https://doi.org/10.31449/inf.v49i9.9651

Informatica 49 (2025) 393-408 393

Enhancing Real-Time VR Scene Rendering with Optimized Task Path
Scheduling Via Dynamic Programming Techniques

Jing Ma

College of nursing health, Yunnan Open University, Kun’ming650500, Yunnan, China

E-mail: majing140627@163.com

Keywords: dynamic programming algorithm, real time rendering, virtual reality, performance optimization

Received: June 11, 2025

With the widespread application of virtual

This article proposes a dynamic programming rendering path optimization algorithm for virtual reality
scenes, which innovatively introduces real-time feedback mechanism and sliding window resource
scheduling, effectively improving rendering performance under multi scene concurrency conditions.
Compared with traditional greedy, genetic, and local search methods, this method can achieve global
optimal path selection and has been experimentally verified to achieve significant improvements in key
indicators such as average frame rate and resource utilization. All experiments in this article were
independently repeated 5 times, and the results were tested for variance and significance. This article
proposes for the first time a dynamic programming path scheduling strategy that combines sliding
window real-time feedback, solving the problem of generating the global optimal path in multi task high
concurrency environments. Compared with traditional heuristic and intelligent optimization algorithms,
the proposed method significantly improves system stability and rendering performance, and has
stronger practicality and promotional value. All variables and parameters are clearly defined in the
Methods section, and the experimental process and evaluation criteria follow internationally recognized
standards to ensure the reproducibility and rigor of the conclusions. The system conducted experiments
on three types of virtual environments: typical city blocks, natural terrain, and indoor exhibition halls
on the Unity platform. The results showed that after introducing dynamic programming, the average
frame rate increased from 76.9 FPS to 86.3 FPS, GPU utilization increased from 85.1% to 91.6%, task
completion rate increased from 92.8% to 98.2%, and rendering failure rate decreased from 3.1% to
0.9%. The solution significantly improves the real-time performance, stability, and resource utilization
efficiency of the system while ensuring image quality. Compared with traditional static scheduling
methods, this method exhibits better response capability and scalability in multi task high concurrency
environments, providing efficient technical support for complex virtual reality rendering tasks.

Povzetek: Za izboljsanje realnocasnega izrisovanja VR-prizorov je razvit algoritem dinamicnega
programiranja (DP-RPS), ki zdruzuje drsno okno in sprotno povratno zanko za optimizirano
razporejanje poti nalog. Na platformi Unity doseze zelo dobre rezultate. Zagotovi stabilno, prilagodljivo
in energetsko ucinkovito izrisovanje VR-prizorov z globalno optimizacijo poti pri vecopravilnosti in
visoki socasnosti.

Introduction scheduling system.

reality

changes. It is necessary to construct a new intelligent

technology in games, movies, healthcare, architecture,
and other fields, users' demands for immersive experience
and response speed are constantly increasing, which
drives the evolution of rendering systems themselves to
achieve high efficiency and intelligence. In 3D scenes
with massive details, real-time rendering systems require
graphic rendering and final result presentation in a short
amount of time, ensuring frame rate while controlling
resource fluctuations and delays. However, traditional
solutions based on fixed pipelines or static scheduling are
no longer sufficient to meet the needs of multi task
parallelism, heterogeneous inputs, and environmental

Although some improvements have been made in image
compression and hardware acceleration, the constraints of
resource allocation, execution path, and task sequence often
result in frame rate jitter and delay in the interactive
environment. Therefore, this study adopted dynamic
programming techniques to re optimize the scheduling
strategy and improve the overall efficiency of the system.
Xionghui et al. pointed out in their study of interactive
virtual systems that the consistency of task paths and the
accuracy of feedback links directly affect immersion and
operational response quality [1], thus verifying the impact
of path optimization on real-time performance. Lumpkin T
L et al.’s research shows that familiarity, aesthetics, and

https://doi.org/10.31449/inf.v49i9.96

394 Informatica 49 (2025) 393-408

change type affect visual memory in VR, influencing
system frame rate stability and load control[2], which
reflects the important role of real-time task scheduling
mechanism in system performance optimization.Sainz
M's research shows that accelerating real-time global
illumination rendering can effectively improve the
system's response speed and image realism, thereby
enhancing user immersion and interactive experience
[3],Further verification has shown that the rational
optimization of routing paths and task scheduling
strategies is a critical requirement for this system to have
real-time and stable feedback.

