficient 

similarity search and dense vector clustering. For the PQ 

algorithm, the study selected 128 sub-spaces, each 

containing 256 cluster centers. For the OPQ algorithm, the 

same subspace dimensions and number of clusters as PQ 

were used, and the optimization steps of OPQ were 

applied. All algorithms' hyperparameters were optimized 

through a grid search to ensure fair comparisons under 

identical conditions. 

In the experimental setup, grid search was used for 

hyperparameter tuning of the ASDPQ algorithm. Key 

hyperparameters like subspace dimensions and 
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quantization coding parameters were set with possible 

value ranges, and candidate values were determined based 

on data and experience. Grid search explored these 

combinations to find the optimal ones for the algorithm's 

performance on the validation set. To ensure fairness, all 

comparison algorithms' hyperparameters were also tuned 

using grid search for an objective comparison under 

identical conditions. The evaluation indicators selected 

wee the recall rate for evaluating search accuracy, as well 

as the search time and computational savings for 

evaluating search speed. For the ASDPQ algorithm, the 

training results are shown in Figure 6. 

From Figure 6 (a), overall, both OPQ and PQ 

algorithms reached their maximum return values after 

1,000 episodes. The ASDPQ algorithm reached its 

maximum return value after 500 episodes, and the speed 

of obtaining return value was faster. Among them, 

compared with PQ and OPQ algorithms, ASDPQ had 

more stable data changes, indicating that the proposed 

algorithm performed better. From Figure 6 (b), both OPQ 

and PQ algorithms gradually stabilized after 1,000 

episodes, and there was ineffective path learning during 

the learning. ASDPQ learned along the path with the 

highest value and gradually stabilized after 327 episodes, 

indicating that the ASDPQ algorithm had better search 

performance and experimental results at the same episode. 

To assess the ASDPQ algorithm's scalability, the 

study examined its computational complexity (training: 

O(d n k d logn) +   , search: O(d logk) , with k sub-

spaces) across datasets of size n and dimension d. The PQ 

algorithm has training complexity O(d n)  and search 

complexity O(d k) , while the OPQ algorithm has similar 

complexities with an extra optimization step. ASDPQ 

maintains high search accuracy with comparable 

complexity to PQ and OPQ, demonstrating good 

scalability. 

3.2 ASDPQ algorithm performance testing 

After completing algorithm training, a comparative 

analysis was carried out on the recall rates of ASDPQ 

algorithm with OPQ and PQ algorithms to test the search 

accuracy of the raised algorithm. The recall tests of each 

algorithm on SIFT and GIST datasets are shown in Figure 

7. 

From Figure 7 (a), in the SIFT dataset, overall, as the 

number of iterations increased, the recall rates of ASDPQ 

algorithm and other compared algorithms gradually 

increased and tended to stabilize. The maximum recall 

rates of ASDPQ algorithm and traditional OPQ and PQ 

algorithms were 0.84, 0.78, and 076, respectively. Among 

them, the ASDPQ algorithm had the best recall 

performance and converged the fastest, with a 7.7% 

improvement compared to the traditional OPQ algorithm. 

By calculating the 95% confidence interval, it can be 

confirmed that the recall rate of ASDPQ algorithm is 

significantly higher than that of PQ and OPQ algorithms 

(p<0.05). From Figure 7 (b), on the GIST dataset, overall, 

as the number of iterations increased, the recall rates of 

ASDPQ algorithm and other compared algorithms 

gradually increased and tended to stabilize. The max recall 

rates of ASDPQ algorithm and traditional OPQ and PQ 

algorithms were 0.97, 0.94, and 0.88, respectively. Among 

them, the ASDPQ algorithm had the best recall 

performance, which was 3.2% higher than the traditional 

OPQ algorithm. Similarly, by calculating the 95% 

confidence interval, it can be confirmed that the recall rate 

of ASDPQ algorithm is significantly higher than that of 

PQ and OPQ algorithms (p<0.05). The above results 

indicate that the ASDPQ algorithm has higher search 

accuracy and better performance than other compared 

algorithms, and can be effectively applied in high-

dimensional data image retrieval. The search time test 

results of ANN search with different algorithms on SIFT 

and GIST datasets are denoted in Table 3. 

