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This paper presents an innovative image recognition model for package inspection, designed to fulfill
the demands of real-time and precise categorization in difficult industrial environments. Traditional
techniques reliant on human feature extraction frequently underperform when confronted with lighting
variability, background interference, and deformation of package items. To mitigate these limitations,
the proposed model integrates a multi-scale convolutional architecture that captures both local and
global characteristics through the use of parallel convolutional filters of varying sizes. An adaptive
adjustment method is incorporated into the network to dynamically alter the placement of convolutional
operations according to image content, hence improving flexibility and feature representation. A
thorough data augmentation strategy incorporating geometric transformation, brightness modification,
and semantic-level blending is implemented to boost the model's robustness and generalization capacity.
Experiments performed on a bespoke industrial packaging dataset comprising 10,000 labeled images
reveal that the proposed model attains a classification accuracy of 96.8 percent, a recall of 95.3
percent, and an F1-score of 93.8 percent, with an inference time of 11.2 milliseconds and a parameter
count of 21.3 million. In comparison to current deep learning architectures like Residual Networks, the
model demonstrates considerable enhancements in accuracy and speed. These results support its
appropriateness for practical packaging inspection systems.

Povzetek: Razvit je vecmerni DCNN z deformabilnimi konvolucijami in prilagoditvenim modulom
(AAM) ter hibridno augmentacijo. Je robusten, realnocasovni model za prepoznavo embalaznih slik. Na
podatkovni zbirki PackNet-10K doseze odlicne rezultate, prekasa ResNet/Inception pri hitrosti in

tocnosti.

1 Introduction

In the current context of intelligent manufacturing and
Industry 4.0, the packaging industry is facing an
increasing demand for intelligence. With the
advancement of technology, traditional packaging image
recognition methods, especially those relying on manual
feature extraction techniques such as SIFT and HOG,
have gradually shown problems of low efficiency and
poor robustness, and cannot meet the requirements of
modern industry for high speed, high precision, and high
robustness [1]. Traditional manual feature extraction
often struggles to handle the complex backgrounds,
lighting changes, and deformations of images in various
practical application scenarios [2].

The advantage of its ability to automatically extract
features not only improves the automation level of
feature learning but also dramatically enhances the
accuracy and efficiency of image recognition [3].
However, when applied to the recognition of packaging
images, existing deep learning models still have some
shortcomings, particularly in addressing common issues

such as complex backgrounds, lighting variations, and
object deformations in packaging images. The
performance of these models has not yet reached an ideal
level. Therefore, building a high-precision and highly
robust packaging image recognition model that can adapt
to complex scenarios is of great practical significance for
promoting the intelligent development of the packaging
industry and improving production efficiency. Currently,
research in the field of packaging image recognition has
made significant progress both domestically and
internationally. Traditional feature extraction methods,
such as those based on color histograms and texture
analysis, have, to some extent, solved the problem of
feature extraction. However, these methods have weak
generalization ability and are difficult to adapt to the
ever-changing packaging image scenes. With the
introduction of Convolutional Neural Networks (CNNSs),
shallow CNN models such as LeNet-5 have achieved
good results in simple image classification tasks [4].
However, shallow models such as LeNet-5 are unable to
effectively capture multi-scale image features, which
limits their application in packaging image recognition.
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Deep convolutional neural networks, including models
like ResNet and Inception, demonstrate improved feature
expression capabilities through residual connections and
multi-branch structures, which produce superior results
in image classification and object detection tasks. The
most advanced deep learning models currently face
challenges involving automated feature extraction for
packaging images when processing complex background
environments, along with diverse lighting conditions and
packaging shape variations. Research on packaging
image analysis requires immediate enhancements to
understand complex packaging environments better [5].
Researchers developed a precise and sturdy model
for recognizing packaging images through the
implementation of deep convolutional neural networks
(DCNN). The traditional DCNN architecture received an
enhancement through the development of multi-scale
convolutional layers and feature fusion modules, which
work to extract local and global features better while
introducing an adaptive convolution kernel adjustment
mechanism. The model achieves adaptive parameter
optimization through convolution kernel modification,
which allows it to flexibly respond to complex
backgrounds and changing lighting conditions.

2 Related work

Recently, packaging image recognition technology has
become a key part of intelligent packaging production
lines. However, traditional image feature extraction
methods have shown significant limitations when dealing
with complex backgrounds and large-scale data.
Traditional manual feature extraction methods, such as
Scale Invariant Feature Transform (SIFT) and Local
Binary Patterns (LBP), have, to some extent, solved the
problem of image feature extraction, but they are not a
foolproof solution [6], [7].

Medus et al. [3] developed a real-time food
packaging inspection system using hyperspectral imaging
combined with convolutional neural networks to detect
contaminated heat-sealed trays. The system classified up
to eleven types of contaminants (e.g., plastic, rubber)
with over 94% accuracy and a processing time of 70-105
milliseconds, enabling inspection speeds of up to 14 trays
per second. A custom dataset and flexible CNN
configurations allowed optimization for either accuracy
or fault rejection, demonstrating the practical
effectiveness of deep learning in high-speed industrial
inspection. Zhang et al. [8] introduced an improved fully
convolutional network for picture segmentation in
packaging design, drawing inspiration from natural
language processing methodologies. The model
integrated superpixels, multi-branch networks, and
attention mechanisms. It attained an accuracy of 96.84%
and a segmentation error rate of 1.42%, indicating
enhanced efficiency and precision relative to
conventional approaches. Siddiqua et al. [9] created a
Faster R-CNN model integrated with InceptionV2 to
identify dengue mosquitoes utilizing photos from diverse
surroundings. The model surpassed R-FCN and SSD,
attaining a detection accuracy of 95.19%. Evaluation
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metrics encompassed precision, recall, false positives,
and false negatives.