By constructing task dependency structures through
state transition models, dynamic programming can
generate optimal rendering paths that balance frame rate
and stability. The virtual behavior modeling method
proposed by Htun N S et al. [4] provides a supporting
framework for task prediction and state control in this
study. Compared to heuristic algorithms, dynamic
programming has global optimization and real-time
correction capabilities, making it suitable for
high-density interactive scenarios.

Although there have been studies using dynamic
programming and other optimization algorithms for
virtual reality rendering scheduling, there are often
issues with insufficient global optimality or lack of
real-time feedback mechanisms. This article constructs a
dynamic programming state transition model and
introduces sliding window feedback adjustment to
achieve global optimization and dynamic adaptation of
path planning, significantly improving rendering frame
rate and resource utilization.

This study starts from two dimensions: algorithm
construction and system integration, designs task nodes
and path mechanisms suitable for VR rendering
processes, and implements closed-loop scheduling
optimization in the platform.Owens J D et al.'s research
shows that GPU computing technology significantly
enhances large-scale parallel processing capabilities,
providing strong support for high-performance
computing and real-time rendering, thereby promoting
the development of resource scheduling mechanisms for
complex systems [5].

The goal of this study is to build an embeddable and
multi scene adaptive real-time rendering optimization
framework, with dynamic programming as the core, to
solve the bottleneck problems in current virtual reality
rendering and provide stable and efficient technical
support for image generation systems.Based on the
above analysis, this study mainly focuses on the
following two core issues: (1) How to optimize the
rendering path scheduling of virtual reality scenes based
on dynamic programming, and achieve real-time and
stability improvement under high concurrency and high
complexity tasks? (2) Can the proposed scheduling
algorithm achieve significant optimization in core
metrics such as frame rate and GPU utilization compared
to existing mainstream methods in different typical
scenarios?

J. Ma

2 Related work

Virtual reality systems require extremely high real-time
rendering performance, and rendering efficiency has
become a key factor affecting the system's interactive
experience. Early technological methods mainly relied on
fixed pipeline mechanisms, which achieved frame by frame
generation of graphic images through static task sequential
execution. However, in scenarios with high task intensity
and frequent perspective switching, the fixed path mode is
difficult to fully utilize computing resources, often
resulting in the coexistence of delay fluctuations and
resource redundancy.

To improve rendering performance, scheduling has
become one of the optimizations focuses. Heuristic
strategies are widely used in early scheduling design, such
as priority-based sorting mechanisms, local greedy methods,
and task complexity estimation models. These methods
respond quickly in scenarios with light computational
burden, but due to their local optimization properties, they
lack dynamic perception and regulation of the global state,
making it difficult to run stably in complex environments
such as high concurrency and asynchronous input.

To overcome the above bottlenecks, some strategies
integrate intelligent optimization methods such as genetic
algorithm, ant colony algorithm, simulated annealing, etc.,
using global search capabilities to avoid the problem of
path getting stuck in local optima. Although this type of
method improves path quality, it relies heavily on
computing power, has complex parameter tuning, and an
unstable training process, which limits its efficiency in
systems with high real-time requirements.Li B et al.'s
review pointed out that the application of deep learning
technology in virtual reality and augmented reality
significantly improves the perception ability and interaction
efficiency of the system, providing theoretical support for
the structured design and feedback mechanism of complex
tasks [6].

The dynamic programming algorithm demonstrates
advantages in multi-stage path decision-making through
state recursion and sub problem optimal solution
mechanisms. By constructing a state transition network and
cost function model, the rendering process can be
decomposed into ordered subtasks, and the optimal path can
be calculated layer by layer while recording intermediate
results. The image processing pipeline optimization method
proposed by Ragan Kelley J et al. achieves flexible and
efficient image processing performance improvement by
decoupling the algorithm from scheduling, providing
technical support for the construction of complex tasks in
virtual environments [7].Chae L R et al. pointed out that the
humanoid level of virtual characters significantly affects
users' trust and acceptance, which in turn affects users'
tolerance for system latency. This provides a psychological
reference for behavior perception embedding in scheduling
mechanisms [8]. The existing optimization strategies have
their own characteristics in path generation logic,
scheduling objectives, system response, and other aspects.
To compare the adaptability and limitations of different
methods more clearly, Table 1 summarizes and organizes
the mainstream rendering scheduling optimization
methods:

Enhancing Real-Time VR Scene Rendering with Optimized...

