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This article proposes a dynamic programming rendering path optimization algorithm for virtual reality 

scenes, which innovatively introduces real-time feedback mechanism and sliding window resource 

scheduling, effectively improving rendering performance under multi scene concurrency conditions. 

Compared with traditional greedy, genetic, and local search methods, this method can achieve global 

optimal path selection and has been experimentally verified to achieve significant improvements in key 

indicators such as average frame rate and resource utilization. All experiments in this article were 

independently repeated 5 times, and the results were tested for variance and significance. This article 

proposes for the first time a dynamic programming path scheduling strategy that combines sliding 

window real-time feedback, solving the problem of generating the global optimal path in multi task high 

concurrency environments. Compared with traditional heuristic and intelligent optimization algorithms, 

the proposed method significantly improves system stability and rendering performance, and has 

stronger practicality and promotional value. All variables and parameters are clearly defined in the 

Methods section, and the experimental process and evaluation criteria follow internationally recognized 

standards to ensure the reproducibility and rigor of the conclusions. The system conducted experiments 

on three types of virtual environments: typical city blocks, natural terrain, and indoor exhibition halls 

on the Unity platform. The results showed that after introducing dynamic programming, the average 

frame rate increased from 76.9 FPS to 86.3 FPS, GPU utilization increased from 85.1% to 91.6%, task 

completion rate increased from 92.8% to 98.2%, and rendering failure rate decreased from 3.1% to 

0.9%. The solution significantly improves the real-time performance, stability, and resource utilization 

efficiency of the system while ensuring image quality. Compared with traditional static scheduling 

methods, this method exhibits better response capability and scalability in multi task high concurrency 

environments, providing efficient technical support for complex virtual reality rendering tasks. 

Povzetek: Za izboljšanje realnočasnega izrisovanja VR-prizorov je razvit algoritem dinamičnega 

programiranja (DP-RPS), ki združuje drsno okno in sprotno povratno zanko za optimizirano 

razporejanje poti nalog. Na platformi Unity doseže zelo dobre rezultate. Zagotovi stabilno, prilagodljivo 

in energetsko učinkovito izrisovanje VR-prizorov z globalno optimizacijo poti pri večopravilnosti in 

visoki sočasnosti. 

 

1  Introduction 
With the widespread application of virtual reality 

technology in games, movies, healthcare, architecture, 

and other fields, users' demands for immersive experience 

and response speed are constantly increasing, which 

drives the evolution of rendering systems themselves to 

achieve high efficiency and intelligence. In 3D scenes 

with massive details, real-time rendering systems require 

graphic rendering and final result presentation in a short 

amount of time, ensuring frame rate while controlling 

resource fluctuations and delays. However, traditional 

solutions based on fixed pipelines or static scheduling are 

no longer sufficient to meet the needs of multi task 

parallelism, heterogeneous inputs, and environmental  

 

 

changes. It is necessary to construct a new intelligent 

scheduling system. 

Although some improvements have been made in image 

compression and hardware acceleration, the constraints of 

resource allocation, execution path, and task sequence often 

result in frame rate jitter and delay in the interactive 

environment. Therefore, this study adopted dynamic 

programming techniques to re optimize the scheduling 

strategy and improve the overall efficiency of the system. 

Xionghui et al. pointed out in their study of interactive 

virtual systems that the consistency of task paths and the 

accuracy of feedback links directly affect immersion and 

operational response quality [1], thus verifying the impact 

of path optimization on real-time performance. Lumpkin T 

L et al.’s research shows that familiarity, aesthetics, and 
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change type affect visual memory in VR, influencing 

system frame rate stability and load control[2], which 

reflects the important role of real-time task scheduling 

mechanism in system performance optimization.Sainz 

M's research shows that accelerating real-time global 

illumination rendering can effectively improve the 

system's response speed and image realism, thereby 

enhancing user immersion and interactive experience 

[3],Further verification has shown that the rational 

optimization of routing paths and task scheduling 

strategies is a critical requirement for this system to have 

real-time and stable feedback. 

By constructing task dependency structures through 

state transition models, dynamic programming can 

generate optimal rendering paths that balance frame rate 

and stability. The virtual behavior modeling method 

proposed by Htun N S et al. [4] provides a supporting 

framework for task prediction and state control in this 

study. Compared to heuristic algorithms, dynamic 

programming has global optimization and real-time 

correction capabilities, making it suitable for 

high-density interactive scenarios. 

Although there have been studies using dynamic 

programming and other optimization algorithms for 

virtual reality rendering scheduling, there are often 

issues with insufficient global optimality or lack of 

real-time feedback mechanisms. This article constructs a 

dynamic programming state transition model and 

introduces sliding window feedback adjustment to 

achieve global optimization and dynamic adaptation of 

path planning, significantly improving rendering frame 

rate and resource utilization. 

This study starts from two dimensions: algorithm 

construction and system integration, designs task nodes 

and path mechanisms suitable for VR rendering 

processes, and implements closed-loop scheduling 

optimization in the platform.Owens J D et al.'s research 

shows that GPU computing technology significantly 

enhances large-scale parallel processing capabilities, 

providing strong support for high-performance 

computing and real-time rendering, thereby promoting 

the development of resource scheduling mechanisms for 

complex systems [5]. 

The goal of this study is to build an embeddable and 

multi scene adaptive real-time rendering optimization 

framework, with dynamic programming as the core, to 

solve the bottleneck problems in current virtual reality 

rendering and provide stable and efficient technical 

support for image generation systems.Based on the 

above analysis, this study mainly focuses on the 

following two core issues: (1) How to optimize the 

rendering path scheduling of virtual reality scenes based 

on dynamic programming, and achieve real-time and 

stability improvement under high concurrency and high 

complexity tasks? (2) Can the proposed scheduling 

algorithm achieve significant optimization in core 

metrics such as frame rate and GPU utilization compared 

to existing mainstream methods in different typical 

scenarios? 

2  Related work 
Virtual reality systems require extremely high real-time 

rendering performance, and rendering efficiency has 

become a key factor affecting the system's interactive 

experience. Early technological methods mainly relied on 

fixed pipeline mechanisms, which achieved frame by frame 

generation of graphic images through static task sequential 

execution. However, in scenarios with high task intensity 

and frequent perspective switching, the fixed path mode is 

difficult to fully utilize computing resources, often 

resulting in the coexistence of delay fluctuations and 

resource redundancy. 

To improve rendering performance, scheduling has 

become one of the optimizations focuses. Heuristic 

strategies are widely used in early scheduling design, such 

as priority-based sorting mechanisms, local greedy methods, 

and task complexity estimation models. These methods 

respond quickly in scenarios with light computational 

burden, but due to their local optimization properties, they 

lack dynamic perception and regulation of the global state, 

making it difficult to run stably in complex environments 

such as high concurrency and asynchronous input. 

To overcome the above bottlenecks, some strategies 

integrate intelligent optimization methods such as genetic 

algorithm, ant colony algorithm, simulated annealing, etc., 

using global search capabilities to avoid the problem of 

path getting stuck in local optima. Although this type of 

method improves path quality, it relies heavily on 

computing power, has complex parameter tuning, and an 

unstable training process, which limits its efficiency in 

systems with high real-time requirements.Li B et al.'s 

review pointed out that the application of deep learning 

technology in virtual reality and augmented reality 

significantly improves the perception ability and interaction 

efficiency of the system, providing theoretical support for 

the structured design and feedback mechanism of complex 

tasks [6]. 

The dynamic programming algorithm demonstrates 

advantages in multi-stage path decision-making through 

state recursion and sub problem optimal solution 

mechanisms. By constructing a state transition network and 

cost function model, the rendering process can be 

decomposed into ordered subtasks, and the optimal path can 

be calculated layer by layer while recording intermediate 

results.The image processing pipeline optimization method 

proposed by Ragan Kelley J et al. achieves flexible and 

efficient image processing performance improvement by 

decoupling the algorithm from scheduling, providing 

technical support for the construction of complex tasks in 

virtual environments [7].Chae L R et al. pointed out that the 

humanoid level of virtual characters significantly affects 

users' trust and acceptance, which in turn affects users' 

tolerance for system latency. This provides a psychological 

reference for behavior perception embedding in scheduling 

mechanisms [8]. The existing optimization strategies have 

their own characteristics in path generation logic, 

scheduling objectives, system response, and other aspects. 

