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This paper presents an innovative image recognition model for package inspection, designed to fulfill 

the demands of real-time and precise categorization in difficult industrial environments. Traditional 

techniques reliant on human feature extraction frequently underperform when confronted with lighting 

variability, background interference, and deformation of package items. To mitigate these limitations, 

the proposed model integrates a multi-scale convolutional architecture that captures both local and 

global characteristics through the use of parallel convolutional filters of varying sizes. An adaptive 

adjustment method is incorporated into the network to dynamically alter the placement of convolutional 

operations according to image content, hence improving flexibility and feature representation. A 

thorough data augmentation strategy incorporating geometric transformation, brightness modification, 

and semantic-level blending is implemented to boost the model's robustness and generalization capacity. 

Experiments performed on a bespoke industrial packaging dataset comprising 10,000 labeled images 

reveal that the proposed model attains a classification accuracy of 96.8 percent, a recall of 95.3 

percent, and an F1-score of 93.8 percent, with an inference time of 11.2 milliseconds and a parameter 

count of 21.3 million. In comparison to current deep learning architectures like Residual Networks, the 

model demonstrates considerable enhancements in accuracy and speed. These results support its 

appropriateness for practical packaging inspection systems. 

Povzetek: Razvit je večmerni DCNN z deformabilnimi konvolucijami in prilagoditvenim modulom 

(AAM) ter hibridno augmentacijo.  Je robusten, realnočasovni model za prepoznavo embalažnih slik. Na 

podatkovni zbirki PackNet-10K doseže odlične rezultate, prekaša ResNet/Inception pri hitrosti in 

točnosti. 

 

1 Introduction 
In the current context of intelligent manufacturing and 

Industry 4.0, the packaging industry is facing an 

increasing demand for intelligence. With the 

advancement of technology, traditional packaging image 

recognition methods, especially those relying on manual 

feature extraction techniques such as SIFT and HOG, 

have gradually shown problems of low efficiency and 

poor robustness, and cannot meet the requirements of 

modern industry for high speed, high precision, and high 

robustness [1]. Traditional manual feature extraction 

often struggles to handle the complex backgrounds, 

lighting changes, and deformations of images in various 

practical application scenarios [2]. 

The advantage of its ability to automatically extract 

features not only improves the automation level of 

feature learning but also dramatically enhances the 

accuracy and efficiency of image recognition [3]. 

However, when applied to the recognition of packaging 

images, existing deep learning models still have some 

shortcomings, particularly in addressing common issues  

 

such as complex backgrounds, lighting variations, and 

object deformations in packaging images. The 

performance of these models has not yet reached an ideal  

level. Therefore, building a high-precision and highly 

robust packaging image recognition model that can adapt 

to complex scenarios is of great practical significance for 

promoting the intelligent development of the packaging 

industry and improving production efficiency. Currently, 

research in the field of packaging image recognition has 

made significant progress both domestically and 

internationally. Traditional feature extraction methods, 

such as those based on color histograms and texture 

analysis, have, to some extent, solved the problem of 

feature extraction. However, these methods have weak 

generalization ability and are difficult to adapt to the 

ever-changing packaging image scenes. With the 

introduction of Convolutional Neural Networks (CNNs), 

shallow CNN models such as LeNet-5 have achieved 

good results in simple image classification tasks [4]. 

However, shallow models such as LeNet-5 are unable to 

effectively capture multi-scale image features, which 

limits their application in packaging image recognition. 
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Deep convolutional neural networks, including models 

like ResNet and Inception, demonstrate improved feature 

expression capabilities through residual connections and 

multi-branch structures, which produce superior results 

in image classification and object detection tasks. The 

most advanced deep learning models currently face 

challenges involving automated feature extraction for 

packaging images when processing complex background 

environments, along with diverse lighting conditions and 

packaging shape variations. Research on packaging 

image analysis requires immediate enhancements to 

understand complex packaging environments better [5]. 

Researchers developed a precise and sturdy model 

for recognizing packaging images through the 

implementation of deep convolutional neural networks 

(DCNN). The traditional DCNN architecture received an 

enhancement through the development of multi-scale 

convolutional layers and feature fusion modules, which 

work to extract local and global features better while 

introducing an adaptive convolution kernel adjustment 

mechanism. The model achieves adaptive parameter 

optimization through convolution kernel modification, 

which allows it to flexibly respond to complex 

backgrounds and changing lighting conditions. 

2 Related work 
Recently, packaging image recognition technology has 

become a key part of intelligent packaging production 

lines. However, traditional image feature extraction 

methods have shown significant limitations when dealing 

with complex backgrounds and large-scale data. 

Traditional manual feature extraction methods, such as 

Scale Invariant Feature Transform (SIFT) and Local 

Binary Patterns (LBP), have, to some extent, solved the 

problem of image feature extraction, but they are not a 

foolproof solution [6], [7]. 

Medus et al. [3] developed a real-time food 

packaging inspection system using hyperspectral imaging 

combined with convolutional neural networks to detect 

contaminated heat-sealed trays. The system classified up 

to eleven types of contaminants (e.g., plastic, rubber) 

with over 94% accuracy and a processing time of 70–105 

milliseconds, enabling inspection speeds of up to 14 trays 

per second. A custom dataset and flexible CNN 

configurations allowed optimization for either accuracy 

or fault rejection, demonstrating the practical 

effectiveness of deep learning in high-speed industrial 

inspection. Zhang et al. [8] introduced an improved fully 

convolutional network for picture segmentation in 

packaging design, drawing inspiration from natural 

language processing methodologies. The model 

integrated superpixels, multi-branch networks, and 

attention mechanisms. It attained an accuracy of 96.84% 

and a segmentation error rate of 1.42%, indicating 

enhanced efficiency and precision relative to 

conventional approaches. Siddiqua et al. [9] created a 

Faster R-CNN model integrated with InceptionV2 to 

identify dengue mosquitoes utilizing photos from diverse 

surroundings. The model surpassed R-FCN and SSD, 

attaining a detection accuracy of 95.19%. Evaluation 

metrics encompassed precision, recall, false positives, 

and false negatives. 