Compared to traditional methods, the emergence of
deep learning, intense convolutional neural networks
(CNNSs), has brought revolutionary progress to the field
of image recognition. AlexNet, as the first network to
achieve breakthrough results in large-scale image
classification competitions, has for the first time
validated the effectiveness of deep CNN in image
recognition. AlexNet utilizes a deeper network structure
and ReLU activation function, significantly improving
the accuracy of image classification [10]. However, as
the depth of the network increases, the problems of
gradient vanishing and exploding gradually become
apparent, limiting the possibility of further deepening the
network. To address this issue, ResNet successfully
overcame the vanishing gradient problem by introducing
a residual learning mechanism, enabling the network to
reach deeper layers while maintaining stable training,
thereby improving image recognition performance. At
the same time, with the continuous innovation of network
structures, attention mechanisms are gradually being
applied in the field of image recognition. For example,
the SE module (Squeeze and Excitation) enhances the
ability to distinguish the importance of features by
weighting the channels, thereby improving the
performance of the model in complex scenes [10].

Although deep learning technology has achieved
significant results in the field of image recognition, it still
faces several challenges in packaging image recognition.
The packaging industry faces a considerable issue
because packaging image datasets are extremely limited
[11]. The packaging industry has unique requirements,
which make publicly available packaging datasets very
limited in content and insufficient for training deep
learning models with strong generalization capabilities
[12]. The packaging image recognition process faces
significant challenges due to background interference
that occurs in packaging production line environments.
Production line environments feature uneven lighting and
object occlusion alongside object deformation that
degrade packaging image quality and compromise
feature recognition precision and model performance.
Current research requires immediate attention to solve
the critical problem of improving packaging image
recognition accuracy and robustness when operating in
complex and varied interference environments [13].
Wang and Song [14] introduced a convolutional neural
network-based technique for classifying network traffic
and detecting anomalies, overcoming the shortcomings
of conventional methods in managing intricate traffic
patterns. Their model attained high accuracy on the CIC-
IDS2017 (98.5%) and ISCX VPN-NOVPN (99.2%)
datasets, while also markedly enhancing recall and F1
score. Through the examination of several network
architectures, they diminished the false alarm rate to
1.5%, showcasing significant robustness and adaptability
in practical settings. Lu [15] utilized Convolutional
Neural Networks to assist in the assessment of
promotional graphic designs showcasing traditional
Fengxiang clay sculptures. The outputs of CNN
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corresponded with manual evaluations, validating its
efficacy. The research demonstrated that CNNs improved
the examination and aesthetic quality of culturally
inspired designs.

Numerous studies have proven that traditional
methods for image feature extraction fail to handle large
datasets and complicated visual systems effectively. The
essential progress of deep learning through convolutional
neural networks and attention mechanisms faces multiple
challenges in image recognition because of inadequate
dataset sizes and background complexities. The research
community needs to address these challenges by
developing improved model architectures and
investigating innovative data enhancement techniques
and dynamic learning approaches to enhance image
recognition technology to an intelligent level.

2.1 Research gaps and novelties

Notwithstanding recent progress in deep learning for
image recognition, packaging inspection tasks in
industrial settings are still inadequately investigated due
to distinct challenges, such as lighting variability,
intricate backgrounds, deformation of packaging shapes,
and a scarcity of annotated datasets. Conventional
feature extraction techniques like SIFT and LBP,
although efficient in controlled environments, do not
transfer well across varied real-world situations. Even
cutting-edge CNN designs such as ResNet-50 and
Inception-V3 demonstrate restricted adaptation to
occlusion and geometric distortion, resulting in
diminished  recognition  accuracy in  dynamic
manufacturing settings. Furthermore, the majority of
current models employ static receptive fields and are
unable to modify spatial sample positions according to
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the local visual environment, hence limiting their
efficacy in identifying small or irregularly shaped targets
typically encountered in packing applications.

This study introduces an innovative packaging
image recognition model utilizing a Deep Convolutional
Neural Network augmented by two principal
components: (1) a Multi-Scale Convolutional Block that
integrates local and global features via parallel 3x3 and
5x5 kernels, and (2) an adaptive adjustment module that
employs deformable convolution to modify the receptive
field through learned offsets dynamically. A hybrid data
augmentation technique is developed to enhance
resilience by modeling industrial disturbances, including
illumination variations, occlusion, and deformation.
These enhancements collectively improve the model's
capacity to generalize across intricate visual contexts
while preserving high recognition accuracy.

Experimental findings on the PackNet-10K dataset
indicate that the proposed model substantially surpasses
baseline and state-of-the-art techniques in terms of
accuracy and inference speed, while preserving a
minimal parameter count appropriate for real-time
industrial applications.

Table 1 delineates a comparative analysis of
traditional methods and contemporary deep learning
models, summarizing the performance of various
prevalent packaging image recognition techniques about
classification accuracy, parameter count, and inference
speed, as derived from our experiments utilizing the
PackNet-10K dataset. This comparative research
emphasizes the shortcomings of state-of-the-art (SOTA)
models. It illustrates the necessity for an adaptive design
that can accommodate geometric distortions, illumination
fluctuations, and intricate packaging scenarios.

Table 1: Summary of baseline methods on the PackNet-10K Dataset

Accuracy Inference -

Method (%) Parameters (M) Time (ms) Key Characteristics

SIET + SVM 68.3 N/A 115.6 Manual _ feature extraction, sensitive to
deformation

LBP + SVM 72.6 N/A 109.3 Texture-based, limited scale robustness

ResNet-50 86.2 25 6 8.5 Deep _reS|duaI network, poor small object
detection

Inception-V3 88.1 23.9 34.2 Multi-branch CNN, slow inference

YOLOV5s 89.4 79 16.5 Real-time detection, weaker classification
accuracy

Proposed Model 96.8 21.3 11.2 Adaptive MSCB + AAM, fast, high precision

Table 1 illustrates those conventional approaches
like SIFT and LBP do not generalize well across
differences in illumination and shape, and demonstrate
significant processing delay. CNN-based models such as
ResNet-50 and Inception-V3, while providing enhanced
accuracy, exhibit limited adaptation to non-rigid
deformations and demonstrate inefficiency in managing
small-scale packaging features. YOLOV5s provides rapid
inference; nonetheless, its categorization efficacy is
inadequate for detailed packing categories. The proposed
model surpasses all baselines by incorporating multi-
scale feature fusion and adaptive deformable

convolution, resulting in enhanced accuracy and real-
time performance.