To compare the adaptability and limitations of different 

methods more clearly, Table 1 summarizes and organizes 

the mainstream rendering scheduling optimization 

methods: 
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Table 1: Comparison of mainstream rendering scheduling optimization methods 

Method 
Type 

Core mechanism advantage limitation Applicable scenarios 

heuristic 
strategy 

Rule based local 
path selection 

Simple 
implementation 
and fast speed 

Easy to fall into local 
optima and lack 
global control 

Low complexity, fixed 
task flow 

intelligent 
optimization 
algorithm 

Genetic algorithm, 
ant colony, 
simulated annealing, 
etc 

Strong global 
search capability 

Complex parameter 
tuning and high 
computational cost 

Medium complexity 
and offline scheduling 
scenarios 

reinforceme
nt learning 
model 

Strategy learning 
based on reward 
feedback 

Can adapt to some 
dynamic task 
changes 

Long training time 
and weak 
generalization ability 

A small amount of 
dynamic and highly 
trainable environment 

Graph 
Neural 
Network 

Representation and 
Propagation 
Learning Based on 
Graph Structure 

Capable of 
modeling complex 
task dependencies 

Strong data 
dependency, difficult 
to migrate 

Clear diagram 
structure, stable task 
environment 

Dynamic 
Programmin
g 

Optimal 
combination 
strategy of state 
transition and 
subproblem 

Path 
controllability, 
global 
optimization, 
strong stability 

High initial 
modeling 
requirements and 
structured 
representation of 
tasks 

Complex scenarios 
with multiple 
dependencies and 
optimal path 
requirements 

 

Overall, current mainstream rendering scheduling 

methods such as heuristic and intelligent optimization 

algorithms have certain performance advantages in some 

scenarios, but are susceptible to factors such as local 

optima, parameter sensitivity, and poor generalization, 

making it difficult to meet the system requirements of 

high concurrency, complex dependencies, and real-time 

performance. The dynamic programming strategy 

introduced in this article has the advantages of global 

path search and structured decomposition, which can 

effectively improve the optimality of scheduling and the 

stability of the system, and solve the core problems of 

uneven resource allocation and scheduling lag in 

traditional methods in multitasking and high complexity 

scenarios. 

Some studies have introduced dynamic 

programming ideas into the graphics rendering pipeline. 

Constructing a task graph model in multi-threaded task 

scheduling and utilizing dynamic programming to 

generate the shortest execution path; Combining cost 

evaluation mechanism in GPU instruction sorting for 

batch processing optimization has improved frame rate 

stability and memory utilization efficiency, verifying its 

adaptability in rendering systems. 

Son D et al. found that changes in lighting in virtual 

neighborhoods affect users' spatial perception, 

suggesting that scheduling strategies should have 

environmental adaptability [9]. Navarro J D pointed out 

that imbalanced scheduling of audiovisual resources can 

cause channel interference and reduce overall rendering 

performance [10].The research by Figueroa J A et al. 

shows that real-time dynamic global illumination 

technology based on deep learning significantly 

improves the visual effects of immersive virtual 

environments, providing technical support for resource 

scheduling and priority adjustment [11],This provides a 

basis for feedback driven intelligent scheduling 

mechanisms. 

Virtual reality rendering tasks have complex structures, 

strong dependencies, and frequent changes, and urgently 

require global optimization and adaptive scheduling 

capabilities. Traditional static paths or heuristic strategies 

have insufficient response to environmental changes and 

task dynamics, and are prone to falling into local optima. 

The dynamic programming path generation mechanism can 

systematically divide tasks, avoid bottlenecks, and adapt to 

complex rendering requirements. 

Current research mostly focuses on local optimization 

at the image level, lacking a complete path that embeds 

dynamic programming from the scheduling architecture 

level. To this end, this study proposes an optimization 

mechanism with dynamic programming as the core, 

constructs a task graph structure and multi-stage path 

planning algorithm, improves system real-time 

performance, stability, and resource utilization, and 

provides efficient rendering support for complex VR scenes 

while ensuring image quality. 

3   Suggested solutions 
3.1  Dynamic programming algorithm 
Dynamic programming is an optimization algorithm 

suitable for multi-stage decision-making problems, which 

decomposes the original problem into sub problems and 

records their optimal solutions, gradually constructing the 

overall global optimal solution. This algorithm has good 

stability and optimization capabilities in fields such as path 

planning, task scheduling, and resource allocation. In 

virtual reality scenes, rendering task nodes have complex 

characteristics such as dependency relationships and 

resource conflicts, which make the entire process have 

obvious stages and structures. It is suitable to introduce 
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dynamic programming to achieve path control and task 

compression. 

In the rendering system, tasks can be modeled as 

directed graphs, with each node serving as a rendering 

unit and edge weights representing costs. Dynamic 

programming gradually generates the minimum total 

cost path by maintaining a state table and cost function. 

The group manipulation technique proposed by Li X et al. 

improves the accuracy of multi task control through 

particle collaboration, confirming the advantages of this 

method in path regulation [12];The real-time dynamic 

environment masking technology based on deep neural 

networks proposed by Liu Y et al. effectively enhances 

the light and shadow representation in virtual 

environments, improves the user's immersive experience, 

and provides a theoretical basis for the design of 

dynamic feedback mechanisms [13].This process can be 

succinctly expressed as: 

( ) ( ) ( ) ( ) iejijcjViV Pr∣,min +=
（1） 

Among them, 
( )iV

 represents the minimum total 

cost from the starting node to node i ,
( )jV

 is the 

cumulative cost of predecessor node
j

, 
( )ijC ,

is the 

path cost function, and 
( )iePr

 shows the set of 

predecessor tasks that can reach the current node. 

Among them,
( )ijC ,

represents the cost incurred 

during the process of switching from task
j

to task i . In 

this article, the cost not only includes the scheduling 

delay of the task itself, but also takes into account 

multiple factors such as GPU resources consumed and 

resource fluctuations during execution. The system 

assigns weights to dimensions such as latency, resource 

utilization, and load balancing based on experimental 

objectives, and calculates the weighted sum of these 

factors as the final path cost, achieving flexible 

adjustment of different optimization objectives in the 

dynamic scheduling process. All weight parameters and 

indicator definitions are consistent with subsequent 

performance analysis. 

Unlike greedy or heuristic strategies, dynamic 

programming can traverse paths globally, avoid 

redundant calculations through pruning and cost caching, 

and ensure the global optimality of solutions. In virtual 

reality systems, scenes frequently switch and 

interactions are complex. Static paths can easily lead to 

resource waste and delay, while dynamic programming 

allows for estimating the optimal path during the loading 

phase, improving frame rate stability and rendering 

efficiency.The efficient real-time rendering method 

based on adaptive path sampling proposed by Wei L et al. 

effectively improves the rendering performance of 

complex scenes, provides technical support for the 

regulation of dynamic path structures, and promotes the 

optimization of rendering scheduling in high interaction 

environments [14]. 

To meet the real-time rendering requirements, this 

study simplifies the structure of dynamic programming 

and adjusts the cost function: on the one hand, it introduces 

a weight decay mechanism to eliminate redundant paths in 

advance and reduce the state space; On the other hand, 

setting the cost function as a weighted combination of inter 

frame resource fluctuations and delays enables path 

selection to balance computational cost and stability.The 

style based generative adversarial network architecture 

proposed by Karras T provides advanced generative model 

support for the design and optimization of dynamic path 

mechanisms in virtual reality platforms, significantly 

improving system response efficiency and stability [15].  

To improve the engineering feasibility of the algorithm, 

the key components of dynamic programming are 

illustrated as follows: 

(1) State space 

Make t  the current scheduling phase,

( )trtitS _,__ =
 the system status, 

ti _
the number 

of the currently executed rendering task, and 
tr _

the 

GPU remaining resource vector. The global state space 

consists of all reachable sets up to 
tS _

. 