According to Table 3, the search time of ASDPQ 

algorithm on SIFT and GIST datasets was 3.135ms and 

5.374ms, respectively, and the performance was better 

than the comparison algorithms OPQ and PQ. Among 

them, in the SIFT dataset, the ASDPQ algorithm 

performed the best, improving by 20.4% and 21.3% 

respectively compared to traditional OPQ and PQ 

algorithms. Although the ASDPQ took a longer time in the 

'computing distance table/ms' phase, this was due to the 

more complex adaptive subspace partitioning and 

encoding operations performed by ASDPQ to adapt to the 

characteristics of the dataset vectors. While these 

operations increased the time cost during the computation 

of the distance table, they reduced unnecessary 

computations in subsequent queries and searches due to 

more precise subspace partitioning and encoding, thus 

shortening the overall search time. The results denote that 

the ASDPQ algorithm has superior performance in search 

speed and can achieve fast retrieval of high-dimensional 

data images. Next, the study analyzed the computational 

savings of different algorithms, as shown in Figure 8. 

Figures 8 (a) and 8 (b) show the comparison of 

computational complexity on the SIFT dataset and GIST 

dataset, respectively. From Figure 8 (a), on the SIFT 

dataset, both OPQ and ASDPQ algorithms saved addition 

computation compared to PQ algorithm. Among them, the 

ASDPQ algorithm saved 4.54% of the addition 

computation and had the best effect. From Figure 8 (b), on 

the GIST dataset, similar to the PQ algorithm, both OPQ 

and ASDPQ algorithms saved the amount of addition 

computation. Among them, the ASDPQ algorithm saved 

6.96% of the addition computation and had the best effect. 

The above results show that the ASDPQ algorithm 

designed by the research performs better than the 

comparative algorithm in terms of search speed 

performance, and can be effectively applied to high-

dimensional data image retrieval. At the same time, the 

ASDPQ algorithm achieves a good balance between recall 

rate and computing saving, which not only improves the 

search accuracy, but also reduces the computing cost. 
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Figure 7: Comparison results of different algorithms. 

Table 3: Search time and acceleration ratio test results of different algorithms on SIFT and GIST datasets. 

Data set SIFT GIST 

Methods PQ OPQ ASDPQ PQ OPQ ASDPQ 

Distance calculation table/ms 0.355 0.423 0.555 0.574 1.477 1.794 

Distance query table/ms 3.625 2.536 2.580 5.02 3.66 3.58 

Search time/ms 3.981 3.959 3.135 5.594 5.437 5.374 

Compared to the acceleration ratio of PQ  0.55% 21.3%  2.8% 3.9% 
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Figure 8: Comparison of computational savings between different algorithms. 

Table 4: Comparison results of ASDPQ algorithm and mainstream high-dimensional data retrieval algorithms. 

Data set/algorithms 
SIFT GIST 

Precision F1 score  mAP Precision F1 score  mAP 

ASDPQ 0.84 0.82 0.80 0.97 0.96 0.95 

DQN 0.78 0.76 0.75 0.94 0.93 0.92 

GCNH 0.80 0.78 0.77 0.95 0.94 0.93 

SSDPQ 0.81 0.79 0.78 0.96 0.95 0.94 
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Figure 9: Comparison results of image similarity and retrieval time returned by each system. 
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Finally, the study selected the Deep Quantization 

Network (DQN), Graph Convolutional Network-Based 

Hashing Algorithm (GCNH), and Self-Supervised Deep 

Product Quantization (SSDPQ) as comparison algorithms. 

The accuracy, mAP, and F1 score were used as evaluation 

metrics to test the ASDPQ algorithm. The test results are 

presented in Table 4. 

As shown in Table 4, the ASDPQ algorithm 

outperformed the latest technologies on both the SIFT and 

GIST datasets in terms of accuracy, F1 score, and mAP. 

The performance advantage was more pronounced on the 

SIFT dataset, indicating its better adaptability to high-

dimensional data. It also excelled on the GIST dataset, 

demonstrating its stability and efficiency in searching for 

data with varying feature dimensions. Overall, the 

ASDPQ algorithm demonstrates superior performance. 

3.3 Application performance testing of high-

dimensional data image retrieval 

model 

After completing the algorithm performance testing, to 

further verify the practicality and reliability of the 

proposed high-dimensional data image retrieval model 

based on ASDPQ algorithm, Matlab was used to integrate 

the proposed model into a certain image retrieval system 

for system integration testing. In system integration 

testing, a high-dimensional data image retrieval model 

based on the ASDPQ algorithm is integrated into an image 

retrieval system. For comparison, two baseline systems 

are developed: the Original System, based on the 

traditional PQ algorithm using Faiss library 

implementation, and the Contrast System, based on the 

OPQ algorithm also using Faiss implementation. The PQ 

algorithm had 128 sub-spaces with 256 cluster centers 

each, and the OPQ algorithm used the same dimensions 

and clusters with extra optimization. Hyperparameters of 

all systems were optimized via grid search for fair 

comparisons. The retrieval system was designed with 

seven key components. During testing, the Oxford 

University building dataset (5,062 detailed photos of 

Oxford buildings with diverse perspectives, lighting, 

weather, and seasonal changes, along with rich 

annotations) was chosen, offering valuable, high - quality 

data for system development and improvement. The 

similarity and retrieval time of the returned images 

between the statistical research model and the original 

system, as well as the contrast system, are shown in Figure 

9. 