3 System architecture and algorithm
design

3.1 System architecture

The article proposes a method of hierarchical
modularization to enhance system performance by
optimizing the functionalities of individual modules. The
system contains the following basic parts: feature
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extraction network, Backbone, adaptive adjustment
module (AAM), and classifier that work together to
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improve recognition accuracy and system adaptability
according to Figure 1.
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Figure 1: Overall scheme architecture diagram

Figure 2 illustrates the comprehensive pipeline of the
proposed model, encompassing data preprocessing,

adaptive adjustment mechanism, and classification
layers. This comprehensive flow delineates the complete

hybrid augmentation  procedures, and essential  recognition procedure tailored for industrial packaging
components like the feature extraction backbone, photos.
o - - Featire Extraction Backbone Maodified
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Figure 2: End-to-end workflow of the multi-scale adaptive CNN for packaging image recognition

The foundational Backbone component serves to
identify essential data characteristics during input
processing. The Backbone network structure receives
ResNet-50 design elements, which lead to performance
enhancements. ResNet-50 operates as a deep residual
network, which was developed to solve the gradient
vanishing issue in deep neural network training by using

residual connections. The network contains several
residual modules that create connections to merge
previous layer input with current layer output, thus
supporting effective gradient flow in deep networks. The
model version improves the feature extraction capability
of ResNet-50 through its transformation into a Multi-
Scale Convolutional Block (MSCB). The network
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improves its feature information processing capacity by
implementing multiple convolutional layers, which
function at different scales to identify distinct image
elements. The network’'s multi-scale design enables it to
detect targets of different sizes and shapes while also
being able to handle various image input dimensions. A
mathematical representation of the ResNet-50 residual
structure exists through this formula [16]:
y=F@W,)+x (1)
The equation uses the variable x to represent input
data while F(x, W;) stands for the transformation which
consists of convolutional layers along with activation
functions and other operations, and W, indicates layer
weights that produce the output y. It explains how the
network is structured, combining the input data with its
modified version using skip connections to tackle the
issue of gradient vanishing in deep learning networks.
The key feature of the model consists of the
Adaptive Adjustment Module (AAM) that modifies its
receptive field automatically based on changing target
conditions. Each specific neuron in the network has a
particular limit on how much input data it can process
simultaneously. The AAM module modifies the
convolution kernel structure and size through deformable
convolution to create automatic adjustments that enable
the network to better handle different target scales and
shapes. By using offsets, deformable convolution allows
convolution operations to flexibly handle both regular
grid patterns and local input data patterns. The approach
demonstrates significant performance improvements
when applied to complicated situations. The
mathematical expression for deformable convolution
operations is represented by the following formula [16]:

y() = Y Wl px(+ @)y +8YED) ()
ij

The mathematical expression utilizes the following
elements for its operation: x(x,y) as the input image,
w(i,j) functions as the convolution kernel weight, and
Ax(i,j), Ay(i,j) represent the learned offsets that
modify the convolution field. The formula elucidates the
methodology for changing the convolutional receptive
field to capture intricate feature information effectively.

The classifier component evaluates the classification
for extracted feature information through its analysis.
The system includes a series of Fully Connected Layers
along with SoftMax layers, which compose this specific
component. Fully connected layers execute two major
functions, which are to map nonlinear relations between
features, produce activation scores for class labels, and
generate probabilities for class membership. The
SoftMax layer transforms activation scores into
distribution probabilities, which enables the model to
generate predictions for every category. The SoftMax
function is defined as follows [16]:

exp(z
POy = clx) = b le)_ ®
2. exp(z.)

The activation value of category ¢ becomes z, in
Equation (3), while the function exp(z.) calculates the
sum of all category activation values. A probability value
for each category results from the SoftMax function,
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which guarantees that all category probabilities combine
to equal 1. This process enables the classifier to output
the prediction probability of each category based on the
feature information of the input data, thereby achieving
the final classification.

Throughout the entire training process of the model,
all modules collaborate to optimize the model parameters
using the backpropagation algorithm. During the training
process, errors are propagated layer by layer from the
classifier to the Backbone network and AAM module via
the gradient descent algorithm. The weights and offsets
in each module are adjusted to optimize the model's
performance on the training set. The loss function usually
uses the Cross Entropy Loss function to measure the
difference between the predicted category and the correct
category. The formula for Cross Entropy Loss is [16]:

L=~ Z Yelog(¥c) @)

[
In Equation (4), y, is the binary encoding of the real
label, ¥, It is the category probability predicted by the
model. By minimizing the loss function, the model can

continuously adjust its parameters to improve
classification performance.
To guarantee reproducibility —and practical

application, the mathematical models outlined in Egs. (1)
to (9) have been comprehensively implemented utilizing
the PyTorch deep learning framework. The residual
block structure in Eq. (1), based on ResNet-50, is
executed by sequential convolutional modules
incorporating batch normalization and ReLU activations,
complemented with skip connections to facilitate
efficient gradient propagation. The deformable
convolution operation described in Egs. (2), (7), and (9)
are implemented using the Deformable Convolution v2
(DCNv2) module from the MMCV library, which
facilitates learnable offset generation and adaptable
sample sites. The Adaptive Adjustment Module (AAM)
dynamically alters the receptive field by employing a
lightweight multilayer perceptron (MLP) architecture to
correlate feature maps with learnt offsets, as delineated in
Eq. (8). This MLP is constructed using a series of 1x1
convolutional layers succeeded by RelLU activations,
enabling it to produce offset tensors utilized in the
deformable  convolution layers effectively. The
classification layer described in Eq. (3) employs a fully
connected layer succeeded by a SoftMax activation,
whilst the loss function in Eq. (4) is executed using the
cross-entropy criterion with label smoothing (smoothing
factor = 0.1). All parameters, encompassing
convolutional weights and bias tensors, are concurrently
tuned during training utilizing the Adam optimizer. The
learning rate is adjusted by cosine annealing, and early
stopping is used when validation loss fails to improve
over five consecutive epochs. The systematic
incorporation of theoretical frameworks into the training
process guarantees clarity, coherence, and reproducibility
in the model's execution.
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3.2 Multi-scale feature fusion strategy
design