 Compared to traditional methods, the emergence of 

deep learning, intense convolutional neural networks 

(CNNs), has brought revolutionary progress to the field 

of image recognition. AlexNet, as the first network to 

achieve breakthrough results in large-scale image 

classification competitions, has for the first time 

validated the effectiveness of deep CNN in image 

recognition. AlexNet utilizes a deeper network structure 

and ReLU activation function, significantly improving 

the accuracy of image classification [10]. However, as 

the depth of the network increases, the problems of 

gradient vanishing and exploding gradually become 

apparent, limiting the possibility of further deepening the 

network. To address this issue, ResNet successfully 

overcame the vanishing gradient problem by introducing 

a residual learning mechanism, enabling the network to 

reach deeper layers while maintaining stable training, 

thereby improving image recognition performance. At 

the same time, with the continuous innovation of network 

structures, attention mechanisms are gradually being 

applied in the field of image recognition. For example, 

the SE module (Squeeze and Excitation) enhances the 

ability to distinguish the importance of features by 

weighting the channels, thereby improving the 

performance of the model in complex scenes [10]. 

Although deep learning technology has achieved 

significant results in the field of image recognition, it still 

faces several challenges in packaging image recognition. 

The packaging industry faces a considerable issue 

because packaging image datasets are extremely limited 

[11]. The packaging industry has unique requirements, 

which make publicly available packaging datasets very 

limited in content and insufficient for training deep 

learning models with strong generalization capabilities 

[12]. The packaging image recognition process faces 

significant challenges due to background interference 

that occurs in packaging production line environments. 

Production line environments feature uneven lighting and 

object occlusion alongside object deformation that 

degrade packaging image quality and compromise 

feature recognition precision and model performance. 

Current research requires immediate attention to solve 

the critical problem of improving packaging image 

recognition accuracy and robustness when operating in 

complex and varied interference environments [13]. 

Wang and Song [14] introduced a convolutional neural 

network-based technique for classifying network traffic 

and detecting anomalies, overcoming the shortcomings 

of conventional methods in managing intricate traffic 

patterns. Their model attained high accuracy on the CIC-

IDS2017 (98.5%) and ISCX VPN-NOVPN (99.2%) 

datasets, while also markedly enhancing recall and F1 

score. Through the examination of several network 

architectures, they diminished the false alarm rate to 

1.5%, showcasing significant robustness and adaptability 

in practical settings. Lu [15] utilized Convolutional 

Neural Networks to assist in the assessment of 

promotional graphic designs showcasing traditional 

Fengxiang clay sculptures. The outputs of CNN 
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corresponded with manual evaluations, validating its 

efficacy. The research demonstrated that CNNs improved 

the examination and aesthetic quality of culturally 

inspired designs. 

Numerous studies have proven that traditional 

methods for image feature extraction fail to handle large 

datasets and complicated visual systems effectively. The 

essential progress of deep learning through convolutional 

neural networks and attention mechanisms faces multiple 

challenges in image recognition because of inadequate 

dataset sizes and background complexities. The research 

community needs to address these challenges by 

developing improved model architectures and 

investigating innovative data enhancement techniques 

and dynamic learning approaches to enhance image 

recognition technology to an intelligent level. 

2.1 Research gaps and novelties 

Notwithstanding recent progress in deep learning for 

image recognition, packaging inspection tasks in 

industrial settings are still inadequately investigated due 

to distinct challenges, such as lighting variability, 

intricate backgrounds, deformation of packaging shapes, 

and a scarcity of annotated datasets.  Conventional 

feature extraction techniques like SIFT and LBP, 

although efficient in controlled environments, do not 

transfer well across varied real-world situations. Even 

cutting-edge CNN designs such as ResNet-50 and 

Inception-V3 demonstrate restricted adaptation to 

occlusion and geometric distortion, resulting in 

diminished recognition accuracy in dynamic 

manufacturing settings.  Furthermore, the majority of 

current models employ static receptive fields and are 

unable to modify spatial sample positions according to 

the local visual environment, hence limiting their 

efficacy in identifying small or irregularly shaped targets 

typically encountered in packing applications. 

 This study introduces an innovative packaging 

image recognition model utilizing a Deep Convolutional 

Neural Network augmented by two principal 

components: (1) a Multi-Scale Convolutional Block that 

integrates local and global features via parallel 3×3 and 

5×5 kernels, and (2) an adaptive adjustment module that 

employs deformable convolution to modify the receptive 

field through learned offsets dynamically. A hybrid data 

augmentation technique is developed to enhance 

resilience by modeling industrial disturbances, including 

illumination variations, occlusion, and deformation. 

These enhancements collectively improve the model's 

capacity to generalize across intricate visual contexts 

while preserving high recognition accuracy. 

 Experimental findings on the PackNet-10K dataset 

indicate that the proposed model substantially surpasses 

baseline and state-of-the-art techniques in terms of 

accuracy and inference speed, while preserving a 

minimal parameter count appropriate for real-time 

industrial applications. 

Table 1 delineates a comparative analysis of 

traditional methods and contemporary deep learning 

models, summarizing the performance of various 

prevalent packaging image recognition techniques about 

classification accuracy, parameter count, and inference 

speed, as derived from our experiments utilizing the 

PackNet-10K dataset. This comparative research 

emphasizes the shortcomings of state-of-the-art (SOTA) 

models. It illustrates the necessity for an adaptive design 

that can accommodate geometric distortions, illumination 

fluctuations, and intricate packaging scenarios. 

Table 1: Summary of baseline methods on the PackNet-10K Dataset 

Method 
Accuracy 

(%) 
Parameters (M) 

Inference 

Time (ms) 
Key Characteristics 

SIFT + SVM 68.3 N/A 115.6 
Manual feature extraction, sensitive to 

deformation 

LBP + SVM 72.6 N/A 109.3 Texture-based, limited scale robustness 

ResNet-50 86.2 25.6 28.5 
Deep residual network, poor small object 

detection 

Inception-V3 88.1 23.9 34.2 Multi-branch CNN, slow inference 

YOLOv5s 89.4 7.9 16.5 
Real-time detection, weaker classification 

accuracy 

Proposed Model 96.8 21.3 11.2 Adaptive MSCB + AAM, fast, high precision 

 

Table 1 illustrates those conventional approaches 

like SIFT and LBP do not generalize well across 

differences in illumination and shape, and demonstrate 

significant processing delay. CNN-based models such as 

ResNet-50 and Inception-V3, while providing enhanced 

accuracy, exhibit limited adaptation to non-rigid 

deformations and demonstrate inefficiency in managing 

small-scale packaging features. YOLOv5s provides rapid 

inference; nonetheless, its categorization efficacy is 

inadequate for detailed packing categories. The proposed 

model surpasses all baselines by incorporating multi-

scale feature fusion and adaptive deformable 

convolution, resulting in enhanced accuracy and real-

time performance. 

3 System architecture and algorithm 

design 

3.1 System architecture 

The article proposes a method of hierarchical 

modularization to enhance system performance by 

optimizing the functionalities of individual modules. The 

system contains the following basic parts: feature 
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extraction network, Backbone, adaptive adjustment 

module (AAM), and classifier that work together to 

improve recognition accuracy and system adaptability 

according to Figure 1.