(2) State transition rules 

At each stage, the decision is made to select the next 

task 
 1_ +ti

, and the state transition is: 

( )
1

,11 +
−= ++ tittt criS

（2） 

Among them, 
  1__ +tic

represents the resource 

consumption of task
 1_ +ti

 Transfer is only valid for 

  1___ +− tictr
hours. 

(3) Cost function 

This study defines the stage cost function as the 

weighted sum of task execution delay and GPU resource 

fluctuations: 

( ) ( ) ( )iViDig += 
（3） 

Where D (i) is task delay, V (i) represents resource 

fluctuations, and α and β are weighting coefficients. 

(4) Recursive equation for dynamic programming 

Dynamic programming is used to solve the optimal 

scheduling path, with a cost function of： 

( )
( )

( ) ( ) SViSgSV t
SAi

t
+= +


1,min

（4） 

Among them, 
( )SA

 is the current state schedulable 

task set, and  S    is the state after executing the task. 

Application example explanation: 

Taking the rendering of actual urban blocks as an 

example, 
ti _

 represents the task number of model 

loading, lighting, shadows, etc. to be processed in the 

current frame, and 
tr _

represents the remaining GPU 

memory and computing units. Task resource consumption 

  1__ +tic
and latency are obtained from the 

performance sampling of the previous frame, while
Delay
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and arV are updated in real-time through the monitoring 

API. All parameters are automatically adjusted 

according to task priority to ensure that the optimal path 

for each round of scheduling can adapt to real-time 

changes in the scene. 

During path execution, the system updates the task 

status and rating matrix in a rolling manner, and adjusts 

the transition direction based on the current input. When 

encountering high-frequency interactions or scene 

switches, the algorithm can backtrack to a stable state 

and re plan, achieving fast convergence and enhancing 

the fault tolerance and real-time performance of the 

scheduling system. 

3.2  Method for building rendering task 
nodes 
In the real-time rendering process of virtual reality 

scenes, the granularity division of rendering tasks and 

the node construction method directly affect the 

scheduling efficiency and response delay of the system. 

To adapt to the state update mechanism of dynamic 

programming algorithms, rendering tasks need to be 

structurally reorganized based on spatial location, 

functional characteristics, and computational cost, so 

that each node has both computational independence and 

logical dependencies, thereby decoupling complex 

scenes into several controllable subunits and providing a 

structural basis for path optimization and scheduling. 

Node construction is divided into three stages: 

firstly, task segmentation is performed, dividing the 

original content such as model loading, lighting 

calculation, shadow generation, texture mapping, etc. 

into the smallest computing units based on their 

dependency relationships and scene positions; The second 

step is to establish a task dependency graph, which 

constructs a topology structure by analyzing the data 

coupling relationship between input and output tasks, 

ensuring accurate expression of node execution order and 

resource utilization; Thirdly, attribute tags are introduced to 

record estimated costs, execution time, resource 

consumption, and frame rate weights, providing parameter 

support for path selection.The real-time rendering method 

for complex scenes based on neural radiation caching 

proposed by Fan Y et al. effectively improves rendering 

efficiency and image quality, providing technical support 

for task chain construction and skill path optimization in 

virtual reality systems [16]. 

Nodes are usually divided into static rendering nodes, 

dynamic interaction nodes, and system control nodes. Li P 

et al. conducted immersive industrial design teaching with 

the support of virtual reality. By integrating and 

reconstructing the process of nodes and interaction paths, 

they improved interaction efficiency and response clarity, 

confirming the effectiveness of node optimization in 

complex scenarios [17]. Different node types are assigned 

different priorities and execution strategies, which affect 

path value calculation and pruning mechanisms in dynamic 

programming. 

To improve the visualization and debugging efficiency 

of task structure, a graph structure can be introduced to 

represent the logical relationships between various nodes. 

As shown in Table 2, the system unfolds tasks in frame 

order, with stage order vertically and parallel nodes 

horizontally, clearly expressing the dependency path and 

resource intersection area of task scheduling:

 
Table 2：Node Structure and Parameter Configuration for Virtual Reality Scene Rendering Tasks 

Node 
numbe
r 

Node Type 
Belonging 
stage 

Predecessor 
node 

Estimated 
cost（ms） 

More like 
frequency（
Hz） 

N01 Static Nodes Loading phase not have 8.4 1 

N07 
Dynamic 
interactive node 

Rendering Stage N01 12.7 60 

N11 Control node Controlling N07 3.1 30 

 

The setting of node cost is adjusted using a predictive 

model combined with empirical coefficients, taking into 

account hardware layer factors such as GPU time slice 

distribution and data transmission delay, as well as 

behavioral layer factors such as user operation frequency 

and action prediction, to improve the accuracy and 

timeliness of cost evaluation. In multi-user collaboration 

or high-density interaction scenarios, the system can 

dynamically adjust the node graph structure and achieve 

adaptive reconstruction of scheduling by adding or 

removing child nodes or merging parallel paths. 

Through the above node construction mechanism, 

rendering tasks not only have good structural clarity and 

dependency constraints, but also achieve preliminary 

balance in cost distribution and resource allocation. This 

provides a concrete data input foundation for the 

subsequent path selection, pruning determination, and 

state update of dynamic programming algorithms, and 

effectively supports the unified scheduling and control of 

multi-source rendering processes in the system. 

3.3  Path generation algorithm and execution 
process 
After completing the task node construction, the rendering 

system needs to generate the optimal execution path from 

the starting node to the ending node based on node 

dependencies and resource constraints. This path not only 

determines the task scheduling order, but also affects frame 

rate, response delay, and resource utilization. To achieve 

the construction and updating of paths, the system is based 

on dynamic programming algorithms, deducing node 

selection through cost matrix and state transition function, 

ensuring the dual goals of minimizing cost and stable 

execution under dependency structure. 
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The first step in path generation is to construct a task 

topology map, sort the rendering task nodes 

topologically, and ensure that there are no loops in the 

map. The sorted nodes enter the path generation module 

in order, and the path is updated based on the 

predecessor node cost value of each node, combined 

with the current path cost function. The cost function 

comprehensively considers execution time, resource 

conflicts, and inter frame fluctuations, and is 

transformed into a unified path cost score through linear 

weighting. For equivalent predecessor nodes, the 

algorithm prioritizes selecting paths with high resource 

redundancy and low load to enhance parallelism and 

robustness. Ogawa Y et al. developed a virtual reality 

system based on Unity and machine vision, and verified 

the practicality of path switching and state tracking 

mechanisms under low latency conditions by 

dynamically controlling animal behavior feedback 

through path control [18]. 

During the path construction process, the system 

adopts a sliding window strategy to maintain a finite set 

of states, avoiding memory overhead and computational 

redundancy caused by full graph enumeration. At the 

same time, a local pruning mechanism is introduced to 

directly exclude branches with expected costs exceeding 

the current optimal path threshold, thereby controlling 

the growth of the state space. This mechanism is suitable 

for complex scenes such as large-scale animations or 

concurrent interactions, which can effectively shorten 

computation time and ensure real-time performance. 

Birkheim L S et al. pointed out through their research on 

the dynamic reconstruction mechanism of task paths in 

VR environments that the flexibility of system path 

scheduling directly determines the generation speed and 

accuracy of feedback chains in complex scenes, indicating 

that the path construction mechanism plays a central role in 

task adaptability and feedback efficiency [19]. 

When the path is generated, the scheduling engine 

solidifies it into a set of execution sequences as the 

rendering instructions for the current frame. Each task node 

records its true cost and execution time during the running 

process, and provides feedback to the evaluation module. 

The system continuously revises the cost model based on 

this data, dynamically updates the subsequent path planning, 

and forms a closed-loop mechanism of "prediction 

feedback correction". This mechanism can quickly adjust 

the path during rapid scene switching or high-frequency 

operations, avoiding performance loss caused by path 

solidification. 

To cope with multi-user or multitasking rendering, the 

path module supports multi-path parallel planning 

mechanism. A coexistence graph is constructed between 

independent task flows through task labels and resource 

exclusivity determination, and the optimal paths are 

planned separately. The scheduling and conflict avoidance 

are carried out during the execution phase. This method is 

suitable for high-density task scenarios such as 

collaborative virtual environments and multi perspective 

reconstruction, improving system load capacity and 

stability. 