In deep learning systems, image processing requirements
often necessitate feature aggregation across multiple
scales to enhance the model's understanding of targets
with diverse dimensions. The model employs a Multi-
Scale Feature Fusion Strategy (MSCB) to improve its
capacity for handling image features at various scales.
The MSCB architecture performs image feature
extraction through parallel convolution kernels of
varying sizes, including 3x3 and 5x5 structures. Different
sizes of convolution kernels produce varying receptive
fields, which enables 3x3 kernels to detect precise local
elements and 5x5 Kkernels to collect extended relationship
data. The network operates by simultaneously evaluating
multiple image scales, which allows the collection of
more comprehensive feature sets.

The feature extraction strategy at multiple scales
combines features by merging features of different scales
through channel connections. The proposed multi-scale
feature fusion approach combines output feature maps
from convolutional kernels of varying sizes (3x3 and
5x5) via channel-wise concatenation. This process
concatenates the feature maps along the channel
dimension, yielding a more comprehensive and varied
representation while maintaining the spatial resolution of
each input. In contrast to channel addition, which
necessitates uniform channel lengths and executes
element-wise summing, channel concatenation augments
the number of channels, enabling the network to preserve
unique information derived from each kernel size. The
combined feature map is then subjected to a 1x1
convolutional layer to diminish dimensionality and
improve feature integration efficacy. The updated fusion

process is mathematically expressed as: Frygion =
F3.3, Fs.s Where F,;and Fs,s represent the feature maps
from the 3x3and 5x5 convolutional branches,
respectively [16]:

Frusion = Fax3, Fsxs )

A mathematical equation expressed as Equation (5)
uses the term Fp,q,, t0 represent concatenation in
channel dimensions. Network performance improves
when the method for feature fusion combines local and
global information.

The approach focuses on integrating multi-scale
features at the same processing level while constructing
effective relationships between different layers. The
system acknowledges that basic features detect exact
edge data while advanced features recognize complex
semantic  concepts. The system enhances its
understanding of image patterns through the integration
of superficial and complex data, which establishes
connections between local parts and broad-scale content.
The system now uses a cross-layer connection approach.
In this particular method, shallow features F,,,, and deep
features Fy;,, combine with a certain ratio while
following a specific formula [16]:

Ffusion =a- Foy t+ 1-a)- Fhigh (6)
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Equation (6) contains a weight coefficient a« which
the network modifies between 0 and 1 to control the deep
and shallow feature fusion ratio. The superior analysis
performance of the network occurs because it makes
real-time changes to the ratio of shallow and deep
features for task completion.

To enhance operational performance, this article
incorporates deformable convolution technology within
feature design strategies to improve model adaptability
for different target scale and shape conditions.
Deformable convolution uses an offset mechanism to
transform the convolution kernel shape, which enables
the network to automatically adjust its receptive field
based on input image features. The network performs
better at recognizing complex image modifications
because of its ability to automatically adapt to changing
input conditions. The output of the multi-scale feature
fusion block undergoes deformable convolution for
flexible spatial adaptation. The deformable convolution
procedure adheres to the mathematical formulation
presented in Equation (2), wherein learnt offsets modify
the kernel's sample positions to more effectively capture
intricate geometric variations.

The development of a multi-scale feature fusion
method represents a crucial element in image processing
because it strengthens the model against difficult
situations that include intricate scenes and various target
scales, together with highly deformed objects. The model
demonstrates superior image comprehension by utilizing
scale-based feature fusion alongside cross-layer
connections and deformable convolutions to achieve
better flexibility and adaptability. The innovative feature
fusion techniques, when united, produce better model
outcomes, which demonstrate enhanced accuracy in
multiple operational tasks.

4 Optimization of
convolutional
mechanism

A method employs dynamic convolution Kkernel
adjustment by creating image-based kernel offsets that
optimize convolutional network performance for
complex geometric images and deformed objects. The
standard convolution mechanism uses a fixed-size kernel
structure, which cannot modify its receptive field
according to different target areas containing significant
deformations and scale changes, thus causing feature
extraction errors. The solution to this problem involves
the successful implementation of dynamic kernel shape
and position variations, which result in enhanced model
flexibility and accuracy.

The network generates convolution kernel offsets
from image features to adapt the receptive field
dynamically. To generate convolution kernel offsets, an
MLP model uses the input feature map to produce output
results. An offset AW transforms the convolution kernel's
spatial properties through processing of the input feature
map Fippye Within the MLP module. The mathematical
formula for this process can be expressed as: The

adaptive
kernel adjustment
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network needs to use image features to develop
convolution kernel offsets, which allow adaptive
adjustment of the kernels. Through the use of an MLP
model, the input image feature map generates
convolution kernel offsets as its output. The MLP
module processes the input feature map Fi,,,, tO
calculate an offset AW that adjusts the spatial properties
of the convolution kernel. The mathematical operation is:
AW = fuyip (Finput) (7)

The network employs an MLP to convert input
feature maps into spatial sampling offsets for
convolutional kernels. The offset AW is calculated as:
AW = fypp(Finpue). Where F is the input feature map
and fy.p denotes the offset prediction function. The
MLP consists of two consecutive 1x1 convolutional
layers with 64 and 2k? output channels respectively,
where K is the kernel size (e.g., 3). ReLU activation is
utilized between layers, and batch normalization is
incorporated to enhance training stability. The final result
presents horizontal and vertical offsets for each sampling
position within the deformable kernel. This approach
allows the network to dynamically learn adaptable
receptive fields while maintaining a minimal parameter
count. The MLP and deformable convolution layers are
trained concurrently by backpropagation.

Equation (7) contains the function fy;», which
conducts mapping transformations through the multi-
layer perceptron while F,,,. depicts the input feature
map and AW demonstrates the convolution kernel offset.
Through dynamic adjustments of its convolution kernel,
the network adapts to different deformation types and
local structures to achieve improved performance.

