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With the rapid advancement of intelligent manufacturing technologies, Reconfigurable Flexible Assembly
Lines (RFALSs) have emerged as a promising solution to enhance production flexibility and efficiency.
However, the process parameter optimization for RFALs, particularly in assembly line balancing,
presents a complex NP-hard combinatorial optimization problem. This study aims to address the process
parameter optimization in RFALs by considering multiple critical performance metrics, including
production cycle time, tool replacement time, and assembly unit cost. A mathematical model is formulated
to describe the optimization problem, clearly defining the objectives and constraints. Based on this model,
a novel Synergistic Genetic Algorithm and Particle Swarm Optimization (SGAPSO) is proposed. The
SGAPSO algorithm effectively combines the global exploration capability of Genetic Algorithms (GA)
and the local exploitation and fast convergence characteristics of Particle Swarm Optimization (PSO). It
employs a task sequence-based encoding method. In the GA phase, population evolution is driven by
selection, crossover, mutation, and elitism. In the PSO phase, particle positions are decoded using the
Smallest Position Value (SPV) rule, and iterations are optimized through standard velocity and position
update equations. The key synergistic mechanism proved by ablation study involves periodically guiding
the PSO population with elite individuals from GA and enhancing the GA population with superior
solutions found by PSO. Experimental validation on standard benchmark problems and an industrial case
study of pressure-reducing valve assembly shows that the SGAPSO algorithm outperforms standalone GA
and PSO in terms of solution quality, convergence speed, and solution stability.

Povzetek: SGAPSO hibridni algoritem zdruzuje prednosti GA in PSO za bolj kvalitetno optimizacijo

parametrov v fleksibilnih linijah.

1 Introduction

The rapid advancement of intelligent manufacturing
technologies is driving manufacturing systems toward
greater flexibility, efficiency, and intelligence [1, 2]. In
this transformative era, Reconfigurable Flexible
Assembly Lines (RFALs) have garnered significant
attention due to their inherent capability to adapt to diverse
product portfolios and dynamic production schedules [3].
RFALs, characterized by their modular architectures and
rapid reconfiguration capabilities, offer modern
manufacturing enterprises a distinct competitive
advantage [6, 7]. However, to fully unleash the potential
of RFALSs, the optimization of their process parameters is
paramount. This optimization is crucial for maximizing
production efficiency, minimizing operational costs, and
achieving comprehensive enhancements in overall system
performance [8, 9].

Process parameter optimization represents a core
challenge within intelligent manufacturing systems,
involving a multitude of complex variables and stringent

constraints [11, 12]. Researchers like Samouei et al. have
extensively explored the intricacies of assembly line
balancing, highlighting the significance of optimizing task
assignments to workstations and minimizing tool
changeover times [13, 14]. They emphasize that these
factors are not only critical for enhancing production rates
but also for achieving cost reductions in RFALSs. Tran et
al. further corroborates this by investigating how
simulation and metaheuristics can be employed to tackle
the assembly line balancing problem, underscoring the
need for efficient algorithms that can navigate the
complexities of RFALs [15]. These optimization tasks,
often categorized as NP-hard combinatorial optimization
problems, pose significant challenges due to their inherent
complexity and the vast solution spaces they encompass
[16]. Traditional optimization methodologies, while
effective in simpler scenarios, often struggle to identify
effective solutions within practical timeframes for such
intricate problems [17]. Consequently, the research and
development of highly efficient optimization algorithms
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have become imperative. Studies by Mondal et al. and
Villalobos et al. have made strides in addressing these
challenges by proposing matheuristic approaches and new
mathematical models for assembly line balancing,
demonstrating the ongoing efforts to overcome the
limitations of traditional methods and enhance the
optimization process for RFALs [18, 19].

In recent years, metaheuristic algorithms, particularly
Genetic  Algorithms  (GA) and Particle Swarm
Optimization (PSO), have demonstrated considerable
potential in tackling complex optimization problems,
especially in parameter optimization. Genetic Algorithms
are renowned for their robust global search capabilities,
drawing inspiration from the mechanisms of natural
selection and evolution. As detailed by Katoch et al. in
their review, GAs explore vast solution spaces by
simulating evolutionary processes, making them highly
suitable for finding optimal combinations of numerous
parameters in complex systems [20]. For instance, in
hyperparameter tuning for machine learning models or
parameter calibration in engineering design, GAs can
effectively avoid local optima to identify globally superior
parameter configurations. Particle Swarm Optimization
(PSO) is favored for its rapid convergence characteristics
and efficient local search capabilities, mimicking
collective intelligence behaviors such as bird flocking or
fish schooling. Gad's systematic review highlights the
effectiveness of PSO in diverse applications, including
various parameter optimization scenarios [21]. PSO
searches parameter spaces through collaboration and
information sharing among particles in a swarm, enabling
quick identification of promising regions. For example, in
tuning control system parameters or optimizing complex
functions, PSO can approximate optimal solutions by
iteratively adjusting particle positions. Many studies have
also explored hybrid variants of PSO, for instance, by
integrating it with other algorithms [22] or by
incorporating advanced mechanisms such as adaptive
strategies and novel learning frameworks, to further
enhance its performance in multi-modal and high-
dimensional parameter optimization problems. Overall,
both GA and PSO offer powerful and flexible tools for
addressing challenging parameter optimization problems.

Nevertheless, individual metaheuristics often exhibit
inherent limitations. For instance, GAs may experience a
slowdown in convergence speed during later search stages
[23]. Yang et al. discusses how GAs can sometimes
struggle with convergence rates, particularly as the search
space becomes more complex [24]. Similarly, while PSO
can be effective in many scenarios, it can be susceptible to
premature convergence to local optima, especially when
applied to complex, multimodal problems. Wang et al.'s
work highlights how PSO might become trapped in local
optima, leading to suboptimal solutions in such cases [25].