In order to more conveniently characterize the process 

of path generation, this study designed a process diagram 

for path state update (as shown in Figure 1), which includes 

transition rules for path selection states, pruning judgment 

mechanisms, and path determination rules. The use of 

graphical models can further improve debugging efficiency 

and accuracy of abnormal path localization. 

 

 

Figure 1：Path generation and scheduling flowchart 
 

In summary, this path generation algorithm can 

efficiently generate paths while meeting the real-time 

and stability requirements in virtual reality systems, with 

limited computational overhead. It also provides a stable 

and high degree of freedom path generation foundation 

for the integration of subsequent system modules and the 

execution mechanism of system modules. 

Algorithm 1: Dynamic Programming-Based Path 

Generation (Pseudocode) 

Input:  Task node set N, dependency graph G, resource 

constraint R 

Output: Optimal execution path P_opt 

1. Perform topological sort on G to obtain task sequence S 

2. Initialize state table V; set optimal path table P_opt as 

empty 

3. For each task node n in S, do: 

 3.1. For each predecessor node pre in Pred(n): 

 3.1.1. Compute cumulative cost: cost = V[pre] + g(pre, n) 

Task topology 

diagram 

Pruning 

determination 

Determine the path 

Dynamic 
programming path 

generation 

Scheduling 

Execution 

Yes 

Deny 

Transitions Pre 

determined 
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 3.1.2. If cost < V[n], then: a) Update V[n] = cost b) Set 

P_opt[n] = pre 

 3.2. Check if resource constraint R is satisfied; if not, 

prune this branch 

4. Backtrack P_opt to generate the optimal path 

sequence 

5. Return P_opt 

The algorithm takes task queue and resource status 

as inputs, adopts multi-stage dynamic resource 

allocation, and key parameters α and β measure delay 

and fluctuation weights respectively. It performs 

adaptive scheduling through real-time status feedback. 

Please refer to Algorithm 1 for detailed pseudocode. 

3.4  Algorithm integration and system 
operation mechanism 
In order to ensure the stable operation and efficient 

scheduling of dynamic programming algorithms in 

virtual reality rendering systems, it is necessary to build 

a complete algorithm integration mechanism that covers 

multiple aspects such as task input, path generation, 

execution control, and feedback correction, forming a 

closed-loop optimization process with frame cycles. 

Drawing on the real-time closed rendering mechanism 

proposed by Junjie Y et al. [20], the system relies on the 

dynamic programming core module for path calculation, 

and dynamically schedules the task chain through a 

series of communication interfaces and task 

management mechanisms. 

The system architecture consists of four main 

modules: task input module, task graph construction 

module, path calculation module, and feedback 

correction module. The task input module receives 

real-time changes in perspective, user interaction, and 

scene dynamic information, generates task description 

vector Xt , and calls the node generation mechanism 

based on its features to construct a directed acyclic graph 

( )EVG ,
. After the graph construction is completed, 

the path calculation module estimates the cost of each 

feasible path based on dynamic programming strategy, 

combined with task priority and resource overhead. 

Based on the traversal strategy, the system 

calculates the path cost for the current candidate node 

using the following method: 

ij
pi

CC ji ,·
1

·  ++=

（3） 

Among them,
iC
is the cost of node i， jC

is the 

cost of its predecessor node
j
，  and


respectively 

adjust the impact of priority and resource overhead on 

path selection.Among them, iP
represents the task 

priority of predecessor node i , which reflects the 

urgency and scheduling priority of the task after 

normalization; 
ij,

 represents the resource occupancy 

conflicts and inter frame fluctuations on the path from 

node 
j

 to i , combined with the actual resource 

scheduling fluctuations during task execution. Both are 

linearly normalized according to the data collected by the 

system, with units consistent with the aforementioned 

indicators such as execution delay and resource conflicts. 

The specific mapping is shown in the experimental 

parameter table. This model avoids complex minimum 

value solving forms and adopts a mechanism of "node by 

node traversal+cost superposition", which improves overall 

scheduling efficiency while ensuring response speed. 

It should be noted that in the formula of this article, 

iC
refers to the cumulative total cost from the starting node 

to node i. Its recursive structure is consistent with 
( )iV

 in 

the previous text, and it does not simply refer to the local 

cost of the current node i, but includes the cumulative total 

cost of each predecessor node in the path. Please pay 

attention to distinguishing the different semantics of 

"cumulative path cost" and "single node local cost" in the 

formula. 

The task scheduling phase adopts an asynchronous 

parallel mechanism, where the system continuously updates 

path decisions on the main thread while sub threads execute 

the rendering task of the current frame in parallel. The 

graphic resources, texture data, and lighting information 

corresponding to each node will be dynamically loaded, and 

the GPU will execute tasks in the queue through pipeline 

processing to ensure that the rendering process does not 

experience frame rate jitter due to scheduling delays. After 

the execution is completed, the feedback module will 

collect the actual execution time

actual

it , predicted time 

est

it

, and error behavior i of each task node, and adjust the 

subsequent path decision through the following cost 

correction function: 

( ) ( ) ( ) i

est

i

actual

i ttijCijC  ··,·,1 +−+=
（4） 

The three coefficients  ，

，and


 in this 

formula reflect the impact weights of historical path cost, 

execution deviation, and error feedback, respectively, and 

are used to dynamically balance the scheduling priority 

logic of the system under different rendering objectives. 

The feedback mechanism can dynamically update between 

frames, enabling the algorithm to have scene adaptability 

and stable performance recovery capability. 

In system integration design, the algorithm and the 

main rendering engine perform task calls and feedback 

feedback through abstract interfaces. The interfaces 

encapsulate task IDs, path node sequences, GPU load 

parameters, and performance record formats to ensure that 

each module operates decoupled in high frame rate and high 

concurrency environments. At the same time, the platform 

supports cross system deployment and can run on 

heterogeneous GPU architectures that support 

CUDA/OpenCL and OpenGL graphics interfaces, adapting 

to various virtual reality rendering frameworks. 

Through this integration method, dynamic 

programming algorithms not only achieve real-time 
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iterative optimization of path scheduling logic, but also 

effectively avoid the inhibitory effect of resource 

bottleneck nodes on global performance, providing 

stable, efficient, and scalable technical support for 

dynamic rendering tasks in complex scenes. 

To unify the expression of path cost (edge weight) 

under different stages and structures, this paper adopts 

the following normalization method: 
( )ijc ,

 in 

formula (1) is the general path cost, and in actual 

implementation, according to application requirements 

and scenario characteristics, formula (3)

ij
pi

,
1

 +

 is more suitable for scheduling 

priority sensitive scenarios or formula (5) ijw
is suitable 

for scenarios dominated by changes in task resource flow 

for measurement. Both types of expressions are mapped 

to different forms of the main model 
( )ijc ,

through 

weight normalization and parameter configuration, 

ensuring consistency between theoretical analysis and 

engineering implementation. All weights, normalization 

methods and sub item definitions are detailed in the table 

of experimental parameters and relevant chapters. All 

path optimization in this paper is based on this unified 

model. 

Algorithm 2: Feedback Correction Mechanism 

(Pseudocode) 

Input:  - Current execution error E_t 

    - Historical path cost Cost_hist 

    - Execution deviation Dev 

    - Error feedback Err 

Output: - Updated scheduling priority and path score 

1. Initialize correction weight parameters: alpha, beta, 

gamma 

2. Compute total correction value: Correction = alpha * 

Cost_hist + beta * Dev + gamma * Err 

3. Update path score: Path_Score = Path_Score - 

Correction 

4. If Correction exceeds threshold, trigger path 

replanning 

5. Return updated Path_Score 

4  Results 
4.1  Experimental environment 
construction and task configuration 
All experiments were independently repeated for 5 

rounds in three typical scenarios, and the mean and 

standard deviation were reported. The statistical 

significance of the performance improvement was 

verified using t-test (p<0.01). All source code and 

datasets have been open sourced, please refer to the 

appendix or additional materials for details. 