Table 1: Comparison of mainstream renderin

matica 49 (2025) 393-408 395

scheduling optimization methods

-'\I_/I;SQOd Core mechanism advantage limitation Applicable scenarios
ot Simple Easy to fall into local T
Qt?’%?es;;/c E;[Le st:aallz((e:(tji (I)gcal implementation optima and lack tla(;\ll(vftl:gvrcplexny, fixed
and fast speed global control
; : Genetic algorithm, - ;
intelligent ant colony. Strong global Complex parameter | Medium complexity
optimization simulated annealin search capabilit tuning and high and offline scheduling
algorithm etc 9. PabIy | computational cost | scenarios
reinforceme | Strategy learning Can adapt to some | Long training time A small amount of
nt learning | based on reward dynamic task and weak | dynamic and highly
model feedback changes generalization ability | trainable environment
Graph Efoprgs:?itcz;lrt]lon and Capable of Strong data Clear diagram
Neural Lea?n?ng Based on modeling complex | dependency, difficult | structure, stable task
Network Graph Structure task dependencies tO.mlg-;I’é-lth environment
) Optimal Path - nH1Ic?dhe|I?nltlal Complex scenarios
Dynamic combination controllability, re uiremgents and with multiple
Programmin | strategy of state global strquctured dependencies and
g transition and optimization, representation of optimal path
subproblem strong stability tagks requirements
Overall, current mainstream rendering scheduling basis for feedback driven intelligent scheduling

methods such as heuristic and intelligent optimization
algorithms have certain performance advantages in some
scenarios, but are susceptible to factors such as local
optima, parameter sensitivity, and poor generalization,
making it difficult to meet the system requirements of
high concurrency, complex dependencies, and real-time
performance. The dynamic programming strategy
introduced in this article has the advantages of global
path search and structured decomposition, which can
effectively improve the optimality of scheduling and the
stability of the system, and solve the core problems of
uneven resource allocation and scheduling lag in
traditional methods in multitasking and high complexity
scenarios.

Some studies have introduced dynamic
programming ideas into the graphics rendering pipeline.
Constructing a task graph model in multi-threaded task
scheduling and utilizing dynamic programming to
generate the shortest execution path; Combining cost
evaluation mechanism in GPU instruction sorting for
batch processing optimization has improved frame rate
stability and memory utilization efficiency, verifying its
adaptability in rendering systems.

Son D et al. found that changes in lighting in virtual
neighborhoods affect wusers' spatial perception,
suggesting that scheduling strategies should have
environmental adaptability [9]. Navarro J D pointed out
that imbalanced scheduling of audiovisual resources can
cause channel interference and reduce overall rendering
performance [10].The research by Figueroa J A et al.
shows that real-time dynamic global illumination
technology based on deep learning significantly
improves the visual effects of immersive virtual
environments, providing technical support for resource
scheduling and priority adjustment [11],This provides a

mechanisms.

Virtual reality rendering tasks have complex structures,
strong dependencies, and frequent changes, and urgently
require global optimization and adaptive scheduling
capabilities. Traditional static paths or heuristic strategies
have insufficient response to environmental changes and
task dynamics, and are prone to falling into local optima.
The dynamic programming path generation mechanism can
systematically divide tasks, avoid bottlenecks, and adapt to
complex rendering requirements.

Current research mostly focuses on local optimization
at the image level, lacking a complete path that embeds
dynamic programming from the scheduling architecture
level. To this end, this study proposes an optimization
mechanism with dynamic programming as the core,
constructs a task graph structure and multi-stage path
planning algorithm, improves system real-time
performance, stability, and resource utilization, and
provides efficient rendering support for complex VR scenes
while ensuring image quality.

3 Suggested solutions

3.1 Dynamic programming algorithm
Dynamic programming is an optimization algorithm
suitable for multi-stage decision-making problems, which
decomposes the original problem into sub problems and
records their optimal solutions, gradually constructing the
overall global optimal solution. This algorithm has good
stability and optimization capabilities in fields such as path
planning, task scheduling, and resource allocation. In
virtual reality scenes, rendering task nodes have complex
characteristics such as dependency relationships and
resource conflicts, which make the entire process have
obvious stages and structures. It is suitable to introduce

396 Informatica 49 (2025) 393-408

dynamic programming to achieve path control and task
compression.