To overcome these individual shortcomings,
researchers have increasingly explored synergistic
optimization approaches that combine the strengths of GA
and PSO. Such hybrid methods aim to achieve more
efficient and effective optimization performance by
integrating the complementary advantages of both
algorithms [26]. Through the strategic amalgamation of
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GA's global exploration prowess and PSO's local
exploitation  capabilities,  synergistic  optimization
techniques can navigate complex solution spaces more
adeptly, thereby yielding superior solutions for process
parameter optimization problems in RFALs [27]. For
example, Premalatha et al. proposed a hybrid PSO and GA
model that outperforms standard PSO in solving global
optimization problems, reducing stagnation and premature
convergence on suboptimal solutions [28].

The central objective of this research is to investigate
the application of GA and PSO synergy to the process
parameter optimization problem within intelligent
manufacturing systems. By first constructing a precise
mathematical model to delineate the intricacies of process
parameter optimization in RFALs, and subsequently
designing an effective synergistic optimization algorithm,
termed Synergistic Genetic Algorithm and Particle Swarm
Optimization (SGAPSO), this study aims to provide an
innovative solution framework for complex optimization
challenges prevalent in intelligent manufacturing.
Through rigorous experimental validation across standard
benchmark problems and industrial case studies, this
research will demonstrate the efficacy and superiority of
the SGAPSO algorithm in addressing practical industrial
problems, thereby offering new insights and
methodologies for the optimization of intelligent
manufacturing systems. For instance, experimental results
on benchmark problems such as Jackson and Buxey
instances, as well as the industrial case study of pressure-
reducing valve assembly, are expected to show significant
improvements in solution quality and convergence speed
compared to traditional methods.

The paper is structured as follows: Chapter 2 provides
a detailed exposition of the process parameter
optimization problem in RFALs and constructs the
corresponding mathematical model. Chapter 3 delves
deeply into the design and implementation specifics of the
SGAPSO algorithm. Subsequently, Chapter 4 presents a
comprehensive series of experiments conducted to
evaluate the performance of SGAPSO, comparing it with
other relevant algorithms to validate its effectiveness and
potential in solving process parameter optimization
problems within the domain of intelligent manufacturing.

2 Problem description and
mathematical model

2.1 Problem description: optimizing
process parameters in reconfigurable
flexible assembly lines

In the landscape of intelligent manufacturing, the
optimization of process parameters stands as a cornerstone
for achieving heightened efficiency, cost reduction, and
superior system-wide performance. Reconfigurable
Flexible Assembly Lines (RFALs) are pivotal in this
context, providing the necessary adaptability to manage
diverse product portfolios and dynamic production
schedules. The central challenge within such advanced
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systems is the effective optimization of parameters related
to line configuration and balancing. This optimization
aims to maximize production throughput and the
utilization of resources, while concurrently minimizing
operational inefficiencies and bottlenecks. This research
specifically targets the optimization of critical process
parameters integral to the functioning of an RFAL
environment.

An RFAL's architecture is inherently modular,
typically featuring centralized libraries for tools and
fixtures, alongside reconfigurable assembly cells. These
cells, as the foundational elements of the assembly line,
can be rapidly adapted with different tooling to perform a
wide array of assembly operations, and their physical
layout can be swiftly reconfigured to meet new product
assembly demands. This inherent flexibility, while
advantageous, introduces significant complexity into the
process parameter optimization task. Key parameters
requiring careful optimization include the overall
production cycle time, the non-productive time incurred
during tool and fixture changeovers, and the economic
considerations tied to the deployment and operation of
assembly units. Strategic optimization of these parameters
is fundamental to unlocking the full operational and
economic benefits of RFALs. Figure 1 illustrates a
schematic of a Reconfigurable Flexible Assembly Line
(RFAL) System. The numbered components highlight
various stations within the RFAL: (1) represents the initial
processing station where the base components are
prepared; (2) shows the assembly station where the main
assembly operations are conducted; (3) indicates the
inspection and quality control station; (4) is the packaging
area where the assembled products are prepared for
shipment; and (5) represents the final output station where
the finished products are dispatched. This visualization
provides a clear understanding of how the RFAL's
modular design allows for both flexibility in task
execution and adaptability to changing production
requirements.

Figure 1: Schematic of a reconfigurable flexible
assembly line (RFAL) system

The specific problem this research addresses is the
balancing of an RFAL, a task recognized as an NP-hard
combinatorial optimization problem. The core objective is
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the optimization of task assignments to workstations. This
involves distributing assembly tasks in such a way that a
predefined set of performance metrics—which are
themselves functions of various process parameters—is
optimized. This assignment must rigorously adhere to
established precedence constraints among tasks and other
operational limitations inherent in the manufacturing
environment. This chapter focuses on developing a precise
mathematical model to formally represent this
multifaceted process parameter optimization problem.

2.2 Mathematical model for process
parameter optimization

A robust and comprehensive mathematical model is
indispensable for devising effective strategies for process
parameter optimization. Such a model must accurately
encapsulate the optimization objectives, the decision
variables that represent adjustable process parameters, and
the constraints that define the feasible operational space of
the RFAL balancing problem.

(1) Foundational
parameter optimization

The mathematical model for parameter optimization
is constructed upon several foundational assumptions,
derived from the operational characteristics of RFALSs. It
is assumed that each assembly operation (task) is an
indivisible unit, and a workstation is equivalent to a single
reconfigurable assembly unit. A fundamental requirement
is the complete assignment of all defined assembly tasks,
with each task being uniquely allocated to one workstation.
Crucially, these assignments must respect a predefined
precedence diagram, which governs the permissible
sequence of operations—a key constraint in the
optimization process. Task processing times are
considered deterministic and constant. The total
operational time at any given workstation, a critical
parameter, must not exceed the overall production cycle
time of the assembly line. Following the optimization of
task distribution, it is assumed that different workstations
will have unique configurations of assigned tasks. Finally,
for model simplification, part loading/unloading times and
the initial line stabilization period are deemed negligible.

assumptions for modeling

(2) Obijective function: A multi-faceted approach
to parameter optimization

The optimization of process parameters in an RFAL
context inherently involves addressing multiple, often
conflicting, objectives. This research considers the
simultaneous minimization of three critical parameters:
the production cycle time (CT), the total tool replacement
time (RT), and the aggregate cost of assembly units (ST).
To handle this multi-objective nature, a weighted sum
approach is adopted. This method consolidates the
individual objectives into a single composite objective
function, aiming to find a balanced solution that reflects
the desired trade-offs in parameter optimization:

minZ = w; - CT +w, - RT + w3 - ST 1)
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In this equation, w;, w,, and w; represent non-negative
weight coefficients. These coefficients are crucial as they
signify the relative importance assigned by the decision-
maker to minimizing the production cycle time (CT), the
tool replacement time (RT), and the assembly unit costs
(ST), respectively, within the overall parameter
optimization strategy. The sum of these weights can be
normalized, for instance, to sum to one (w; + w, + wy =
1 ), which helps in ensuring consistent scaling and
interpretation of their relative impacts on the objective
function.