Table 5: Standard deviation data of different systems in multiple runs. 

Number of images System Simlarity Std.Dev Time Std.Dev(ms） 

5 Original system 2.1 0.5 

5 Contrast system 2.3 0.6 

5 Ours 1.8 0.4 

10 Original system 2.4 0.7 

10 Contrast system 2.6 0.8 

10 Ours 2.0 0.5 

15 Original system 2.7 0.9 

15 Contrast system 2.9 1.0 

15 Ours 2.2 0.6 

20 Original system 3.0 1.1 

20 Contrast system 3.2 1.2 

20 Ours 2.4 0.7 

Table 6: mAP and precision@k results of different systems 

System mAP Precision@5 Precision@10 

Original system 0.72 0.68 0.65 

Contrast system 0.75 0.70 0.68 

Ours 0.80 0.75 0.72 

 

(a) Original drawing (b) Research system (c) Original system (d) Contrast system
 

Figure 10: Visual display of retrieval results for each system. 

Figures 9 (a) and 9 (b) show the similarity and 

retrieval time calculation results of the images returned by 

each system. From Figure 9 (a), overall, as the number of 

images increased, the similarity of the images returned by 

each system gradually decreased. Among them, the image 

similarity of the research model was the highest, reaching 

over 80%, which was 19.6% higher than the average 

similarity of the original system. From Figure 9 (b), 

overall, as the number of images increased, the retrieval 

time of each system returning images gradually increased, 

but the changes in the research system were relatively 

stable. Among them, the retrieval time of the research 
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model was the shortest, with an average of 2.63ms, which 

was 15.5% shorter than that of the original system. The 

research results indicated that the research model 

performed the best in returning image similarity and 

retrieval time, achieving the expected results, proving the 

practicality and reliability of the high-dimensional data 

image retrieval model based on ASDPQ algorithm. The 

standard deviation data of different systems in multiple 

runs are shown in Table 5. 

From Table 5, the standard deviation of the similarity 

and retrieval time of the research model was relatively 

small, indicating that its performance was more stable. 

The mAP and precision@k results of different systems are 

shown in Table 6. 

From Table 6, the research model was better than 

other systems in mAP, Precision@5, and Precision@10 

indicators, which further proved its superiority. To 

visually display the test results, the study visualized the 

most similar images retrieved by each system, as shown in 

Figure 10. In this study, the selection of "the most similar 

image" was based on the cosine similarity index. 

Specifically, for each query image, the cosine similarity 

between the query image and all images in the data set was 

calculated, and the image with the highest similarity score 

was selected as the "most similar image". 

From Figure 10, compared with the original system 

and the comparison system, the images returned by the 

research model had higher similarity with the original 

images in terms of architectural features, environmental 

features, colour features, etc. The findings denoted the 

feasibility of the research raised image retrieval model for 

high dimensional data based on ASDPQ algorithm to be 

applied on image retrieval system. The cosine similarity 

scores of the most similar images returned by different 

systems are shown in Table 7. 

From the cosine similarity scores in Table 7, the 

similarity scores of the most similar images returned by 

the research model were generally higher than those of the 

original system and the comparison system, which further 

proved its effectiveness. 

To assess the ASDPQ algorithm's practicality and 

scalability, this study applied it to a large e-commerce 

platform with a vast image database of over 5 million 

product images across categories like clothing and 

electronics. Each image has high-dimensional features (up 

to 512+ dimensions). The ASDPQ algorithm was 

implemented to improve user experience in searching for 

product images. GCNH and SSDPQ algorithms were 

selected as comparison algorithms, and the results are 

presented in Table 8. 

Table 7: Cosine similarity scores of the most similar images returned by different systems. 

Query image Original system (Cosine similarity) Comparison system(Cosine Similarity) Ours(Cosine similarity) 

Image1 0.75 0.78 0.82 

Image2 0.70 0.73 0.79 

Image3 0.72 0.75 0.80 

Image4 0.68 0.71 0.77 

Image5 0.73 0.76 0.81 

Table 8: Application effect of ASDPQ algorithm on large-scale data sets. 