To comprehensively evaluate the performance of 

dynamic programming algorithms in virtual reality 

rendering, the experimental platform is built on a 

heterogeneous parallel computing architecture, aiming 

to simulate real-time rendering requirements in high 

concurrency, multitasking, and heavy computing 

scenarios.The experimental platform is based on a 

high-performance workstation (high-end CPU, RTX series 

GPU, 64GB memory, Ubuntu operating system), developed 

using a combination of Unity rendering engine and 

self-developed scheduling module to achieve real-time 

rendering and multitasking scheduling of complex scenes. 

The experiment mainly set up three typical virtual 

environments: ① urban streets (large outdoor areas, 

dynamic viewpoint switching), ② natural terrain (large 

texture data, complex terrain interaction), and ③ indoor 

exhibition halls (multiple light sources, multiple materials, 

and high-density tasks). Each type of scene includes a 120 

second AI/user hybrid interaction, and each frame in the 

scene needs to dynamically allocate 3-8 rendering and 

computing subtasks, including model loading, lighting, 

special effects, etc. All task nodes are divided into three 

categories: static rendering, dynamic interaction, and 

system control, assigned different priorities and resource 

requirements, simulating real VR rendering loads. 

The system records core performance indicators such 

as task completion rate, GPU utilization rate, rendering 

failure rate, and frame rate for each frame, and all 

experiments are repeated five times to ensure stable and 

reliable data. Combining with the optimization strategy of 

sparse voxel octree proposed by Laine S et al[21],This 

system integrates LUT lookup mechanism and sampling 

reconstruction method in cross threaded task scheduling. 

Each module interacts with gRPC and Protobuf protocols to 

achieve efficient and low latency communication under 

different frame loads, and can dynamically adjust thread 

resource allocation strategies. 

The experiment mainly uses three typical virtual 

environments: urban streets (outdoor high detail); Natural 

terrain (large texture modification); Indoor exhibition hall 

(multiple light sources and materials). Each scenario is set 

with a customized interaction task of 120 seconds, which 

achieves visual processing requirements for continuously 

refreshing the actual operation process through the set AI 

path, randomly generated viewpoint switching points, and 

interaction event initiation points. 

The task configuration adopts a frame based dynamic 

allocation strategy, which means that during the system 

operation, the background is generated with a rendering 

frame frequency of 90fps, and each frame includes 3-8 

processing types of concurrent sub task nodes; These task 

types include but are not limited to model loading, lighting 

rendering, shadows, and post effects. Each task type is 

marked and segmented based on resource requirements and 

task processing time. And it includes information such as 

the priority of the corresponding task level, required GPU 

resources, and estimated running time to meet subsequent 

routing calculations and cost estimates. The routing 

planning section performs routing calculations and task 

planning within the first 5ms of each frame to meet 

real-time requirements and balance resource utilization. 

In addition, to enhance the controllability and 

comparability of the evaluation process, the system can also 

record the completion ratio, GPU utilization, rendering 

failure rate, and average frame speed of each job sequence 
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on the rendering path as a function of the experimental 

results. All data can be instantly generated by the 

rendering statistics section and recorded in the form of 

journal files and curves. The system also has the function 

of adjusting log levels and tracking markers, which can 

identify the performance characteristics of the rendering 

process and rendering scheduling process, and can 

automatically store grouped experimental data. Each set 

of experiments will be run five times to eliminate the 

influence of random sample errors and ensure the 

typicality and reliability of the data. 

This experimental platform not only provides a 

unified execution foundation for subsequent algorithm 

path generation, system operation mechanism, feedback 

correction, etc., but also lays a solid technical support for 

data processing, performance statistics, and comparative 

experiments in the future. 

4.2  Input data processing and structure 
generation 
The application of dynamic programming algorithms in 

virtual reality rendering relies on structured input of task 

data and efficient construction of graph models. At the 

initial stage of operation, the system enables 

multi-threaded data listeners to capture real-time user 

interaction behavior, viewpoint trajectories, scene state 

changes, and frame rendering feedback. The raw data is 

input into the scheduling module through a unified 

interface and encoded into rendering task units with 

temporal and resource characteristics. Each unit is 

represented as a quintuple 
( )iiiiii crltx ,,,, =

, 

corresponding to trigger time, scene position, GPU 

resource estimation, lighting status, and task category. 

All task units form state sequence 

 nxxxX ,…,, 21=
, and the system slides and 

aggregates them based on the timing window to form a 

continuous frame task set. Subsequently, a clustering 

algorithm based on task content and resource conflicts 

was adopted to divide the task set into structurally 

similar clusters, simplifying the complexity of 

subsequent path graph construction. Each cluster is 

treated as a virtual task node iT
, with an abstract 

resource request vector ir
→

 and a schedulable execution 

period 
 i

e

i

s tt ,
. 

To achieve automatic task grouping, the system 

adopts the K-means clustering method. Each rendering 

task unit will be encoded based on five main features, 

including its triggering time, scene spatial position, GPU 

resource prediction, lighting status, and task type. In the 

actual clustering process, the system normalizes the 

above features and groups them by comparing the 

comprehensive similarity between task units. The 

number of clusters K is dynamically adjusted based on 

the number of tasks in each round, usually forming a 

group every 10-20 frames. The task cluster label is 

determined by the task type and resource characteristics 

with the highest proportion within the group. The similarity 

threshold is set at around 0.6 based on the training sample 

experience, and the clustering labels and grouping results 

are automatically refreshed every 5 frames to adapt to 

changes in task load. 

The system constructs task graph 
( )EVG ,

 during 

the composition phase, where node set

 k21 T,…,,TTV =
 originates from the aforementioned 

clusters, and edge set E represents the sequential logic, 

resource conflicts, and path coupling between tasks. The 

edge weight is defined by the following function: 

  ijtjiij i
e

rrw ···ψ 3＞t21 j
s

++−=
→→


（5） 

Among them, 
−

→→

ji rr
 represents the difference 

in task resource vectors,
 j

s＞ti
et


is the sequential constraint 

indicator function, ij
is the statistical value of historical 

scheduling failure rate, and the three weight 

parametersΨ1、Ψ2 andΨ3are fixed after experimental 

optimization, used to dynamically balance execution 

coupling, temporal risk, and stability expectations. 

The resource request vector ir


consists of five 

dimensions, corresponding to the estimated demands of 

GPU computing power, video memory, bandwidth, texture 

processing unit, and real-time frame rate for each task 

cluster during scheduling. The system extracts resource 

usage characteristics for each original task unit, and forms a 

five-dimensional vector representing node resource 

requirements through normalization and weighted 

aggregation. Each component is based on the actual 

sampled data of the current frame, expressed in percentages. 

The sequential constraint indicates that function
 j

s＞ti
et



has a value of 0 or 1. If task i must be started after task j is 

executed, then 
  1j

s＞t
=i

et


; otherwise, it is 0. This 

criterion is automatically generated by task dependency 

relationships and scene logic, ensuring the correctness of 

the graph structure and dynamic switching between task 

serial/parallel scheduling. The historical scheduling failure 

rate of ij
 is used to quantify the risk weight of inter node 

connections in the system by dividing the number of 

scheduling failures caused by resource scarcity, 

dependency blocking, or priority conflicts in the historical 

multi round experiments or running logs of task i by the 

total number of scheduling failures, with a value range of 

[0,1]. The statistical cycle of parameters is synchronized 

with the runtime of the scene, and the experiment is 

automatically reset to zero and recalculated every time it is 

restarted. 

The edge weight parameters in this article areΨ1、Ψ2 

andΨ3 As global hyperparameters, they are the results of 

the installation, testing, and optimization phase of the entire 

system. From the perspective of method steps, they remain 
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unchanged during the actual operation of the algorithm 

and are weights set through multiple experiments 

throughout the entire process. The three weights are 

continuously adjusted based on past experimental data 

analysis and system performance goals. During the 

execution process, they accumulate and reflect the 

system's sensitivity to comprehensive execution, 

sequential danger, and stability. Although the weight 

itself does not change with real-time operation, its 

"dynamic" performance is reflected in the weight of 

various factors affecting path calculation. Therefore, in 

this article, "dynamic" performance is reflected in the 

weighting operation of each factor, rather than the 

weight changing over time. Therefore, this design not 

only considers the robustness of the system but also 

considers computational efficiency. The sentence is:, A 

feedback based weight dynamic adjustment mechanism 

can be introduced in the subsequent readjustment 

strategy. 