As defined in Equation (7), the convolutional kernel
offset AW = fyp(Finpue) is generated by passing the
input feature map Fi,,,, through a learnable MLP. This
MLP is implemented using two stacked 1x1
convolutional layers with ReLU activation in between.

For a kernel of size k x k, the output AW € R%** x H x
W contains pixel-wise horizontal and vertical offsets for
each sampling location in the kernel. The offsets
facilitate the adjustment of the sample grid in the
deformable convolution procedure, allowing the
convolutional kernel to dynamically modify its receptive
field by the geometric attributes of the input image.
Bilinear interpolation is utilized at fractional places to
preserve differentiability. The parameters of the
convolutional kernel and the MLP are concurrently
trained using  backpropagation  during  model
optimization.

Convolution relies on a calculated offset value to
adjust the convolution kernel, changing its receptive field
properties. This process is transformed by Deformable
Convolution. The fixed position of each convolution
kernel element in standard convolution operations
contrasts with the dynamic sampling position of the
convolution kernel elements in deformable convolution,
which enables flexible shape adaptation. The mechanism
works effectively to process scale changes along with
rotations, translations, and other geometric deformations.
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The specific implementation serving deformable
convolution refers to DCNv2 (Deformable Convolution
v2), which allows the convolution operation to modify its
receptive field through offset-based adjustments. The
adaptive adjustment technique employs deformable
convolution, allowing the receptive field to dynamically
adapt to alterations in shape and structural distortions in
packing pictures.

The equation contains x(x, y) for image pixel values
alongside the convolution kernel weight w(i,j) and the
offset changes 4x(i,j) and Ay(i,j) on the x-axis and y-
axis. During training, the offset learns the proper values.
The convolutional kernel demonstrates flexibility in
adjusting its receptive field in response to changes in
image features, thereby enhancing the model's
performance on deformed objects.

The research paper enhances deformable convolution
modeling by introducing a joint optimization method for
the convolutional layer and offset in DCNv2.The
simultaneous optimization of the convolution kernel
offset and weight inside the network enhances the
combination between feature extraction requirements and
geometric deformation modeling. The network requires
learning to both perform effective feature extraction and
modify the convolution kernel positions, along with their
shapes, based on feature information. Through joint
training, the model can automatically adjust the receptive
field in each layer, thereby better adapting to geometric
changes in the image, while also introducing multi-scale
feature fusion. Different scales of features carry different
information in images, and combining multi-scale
features can help networks better understand the various
levels and details of objects. In the adaptive convolution
kernel adjustment mechanism, through multi-scale
convolution kernel adjustment, the network can
dynamically adjust the receptive field at different scales,
further enhancing its adaptability to geometric
deformation of images.

5 Experimental and simulation

analysis

5.1 Experimental design and dataset
construction

To verify the effectiveness of the proposed DCNN model
in packaging image recognition tasks, this study
conducted systematic experiments from three aspects:
dataset  construction,  experimental  environment
configuration, and comparative scheme design. Firstly, in
response to the scarcity of data in the packaging industry,
a multi-scenario packaging image dataset, PackNet-10K,
was constructed in collaboration with a specific
intelligent packaging equipment manufacturer. This
dataset comprises 10,000 high-resolution (1920 x 1080)
images, covering six major categories of packaging,
including food, medicine, and daily chemical products,
with each category containing 1,200 to 2,000 samples.
The data collection scenario simulates a real industrial
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environment, four interference
conditions:

1) Lighting changes (low light, high exposure,
dynamic fill light);

2) Complex background (conveyor belt reflection,
product stacking obstruction);

3) Deformation interference (packaging bag
wrinkles, box body compression deformation);

4) Motion blur (image blur caused by high-speed
movement of the production line). The dataset is divided
into a training set (7,000 images), a validation set (2,000
images), and a testing set (1,000 images), with a ratio of
7:2:1, ensuring class distribution balance through random
stratified sampling.

In the data preprocessing stage, a multi-scale
normalization strategy is adopted: the input image is
uniformly scaled to a resolution of 224 x 224, and
channel normalization is performed (mean [0.485, 0.456,
0.406], variance [0.229, 0.224, 0.225]).To enhance the
adaptability of the model to industrial scenarios, a mixed
data augmentation strategy is designed: 1) Geometric
transformation: random horizontal flipping (probability
0.5), rotation (x 15 °), cropping (scaling ratio 0.8-1.2);2)
Photometric distortion: brightness adjustment (A + 30%),
contrast jitter (coefficient 0.7~1.3), Gaussian noise
(6=0.01);3) Semantic enhancement: Based on CutMix
local area mixing (mixing ratio 0.4), simulate the local
occlusion phenomenon of packaging stacking in the
production line.

The training procedure was supervised with early
pauses to avert overfitting. The early stopping criterion
was established with a patience value of five epochs,
indicating that the training process would cease if the
validation loss failed to improve over five successive
epochs. A delta threshold of 0.001 was implemented,
whereby training would cease only when the variation in
validation loss between epochs fell below this value,
signifying little advancement.

The model optimization was improved with a cosine
annealing learning rate schedule, which modified the
learning rate throughout training. The starting learning
rate was established at 0.01, with a minimum learning
rate of 1e-6. This scheduling strategy enabled the
learning rate to diminish progressively in a cosine
manner, commencing at a high value and gradually
approaching the minimum as training advanced, so
promoting efficient convergence while optimizing the
model parameters in the last phases of training.

The criteria were meticulously selected to harmonize

covering typical

convergence speed with model generalization,
guaranteeing optimal performance while preventing
overfitting.