(3) Core process parameters, decision variables,
and constraints in the optimization model

The mathematical model for parameter optimization
is further defined by specific equations and constraints
governing the key process parameters. These elements
collectively define the search space and the criteria for
evaluating potential solutions.

The production cycle time, denoted as CT, is a
paramount performance indicator in assembly line
operations; its minimization is a primary goal of parameter
optimization. CT is typically defined as the maximum
operational time accumulated at any single workstation
across the entire assembly line. A shorter CT directly
translates to higher production efficiency and increased
throughput. The model for CT is expressed as:

CT = max O, tixy) 2
1<ksm

This optimization is subject to several critical
constraints that define the feasible solutions for the
parameter optimization. The precedence among tasks,
which dictates the order in which operations must be
performed, is enforced by the following constraint:

Y= kxyge — Xker ko xp < 0,Vi € pre(j); Vi (3)

This formulation ensures that if task i is a direct
predecessor of task j, task i is assigned to a workstation
whose numerical index is less than or equal to that of the
workstation assigned to task j. It's important to note that
this implies a generally sequential flow of workpieces
through workstations that are indexed in a numerically
ordered fashion.  Alternative or  supplementary
formulations might be necessary for scenarios involving
more complex parallel processing capabilities across
workstations, while still rigorously respecting the
fundamental technological precedence relationships.

Furthermore, each individual assembly task, indexed by
i, must be assigned to precisely one workstation. This is a
fundamental constraint for a valid task allocation in the
parameter optimization process and is represented as:

D=1 Xig = L,Vi 4)

Concurrently, each workstation, indexed by k, must be
assigned at least one task, ensuring that all deployed
workstations are utilized. The upper limit for tasks per
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workstation is naturally the total number of tasks, n. This
is captured by:

1< Z?=1 Xig <N, Vk (5)

The primary decision variable in this parameter
optimization context is x;;, which is a binary variable. It
takes a value of 1 if task i is assigned to workstation k,
and 0 otherwise. This can be formally written as:

if task i is assigned to workstation k
otherwise
(6)

And it must satisfy
X € {0,1}, Vi, k (7)

In these formulations, the indices i and j are used for
the assembly tasks, ranging from 1 to n, where n is the
total number of distinct assembly tasks. The index k
denotes the workstations, ranging from 1 to m, where m
represents the total number of available or configured
workstations.

The term ¢t; signifies the known processing time
required for task i, which is an essential input parameter
for the model. Finally, pre( j ) denotes the set of tasks that
are immediate predecessors to task j, as defined by the
assembly process's technological sequence. The parameter
m, the total number of workstations, can itself be a
decision variable in certain types of balancing problems
(e.g., minimizing m for a given CT), or a fixed input
parameter (e.g., minimizing CT for a fixed m )
significantly influencing the parameter optimization
approach.

Minimizing non-productive time, such as that incurred
during tool changes, is another vital aspect of process
parameter optimization in flexible assembly environments.
When multiple tasks requiring different tools are allocated
to the same workstation, these changeovers consume
valuable operational time, thereby reducing overall line
efficiency. The total tool replacement time, RT, is
modeled as follows:

RT = Try - Xie=1 Di=1 Dj=1,j=i Xik " Xjk °
ToolDiff(i, j) - Adjacent(i, j, k) (8)

In this equation, Ty, represents the fixed time required
to perform a single tool replacement, which is treated as a
known input parameter for the model. The term ToolDiff
(i,j) is a binary variable that plays a central role in the
parameter optimization related to tooling strategy. It is
defined as 1 if assembly task i and assembly task j
necessitate the use of different tools, and 0 if they can be
performed with the same tool:

ToolDiff(i, j) =
{1, if tool for task i # tool for task j
0, otherwise

©)
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The variable Adjacent (i, j, k) is also a binary variable,
crucial for accurately modeling the sequencedependent
setup times. It takes the value 1 if task j is processed
immediately after task i within the sequence of tasks
assigned to the same workstation k. The determination of
this intra-workstation task sequence is itself an important
component of the overall parameter optimization problem.
If S, denotes the ordered sequence of tasks assigned to
workstation k, then Adjacent (i, j, k)=1, if tasks i and j
are both assigned to workstation k and task j immediately
follows task i in the sequence S, . Otherwise Adjacent
(i,j, k) =0.

It is worth noting that the original PDF's formulation for
tool replacement time was RT = RTI -

k=1 2i=1 2j=1 XX Tool(i, j)P(i,j) . This structure
implies that the term P(i,j) (indicating that task j
immediately follows task ) combined with the product
XX (ensuring both tasks are assigned to the same
station k ) effectively captures this notion of adjacency
within a workstation. The term Tool (i, j) in that context
corresponds to ToolDiff (i,j), indicating whether t
tools required for the two tasks are different. It is
important to acknowledge that the binary ToolDiff
variable represents a simplification of real-world tool
compatibility. In practice, tool compatibility is not always
a strict binary condition; it can be multi-modal (e.g., a task
can be performed by several different tools with varying
efficiency) or fuzzy (e.g., one tool might be partially
compatible with a task). While our current model provides
a tractable framework for optimization, future research
could extend this by incorporating more advanced
modeling techniques. For instance, a fuzzy compatibility
index or a cost matrix reflecting the varying degrees of
efficiency for different task-tool pairings could provide a
more nuanced and realistic representation, albeit at the
cost of increased model complexity.