 

 

Figure 1: Overall scheme architecture diagram

Figure 2 illustrates the comprehensive pipeline of the 

proposed model, encompassing data preprocessing, 

hybrid augmentation procedures, and essential 

components like the feature extraction backbone, 

adaptive adjustment mechanism, and classification 

layers. This comprehensive flow delineates the complete 

recognition procedure tailored for industrial packaging 

photos. 

 

Figure 2: End-to-end workflow of the multi-scale adaptive CNN for packaging image recognition 

The foundational Backbone component serves to 

identify essential data characteristics during input 

processing. The Backbone network structure receives 

ResNet-50 design elements, which lead to performance 

enhancements. ResNet-50 operates as a deep residual 

network, which was developed to solve the gradient 

vanishing issue in deep neural network training by using 

residual connections. The network contains several 

residual modules that create connections to merge 

previous layer input with current layer output, thus 

supporting effective gradient flow in deep networks. The 

model version improves the feature extraction capability 

of ResNet-50 through its transformation into a Multi-

Scale Convolutional Block (MSCB). The network 
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improves its feature information processing capacity by 

implementing multiple convolutional layers, which 

function at different scales to identify distinct image 

elements. The network's multi-scale design enables it to 

detect targets of different sizes and shapes while also 

being able to handle various image input dimensions. A 

mathematical representation of the ResNet-50 residual 

structure exists through this formula [16]: 

𝑦 = 𝐹(𝑥, 𝑊𝑖) + 𝑥 (1) 

The equation uses the variable 𝑥 to represent input 

data while 𝐹(𝑥, 𝑊𝑖) stands for the transformation which 

consists of convolutional layers along with activation 

functions and other operations, and 𝑊𝑖 indicates layer 

weights that produce the output 𝑦. It explains how the 

network is structured, combining the input data with its 

modified version using skip connections to tackle the 

issue of gradient vanishing in deep learning networks. 

The key feature of the model consists of the 

Adaptive Adjustment Module (AAM) that modifies its 

receptive field automatically based on changing target 

conditions. Each specific neuron in the network has a 

particular limit on how much input data it can process 

simultaneously. The AAM module modifies the 

convolution kernel structure and size through deformable 

convolution to create automatic adjustments that enable 

the network to better handle different target scales and 

shapes. By using offsets, deformable convolution allows 

convolution operations to flexibly handle both regular 

grid patterns and local input data patterns. The approach 

demonstrates significant performance improvements 

when applied to complicated situations. The 

mathematical expression for deformable convolution 

operations is represented by the following formula [16]: 

𝑦(𝑥) = ∑ 𝑤(𝑖, 𝑗)𝑥(𝑥 + Δ𝑥(𝑖, 𝑗), 𝑦 + Δ𝑦(𝑖, 𝑗))

𝑖,𝑗

 (2) 

The mathematical expression utilizes the following 

elements for its operation: 𝑥(𝑥, 𝑦) as the input image, 

𝑤(𝑖, 𝑗) functions as the convolution kernel weight, and 

Δ𝑥(𝑖, 𝑗), Δ𝑦(𝑖, 𝑗) represent the learned offsets that 

modify the convolution field. The formula elucidates the 

methodology for changing the convolutional receptive 

field to capture intricate feature information effectively. 

The classifier component evaluates the classification 

for extracted feature information through its analysis. 

The system includes a series of Fully Connected Layers 

along with SoftMax layers, which compose this specific 

component. Fully connected layers execute two major 

functions, which are to map nonlinear relations between 

features, produce activation scores for class labels, and 

generate probabilities for class membership. The 

SoftMax layer transforms activation scores into 

distribution probabilities, which enables the model to 

generate predictions for every category. The SoftMax 

function is defined as follows [16]: 

𝑃(𝑦 = 𝑐|𝐱) =
exp(𝑧𝑐)

∑ exp(𝑧𝑐)
𝑐

 (3) 

The activation value of category 𝑐 becomes 𝑧𝑐 in 

Equation (3), while the function exp(𝑧𝑐) calculates the 

sum of all category activation values. A probability value 

for each category results from the SoftMax function, 

which guarantees that all category probabilities combine 

to equal 1. This process enables the classifier to output 

the prediction probability of each category based on the 

feature information of the input data, thereby achieving 

the final classification. 

Throughout the entire training process of the model, 

all modules collaborate to optimize the model parameters 

using the backpropagation algorithm. During the training 

process, errors are propagated layer by layer from the 

classifier to the Backbone network and AAM module via 

the gradient descent algorithm. The weights and offsets 

in each module are adjusted to optimize the model's 

performance on the training set. The loss function usually 

uses the Cross Entropy Loss function to measure the 

difference between the predicted category and the correct 

category. The formula for Cross Entropy Loss is [16]: 

ℒ = − ∑ 𝑦𝑐

𝑐

log(𝑦̂𝑐) (4) 

In Equation (4), 𝑦𝑐 is the binary encoding of the real 

label, 𝑦̂𝑐 It is the category probability predicted by the 

model. By minimizing the loss function, the model can 

continuously adjust its parameters to improve 

classification performance. 

To guarantee reproducibility and practical 

application, the mathematical models outlined in Eqs. (1) 

to (9) have been comprehensively implemented utilizing 

the PyTorch deep learning framework. The residual 

block structure in Eq. (1), based on ResNet-50, is 

executed by sequential convolutional modules 

incorporating batch normalization and ReLU activations, 

complemented with skip connections to facilitate 

efficient gradient propagation. The deformable 

convolution operation described in Eqs. (2), (7), and (9) 

are implemented using the Deformable Convolution v2 

(DCNv2) module from the MMCV library, which 

facilitates learnable offset generation and adaptable 

sample sites. The Adaptive Adjustment Module (AAM) 

dynamically alters the receptive field by employing a 

lightweight multilayer perceptron (MLP) architecture to 

correlate feature maps with learnt offsets, as delineated in 

Eq. (8). This MLP is constructed using a series of 1×1 

convolutional layers succeeded by ReLU activations, 

enabling it to produce offset tensors utilized in the 

deformable convolution layers effectively. The 

classification layer described in Eq. (3) employs a fully 

connected layer succeeded by a SoftMax activation, 

whilst the loss function in Eq. (4) is executed using the 

cross-entropy criterion with label smoothing (smoothing 

factor = 0.1). All parameters, encompassing 

convolutional weights and bias tensors, are concurrently 

tuned during training utilizing the Adam optimizer. The 

learning rate is adjusted by cosine annealing, and early 

stopping is used when validation loss fails to improve 

over five consecutive epochs. The systematic 

incorporation of theoretical frameworks into the training 

process guarantees clarity, coherence, and reproducibility 

in the model's execution. 