To improve the response speed of the scheduling 

system in high concurrency environments, the structure 

of nodes and edges is translated into sparse matrix 

format and cached on the GPU side to avoid frequent 

data handling and memory mapping operations. At the 

same time, to ensure the availability of nodes in path 

planning, the system uses Boolean masking mechanism 

to mark and remove abnormal tasks, ensuring the 

connectivity and reliability of the graph structure in the 

path generation stage. 

After the structure generation is completed, the 

system starts the graph traversal verification module, 

performs DFS detection on the connected branches of 

the graph, identifies unreachable task clusters, and feeds 

them back to the preprocessing module for feature 

correction. Each frame level graph construction is bound 

to the current timestamp and user interaction sequence, 

supporting full link backtracking analysis of scheduling 

logic. 

Through the above process, the system accurately 

maps real-time input data to standard inputs for dynamic 

programming scheduling diagrams. This not only 

establishes the priority order and resource connections 

between tasks, but also provides a structural foundation 

and data support for path calculation, execution control, 

and feedback correction. The data processing 

mechanism fully meets the dual requirements of high 

frame rate virtual reality rendering for structure 

generation speed and scheduling map scalability, while 

balancing computational efficiency and expression 

accuracy. 

4.3 Collection and statistics of key 
performance indicators 
To systematically analyze the optimization effect of 

dynamic programming algorithms in virtual reality 

rendering, this study sets four key performance indicators 

for real-time collection and statistics: average frame rate 

(FPS), GPU utilization, task completion rate, and rendering 

failure rate. The above indicators are achieved through the 

combination of rendering scheduling module and 

performance monitoring plugin. The running cycle of each 

experiment is 120 seconds, and the rendering output 

interval is fixed at 11 milliseconds to ensure data accuracy 

and comparison reliability. 

The average frame rate statistics are based on the 

complete rendering output, eliminating data disturbances 

caused by faulty skip frames and delayed frames, 

calculating the average value of normal frames, and 

measuring the real-time performance of the system. GPU 

utilization is sampled 60 times per second, capturing the 

graphics card core and memory load through NVIDIA SMI 

interface to reflect resource usage. The completion rate of 

tasks is calculated based on the execution status of task 

nodes in each frame, and the proportion of successful 

completion is counted; The rendering failure rate is the 

proportion of task termination caused by scheduling 

failures, resource overflow, or logical errors.Combining 

Dachsbacher C et al. proposed the technique of reflective 

shadow mapping [22],This study integrates image 

reconstruction efficiency and frame rate fluctuation 

features in indicator collection to construct a more stable 

performance evaluation mechanism. 

As shown in Figure 2, after introducing the dynamic 

programming scheduling algorithm, the average frame rate 

of the system increased from 77.3 FPS under the original 

algorithm to 86.1 FPS, an increase of 11.4%; The GPU 

utilization rate remains stable at around 91.7%, an increase 

of nearly 7 percentage points compared to 84.9% before 

optimization, indicating that the scheduling algorithm has 

achieved better load allocation at the resource coordination 

level; The task completion rate has shown the most 

significant improvement, increasing from 92.8% to 98.3%, 

significantly reducing the phenomenon of task backlog and 

waiting; The rendering failure rate decreased from 3.2% to 

0.9%, further verifying the synchronous improvement of 

path scheduling accuracy and resource prediction accuracy. 

 
Figure 2: Bar chart comparing key performance indicators before and after optimization of dynamic programming algorithm 
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To ensure the representativeness of statistical data, 

the experiment conducted five rounds of replication runs 

on three typical application scenarios, and the average 

values of all indicator results were taken, with an error 

range controlled within ± 1.1%. System log records 

show that during resource intensive stages, dynamic 

programming algorithms are more likely to prioritize 

scheduling task chains with lower resource costs, 

avoiding "bottleneck nodes" from blocking the full 

frame progress, thereby stabilizing frame rates and 

execution efficiency. Especially in indoor scenes with 

frequent lighting switching and dense material loading, 

the fluctuation amplitude of frame rate is significantly 

reduced compared to before optimization, and the GPU 

response curve tends to be stable. 

We use UnityPofider and our self-developed 

logging system to collect frame rates. After the frame 

ends, we collect the time spent on rendering and 

automatically validate the results using the frame rate 

trend line provided by UnityPofiler. The initial value 

processing method uses the original frame rate collected 

by the script to obtain the average and standard deviation 

after removing the frame rate. The experimental group 

and the control group are repeated 5 times in the same 

environment to ensure fairness and comparability of 

each indicator. 

To enhance the statistical reliability of the results, 

this article reported the mean and standard deviation of 

five independent experiments for each core performance 

indicator. For example, after dynamic programming 

optimization, the average frame rate of urban block 

scenes is 86.3 ± 2.1 FPS, natural terrain is 84.1 ± 2.5 FPS, 

and indoor exhibition halls are 88.0 ± 1.9 FPS. Further 

paired t-test analysis was used to determine the extent of 

improvement in each indicator, and the results showed 

that the improvement in FPS and GPU utilization was 

statistically significant (p<0.01) in all typical scenarios, 

fully demonstrating the reliability of the optimization 

effect of this method. 

In summary, the dynamic programming method has 

advantages in the above main indicators, which can 

improve the real-time and stability of system operation, 

reduce the frequency of accidents, save system resource 

consumption, and provide data basis for the construction 

of more complex target graphs and the expansion of 

scheduling schemes in the future. 

4.4 Performance changes under dynamic 
programming algorithm 
In order to compare and analyze the actual performance 

of dynamic programming technology before and after 

the application of VR rendering engines, experimental 

comparative tests were conducted on the frame rate 

performance indicators, load rate indicators, task 

running status indicators, and task scheduling accuracy 

indicators involved before and after the application. The 

tested basic running objects included three different 

typical types of scenes: streets, urban blocks, natural 

terrain, and indoor exhibition halls. Five sets of 

experiments were conducted under the same software and 

hardware configuration environment to obtain reliable data 

as a comparison basis. 

After introducing dynamic programming, the average 

frame rate of each typical scene has significantly improved. 

Specifically, the city block scene has increased from 76.9 

FPS to 86.3 FPS, an increase of 12.2%; The natural terrain 

has increased from 74.5FPS to 84.1FPS, an increase of 

12.9%; The indoor exhibition hall has increased from 

80.4FPS to 88.0FPS, an increase of 9.5%. The overall 

improvement level is significant, indicating that the 

proposed algorithm can effectively optimize real-time 

rendering performance in different environments. 

The GPU utilization rate increased from 85.1%, 87.2%, 

and 82.5% to 91.6%, 92.4%, and 91.0% in three scenarios, 

with an increase of 7.6%, 5.9%, and 10.3%, respectively. 

This method can further optimize resource allocation in 

complex task scenarios. 

In terms of task completion rate, the system's 

completion rates in three scenarios have increased from 

91.3%, 93.1%, and 94.0% to 97.8%, 98.2%, and 98.7%, 

respectively. The overall average completion rate has 

increased from 92.8% to 98.2%, achieving efficient 

execution under almost full load. This improvement is 

particularly evident in exhibition hall scenarios with 

large-scale concurrent tasks, indicating that the algorithm's 

scheduling performance is more prominent in complex 

lighting and material processing. 

The rendering failure rate has also significantly 

decreased, from 3.4%, 3.1%, and 2.8% before optimization 

to 1.0%, 0.7%, and 0.9% after optimization, with an 

average reduction of over 2 percentage points. Failed tasks 

are mainly caused by resource competition conflicts and 

scheduling delays. After introducing feedback correction 

mechanisms, the system can effectively predict bottleneck 

nodes and adjust path planning, improving overall 

execution stability and accuracy. 