The economic efficiency of the assembly line is a key
consideration in comprehensive parameter optimization,
and it is directly influenced by the number of assembly
units (workstations) deployed and operated. The total
assembly unit cost, ST, can be modeled as a linear function
of the number of active workstations:

ST =Cypy-m (10)

Here C,, represents the average cost associated with
deploying and operating a single assembly unit or
workstation; this is typically an input parameter based on
capital investment and operational expenditures. The
variable m denotes the total number of assembly units
utilized in the configured assembly line. The optimization
of this parameter m is particularly critical in what is known
as Type Il assembly line balancing problems, where the
primary objective is to minimize the number of
workstations (m) required to achieve a given production
cycle time (CT). Conversely, if m is a fixed parameter (as
in Type | balancing problems, where the goal is to
minimize CT for a predetermined m), then the ST term, as
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formulated, would become a constant in the objective
function. However, its inclusion suggests a broader scope
where m might be a decision variable, or where
minimizing its use (even if chosen from a set of available
units) is a strategic goal of the parameter optimization.
This could also extend to scenarios involving the selection
among different types of workstations that might have
varying costs, making the cost component an active part
of the optimization.

This mathematical model, with its defined objectives,
variables, and constraints, establishes a quantitative and
structured framework for tackling the optimization of
crucial process parameters within the complex
environment of a reconfigurable flexible assembly line.
The subsequent chapters of this research will delve into
the application of synergistic heuristic algorithms,
specifically focusing on Genetic Algorithms and Particle
Swarm Optimization, to derive effective and near-optimal
solutions for this intricate parameter optimization
challenge.

3 Synergistic genetic algorithm and
particle swarm optimization
(SGAPSO) for process parameter
optimization

To effectively address the complex combinatorial
optimization problem posed by the process parameter
optimization model detailed in Chapter 2, this research
introduces a novel hybrid metaheuristic approach: the
Synergistic Genetic Algorithm and Particle Swarm
Optimization (SGAPSO).

3.1 Introduction and fundamental

principles of SGAPSO

Genetic Algorithms (GAs) and Particle Swarm
Optimization (PSO) are powerful metaheuristics, yet they
possess complementary limitations. GAs excels at global
exploration but can converge slowly, while PSO offers
rapid convergence but risks premature stagnation in local
optima, particularly in complex, multimodal search spaces.

The core philosophy of the SGAPSO algorithm is to
synergistically hybridize these methods, amplifying their
respective strengths while mitigating their drawbacks.
Within the SGAPSO framework, the GA conducts broad,
global exploration to identify promising regions of the
solution space, thereby maintaining population diversity.
Subsequently, the PSO component performs intensive,
fine-grained local searches within these regions to rapidly
enhance solution precision and quality. This structured
coordination creates a balanced search process, combining
the breadth of GA's exploration with the depth and speed
of PSO's exploitation to achieve superior performance in
solving the complex RFAL optimization problem.

3.2 SGAPSO framework construction

The architectural design of the SGAPSO algorithm
revolves around several key components: the
representation of solutions, the initialization of the
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populations, and the crucial fitness evaluation mechanism
that guides the search.

Solution encoding and population initialization:
Addressing the assembly line balancing problem, a
solution typically involves defining both the sequence of
tasks and their assignment to specific workstations.
Within the SGAPSO framework, an individual—whether
it's a chromosome in the GA phase or a particle's position
in the PSO phase-is encoded primarily based on a task
sequence. For instance, a solution for an assembly line
with n tasks can be represented as a permutation = =
(7,75, ..., T, ), Where each m; is a unique task identifier.
This task-based permutation encoding is intuitive and
facilitates the subsequent decoding process. The decoding
step involves translating this task sequence, along with
constraints such as the production cycle time, into a
concrete assignment of tasks to workstations. The initial
population for the GA, and potentially for the PSO, is
generated randomly. However, a critical constraint is that
all initial solutions must be feasible, particularly
respecting the precedence relationships among tasks. This
feasibility is typically ensured during the generation
process by only adding a task to the sequence if all its
prerequisite tasks have already been included.

Fitness evaluation: The direction and effectiveness of
the algorithm's search are dictated by the fitness function.
For each individual (i.e., each encoded task sequence), a
decoding procedure is first applied to convert it into a
specific task-to-workstation assignment plan. Based on
this assignment, the key performance indicators-
production cycle time (CT), total tool replacement time
(RT), and total assembly unit cost (ST)-are calculated.
Subsequently, the multi-objective function Z = w;. CT +
w, - RT + wsy - ST, is computed to determine the overall
cost or objective value of the solution. Since SGAPSO,
like most evolutionary algorithms, is typically formulated
to maximize fitness, and the objective function Z
represents a minimization problem, the fitness function,
Fitness, can be defined as the reciprocal of Z (e.g.,
Fitness= 1/Z). To prevent numerical issues if Z is zero or
very small, appropriate scaling transformations or penalty
methods for handling infeasible solutions (if any arise
despite initial feasibility checks) can be incorporated into
the fitness calculation.

3.3 Genetic algorithm (GA) phase in
SGAPSO

The GA phase within SGAPSO is primarily responsible
for global exploration of the solution space and for
maintaining diversity within the population of candidate
solutions. This phase employs core genetic operators:
selection, crossover, and mutation.

Selection: The selection operator determines which
individuals from the current population will be chosen to
reproduce and contribute their genetic material to the next
generation. This choice is based on their fitness values. A
commonly used method is Roulette Wheel Selection,
where the probability of an individual being selected is
directly proportional to its fitness relative to the total
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fitness of the population. Individuals with higher fitness
values thus have a greater chance of being selected,
promoting the propagation of desirable traits (i.e., better
task sequences leading to lower objective function values).

Crossover: The crossover operator is designed to
combine the characteristics of two parent individuals to
create new offspring, potentially leading to solutions that
inherit beneficial traits from both parents. For task
sequence-based encoding, specialized crossover operators
are necessary to ensure that the offspring remain feasible,
particularly with respect to task precedence constraints.
Examples include the Partially Mapped Crossover (PMX),
Order Crossover (OX), or other crossover techniques
specifically adapted for permutation-based problems like
assembly line balancing. Crossover is applied with a
predefined probability, P..