270 Informatica 49 (2025) 265–280                                                                                                                                        W. Sun  

3.2 Multi-scale feature fusion strategy 

design 

In deep learning systems, image processing requirements 

often necessitate feature aggregation across multiple 

scales to enhance the model's understanding of targets 

with diverse dimensions. The model employs a Multi-

Scale Feature Fusion Strategy (MSCB) to improve its 

capacity for handling image features at various scales. 

The MSCB architecture performs image feature 

extraction through parallel convolution kernels of 

varying sizes, including 3x3 and 5x5 structures. Different 

sizes of convolution kernels produce varying receptive 

fields, which enables 3x3 kernels to detect precise local 

elements and 5x5 kernels to collect extended relationship 

data. The network operates by simultaneously evaluating 

multiple image scales, which allows the collection of 

more comprehensive feature sets. 

The feature extraction strategy at multiple scales 

combines features by merging features of different scales 

through channel connections. The proposed multi-scale 

feature fusion approach combines output feature maps 

from convolutional kernels of varying sizes (3𝑥3 and 

5𝑥5 ) via channel-wise concatenation. This process 

concatenates the feature maps along the channel 

dimension, yielding a more comprehensive and varied 

representation while maintaining the spatial resolution of 

each input. In contrast to channel addition, which 

necessitates uniform channel lengths and executes 

element-wise summing, channel concatenation augments 

the number of channels, enabling the network to preserve 

unique information derived from each kernel size. The 

combined feature map is then subjected to a 1×1 

convolutional layer to diminish dimensionality and 

improve feature integration efficacy. The updated fusion 

process is mathematically expressed as: 𝐹𝑓𝑢𝑠𝑖𝑜𝑛 =

𝐹3𝑥3, 𝐹5𝑥5 where 𝐹3𝑥3and 𝐹5𝑥5 represent the feature maps 

from the 3𝑥3 and 5𝑥5 convolutional branches, 

respectively [16]: 

𝐹𝑓𝑢𝑠𝑖𝑜𝑛 = 𝐹3𝑥3, 𝐹5𝑥5 (5) 

A mathematical equation expressed as Equation (5) 

uses the term 𝐹𝑓𝑢𝑠𝑖𝑜𝑛 to represent concatenation in 

channel dimensions. Network performance improves 

when the method for feature fusion combines local and 

global information. 

The approach focuses on integrating multi-scale 

features at the same processing level while constructing 

effective relationships between different layers. The 

system acknowledges that basic features detect exact 

edge data while advanced features recognize complex 

semantic concepts. The system enhances its 

understanding of image patterns through the integration 

of superficial and complex data, which establishes 

connections between local parts and broad-scale content. 

The system now uses a cross-layer connection approach. 

In this particular method, shallow features 𝐹𝑙𝑜𝑤 and deep 

features 𝐹ℎ𝑖𝑔ℎ combine with a certain ratio while 

following a specific formula [16]: 

𝐹𝑓𝑢𝑠𝑖𝑜𝑛 = 𝛼 ⋅ 𝐹𝑙𝑜𝑤 + (1 − 𝛼) ⋅ 𝐹ℎ𝑖𝑔ℎ (6) 

Equation (6) contains a weight coefficient 𝛼 which 

the network modifies between 0 and 1 to control the deep 

and shallow feature fusion ratio. The superior analysis 

performance of the network occurs because it makes 

real-time changes to the ratio of shallow and deep 

features for task completion. 

To enhance operational performance, this article 

incorporates deformable convolution technology within 

feature design strategies to improve model adaptability 

for different target scale and shape conditions. 

Deformable convolution uses an offset mechanism to 

transform the convolution kernel shape, which enables 

the network to automatically adjust its receptive field 

based on input image features. The network performs 

better at recognizing complex image modifications 

because of its ability to automatically adapt to changing 

input conditions. The output of the multi-scale feature 

fusion block undergoes deformable convolution for 

flexible spatial adaptation. The deformable convolution 

procedure adheres to the mathematical formulation 

presented in Equation (2), wherein learnt offsets modify 

the kernel's sample positions to more effectively capture 

intricate geometric variations. 

The development of a multi-scale feature fusion 

method represents a crucial element in image processing 

because it strengthens the model against difficult 

situations that include intricate scenes and various target 

scales, together with highly deformed objects. The model 

demonstrates superior image comprehension by utilizing 

scale-based feature fusion alongside cross-layer 

connections and deformable convolutions to achieve 

better flexibility and adaptability. The innovative feature 

fusion techniques, when united, produce better model 

outcomes, which demonstrate enhanced accuracy in 

multiple operational tasks. 

4 Optimization of adaptive 

convolutional kernel adjustment 

mechanism 
A method employs dynamic convolution kernel 

adjustment by creating image-based kernel offsets that 

optimize convolutional network performance for 

complex geometric images and deformed objects. The 

standard convolution mechanism uses a fixed-size kernel 

structure, which cannot modify its receptive field 

according to different target areas containing significant 

deformations and scale changes, thus causing feature 

extraction errors. The solution to this problem involves 

the successful implementation of dynamic kernel shape 

and position variations, which result in enhanced model 

flexibility and accuracy. 

The network generates convolution kernel offsets 

from image features to adapt the receptive field 

dynamically. To generate convolution kernel offsets, an 

MLP model uses the input feature map to produce output 

results. An offset 𝛥𝑊 transforms the convolution kernel's 

spatial properties through processing of the input feature 

map 𝐹𝑖𝑛𝑝𝑢𝑡 within the MLP module. The mathematical 

formula for this process can be expressed as: The 
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network needs to use image features to develop 

convolution kernel offsets, which allow adaptive 

adjustment of the kernels. Through the use of an MLP 

model, the input image feature map generates 

convolution kernel offsets as its output. The MLP 

module processes the input feature map 𝐹𝑖𝑛𝑝𝑢𝑡 to 

calculate an offset 𝛥𝑊 that adjusts the spatial properties 

of the convolution kernel. The mathematical operation is: 

Δ𝑊 = 𝑓𝑀𝐿𝑃(𝐹𝑖𝑛𝑝𝑢𝑡) (7) 

The network employs an MLP to convert input 

feature maps into spatial sampling offsets for 

convolutional kernels. The offset Δ𝑊 is calculated as: 

Δ𝑊 = 𝑓𝑀𝐿𝑃(𝐹𝑖𝑛𝑝𝑢𝑡). where 𝐹 is the input feature map 

and 𝑓𝑀𝐿𝑃 denotes the offset prediction function. The 

MLP consists of two consecutive 1×1 convolutional 

layers with 64 and 2𝑘2 output channels respectively, 

where 𝐾 is the kernel size (e.g., 3). ReLU activation is 

utilized between layers, and batch normalization is 

incorporated to enhance training stability. The final result 

presents horizontal and vertical offsets for each sampling 

position within the deformable kernel. This approach 

allows the network to dynamically learn adaptable 

receptive fields while maintaining a minimal parameter 

count. The MLP and deformable convolution layers are 

trained concurrently by backpropagation. 