W. Sun

The experimental hardware platform is equipped
with an NVIDIA Tesla V100 GPU (32GB video
memory) and an Intel Xeon Gold 6248R processor, and
the software framework is based on PyTorch 1.9.0. The
model training utilizes the Adam optimizer with an initial
learning rate of 0.01, dynamically adjusted using a cosine
annealing strategy, and a batch size of 32. The loss
function adopts a cross-entropy loss with label smoothing
(Smoothing Factor=0.1), with a training period of 100
epochs and an early stopping mechanism (terminated
when the validation set loss does not decrease for five
consecutive epochs). The comparative experiment covers
four types of baseline models:

1) Traditional feature methods (SIFT+SVM,
LBP+SVM);

2) Classic CNN (ResNet-50, Inception-V3, VGG-
16);

3) Lightweight model (MobileNet-V2);

4) The latest industrial inspection model
(YOLOV5s).

The ablation experiment verifies the contribution of
each module by gradually adding multi-scale convolution
blocks (MSCB), adaptive adjustment modules (AAM),
and mixed data augmentation strategies. Performance
evaluation indicators include classification accuracy (F1-
Score), Parameter count (Params), and single graph
inference time (Inference Time). All experiments were
repeated 5 times in the same environment to eliminate
the influence of randomness.

The model's inference speed was assessed under
controlled conditions to guarantee consistency and
reliability. The inference batch size was established at
32, a standard figure for models of this complexity,
facilitating a balance between memory utilization and
processing duration. The model was executed via the
PyTorch framework, with enhancements applied through
TensorRT for expedited inference. The system operated
on an NVIDIA Tesla V100 GPU with 32GB of memory
to guarantee rapid processing. These conditions allowed
the model to attain an inference time of 11.2 milliseconds
per image during testing, illustrating its efficacy for real-
time applications.

5.2 Experiment and results analysis

As shown in Figure 3, the comparison of training loss
curves reveals that the model (DCNN+AAM) converges
significantly faster than ResNet-50 within 50 epochs. By
the 30th epoch, the loss value of the model had decreased
to 0.15, while ResNet-50 remained at 0.28. The adaptive
convolution kernel adjustment mechanism accelerates the
feature learning process, allowing the model to capture
key texture and shape features more efficiently.
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Training Loss Curve Comparison
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Figure 3: Training loss curve

This experiment compared mainstream models with
the DCNN and DCNN+AAM models proposed in this
paper on a self-built packaging image dataset (including
10000 images covering six complex scene categories).
As shown in Table 2, the model proposed in this paper

accuracy and inference speed.DCNN+AAM improves
accuracy by 9.2% and reduces inference time by 65.6%
compared to ResNet-50 through the adaptive adjustment
module. The parameter optimization to 18.9M indicates
that the multi-scale feature fusion strategy effectively

significantly outperforms the baseline model in both  balances model complexity and  performance.
Table 2: Performance comparison of different models on the packaging image dataset
model Accuracy (%) | Parameter quantity (M) Inference time (ms) | F1-Score
ResNet-50 86.2 25.6 28.5 0.847
Inception-V3 88.1 23.9 34.2 0.863
VGG-16 82.4 138.4 45.8 0.802
MobileNet-V2 84.7 3.5 12.3 0.829
DCNN (in this article) 93.7 18.9 9.8 0.921
DCNN+AAM (in this article) | 95.4 21.3 11.2 0.938
Complete Model (Proposed) 96.8 21.3 11.2 0.948
The comparison of the accuracy of different models  convolutional block and the adaptive adjustment

on the packaging image test set is shown in Figure 4. The
DCNN+AAM model significantly outperforms other
models with an accuracy of 95.4%, and improves by
9.2% compared to ResNet-50.VGG-16 exhibits
overfitting due to its excessive parameter count, resulting
in an accuracy of only 82.4%. This model achieves
optimal performance while maintaining a low number of
parameters through multi-scale feature fusion and
adaptive convolution kernel adjustment.

To maintain consistency between the performance
comparison (Table 2) and the ablation research (Table 3),
the terminology for various configurations is elucidated
as follows: In Table 2, “DCNN (in this article)” refers to
the model incorporating both the multi-scale

mechanism, excluding data augmentation, which aligns
with the “+MSCB+AAM” configuration in Table 3
(accuracy: 93.7%). The "DCNN+AAM" entry in Table 2
denotes the model after the implementation of the
comprehensive hybrid data augmentation approach,
corresponding to the "+Data augmentation™ row in Table
3 (accuracy: 95.4%). The minor discrepancy in reported
parameter counts (18.9M vs. 18.6M) results from
rounding and architectural enhancements between
versions. The ultimate "Complete Model” in Table 3
integrates optimization enhancements across modules
and training configurations, yielding an enhanced
classification accuracy of 96.8% while preserving the
parameter count of 21.3 million.
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Accuracy Comparison on Packaging Images
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Figure 4: Comparison of model accuracy.

Conduct ablation experiments by gradually adding
multi-scale convolutional blocks (MSCB), adaptive
adjustment modules (AAM), and data augmentation
strategies. The baseline model achieves an accuracy of
86.2%, and adding MSCB alone improves this accuracy
by 3.9%, demonstrating that multi-scale feature fusion
effectively captures both local and global features. After

introducing AAM, the accuracy was further improved to
92.8%, and the feature extraction time was reduced by
34.7%. The complete model, incorporating all modules,
achieved an accuracy of 96.8%, verifying the
effectiveness of collaborative optimization across various
components.

Table 3: Analysis of ablation experiments.

configuration Accuracy (%) | Recall rate (%) | Feature extraction time (ms) | Parameters (M)
Baseline (ResNet-50) 86.2 84.5 28.5 25.6

+MSCB 90.1 88.7 24.3 18.9

+AAM 92.8 91.2 18.6 20.4
+MSCB+AAM 93.7 924 15.2 18.9

+Data augmentation 95.4 94.1 16.8 21.3

Co_mplete Model (in this 96.8 953 112 213

article)

Table 3 indicates that the configuration augmented
with hybrid data retains a parameter count of 21.3
million, consistent with the model that integrates multi-
scale feature fusion and adaptive convolutional
adjustment. The comprehensive model incorporates all
suggested  elements, including the  multi-scale
convolutional block, the adaptive offset adjustment
method, and the data augmentation strategy, while
maintaining parameter efficiency. This indicates that the
final model attains performance enhancements without
adding more complexity. The comprehensive
configuration achieves a maximum classification
accuracy of 96.8 percent, a recall of 95.3 percent, and a
minimal inference time of 11.2 milliseconds, thereby

validating its efficacy and appropriateness for real-time
industrial applications.