Mutation: The mutation operator introduces small,
random changes to an individual's genetic makeup (task
sequence) with a relatively low probability, B, . Its
purpose is to introduce new genetic material into the
population, thereby increasing diversity and providing a
mechanism to escape local optima. For task sequence
encoding, mutation operators might involve swapping two
randomly selected tasks in the sequence (Swap Mutation)
or reversing the order of tasks within a randomly selected
subsequence (Inversion Mutation). A crucial aspect of
mutation is that the resulting sequence must still satisfy all
precedence constraints. If a mutation operation violates
these constraints, the mutated sequence must be repaired,
or the mutation must be re-applied or discarded.

Elitism strategy: To prevent the loss of the best
solutions found so far during the evolutionary process, an
elitism strategy is commonly incorporated. This involves
directly copying one or more of the fittest individuals from
the current generation to the next generation, without
subjecting them to crossover or mutation. This ensures
that the quality of the best solution in the population does
not degrade over generations.

3.4  Particle swarm optimization (PSO)

phase in SGAPSO

The PSO phase in SGAPSO focuses on intensive local
search and rapid refinement of solutions within promising
regions of the search space, often those identified or
seeded by the GA phase. The core of PSO lies in its
particle position and velocity update mechanisms.

Particle representation and decoding: To integrate
PSO's continuous search mechanism with the discrete,
permutation-based nature of the assembly line balancing
problem (and to maintain compatibility with the GA's task
sequence encoding), an indirect encoding scheme is often
employed for the PSO particles. Each particle i is
represented by a position vector X; = ( x;1, X2, .-, X ) iN
an n-dimensional continuous real-valued space, where n
is the total number of assembly tasks. This continuous
position vector is then decoded into a discrete task
sequence using a rule such as the Smallest Position Value
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(SPV). The SPV rule works by sorting the components of
the particle's position vector X; in ascending order. The
permutation of the original indices (task numbers)
corresponding to this sorted order of values forms the
decoded task sequence. For example, if X; =
(0.5,0.1,0.8) corresponds to tasks T1,T2, and T3
respectively, sorting the values gives (0.1,0.5,0.8). The
associated task sequence would then be (T2, T1, T3). This
decoded task sequence is subsequently used for
workstation assignment and fitness evaluation, similar to
how GA individuals are processed.

Velocity update equation: The velocity of each
particle i in each dimension d denoted as v;,, is updated
at each iteration t + 1 based on its current velocity, its
own best-known position, and the global best-known
position in the swarm. The standard velocity update
equation is:

Vig(t+1) = @ - viq(t) + ¢; - 11(t) - (pbest () —

Xiq (1)) + ¢z - 12 () - ((gbest (1) — x;4(1))
(11)

In this equation, w is the inertia weight, a parameter that
controls the influence of the particle's previous velocity on
its current one, thereby balancing global exploration and
local exploitation. The terms ¢; and c, are acceleration
coefficients (learning factors) that weight the influence of
the personal best position pbest;;(t) and the global best
position gbest,(t) respectively. r;(t) and r,(t) are
random numbers uniformly distributed in the range [0,1],
introducing a stochastic element to the search. x;;(t) is
the particle's current position in dimension d at iteration ¢t.
To prevent particles from moving too erratically or
leaving the relevant search area, the velocity v;, is often
clamped to a predefined maximum value, V.«

Position update equation: After updating its velocity,
each particle i updates its position x;4 in dimension d for
the next iteration t + 1 according to the following simple
equation:

Xig(t+1) = x;4(t) + v (t + 1) (12)

The newly updated continuous position vector X; (t +

1) is then decoded back into a task permutation using the

SPV rule, followed by the standard decoding and fitness

evaluation procedures. Similar to velocity, particle

positions may also be constrained to lie within predefined
boundaries [Xmin, Xmax] 10 keep the search focused.

Personal and global best updates: During each
iteration of the PSO, after a particle moves to a new
position and its fitness is evaluated, its personal best
position pbest; is updated. If the fitness of the particle's
current position is better than the fitness of its pbest;, then
pbest; is set to the current position. Simultaneously, the
global best position (gbest) for the entire swarm is updated.
If any particle's pbest; has a fitness better than that of the
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current gbest, then gbest is updated to that particle's
pbest;.

3.5 Synergistic mechanism between GA
and PSO in SGAPSO

The efficacy of the SGAPSO algorithm hinges critically
on the design of an effective synergistic mechanism that
facilitates information exchange and coordinated
operation between the GA and PSO components. This
synergy is intended to ensure that the complementary
strengths of both algorithms are fully exploited. This
research proposes a periodic, elite-guided coordination
strategy to manage the interaction between GA and PSO.
The strategy unfolds in a structured manner:

o Initial global exploration by GA: The
SGAPSO algorithm commences by executing the
GA phase for a specified number of generations.
During this phase, the GA employs its selection,
crossover, and mutation operators to conduct a
broad exploration of the entire solution space.
The primary objectives here are to identify
potentially promising regions that may contain
high-quality solutions and to maintain a diverse

Algorithm 1: SGAPSO for Process Parameter Optimization
Input: RFAL problem parameters, GA parameters, PSO
parameters, Synergy parameters

Output: Optimized task assignment solution (Ghest_overall)
Output: Optimized task assignment solution (Gbest_overall)

1. Initialize GA population P_GA with random feasible
task sequences and evaluate their fitness. Set
Gbest_overall to the best solution in P_GA.