In terms of the average execution time of tasks, the 

average processing time of rendering tasks in the three 

types of scenes decreased from 21.3ms, 22.1ms, and 20.8ms 

to 18.7ms, 18.3ms, and 17.9ms, respectively, with a 

reduction of about 13%. The system dynamically adjusts 

the predicted execution time through inter frame feedback, 

enabling the scheduler to more accurately balance task 

density and execution time in the next cycle. 

Scheduling response delay, as a core indicator of 

dynamic systems, has also been effectively improved. The 

original system had an average scheduling delay of 8.4ms 

when dealing with viewpoint switching and new task 

injection, which was reduced to 5.2ms under dynamic 

programming mechanism, resulting in an overall 

improvement of 38.1%. The scheduler uses a path cost 

prediction function to calculate the next frame task path in 

advance within each frame period, providing sufficient data 

support for scheduling delay compression. 

The success rate of loading graphic resources has also 

been improved, from 95.6% in the original system to 98.8%, 

mainly due to the collaborative effect of graph structure 

compression and task node priority reordering mechanism, 
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which avoids loading failures caused by resource 

fragmentation. 

Taking into account 14 core performance indicators 

(as shown in Table 3), over 85% of the performance 

items have achieved an improvement of over 5% with 

the support of dynamic programming algorithms, with 6 

items showing an improvement of over 10%, demonstrating 

the algorithm's adaptability and scheduling accuracy in 

complex concurrent scenarios. 

 

 

Table 3：Bar chart comparing performance indicators before and after dynamic programming rendering optimization 

performance index 
Urban blocks 
(before/after 
optimization) 

Natural terrain (before/after 
optimization) 

Indoor exhibition hall 
(before/after optimization) 

Average frame rate（FPS） 76.9 / 86.3 74.5 / 84.1 80.4 / 88.0 

GPU utilization rate（%） 85.1 / 91.6 87.2 / 92.4 82.5 / 91.0 

task completion rate（%） 91.3 / 97.8 93.1 / 98.2 94.0 / 98.7 
Rendering failure rate（%） 3.4 / 1.0 3.1 / 0.7 2.8 / 0.9 
Execution duration（ms） 21.3 / 18.7 22.1 / 18.3 20.8 / 17.9 

 

Table 3 reflects 14 performance parameter 

indicators, including frame rate before and after 

rendering, GPU utilization, task completion rate, task 

failure rate, and task scheduling response time. The 

comparison between before and after rendering 

optimization intuitively reflects the improvement of 

various performance indicators, which is also the basis 

for performance analysis in this study. 

In summary, dynamic programming algorithms 

have greatly improved the response rate and task 

scheduling accuracy of virtual reality tasks in rendering 

systems, establishing more stable and adaptable 

rendering scheduling methods, and thus forming 

technical support for widespread application in complex 

scene rendering. 

5  Discussions 
5.1  Comparative advantages with existing 
optimization algorithms 
In virtual reality rendering systems, traditional static 

scheduling and depth first path algorithms often exhibit 

low resource scheduling efficiency and response latency 

in task intensive scenarios due to the lack of dynamic 

feedback, making it difficult to maintain high frame rates 

and low failure rates. The dynamic programming 

algorithm introduced in this study enhances the 

responsiveness and robustness of the scheduling system 

through task priority adjustment and path feedback 

correction. Combining the real-time construction 

method of KD tree based on graphics hardware proposed 

by Zhou K et al. [23],The algorithm used in this study 

can dynamically switch paths based on real-time 

interactive changes, enhancing system stability. 

In terms of frame rate, traditional algorithms use static 

path allocation, which causes significant fluctuations in 

frame rate when the load increases. In urban block 

scenes, the average frame rate is 76.9FPS, which 

increases to 86.3FPS after introducing dynamic 

programming. The other two types of scenes also have 

an increase of over 10%, improving visual coherence. 

In terms of resource scheduling, the original GPU 

utilization rates were 85.1%, 87.2%, and 82.5%, which 

were improved to 91.6%, 92.4%, and 91.0% after 

dynamic scheduling. The task allocation became more 

reasonable, and the problem of resource congestion and idle 

coexistence was significantly alleviated. 

In terms of task completion rate, under traditional 

methods, the three types of scenarios range from 91.3% to 

94.0%, and after optimization, they have been improved to 

97.8%, 98.2%, and 98.7%, respectively. The scheduler 

improves continuous allocation capability through path 

prediction and bottleneck avoidance, significantly 

suppressing blocking phenomena. 

In terms of rendering failure rates, the original strategy 

had failure rates of 3.4%, 3.1%, and 2.8%, which were 

reduced to 1.0%, 0.7%, and 0.9% after optimization. With 

the help of node feedback mechanism, the system can avoid 

conflicting resources and ensure stable task execution. 

In terms of system response delay, the average 

processing delay of the original algorithm was 8.4ms, 

which was reduced to 5.2ms after optimization, an increase 

of 38%. The predictive scheduling structure can complete 

task preparation in advance and reduce user waiting 

experience. 

In terms of resource loading, traditional algorithms 

have deficiencies in resource priority control, resulting in 

loading failures or disorderly order. The new strategy 

improves the resource loading rate from 95.6% to 98.8% 

and enhances the overall rendering fluency by restructuring 

the graph structure and node sorting. Engel K et al. 

proposed a series of core technologies for real-time volume 

rendering, focusing on efficient data structures, voxel data 

stream processing, and parallel rendering frameworks, 

significantly improving the real-time visualization 

capability of large-scale volume data in virtual reality and 

other scenarios. This method provides important support 

for high-quality volume rendering and interactive 

performance optimization of complex 3D scenes [24]. 

In summary, compared with traditional scheduling 

strategies, dynamic programming algorithms can achieve 

logical optimization of scheduling, rationality of resource 

scheduling, and stability of system scheduling, and have 

broader application prospects in high concurrency and high 

load rendering tasks. 

5.2  Analysis of adaptability and stability of 
algorithm performance 
In the increasingly complex and ever-changing virtual 

reality rendering environment, the rendering performance 
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of virtual reality systems and user interaction experience 

depend on the algorithm compatibility and stability of 

the system. This research method combines dynamic 

programming and path cost estimation algorithms with 

task priority control strategies, demonstrating strong 

environmental adaptability and high operational stability. 

Especially when facing challenging tasks and 

environments such as a large number of parallel tasks, 

frequent task switching, and resource constraints, the 

advantages are particularly prominent.Luebke et al. 

pointed out that GPU architecture innovation has 

significantly improved real-time graphics rendering and 

large-scale computing capabilities [25].On this basis, 

this study aims to improve the relationship between path 

discrimination and behavioral response, and enhance the 

system's ability to adapt to task interference through 

self-regulation. 

This algorithm can adaptively adjust its scheduling 

algorithm based on the parallelism and characteristics of 

tasks to meet different environmental requirements. 

Taking indoor exhibition halls as an example, the 

dynamic programming algorithm increased the average 

frame rate from 80.4fps to 88.0fps under high-density 

rendering and frequent task switching conditions, 

significantly reducing fluctuations, while maintaining 

high GPU utilization and task completion rates. This 

method does not require preset parameters and can adapt 

to complex application loads, demonstrating good 

generalization ability. 

In terms of task density, dynamic programming also 

demonstrates strong adaptability. In the exhibition hall 

scene, the conventional algorithm GPU occupancy rate 

is 82.5%, with resource idle issues. After renovation, it 

increased to 91.0%; The task completion rate has 

increased from 94.0% to 98.7%, which means that the 

system can continue to operate in high-density scenarios, 

avoiding scheduling conflicts and pauses, and 

maintaining high efficiency. 

In terms of system stability, dynamic programming 

algorithms have strong fault tolerance and correction 

mechanisms. The failure rate of rendering in three types 

of scenes has significantly decreased, such as the 

exhibition hall dropping from 2.8% to 0.9%, and the city 

block dropping from 3.4% to 1.0%. This is attributed to 

the algorithm's ability to identify bottleneck nodes in 

advance, complete path migration and load sharing in a 

timely manner, and reduce error occurrence. In terms of 

scheduling response delay, the original average was 

8.4ms, which was compressed to 5.2ms after 

optimization. It can still be stably maintained within 

5.4ms in sudden natural terrain task scenarios, ensuring 

users' real-time interaction experience. Based on the 

efficient management and resource optimization method 

of medical data in virtual reality environment proposed 

by Sik-L á nyi et al. [26],The system achieves higher 

accuracy in delay prediction and congestion modeling, 

providing data support for path migration and scheduling 

fine-tuning. 