Test the robustness of the model under four different
lighting conditions in a simulated industrial environment.
The traditional SIFT method has an accuracy of only
54.2% under dynamically changing lighting conditions,
while the DCNN+AAM model achieves 85.3% under the
same conditions. Experiments have shown that the AAM
module improves the model's adaptability to uneven
lighting by 23.1% by dynamically adjusting the receptive
field of the convolutional kernel. The data augmentation
strategy (including random brightness adjustment and
noise injection) further increased the average accuracy to
89.2%.

Table 4: Robustness testing under different lighting conditions.

Light intensity level Traditional | ResNet- DC_NN (in this DC_NN+AAM (in this | Standard Deviation
SIFT 50 article) article) (%)

Low light 62.3 78.5 85.4 88.9 +23

Normal lighting 81.6 86.2 93.7 95.4 +1.8

High exposure 58.7 72.1 83.6 87.2 +3.0
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Dynamic changes 54.2 68.9 80.1 85.3 +25
Average 64.2 76.4 85.7 89.2 +2.4
performance

Compare the impact of different data augmentation
strategies on model performance. Traditional random
cropping and flipping improve accuracy by 4.3%, but the
overfitting rate remains at 12.4%. The hybrid
enhancement strategy proposed in this article (combining
CutMix, brightness adjustment, and dynamic noise)
improves accuracy to 95.4% and reduces overfitting to
5.3% while maintaining training efficiency. Experimental
results have shown that the combined enhancement
strategy is superior to a single method, saving 28.6% of
training time compared to Auto Augment.

This work employs a hybrid data augmentation strategy
that integrates geometric modifications, photometric

distortions, and semantic enhancement techniques. These
augmentations are concurrently applied to each training
image, enabling the model to acquire a varied array of
characteristics and enhance resilience to various
distortions. The combination specifically comprises
random  horizontal flipping, rotation, brightness
modification, contrast jitter, Gaussian noise, and CutMix
for local area blending. The concurrent implementation
of all augmentation strategies enhances the model's
capacity to manage real-world variables and mitigates
overfitting.

Table 5: The impact of different data augmentation strategies

Enhancement strategy Accuracy (%) Training time (h) Overfitting rate (%)
No enhancement 86.2 2.1 18.7

Random cropping + flipping 90.5 2.8 12.4

Brightness adjustment+noise 92.1 3.2 9.8

CutMix 934 3.5 7.6

Hybrid Enhancement (in this article) 95.4 4.1 5.3

Figure 5 describes the impact of different data
augmentation strategies on model performance. The
hybrid enhancement strategy proposed in this article
(combining CutMix, brightness adjustment, and dynamic
noise) achieves an accuracy of 95.4%, which is 2-5%
higher than a single strategy. The experiment

demonstrates that the combined enhancement effectively
improves the model's generalization ability by simulating
lighting changes and local occlusions in real industrial
environments, thereby verifying the effectiveness of the
data augmentation design presented in Section 3.1.

Impact of Data Augmentation Strategies

96 1

Baseline Flip+Crop

Brightness+Noise

T T
CutMix Ours

Augmentation Methods
Figure 5: Comparison of data enhancement strategies

The proposed model is primarily intended for image
classification, yielding a single category label for each
input image; however, the assessment of small target
performance (illustrated in Figure 6) serves as an
ancillary evaluation to exhibit the model's sensitivity to
nuanced features. This does not pertain to object
detection with bounding box localization; instead, it

assesses classification accuracy at varying levels of
visual granularity by selecting and analyzing samples
that include small packaging components. This viewpoint
emphasizes the model's ability to identify distinguishing
features, even for targets with minimal spatial presence
in the image, which is especially pertinent in industrial




276  Informatica 49 (2025) 265-280

contexts where packaging differences may be subtle or
partially obscured.

Figure 6 illustrates the analysis of the model's
classification performance regarding the proportion of
minor visual features present in each image. This test
underscores the model's efficacy in capturing fine-
grained features, despite the job being limited to image-
level classification, particularly when small packaging
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components predominate the visual content. The model
attained a classification accuracy of 78.6 percent for
images with small-scale features (less than 10 pixels in
prominent object width), indicating a 16.3 percent
enhancement over the baseline. This shows that the
suggested multi-scale  fusion technique enhances
sensitivity to subtle or partially obscured packaging
features, even in the absence of explicit object detection.

Detection Accuracy for Different Object Sizes
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Figure 6: Detection accuracy of targets at different scales

The suggested methodology is exclusively intended
for image categorization, assigning a single label to each
image that reflects its predominant packaging type. The
model is incapable of executing object detection tasks,
including the identification or localization of numerous
instances inside an image. Figure 6 analyzes photos with
small-scale packing elements to assess the model's
capacity to identify classes where the primary
distinguishing characteristics occupy a minimal amount
of the visual field. Terminology like “recognition of
small targets” pertains to image-level classification
accuracy rather than spatial detection. This investigation
highlights the efficacy of the multi-scale feature fusion
technique in improving sensitivity to nuanced packing
details without utilizing detection-specific modules like
anchor boxes, proposal networks, or non-maximum
suppression.

5.3 Discussion

The packaging business is a formidable challenge for
automatic image recognition due to its complicated
visual circumstances. Frequent challenges, like backdrop
clutter, variable lighting, object distortion, and motion
blur, sometimes result in substantial misclassification
when employing conventional techniques. Hand-crafted
feature techniques, such as SIFT and LBP, while resilient
to specific variances, fail to generalize across various
package kinds and contexts. Classical CNNs such as
ResNet-50 and VGG-16, although proficient on
conventional picture datasets, often encounter difficulties
in packing scenarios due to their static receptive fields
and restricted adaptability to geometric irregularities. The

suggested architecture addresses these restrictions by
using an MSCB, an AAM, and a hybrid data
augmentation technique specifically designed for
package inspection contexts.