2. Forgen_GA =1to Max_Gen_GA do

GA Phase:

4. Perform selection (e.g., Roulette Wheel Selection) to
choose parents from P_GA.

5. Apply crossover (e.g., PMX, OX) to generate
offspring with probability P_c.

6.  Apply mutation (e.g., Swap Mutation, Inversion
Mutation) to offspring with probability P_m.

7.  Evaluate the fitness of the new offspring and form the
next generation of P_GA.

8.  Update Gbest_overall if a better solution is found in
the new P_GA.

9. If (gen_GA mod N_sync == 0) then

10. Select N_elite_to_PSO elite solutions from P_GA
based on fitness.

11. Initialize PSO population P_PSO using the elite
solutions from GA.

12. Foriter_PSO =1 to Max_Iter_PSO do

13.  PSO Phase:

14. Decode each particle’s position to a task sequence
using the SPV rule.

15. Evaluate the fitness of each particle’s task sequence.

16. Update personal best positions (pbest) for each
particle.

17.  Update global best position (gbest) if a better solution
is found.

18. Update velocities and positions of particles using
PSO equations.

19. Update Gbest_overall if gbest from PSO is better.

20. Select N_PSO_to_GA best solutions from P_PSO
and inject them into P_GA.

21. End For (End of GA generations)

22. Return Gbest_overall as the optimized solution.

w
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population of candidate solutions, thereby
mitigating the risk of premature convergence to
local optima.

e Elite Selection and PSO Seeding/Guidance:
After a predefined number of GA generations
(termed a synchronization period, Nsy,), a set of
elite individuals is selected from the current GA
population based on their superior fitness values.
These elite individuals, which represent high-
performing task sequences, are then used to
initialize or significantly influence the initial
state of the PSO swarm. This can be achieved, for
example, by converting these elite task sequencet
(perhaps via an inverse SPV rule or other
heuristic mapping) into continuous position
vectors to serve as initial positions for a subset of
PSO particles, or by using them to set the initial
personal best (pbest) positions for all particles in
the PSO swarm.

e Focused Local Search by PSO: Following this
seeding or guidance, the PSO algorithm is
activated. Leveraging the high-quality starting
points or guidance provided by the GA's elite
solutions, the PSO conducts an intensive and
focused local search within these promising
regions of the solution space. PSO's
characteristic rapid convergence is exploited here
to meticulously refine the solutions and to
explore the local neighborhood for even better
optima with higher precision.

e Information Feedback and GA Population
Enhancement: Upon completion of a specified
number of PSO iterations, the best solutions
discovered by the PSO (particularly its global
best solution, gbestps,) are fed back to the GA
population. These high-quality, PSO-refined
solutions can be used to replace some of the
lower-fitness individuals in the GA population.
This injection of superior genetic material serves
to elevate the overall quality and average fitness
of the GA population, providing a more
advantageous starting point for subsequent GA
generations. This feedback loop helps to
accelerate the GA's convergence towards better
regions of the search space and guides its
exploration more effectively.

Through this structured, cyclical exchange of
information, the GA's global exploratory power provides
valuable starting points and directional cues for the PSO,
while the PSO's efficient local search capability
compensates for potential weaknesses of the GA in fine-
tuning solutions to high precision. This creates a robust
synergistic  effect, enhancing the overall search
performance.

The overall workflow of the proposed Synergistic

Genetic Algorithm and Particle Swarm Optimization
(SGAPSO) is outlined in the following pseudocode:

Q. Gong et al.

The SGAPSO algorithm, through this structured
integration of GA's global search and PSO's local
refinement capabilities, coupled with periodic information
sharing, is anticipated to achieve a robust balance between
exploration and exploitation. This balance is crucial for
effectively navigating the complex solution landscape of
the RFAL process parameter optimization problem and for
converging to high-quality, practical solutions. The
performance and efficacy of this proposed algorithm will
be empirically evaluated and discussed in subsequent
chapters of this research.

Experiments

4.1 Experimental setup

To ensure a comprehensive and rigorous evaluation, the
experiments are conducted using a combination of well-
known benchmark problems from the assembly line
balancing literature and a specific case study relevant to
intelligent manufacturing systems. The performance of
SGAPSO is evaluated on two categories of test instances.
The first category consists of standard benchmark
problems for assembly line balancing, such as the Jackson
and Buxey problems, which are adapted for the RFAL
context.

The Jackson problem is one of the most widely used
benchmarks in assembly line balancing literature. It
involves a set of tasks with specified processing times and
precedence constraints. The goal is to assign these tasks to
a series of workstations in such that the total cycle time is
minimized while adhering to the given precedence
relations. With a time vector set by Time=[6257 1236
5 5 4], we defined a Jackson's problem operation
assignment chart as Figure 2. It illustrates a graphical
representation of task elements and times at each
workstation for a typical assembly line balancing scenario.
Each bar represents a task with its corresponding
processing time, arranged sequentially according to the
workstation number.

The Buxey problem is another classic benchmark that
extends the complexity of the Jackson problem by
introducing additional constraints and a larger number of
tasks. This problem requires the optimization of task
assignments to workstations with the objective of
minimizing the total completion time, taking into account
the precedence relations and potential tool changes that
may occur between tasks. We defined a Buxey problem
priority relationship chart as Figure 3. Figure 3 depicts a
precedence diagram for a complex assembly line
balancing problem, showcasing the dependencies between
various tasks. Each node represents a task, and the directed
edges denote the order in which tasks must be completed.
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Task Elements and Times at Each Workstation

5 1 7, 3

2, 2 11,4

6, 2

0 1 2 3 4 5
Assembly Workstation Number

Figure 2: Jackson's problem operation assignment chart

Figure 3: Buxey problem priority relationship chart

These problems vary in size, with different numbers
of tasks and precedence complexities, providing a basis
for comparison with existing research. For each
benchmark, task times, precedence relations, tool
requirements for each task, and tool changeover times
( Tgy; ) are defined. The cost of an assembly unit ( Cyp )
is also specified for calculating the ST component of the
objective function.

The second category is an industrial case study
inspired by the "Pressure Reducing Valve" assembly
process, as shown in Figure 4.This case study involves
defining the complete set of assembly tasks required for
the pressure reducing valve, establishing the precedence
diagram based on the product's assembly logic, assigning
specific processing times (t;) to each task, specifying the
type of assembly tool required for each task and the
corresponding tool replacement time (Tgy,;), and defining
the number of available workstations ( m ) or treating it as
a variable to be optimized, along with setting the cost per
assembly unit (C4y). The objective function weights
(wq, wy, wy) for CT, RT, and ST are set to reflect typical
industrial priorities, with w; = 0.5,w, = 0.3, and w; =
0.2.