Equation (7) contains the function 𝑓𝑀𝐿𝑃 which 

conducts mapping transformations through the multi-

layer perceptron while 𝐹𝑖𝑛𝑝𝑢𝑡 depicts the input feature 

map and 𝛥𝑊 demonstrates the convolution kernel offset. 

Through dynamic adjustments of its convolution kernel, 

the network adapts to different deformation types and 

local structures to achieve improved performance. 

As defined in Equation (7), the convolutional kernel 

offset Δ𝑊 = 𝑓𝑀𝐿𝑃(𝐹𝑖𝑛𝑝𝑢𝑡) is generated by passing the 

input feature map 𝐹𝑖𝑛𝑝𝑢𝑡 through a learnable MLP. This 

MLP is implemented using two stacked 1×1 

convolutional layers with ReLU activation in between. 

For a kernel of size 𝑘 × 𝑘, the output  ΔW ∈ ℝ2𝑘2
× 𝐻 ×

𝑊 contains pixel-wise horizontal and vertical offsets for 

each sampling location in the kernel. The offsets 

facilitate the adjustment of the sample grid in the 

deformable convolution procedure, allowing the 

convolutional kernel to dynamically modify its receptive 

field by the geometric attributes of the input image.  

Bilinear interpolation is utilized at fractional places to 

preserve differentiability. The parameters of the 

convolutional kernel and the MLP are concurrently 

trained using backpropagation during model 

optimization. 

Convolution relies on a calculated offset value to 

adjust the convolution kernel, changing its receptive field 

properties. This process is transformed by Deformable 

Convolution. The fixed position of each convolution 

kernel element in standard convolution operations 

contrasts with the dynamic sampling position of the 

convolution kernel elements in deformable convolution, 

which enables flexible shape adaptation. The mechanism 

works effectively to process scale changes along with 

rotations, translations, and other geometric deformations. 

The specific implementation serving deformable 

convolution refers to DCNv2 (Deformable Convolution 

v2), which allows the convolution operation to modify its 

receptive field through offset-based adjustments. The 

adaptive adjustment technique employs deformable 

convolution, allowing the receptive field to dynamically 

adapt to alterations in shape and structural distortions in 

packing pictures. 

The equation contains 𝑥(𝑥, 𝑦) for image pixel values 

alongside the convolution kernel weight 𝑤(𝑖, 𝑗) and the 

offset changes 𝛥𝑥(𝑖, 𝑗) and 𝛥𝑦(𝑖, 𝑗) on the x-axis and y-

axis. During training, the offset learns the proper values. 

The convolutional kernel demonstrates flexibility in 

adjusting its receptive field in response to changes in 

image features, thereby enhancing the model's 

performance on deformed objects. 

The research paper enhances deformable convolution 

modeling by introducing a joint optimization method for 

the convolutional layer and offset in DCNv2.The 

simultaneous optimization of the convolution kernel 

offset and weight inside the network enhances the 

combination between feature extraction requirements and 

geometric deformation modeling. The network requires 

learning to both perform effective feature extraction and 

modify the convolution kernel positions, along with their 

shapes, based on feature information. Through joint 

training, the model can automatically adjust the receptive 

field in each layer, thereby better adapting to geometric 

changes in the image, while also introducing multi-scale 

feature fusion. Different scales of features carry different 

information in images, and combining multi-scale 

features can help networks better understand the various 

levels and details of objects. In the adaptive convolution 

kernel adjustment mechanism, through multi-scale 

convolution kernel adjustment, the network can 

dynamically adjust the receptive field at different scales, 

further enhancing its adaptability to geometric 

deformation of images. 

5 Experimental and simulation 

analysis 

5.1 Experimental design and dataset 

construction 

To verify the effectiveness of the proposed DCNN model 

in packaging image recognition tasks, this study 

conducted systematic experiments from three aspects: 

dataset construction, experimental environment 

configuration, and comparative scheme design.  Firstly, in 

response to the scarcity of data in the packaging industry, 

a multi-scenario packaging image dataset, PackNet-10K, 

was constructed in collaboration with a specific 

intelligent packaging equipment manufacturer. This 

dataset comprises 10,000 high-resolution (1920 × 1080) 

images, covering six major categories of packaging, 

including food, medicine, and daily chemical products, 

with each category containing 1,200 to 2,000 samples. 

The data collection scenario simulates a real industrial 
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environment, covering four typical interference 

conditions: 

1) Lighting changes (low light, high exposure, 

dynamic fill light); 

2) Complex background (conveyor belt reflection, 

product stacking obstruction); 

3) Deformation interference (packaging bag 

wrinkles, box body compression deformation); 

4) Motion blur (image blur caused by high-speed 

movement of the production line). The dataset is divided 

into a training set (7,000 images), a validation set (2,000 

images), and a testing set (1,000 images), with a ratio of 

7:2:1, ensuring class distribution balance through random 

stratified sampling. 

In the data preprocessing stage, a multi-scale 

normalization strategy is adopted: the input image is 

uniformly scaled to a resolution of 224 × 224, and 

channel normalization is performed (mean [0.485, 0.456, 

0.406], variance [0.229, 0.224, 0.225]).To enhance the 

adaptability of the model to industrial scenarios, a mixed 

data augmentation strategy is designed: 1) Geometric 

transformation: random horizontal flipping (probability 

0.5), rotation (± 15 °), cropping (scaling ratio 0.8-1.2);2) 

Photometric distortion: brightness adjustment (Δ ± 30%), 

contrast jitter (coefficient 0.7~1.3), Gaussian noise 

(σ=0.01);3) Semantic enhancement: Based on CutMix 

local area mixing (mixing ratio 0.4), simulate the local 

occlusion phenomenon of packaging stacking in the 

production line. 

The training procedure was supervised with early 

pauses to avert overfitting. The early stopping criterion 

was established with a patience value of five epochs, 

indicating that the training process would cease if the 

validation loss failed to improve over five successive 

epochs. A delta threshold of 0.001 was implemented, 

whereby training would cease only when the variation in 

validation loss between epochs fell below this value, 

signifying little advancement. 