Overall, the dynamic programming scheduling strategy 

can quickly adapt and stabilize system performance under 

complexity, strength, and bottleneck conditions, 

demonstrating significant advantages in anti-interference, 

resource elasticity, and path optimization, providing solid 

technical support for virtual reality rendering systems. 

5.3  Feasibility assessment of computing 
resource consumption and system 
deployment 
Although dynamic programming algorithms have improved 

the scheduling efficiency of rendering tasks, their resource 

load during deployment still needs to be carefully evaluated. 

Based on the comparison results of the experimental 

platform, the dynamic strategy has increased from 52.4% to 

58.7% in terms of CPU usage, mainly due to the increased 

computational burden of path prediction and priority 

backtracking. The peak utilization rate of GPU increased 

from 89.3% to 94.8%, indicating a more centralized 

resource scheduling and a significant improvement in the 

utilization efficiency of the graphics pipeline. The memory 

overhead has increased from 7.3GB to 7.5GB, and the 

newly added structure is mainly used for scheduling cache 

and feedback modules, accounting for 2.7%, with limited 

impact on the platform. The initialization time of the 

algorithm has been extended from the traditional strategy of 

2.5 seconds to 4.2 seconds, mainly due to the loading 

process of the cost matrix and scene feature index; The full 

deployment cycle has been extended from 8.2 minutes to 

9.0 minutes, with limited latency, and can be further 

compressed through parallelization and automatic 

deployment mechanisms in the future. 

Based on the resource measurement and optimization 

strategy proposed by Kuk et al. for parallel scheduling of 

dynamic programming tasks on multiprocessor platforms 

[27],And improved the accuracy of scheduling while 

maintaining its control load;At the same time, Ma č ek et al. 

reviewed the response evaluation and performance analysis 

methods of dynamic programming parallelization systems 

[28],To demonstrate that this strategy can achieve a 

reasonable trade-off between performance and resource 

consumption, and provide strong reliability and 

effectiveness for its engineering practice. In fact, the use of 

buffering technology enables dynamic strategies to 

gradually alleviate the load at startup, increase the 

utilization rate of routing, and enable faster recovery of 

failed tasks, which helps it to scale up to large-scale 

environments and mature. The quantitative comparison 

results of the main resource consumption indicators under 

various algorithm strategies are shown in Table 4:
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Table 4：Comparison of resource consumption and deployment indicators under different algorithms 

Indicator items 
Static scheduling 
strategy 

Dynamic 
programming 
strategy 

Difference explanation 

CPU usage（%） 52.4 58.7 
Increase by 6.3% for path prediction 
calculation 

GPU peak 
utilization（%） 

89.3 94.8 
5.5% increase, more centralized resource 
scheduling 

memory footprint（GB） 7.3 7.5 
Increase by 0.2GB, with limited proportion 
of structural expansion 

Initialization time（s） 2.5 4.2 
Increased by 1.7 seconds due to cost matrix 
loading 

Complete deployment 
cycle（m） 

8.2 9.0 
Add 0.8 minutes, which can be automatically 
optimized for compression 

 

In order to further demonstrate the detailed performance 

of system resource scheduling, this study synchronously 

recorded the average processing time per frame and task 

queuing delay in the experimental analysis. The results 

showed that under the dynamic programming strategy, 

the average processing time per frame of indoor 

exhibition hall scenes decreased from 20.8ms to 17.9ms, 

and the task queuing delay was reduced from 3.4ms to 

1.7ms. The above data are the average of five 

independent experiments, demonstrating the significant 

advantages of the new algorithm in improving response 

speed and reducing system bottleneck. These 

supplementary indicators effectively enhance the 

scientificity and comparability of overall resource 

consumption evaluation, further supporting the 

feasibility analysis of algorithm deployment in practice. 

In summary, although dynamic programming 

methods have high consumption, their efficiency is 

better, and all related resource consumption is within the 

acceptable range of the system. Based on the current 

computing power of high-performance computers and 

graphics workstations, this algorithm has strong 

installation adaptability and scalability, and works well 

for virtual reality system scenes that require frame rate 

control and multitasking. If it can be combined with 

cloud GPU deployment platform and dynamic model 

compression technology in the future, it should further 

enhance the efficiency and workload allocation ability of 

the algorithm. 

In this way, the "sliding window" technology of the 

system is applied in the process of generating paths and 

updating states. This technology can reasonably control 

the number of nodes and states that need to be examined 

in each round of computation, thereby effectively 

allocating limited memory and avoiding the need for a 

large amount of computation and storage load for a 

comprehensive search of the entire graph, in order to 

meet the requirements of real-time rendering. In the 

initial stage, it is necessary to first build a complete 

execution process and path cost, so it is necessary to read 

and process all node and edge information at once, that is, 

the structure of the "cost matrix" or graph. This 

operation process will generate a large amount of 

computational load and memory usage, but it only exists 

in the installation or scene change stage. The layering of 

this method has the effect of improving the efficiency of 

the entire system and balancing the distribution of 

computational loads in various execution stages. 

5.4 The practical significance and expansion 
prospects of research results 
This study proposes a dynamic programming-based 

implementation method for assigning virtual reality 

rendering task paths, which can meet the requirements for 

rendering delay and stability in the state of a large number 

of complex tasks. A large number of experimental results 

have shown that this method can effectively improve user 

experience in terms of frame rate, GPU utilization, 

workload utilization, workload loss rate, task scheduling 

delay, and has the possibility of implementation compared 

to existing methods. 

The results of this study can play a key role in 

promoting the industrialization of VR technology. In fields 

such as digital exhibition halls, simulation cockpits, and 3D 

models, users are faced with the need for smoothness and 

real-time performance. Through dynamic scheduling 

strategies, it is possible to more efficiently respond to 

rendering systems in different scenarios, ensure their 

stability, effectively reduce user waiting time on the system, 

enhance user immersion, and further enhance the product 

value and market competitiveness of this technology. 

In terms of expansion, it has good universality and can 

be applied in other scenarios such as digital twin 

applications, digital factories and visualization applications, 

massive augmented reality interactive applications, etc. 

After combining reinforcement learning algorithms with 

automatic adaptation and edge collaborative computing 

strategies, it is expected to build task computing systems 

with more autonomous, efficient, and discrete 

characteristics, providing forward-looking support for 

real-time computing and intelligent interactive 

applications. 

6   Conclusion 
This study proposes a dynamic programming based 

scheduling path optimization method to address the issues 

of insufficient optimization of rendering task scheduling 

and poor resource utilization in VR scenes. The scheduling 

strategy is experimentally validated for typical scenarios, 

and the experimental results demonstrate that the 

scheduling algorithm can effectively improve frame rate, 

GPU utilization, task success probability, and response time, 

demonstrating good adaptability and practicality; 
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Compared to static scheduling and depth first, dynamic 

programming is more suitable for complex 

multi-threaded scenarios, which can further improve the 

reliability and real-time rendering of the system. At the 

same time, this article comprehensively evaluates the 

proposed solution from the perspectives of algorithm 

fault tolerance, power consumption, and installation 

dependencies, summarizes its specific application scope 

and practical application path, and has good reference 

significance for future practical applications. At the 

same time, this solution also provides an effective 

scheduling optimization strategy for tasks with high 

real-time requirements such as VR scenes and smart 

cities. The next step is to combine reinforcement 

learning with distributed architecture to enhance the 

practical application potential of this solution in 

distributed architecture scenarios such as heterogeneous 

intelligent terminals. In summary, the algorithm 

proposed in this article has demonstrated good 

theoretical innovation and engineering effectiveness in 

virtual reality multi scene scheduling optimization, and 

has strong academic value and application prospects. 
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