@
@
i

Figure 4: Pressure reducing valve assembly process
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For SGAPSO, the GA phase was configured with a
population size of 100 and a maximum of 200 generations.
The crossover probability was set to 0.85, and the
mutation probability was set to 0.05. Elitism was applied,
preserving the top 2 individuals. The PSO phase used a
swarm size of 50 and a maximum of 100 iterations per
activation. The inertia weight (w) linearly decreased from
0.9 to 0.4, and the learning factors (c, and c,) were both
set to 2.0. The maximum velocity (V,,.x) Was set to 10%
of the range of decision variables, and the position
boundaries (X,,;, and X,ax) Were typically set to [0,1].
The synergy parameters included a synchronization period
of every 20 GA generations, with 10 elite solutions
transferred from GA to PSO and 5 elite solutions
transferred from PSO to GA.

For standalone GA, the population size was set to 100,
with a maximum number of generations equivalent to the
total evaluations of SGAPSO to ensure a fair comparison.
The crossover and mutation probabilities were set to 0.85
and 0.05, respectively, with elitism preserving the top 2
individuals. For standalone PSO, the swarm size was set
to 100, with a maximum number of iterations equivalent
to the total evaluations of SGAPSO. The inertia weight (w)
linearly decreased from 0.9 to 0.4, and the learning factors
(c; and ¢,) were both set to 2.0. All algorithms were
implemented in Python and run on the same computing
hardware to ensure fair comparison. Each experiment for
each test instance was repeated 30 times to account for the
stochastic nature of the algorithms, and statistical
measures such as mean, best, and standard deviation were
reported.

The performance of the algorithms was evaluated based
on several metrics. The best objective function value
(Zpest) reflects the quality of the best solution obtained,
while the average objective function value (Z,,,) indicates
the algorithm's robustness and average performance. The
standard deviation of objective function values (o)
measures the consistency and stability of the algorithm.
Convergence speed was visualized through convergence
curves, showing the evolution of the best (or average)
objective function value over generations/iterations.
Computational time was measured as the average CPU
time taken by the algorithm to complete a run.

4.2 Performance on benchmark problems

The benchmark problems provide a standardized
platform to assess the fundamental search capabilities of
SGAPSO. The performance of SGAPSO was compared to
GA and PSO on two benchmark problem sets: Jackson and
Buxey instances.

The table 1 compares the performance metrics of the
Jackson instance using two different algorithms: Jackson's
method and the SGAPSO algorithm. The columns W1 to
W5 represent the total time allocated to each workstation.
For instance, Jackson's method allocates 10 seconds to
Workstation 1, while SGAPSO allocates 9 seconds to the
same workstation. Despite differences in the specific
times assigned to each workstation, both methods achieve
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the same balance rate (BP) of 92%, indicating a similar
level of workload distribution efficiency across the
production line. However, SGAPSO outperforms
Jackson's method in terms of the smoothing index (SI),
with a value of 2.45 compared to Jackson's 3.16,
suggesting a more even distribution of tasks and reduced
variability in workstation times.

While both algorithms achieve the same production
time (CT) of 10 seconds, SGAPSQ's lower smoothing
index indicates a more balanced and efficient task
allocation. This suggests that SGAPSO not only maintains
the same overall efficiency but also improves the
smoothness of the production process, which can lead to
better operational stability and potentially higher
throughput. In summary, SGAPSO offers a more
optimized solution for the Jackson instance, particularly in
terms of task distribution and process smoothness.

Table 1: Jackson instance performance metrics

Algorith w W w W W Balance  Smootin  Producti
m 1 2 3 4 5 Rate(B g on Time
P) Index(S
N
Jackson 10 7 0 0 9 92% 3.16 10
SGAPS 0 9 92% 2.45 10
o 9 8 0

In the case of the Buxey problem, the improved dual-
population genetic algorithm (SGAPSO) demonstrated
superior performance compared to the original Buxey
method when the number of workstations was 13. While
the production cycle time (CT) was equal to that obtained
by the Buxey method for workstation numbers ranging
from 7 to 12 and 14, the CT was optimized to 26 when
there were 13 workstations, which is better than the 27
achieved by the Buxey method as shown in Table 2. This
indicates that the SGAPSO algorithm not only matches
but also outperforms the Buxey method in certain
scenarios, highlighting its effectiveness in solving
assembly line balancing problems.

Table 2: Task allocation for buxey problem with 13
workstations

Workstation

Workstation Number Allocated Tasks

Time
1 2. 7. 1. 26 26
2 3. 12 25
3 9, 27, 25 26
4 6, 10. 4. 14 25

Q. Gong et al.
5 15. 5 26
6 13, 8 25
7 11 21
8 19, 17 24
9 16, 21, 18 25
10 22, 20 25
11 23 25
12 28, 24 21
13 29 20

4.3 Performance on the pressure reducing
valve assembly case study

The case study provides insights into SGAPSQO's
applicability to a problem with characteristics closer to
real-world industrial scenarios. The performance
comparison for the pressure reducing valve assembly case
study is shown in Table 3.

Table 3: Algorithm performance on the pressure
reducing valve assembly case

B Smo
al othn
an ess
©oce |
Algo vg.

. est est 7 R ndex
rith Zpest Zavg oy cT RT Ti at sl
m me

() () e
©®
%
)
AP S 9 0.85
SO 80 85 .0 0 2 0 5
G 90 0.90
A 90 95 5 5 4 8 .0
P 91 0.88
SO 88 92 2 2 3 9 .0

The results indicate that SGAPSO achieved a best
objective function value of 180 and an average objective
function value of 185, with a standard deviation of 2.0.
The convergence curve for the pressure reducing valve
assembly case study showed that SGAPSO converged
faster to high-quality solutions compared to GA and PSO.
The synergistic mechanism of SGAPSO effectively
combined the global exploration capabilities of GA with
the local exploitation capabilities of PSO, leading to
higher quality solutions. The balance rate and smoothness
index further demonstrated the effectiveness of SGAPSO
in achieving a well-balanced assembly line.

To formally validate the claim that SGAPSO provides
a significant improvement over standalone GA and PSO,
we conducted a statistical analysis of the results from the
30 independent runs on the pressure-reducing valve case
study. Independent samples t-tests were performed to
compare the mean objective function values (Z_avg) of
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SGAPSO against both GA and PSO. The comparison
between SGAPSO (Mean=185, SD=2.0) and GA
(Mean=195, SD=2.5) yielded a t-statistic that corresponds
to a p-value of less than 0.01. Similarly, the comparison
between SGAPSO and PSO (Mean=192, SD=2.2) also
resulted in a p-value of less than 0.01. In both cases, the p-
values are well below the standard significance level of
0.05, indicating that the observed improvements in
solution quality achieved by SGAPSO are statistically
significant and not a result of random chance.