The model optimization was improved with a cosine 

annealing learning rate schedule, which modified the 

learning rate throughout training. The starting learning 

rate was established at 0.01, with a minimum learning 

rate of 1e-6. This scheduling strategy enabled the 

learning rate to diminish progressively in a cosine 

manner, commencing at a high value and gradually 

approaching the minimum as training advanced, so 

promoting efficient convergence while optimizing the 

model parameters in the last phases of training. 

The criteria were meticulously selected to harmonize 

convergence speed with model generalization, 

guaranteeing optimal performance while preventing 

overfitting. 

The experimental hardware platform is equipped 

with an NVIDIA Tesla V100 GPU (32GB video 

memory) and an Intel Xeon Gold 6248R processor, and 

the software framework is based on PyTorch 1.9.0. The 

model training utilizes the Adam optimizer with an initial 

learning rate of 0.01, dynamically adjusted using a cosine 

annealing strategy, and a batch size of 32. The loss 

function adopts a cross-entropy loss with label smoothing 

(Smoothing Factor=0.1), with a training period of 100 

epochs and an early stopping mechanism (terminated 

when the validation set loss does not decrease for five 

consecutive epochs). The comparative experiment covers 

four types of baseline models: 

1) Traditional feature methods (SIFT+SVM, 

LBP+SVM); 

2) Classic CNN (ResNet-50, Inception-V3, VGG-

16); 

3) Lightweight model (MobileNet-V2); 

4) The latest industrial inspection model 

(YOLOv5s). 

The ablation experiment verifies the contribution of 

each module by gradually adding multi-scale convolution 

blocks (MSCB), adaptive adjustment modules (AAM), 

and mixed data augmentation strategies. Performance 

evaluation indicators include classification accuracy (F1-

Score), Parameter count (Params), and single graph 

inference time (Inference Time). All experiments were 

repeated 5 times in the same environment to eliminate 

the influence of randomness. 

The model's inference speed was assessed under 

controlled conditions to guarantee consistency and 

reliability. The inference batch size was established at 

32, a standard figure for models of this complexity, 

facilitating a balance between memory utilization and 

processing duration. The model was executed via the 

PyTorch framework, with enhancements applied through 

TensorRT for expedited inference. The system operated 

on an NVIDIA Tesla V100 GPU with 32GB of memory 

to guarantee rapid processing. These conditions allowed 

the model to attain an inference time of 11.2 milliseconds 

per image during testing, illustrating its efficacy for real-

time applications. 

5.2 Experiment and results analysis 

As shown in Figure 3, the comparison of training loss 

curves reveals that the model (DCNN+AAM) converges 

significantly faster than ResNet-50 within 50 epochs.  By 

the 30th epoch, the loss value of the model had decreased 

to 0.15, while ResNet-50 remained at 0.28. The adaptive 

convolution kernel adjustment mechanism accelerates the 

feature learning process, allowing the model to capture 

key texture and shape features more efficiently.
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Figure 3: Training loss curve 

This experiment compared mainstream models with 

the DCNN and DCNN+AAM models proposed in this 

paper on a self-built packaging image dataset (including 

10000 images covering six complex scene categories). 

As shown in Table 2, the model proposed in this paper 

significantly outperforms the baseline model in both 

accuracy and inference speed.DCNN+AAM improves 

accuracy by 9.2% and reduces inference time by 65.6% 

compared to ResNet-50 through the adaptive adjustment 

module. The parameter optimization to 18.9M indicates 

that the multi-scale feature fusion strategy effectively 

balances model complexity and performance.

Table 2: Performance comparison of different models on the packaging image dataset 

model Accuracy (%) Parameter quantity (M) Inference time (ms) F1-Score 

ResNet-50 86.2 25.6 28.5 0.847 

Inception-V3 88.1 23.9 34.2 0.863 

VGG-16 82.4 138.4 45.8 0.802 

MobileNet-V2 84.7 3.5 12.3 0.829 

DCNN (in this article) 93.7 18.9 9.8 0.921 

DCNN+AAM (in this article) 95.4 21.3 11.2 0.938 

Complete Model (Proposed) 96.8 21.3 11.2 0.948 

 

The comparison of the accuracy of different models 

on the packaging image test set is shown in Figure 4. The 

DCNN+AAM model significantly outperforms other 

models with an accuracy of 95.4%, and improves by 

9.2% compared to ResNet-50.VGG-16 exhibits 

overfitting due to its excessive parameter count, resulting 

in an accuracy of only 82.4%. This model achieves 

optimal performance while maintaining a low number of 

parameters through multi-scale feature fusion and 

adaptive convolution kernel adjustment. 

To maintain consistency between the performance 

comparison (Table 2) and the ablation research (Table 3), 

the terminology for various configurations is elucidated 

as follows: In Table 2, “DCNN (in this article)” refers to 

the model incorporating both the multi-scale 

convolutional block and the adaptive adjustment 

mechanism, excluding data augmentation, which aligns 

with the “+MSCB+AAM” configuration in Table 3 

(accuracy: 93.7%). The "DCNN+AAM" entry in Table 2 

denotes the model after the implementation of the 

comprehensive hybrid data augmentation approach, 

corresponding to the "+Data augmentation" row in Table 

3 (accuracy: 95.4%). The minor discrepancy in reported 

parameter counts (18.9M vs. 18.6M) results from 

rounding and architectural enhancements between 

versions. The ultimate "Complete Model" in Table 3 

integrates optimization enhancements across modules 

and training configurations, yielding an enhanced 

classification accuracy of 96.8% while preserving the 

parameter count of 21.3 million. 
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Figure 4: Comparison of model accuracy. 

Conduct ablation experiments by gradually adding 

multi-scale convolutional blocks (MSCB), adaptive 

adjustment modules (AAM), and data augmentation 

strategies. The baseline model achieves an accuracy of 

86.2%, and adding MSCB alone improves this accuracy 

by 3.9%, demonstrating that multi-scale feature fusion 

effectively captures both local and global features. After 

introducing AAM, the accuracy was further improved to 

92.8%, and the feature extraction time was reduced by 

34.7%. The complete model, incorporating all modules, 

achieved an accuracy of 96.8%, verifying the 

effectiveness of collaborative optimization across various 

components.