The MSCB integrates high-resolution local details
and low-resolution contextual information by combining
feature maps derived from concurrent 3x3 and 5x5
convolutional kernels. This approach enables the model
to sustain excellent accuracy across items of diverse
scales, including diminutive emblems or labels on
packaging. The AAM concurrently improves geometric
flexibility by producing learnable offsets for each
sampling site within the convolution kernel, as specified
in Equ. (8). The offsets are calculated using a lightweight
MLP and included using flexible convolution techniques
(Equ. (9)), allowing the network to adaptively modify its
receptive field in reaction to deformations or occlusions.
Furthermore, the hybrid augmentation strategy
integrating geometric, photometric, and semantic
transformations exposes the network to a wider array of
changes during training. These encompass simulated
occlusions (CutMix), brightness variation, Gaussian
noise, and random cropping to enhance generalization
and mitigate overfitting.

The empirical findings displayed in Tables 2 and 3
corroborate the efficacy of each design decision. The
suggested DCNN+AAM model attains a classification
accuracy of 95.4%, whilst the comprehensive model
achieves 96.8%. Our model demonstrates a 10.6% and
8.7% enhancement over ResNet-50 (86.2%) and
Inception-V3 (88.1%), respectively. It attains the greatest
F1-Score (0.948) among all evaluated models, signifying
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an optimal balance between precision and recall. The
inference time of 11.2 ms, along with a moderate
parameter count of 21.3M, indicates that the model is
tailored for real-time applications. Moreover, the hybrid
augmentation technique enhances resilience under
diverse lighting circumstances by more than 20%, as
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indicated in Table 4. In ablation trials, each additional
component, MSCB, AAM, and augmentation,
contributed progressively to performance enhancement,
with data augmentation alone decreasing the overfitting
rate from 18.7% to 5.3%.

Table 5: Performance Comparison of Proposed Model with Baselines and Variants

Accuracy i Params Inference Time | Overfitting .
Model (%) F1-Score M) (ms) Rate (%) Key Characteristics
ResNet-50 | 86.2 0.847 | 256 285 18.7 Standard - deep  residual

network

Inception- 88.1 0.863 23.9 349 15.2 l\/_Iqu—branch ~ structure,
V3 higher complexity
MobileNet- 847 0.829 35 123 20.3 Lightweight, fast, but less
V2 accurate
DCNN 93.7 0.921 18.9 9.8 8.5 Backbone + MSCB
RZRI/IN * 95.4 0.938 21.3 11.2 6.1 + Adaptive offset adjustment
Complete
Model (in | 96.8 0.948 21.3 11.2 5.3 + Hybrid data augmentation
this article)

The practical ramifications of this concept extend beyond
academic benchmarks. In industrial inspection contexts,
inaccuracies in packaging identification, particularly for
products with diminutive, obscured, or irregular
characteristics, can result in considerable quality control
challenges and operational setbacks. The suggested
model attains exceptional precision while maintaining
computational economy appropriate for implementation
in embedded systems on production lines. Its flexible
design allows for scalability across many product
categories and environmental circumstances without the
need for retraining. The model's versatility, along with
real-time speed and inexpensive hardware requirements,
renders it a suitable option for extensive implementation
in smart manufacturing processes.

Although the model exhibits robust performance,
specific constraints persist. In situations of severe
occlusion or when packaging designs exhibit minimal
visual contrast, the model's accuracy may diminish.
Likewise, unrecognized packaging designs or materials
absent from the training data may impede generalization
efficacy. Future research will investigate cross-domain

adaptation and uncertainty estimate to enhance the
model's robustness in these scenarios.

The suggested approach exhibits encouraging
findings; however, certain limitations and potential
biases warrant consideration. The principal constraint is
the dependence on the PackNet-10K dataset for training
and evaluation, which may inadequately represent the
diversity of actual packaging situations, including
differences in materials, ambient influences, or severe
occlusions. The model's performance was assessed with
an NVIDIA Tesla V100 GPU, and the inference speed
and accuracy may differ on alternative hardware
configurations or less powerful devices. Moreover,
although the model demonstrates commendable
performance under standard settings, its accuracy
diminishes significantly in instances of severe occlusion
and inadequate lighting, highlighting the necessity for
enhancements in resilience. Ultimately, the employed
data augmentation strategies, however efficacious, may
not replicate all conceivable real-world differences.
Future endeavors will concentrate on evaluating the

model across supplementary datasets, hardware
configurations, and edge cases to enhance its
generalization and performance assessment.
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6 Conclusion

This study enhances the hierarchical extraction and
adaptive adjustment of multi-scale features in packaging
images through an improved DCNN architecture. Key
innovations include:

(1). Multi-scale feature fusion mechanism: The
MSCB module captures features at different scales in
parallel and fuses shallow edge information with deep
semantics via cross-layer connections. This enhancement
improves recognition accuracy for small objects (<10px)
by 16.3% and addresses traditional models' sensitivity to
scale variations.

(2). Adaptive convolution kernel adjustment module:
Based on deformable convolutions, this module
dynamically generates offsets, leading to a 23.1%
improvement in accuracy compared to ResNet-50 under
low-light and high-exposure conditions, and significantly
improving adaptability to complex geometric structures,
such as packaging wrinkles and extrusion deformations;

(3). Industrial-grade data augmentation strategy: By
combining geometric transformations, photometric
distortion, and semantic augmentation (e.g., CutMix for
simulating stacking occlusions), the approach reduces
model overfitting rate from 18.7% to 5.3%, thus
enhancing generalization for industrial scenarios.

Experimental results demonstrate that the model
strikes a balance between accuracy (96.8%), inference
speed (11.2 ms), and parameter count (21.3M), making it
suitable for real-time production line inspection. Future
research will focus on model lightweighting (e.g.,
knowledge distillation and structural pruning), cross-
domain transfer learning (adaptation to different
packaging materials), and 3D vision integration
(improving detection accuracy for three-dimensional
deformations), further promoting the application of deep
learning in intelligent packaging workflows.
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