Algorithm Retrieval time (ms) Recall mAP 

ASDPQ 8.5 0.88 0.86 

SSDPQ 12.3 0.82 0.79 

GCNH 10.1 0.85 0.83 

 

As Table 8 indicates, the ASDPQ algorithm 

outperformed comparison algorithms in large-scale e-

commerce image databases. With a 8.5ms retrieval time, 

it responded quickly to user image searches. Its recall rate 

of 0.88 and mAP of 0.86 were higher, showing more 

accurate product image retrieval. This is thanks to its 

adaptive mechanism that handles high-dimensional data, 

reduces complexity, and enhances accuracy, 

demonstrating excellent applicability and performance. 

4 Discussion 
This study proposed the ASDPQ algorithm for high-

dimensional data image retrieval. Compared with 

traditional PQ and OPQ algorithms, ASDPQ had 

significant advantages in search accuracy and speed [22]. 

The ASDPQ algorithm optimized sub-space partitioning 

by adaptively selecting the number of sub-spaces using 

quantization error comparison. When processing high-

dimensional data, it effectively reduced the number of 

vector quantum spaces in the dataset, thereby reducing 

computational complexity and accelerating search speed. 

On the SIFT and GIST datasets, ASDPQ exhibited the 

best recall rate, significantly reducing search time and 

making it highly efficient in processing large-scale high-

dimensional data. This algorithm could adaptively adjust 

the number of sub-spaces and clustering classes based on 

the characteristics of the dataset, providing high flexibility 

and performing well on different types of datasets. For the 

SIFT dataset, selecting fewer sub-spaces and more 

clusters could improve recall and search speed. For the 

GIST dataset, adjusting parameters to better fit global 

descriptive features can achieve excellent performance. In 

addition, ASDPQ performed well in reducing 

computational load, saving 4.54% of addition operations 

on the SIFT dataset and 6.96% on the GIST dataset 

compared to the PQ algorithm. This allowed for more 

efficient use of computing resources when processing 

large-scale datasets, thereby improving retrieval 

efficiency [23]. 

In summary, the ASDPQ algorithm efficiently 

processes and rapidly retrieves high-dimensional data by 

adaptively selecting subspace dimensions and cluster 

categories. Its advantages are evident in handling various 



High-Dimensional Image Retrieval via Adaptive Subspace… Informatica 49 (2025) 245–258 257 

types of datasets, significantly reducing computational 

costs. Therefore, the ASDPQ algorithm has broad 

application prospects in the field of high-dimensional data 

image retrieval. 

5 Conclusion 
With the growth of computer technology and Internet 

applications, retrieving high - dimensional data images 

quickly and accurately is urgent. To address PQ 

algorithm's low accuracy and long search time on large-

scale datasets, this paper proposed the ASDPQ algorithm 

and an image retrieval model for high-dimensional data. 

On the SIFT and GIST datasets, ASDPQ had the highest 

recall rates (0.84 and 0.97), improving by 7.7% and 3.2% 

over OPQ. Its search times (3.135ms and 5.374ms) were 

better than OPQ and PQ. Compared to PQ, ASDPQ saved 

4.54% and 6.96% in addition computation. The research 

model's image similarity was over 80%, 19.6% higher 

than the original system's average. In addition, the 

retrieval time of the system was also optimal. The research 

method proved effective and reliable for high-dimensional 

data image retrieval. However, the search algorithm 

design has limitations, not fully considering the 

correlation between multiple query vectors in a short time, 

which may involve temporal, spatial, or semantic 

continuity. Ignoring this can reduce retrieval efficiency or 

accuracy. Future plans include introducing a dynamic 

caching system for frequently-occurring query results and 

using incremental update technology to improve retrieval 

efficiency for similar queries. Furthermore, as the data 

dimensions continue to increase and multimodal data 

(such as the joint retrieval of images, text, and audio) 

becomes more prevalent, the ASDPQ algorithm faces new 

challenges. While current algorithms demonstrate certain 

performance advantages when handling higher-

dimensional data, the computational complexity and 

storage requirements may significantly increase. Future 

research could explore more efficient dimensionality 

reduction methods, combined with the ASDPQ 

algorithm's adaptive subspace dimension selection 

mechanism, to better handle ultra-high-dimensional data. 

For multimodal data retrieval, it is essential to study how 

to effectively integrate the features of different modalities 

and improve the ASDPQ algorithm to adapt to the 

characteristics of the multimodal feature space, thereby 

achieving efficient cross-modal retrieval. 
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