Table 3: Analysis of ablation experiments. 

configuration Accuracy (%) Recall rate (%) Feature extraction time (ms) Parameters (M) 

Baseline (ResNet-50) 86.2 84.5 28.5 25.6 

+MSCB 90.1 88.7 24.3 18.9 

+AAM 92.8 91.2 18.6 20.4 

+MSCB+AAM 93.7 92.4 15.2 18.9 

+Data augmentation 95.4 94.1 16.8 21.3 

Complete Model (in this 

article) 
96.8 95.3 11.2 21.3 

 

Table 3 indicates that the configuration augmented 

with hybrid data retains a parameter count of 21.3 

million, consistent with the model that integrates multi-

scale feature fusion and adaptive convolutional 

adjustment. The comprehensive model incorporates all 

suggested elements, including the multi-scale 

convolutional block, the adaptive offset adjustment 

method, and the data augmentation strategy, while 

maintaining parameter efficiency. This indicates that the 

final model attains performance enhancements without 

adding more complexity. The comprehensive 

configuration achieves a maximum classification 

accuracy of 96.8 percent, a recall of 95.3 percent, and a 

minimal inference time of 11.2 milliseconds, thereby 

validating its efficacy and appropriateness for real-time 

industrial applications. 

Test the robustness of the model under four different 

lighting conditions in a simulated industrial environment. 

The traditional SIFT method has an accuracy of only 

54.2% under dynamically changing lighting conditions, 

while the DCNN+AAM model achieves 85.3% under the 

same conditions. Experiments have shown that the AAM 

module improves the model's adaptability to uneven 

lighting by 23.1% by dynamically adjusting the receptive 

field of the convolutional kernel. The data augmentation 

strategy (including random brightness adjustment and 

noise injection) further increased the average accuracy to 

89.2%.

Table 4: Robustness testing under different lighting conditions. 

Light intensity level 
Traditional 

SIFT 

ResNet-

50 

DCNN (in this 

article) 

DCNN+AAM (in this 

article) 

Standard Deviation 

(%) 

Low light 62.3 78.5 85.4 88.9 ± 2.3 

Normal lighting 81.6 86.2 93.7 95.4 ± 1.8 

High exposure 58.7 72.1 83.6 87.2 ± 3.0 
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Dynamic changes 54.2 68.9 80.1 85.3 ± 2.5 

Average 

performance 
64.2 76.4 85.7 89.2 ± 2.4 

 

Compare the impact of different data augmentation 

strategies on model performance. Traditional random 

cropping and flipping improve accuracy by 4.3%, but the 

overfitting rate remains at 12.4%. The hybrid 

enhancement strategy proposed in this article (combining 

CutMix, brightness adjustment, and dynamic noise) 

improves accuracy to 95.4% and reduces overfitting to 

5.3% while maintaining training efficiency. Experimental 

results have shown that the combined enhancement 

strategy is superior to a single method, saving 28.6% of 

training time compared to Auto Augment. 

This work employs a hybrid data augmentation strategy 

that integrates geometric modifications, photometric 

distortions, and semantic enhancement techniques. These 

augmentations are concurrently applied to each training 

image, enabling the model to acquire a varied array of 

characteristics and enhance resilience to various 

distortions. The combination specifically comprises 

random horizontal flipping, rotation, brightness 

modification, contrast jitter, Gaussian noise, and CutMix 

for local area blending. The concurrent implementation 

of all augmentation strategies enhances the model's 

capacity to manage real-world variables and mitigates 

overfitting. 

Table 5: The impact of different data augmentation strategies 

Enhancement strategy Accuracy (%) Training time (h) Overfitting rate (%) 

No enhancement 86.2 2.1 18.7 

Random cropping + flipping 90.5 2.8 12.4 

Brightness adjustment+noise 92.1 3.2 9.8 

CutMix 93.4 3.5 7.6 

Hybrid Enhancement (in this article) 95.4 4.1 5.3 

 

Figure 5 describes the impact of different data 

augmentation strategies on model performance. The 

hybrid enhancement strategy proposed in this article 

(combining CutMix, brightness adjustment, and dynamic 

noise) achieves an accuracy of 95.4%, which is 2-5% 

higher than a single strategy. The experiment 

demonstrates that the combined enhancement effectively 

improves the model's generalization ability by simulating 

lighting changes and local occlusions in real industrial 

environments, thereby verifying the effectiveness of the 

data augmentation design presented in Section 3.1.

 

Figure 5: Comparison of data enhancement strategies 

The proposed model is primarily intended for image 

classification, yielding a single category label for each 

input image; however, the assessment of small target 

performance (illustrated in Figure 6) serves as an 

ancillary evaluation to exhibit the model's sensitivity to 

nuanced features. This does not pertain to object 

detection with bounding box localization; instead, it 

assesses classification accuracy at varying levels of 

visual granularity by selecting and analyzing samples 

that include small packaging components. This viewpoint 

emphasizes the model's ability to identify distinguishing 

features, even for targets with minimal spatial presence 

in the image, which is especially pertinent in industrial 
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contexts where packaging differences may be subtle or 

partially obscured. 

Figure 6 illustrates the analysis of the model's 

classification performance regarding the proportion of 

minor visual features present in each image. This test 

underscores the model's efficacy in capturing fine-

grained features, despite the job being limited to image-

level classification, particularly when small packaging 

components predominate the visual content. The model 

attained a classification accuracy of 78.6 percent for 

images with small-scale features (less than 10 pixels in 

prominent object width), indicating a 16.3 percent 

enhancement over the baseline. This shows that the 

suggested multi-scale fusion technique enhances 

sensitivity to subtle or partially obscured packaging 

features, even in the absence of explicit object detection.

 

Figure 6: Detection accuracy of targets at different scales 

The suggested methodology is exclusively intended 

for image categorization, assigning a single label to each 

image that reflects its predominant packaging type. The 

model is incapable of executing object detection tasks, 

including the identification or localization of numerous 

instances inside an image. Figure 6 analyzes photos with 

small-scale packing elements to assess the model's 

capacity to identify classes where the primary 

distinguishing characteristics occupy a minimal amount 

of the visual field. Terminology like “recognition of 

small targets” pertains to image-level classification 

accuracy rather than spatial detection. This investigation 

highlights the efficacy of the multi-scale feature fusion 

technique in improving sensitivity to nuanced packing 

details without utilizing detection-specific modules like 

anchor boxes, proposal networks, or non-maximum 

suppression. 

5.3 Discussion 

The packaging business is a formidable challenge for 

automatic image recognition due to its complicated 

visual circumstances. Frequent challenges, like backdrop 

clutter, variable lighting, object distortion, and motion 

blur, sometimes result in substantial misclassification 

when employing conventional techniques. Hand-crafted 

feature techniques, such as SIFT and LBP, while resilient 

to specific variances, fail to generalize across various 

package kinds and contexts. Classical CNNs such as 

ResNet-50 and VGG-16, although proficient on 

conventional picture datasets, often encounter difficulties 

in packing scenarios due to their static receptive fields 

and restricted adaptability to geometric irregularities. The 

suggested architecture addresses these restrictions by 

using an MSCB, an AAM, and a hybrid data 

augmentation technique specifically designed for 

package inspection contexts. 