4.4 Analysis of SGAPSO components and

synergy

To rigorously evaluate the SGAPSO framework, this
section dissects the contributions of its constituent
algorithms and the efficacy of their synergistic integration.
Understanding these aspects is crucial for validating the
design philosophy and pinpointing the sources of
performance enhancement.

The investigation into the impact of synergy
parameters-namely the synchronization period, the
number of elite solutions transferred from GA to PSO
( Ngjite-to—pso ), @nd the number of elite solutions fed back
from PSO to GA ( Npso—_to—ga )-Was foundational. These
parameters govern the frequency and intensity of
information exchange between the GA and PSO
components. Sensitivity analysis was performed by
systematically varying each parameter while holding
others at their determined baseline values (as specified in
Section 4.1.2: Ngyne = 20, Nejige-to-pso =
10, Npso—_to—ga = 5 ). The performance, measured by
Z,e and convergence speed, was observed across
multiple runs on representative test instances. The results
from this parametric study indicated that the chosen
baseline values indeed provided a robust and consistently
high level of performance across different problem
instances. For example, a synchronization period of every
20 GA generations, coupled with the transfer of 10 elite
solutions to PSO and the feedback of 5 refined solutions
to GA, struck an effective balance between allowing each
algorithm sufficient independent evolution and ensuring
timely, beneficial information exchange. Shorter
synchronization periods or excessive information transfer
sometimes led to premature convergence or unnecessary
computational overhead, while longer periods risked
diminishing the synergistic benefits.

To further quantify the benefit of the proposed synergy,
an ablation study was conducted by comparing SGAPSO
against a nonsynergistic hybrid approach. This non-
synergistic baseline typically involved running the GA to
completion, followed by using its best-found solution to
seed a subsequent, independent run of PSO, without the
iterative feedback and elitesharing mechanisms inherent
in SGAPSO. As anticipated and detailed in Table 4,
SGAPSO significantly outperformed this simpler
sequential combination in terms of both final solution
quality and often the efficiency in reaching high-quality
solutions. This disparity underscores that the true
advantage of SGAPSO lies not merely in using both GA
and PSO, but critically in their structured, periodic
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interaction. The elite guidance from GA helps PSO to
focus its search on promising regions, while the refined
solutions fed back from PSO enhance the GA's population
quality, preventing stagnation and accelerating its
convergence towards superior optima. The result is shown
in Figure 5.

Comparison of SGAPSO vs. Sequential GA then PSO

200 138 SGAPSD
185 Sequential GA then PSO

Values

4 39

Number of Evaluations Best CT (s) Avg- Time (s)

Figure 5: Ablation study - SGAPSO vs. sequential
GA-PSO on pressure reducing valve case study

In essence, the synergistic mechanism—characterized
by the periodic guidance of PSO exploration by GA-
identified elites and the reciprocal enrichment of the GA
population with PSO-refined solutions—proved to be the
cornerstone of SGAPSO's enhanced performance. This
structured interaction empowers SGAPSO to more
effectively escape local optima compared to PSO
operating in isolation, and to achieve a level of solution
precision and refinement that often eludes GA when used
alone. These findings robustly validate the design
philosophy of SGAPSO, confirming that the intelligent
combination of GA and PSO, through a well-defined
synergistic linkage, offers a potent strategy for optimizing
complex process parameters in the demanding context of
modern intelligent manufacturing systems.

5 Conclusion

This paper has successfully addressed the intricate
challenge of process parameter optimization within
Reconfigurable Flexible Assembly Lines (RFALs), a
critical issue in contemporary intelligent manufacturing
systems. The research culminated in the development and
validation of a novel Synergistic Genetic Algorithm and
Particle Swarm Optimization (SGAPSO), specifically
tailored to navigate the complexities posed by the multi-
objective nature of RFAL balancing, which encompasses
production cycle time (CT), tool replacement time ( RT ),
and assembly unit cost (ST). The core innovation of
SGAPSO lies in its meticulously engineered synergistic
framework, which strategically integrates the global
search proficiency of Genetic Algorithms (GA) with the
local refinement and rapid convergence strengths of
Particle Swarm Optimization (PSO). This was achieved
through task sequence-based encoding and a dynamic
interplay involving periodic elite-guided local searches by
PSO, complemented by the assimilation of PSO-refined
solutions back into the GA population. Rigorous
experimental  evaluations, encompassing  standard
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industry benchmarks (such as Jackson and Buxey
instances) and a detailed pressure-reducing valve
assembly case study, unequivocally substantiated
SGAPSO's  superior performance. The findings
consistently demonstrated that SGAPSO not only
achieves higher quality solutions, evidenced by improved
Zyest and Z,,, values, but also exhibits more robust
convergence patterns and enhanced solution stability
(lower g, ) when compared against standalone GA and
PSO methodologies, particularly in attaining superior
balance rates and smoothness indices.

The contributions of this research extend beyond the
mere development of a hybrid algorithm. The proposed
SGAPSO framework offers a robust and adaptable tool
that effectively balances the exploration-exploitation
trade-off inherent in complex optimization landscapes,
making it particularly well-suited for the nuanced
demands of RFAL parameter optimization. The successful
synergy achieved between GA and PSO underscores the
potential of intelligent hybridization in tackling NP-hard
problems in manufacturing. This work provides valuable
insights for researchers and practitioners seeking to
enhance the operational efficiency and economic viability
of advanced manufacturing systems. Looking forward, the
promising results from SGAPSO open several avenues for
future investigation. These include the refinement of its
adaptive synergistic strategies to further enhance
performance across a wider array of problem instances,
the extension of its application to address dynamic
scheduling and real-time reconfiguration challenges in
RFALs, and the incorporation of stochastic elements, such
as equipment reliability and processing time variability, to
create even more resilient and practically applicable
optimization models for the next generation of intelligent
manufacturing.
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