The MSCB integrates high-resolution local details 

and low-resolution contextual information by combining 

feature maps derived from concurrent 3×3 and 5×5 

convolutional kernels. This approach enables the model 

to sustain excellent accuracy across items of diverse 

scales, including diminutive emblems or labels on 

packaging. The AAM concurrently improves geometric 

flexibility by producing learnable offsets for each 

sampling site within the convolution kernel, as specified 

in Equ. (8). The offsets are calculated using a lightweight 

MLP and included using flexible convolution techniques 

(Equ. (9)), allowing the network to adaptively modify its 

receptive field in reaction to deformations or occlusions. 

Furthermore, the hybrid augmentation strategy 

integrating geometric, photometric, and semantic 

transformations exposes the network to a wider array of 

changes during training. These encompass simulated 

occlusions (CutMix), brightness variation, Gaussian 

noise, and random cropping to enhance generalization 

and mitigate overfitting. 

The empirical findings displayed in Tables 2 and 3 

corroborate the efficacy of each design decision. The 

suggested DCNN+AAM model attains a classification 

accuracy of 95.4%, whilst the comprehensive model 

achieves 96.8%.  Our model demonstrates a 10.6% and 

8.7% enhancement over ResNet-50 (86.2%) and 

Inception-V3 (88.1%), respectively. It attains the greatest 

F1-Score (0.948) among all evaluated models, signifying 
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an optimal balance between precision and recall. The 

inference time of 11.2 ms, along with a moderate 

parameter count of 21.3M, indicates that the model is 

tailored for real-time applications. Moreover, the hybrid 

augmentation technique enhances resilience under 

diverse lighting circumstances by more than 20%, as 

indicated in Table 4. In ablation trials, each additional 

component, MSCB, AAM, and augmentation, 

contributed progressively to performance enhancement, 

with data augmentation alone decreasing the overfitting 

rate from 18.7% to 5.3%. 

Table 5: Performance Comparison of Proposed Model with Baselines and Variants 

Model 
Accuracy 

(%) 
F1-Score 

Params 

(M) 

Inference Time 

(ms) 

Overfitting 

Rate (%) 
Key Characteristics 

ResNet-50 86.2 0.847 25.6 28.5 18.7 
Standard deep residual 

network 

Inception-

V3 
88.1 0.863 23.9 34.2 15.2 

Multi-branch structure, 

higher complexity 

MobileNet-

V2 
84.7 0.829 3.5 12.3 20.3 

Lightweight, fast, but less 

accurate 

DCNN 93.7 0.921 18.9 9.8 8.5 Backbone + MSCB 

DCNN + 

AAM 
95.4 0.938 21.3 11.2 6.1 + Adaptive offset adjustment 

Complete 

Model (in 

this article) 

96.8 0.948 21.3 11.2 5.3 + Hybrid data augmentation 

 

The practical ramifications of this concept extend beyond 

academic benchmarks. In industrial inspection contexts, 

inaccuracies in packaging identification, particularly for 

products with diminutive, obscured, or irregular 

characteristics, can result in considerable quality control 

challenges and operational setbacks. The suggested 

model attains exceptional precision while maintaining 

computational economy appropriate for implementation 

in embedded systems on production lines. Its flexible 

design allows for scalability across many product 

categories and environmental circumstances without the 

need for retraining. The model's versatility, along with 

real-time speed and inexpensive hardware requirements, 

renders it a suitable option for extensive implementation 

in smart manufacturing processes.  

Although the model exhibits robust performance, 

specific constraints persist. In situations of severe 

occlusion or when packaging designs exhibit minimal 

visual contrast, the model's accuracy may diminish.  

Likewise, unrecognized packaging designs or materials 

absent from the training data may impede generalization 

efficacy. Future research will investigate cross-domain  

 

 

 

adaptation and uncertainty estimate to enhance the 

model's robustness in these scenarios. 

The suggested approach exhibits encouraging 

findings; however, certain limitations and potential 

biases warrant consideration. The principal constraint is 

the dependence on the PackNet-10K dataset for training 

and evaluation, which may inadequately represent the 

diversity of actual packaging situations, including 

differences in materials, ambient influences, or severe 

occlusions. The model's performance was assessed with 

an NVIDIA Tesla V100 GPU, and the inference speed 

and accuracy may differ on alternative hardware 

configurations or less powerful devices. Moreover, 

although the model demonstrates commendable 

performance under standard settings, its accuracy 

diminishes significantly in instances of severe occlusion 

and inadequate lighting, highlighting the necessity for 

enhancements in resilience. Ultimately, the employed 

data augmentation strategies, however efficacious, may 

not replicate all conceivable real-world differences. 

Future endeavors will concentrate on evaluating the 

model across supplementary datasets, hardware 

configurations, and edge cases to enhance its 

generalization and performance assessment.
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6 Conclusion 
This study enhances the hierarchical extraction and 

adaptive adjustment of multi-scale features in packaging 

images through an improved DCNN architecture. Key 

innovations include: 

(1).  Multi-scale feature fusion mechanism: The 

MSCB module captures features at different scales in 

parallel and fuses shallow edge information with deep 

semantics via cross-layer connections. This enhancement 

improves recognition accuracy for small objects (<10px) 

by 16.3% and addresses traditional models' sensitivity to 

scale variations. 

(2).  Adaptive convolution kernel adjustment module: 

Based on deformable convolutions, this module 

dynamically generates offsets, leading to a 23.1% 

improvement in accuracy compared to ResNet-50 under 

low-light and high-exposure conditions, and significantly 

improving adaptability to complex geometric structures, 

such as packaging wrinkles and extrusion deformations; 

(3).  Industrial-grade data augmentation strategy: By 

combining geometric transformations, photometric 

distortion, and semantic augmentation (e.g., CutMix for 

simulating stacking occlusions), the approach reduces 

model overfitting rate from 18.7% to 5.3%, thus 

enhancing generalization for industrial scenarios. 

Experimental results demonstrate that the model 

strikes a balance between accuracy (96.8%), inference 

speed (11.2 ms), and parameter count (21.3M), making it 

suitable for real-time production line inspection. Future 

research will focus on model lightweighting (e.g., 

knowledge distillation and structural pruning), cross-

domain transfer learning (adaptation to different 

packaging materials), and 3D vision integration 

(improving detection accuracy for three-dimensional 

deformations), further promoting the application of deep 

learning in intelligent packaging workflows. 
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