In the rendering system, tasks can be modeled as
directed graphs, with each node serving as a rendering
unit and edge weights representing costs. Dynamic
programming gradually generates the minimum total
cost path by maintaining a state table and cost function.
The group manipulation technique proposed by Li X et al.
improves the accuracy of multi task control through
particle collaboration, confirming the advantages of this
method in path regulation [12];The real-time dynamic
environment masking technology based on deep neural
networks proposed by Liu Y et al. effectively enhances
the light and shadow representation in virtual
environments, improves the user's immersive experience,
and provides a theoretical basis for the design of
dynamic feedback mechanisms [13].This process can be
succinctly expressed as:

V(i)=min v (j)+c(j.i) jePrel)

Among them, V(i) represents the minimum total
cost from the starting node to node i V(J) is the
cumulative cost of predecessor node J , C(j’i)is the

path cost function, and Pl’e(l) shows the set of
predecessor tasks that can reach the current node.

Among them, C(J’I)represents the cost incurred

during the process of switching from task J to task ! . In
this article, the cost not only includes the scheduling
delay of the task itself, but also takes into account
multiple factors such as GPU resources consumed and
resource fluctuations during execution. The system
assigns weights to dimensions such as latency, resource
utilization, and load balancing based on experimental
objectives, and calculates the weighted sum of these
factors as the final path cost, achieving flexible
adjustment of different optimization objectives in the
dynamic scheduling process. All weight parameters and
indicator definitions are consistent with subsequent
performance analysis.

Unlike greedy or heuristic strategies, dynamic
programming can traverse paths globally, avoid
redundant calculations through pruning and cost caching,
and ensure the global optimality of solutions. In virtual
reality —systems, scenes frequently switch and
interactions are complex. Static paths can easily lead to
resource waste and delay, while dynamic programming
allows for estimating the optimal path during the loading
phase, improving frame rate stability and rendering
efficiency.The efficient real-time rendering method
based on adaptive path sampling proposed by Wei L et al.
effectively improves the rendering performance of
complex scenes, provides technical support for the
regulation of dynamic path structures, and promotes the
optimization of rendering scheduling in high interaction
environments [14].

To meet the real-time rendering requirements, this
study simplifies the structure of dynamic programming

J. Ma

and adjusts the cost function: on the one hand, it introduces
a weight decay mechanism to eliminate redundant paths in
advance and reduce the state space; On the other hand,
setting the cost function as a weighted combination of inter
frame resource fluctuations and delays enables path
selection to balance computational cost and stability. The
style based generative adversarial network architecture
proposed by Karras T provides advanced generative model
support for the design and optimization of dynamic path
mechanisms in virtual reality platforms, significantly
improving system response efficiency and stability [15].

To improve the engineering feasibility of the algorithm,
the key components of dynamic programming are
illustrated as follows:

(1) State space

Make [the current scheduling phase,
S—t :(I—t' I’_t) the system status, I—tthe number
of the currently executed rendering task, and r_t the

GPU remaining resource vector. The global state space

S_t

consists of all reachable sets up to
(2) State transition rules
At each stage, the decision is made to select the next

sk i_{t+1}

S’[+1 = (it+1’ - CiHl) 2)

, and the state transition is:

Among them, C—{i —{t+1}} represents the resource

consumption of task : —{t +1}

r_t—c_f{i_{t+11}, ..

(3) Cost function

This study defines the stage cost function as the
weighted sum of task execution delay and GPU resource
fluctuations:

g(i)=a-D(i)+ -V (i) (3)

Where D (i) is task delay, V (i) represents resource
fluctuations, and a and B are weighting coefficients.

(4) Recursive equation for dynamic programming

Dynamic programming is used to solve the optimal
scheduling path, with a cost function of :

Vi(8)=min fo(S.1)+V.u(S)} (a)

Transfer is only valid for

Among them, A(S) is the current state schedulable

!
task set, and S is the state after executing the task.
Application example explanation:
Taking the rendering of actual urban blocks as an

example, 1_t represents the task number of model

loading, lighting, shadows, etc. to be processed in the

current frame, and r_t represents the remaining GPU
memory and computing units. Task resource consumption

C—{I—{t+1}} and latency are obtained from the
Delay

performance sampling of the previous frame, while

Enhancing Real-Time VR Scene Rendering with Optimized...

andVar are updated in real-time through the monitoring
API. All parameters are automatically adjusted
according to task priority to ensure that the optimal path
for each round of scheduling can adapt to real-time
changes in the scene.

During path execution, the system updates the task
status and rating matrix in a rolling manner, and adjusts
the transition direction based on the current input. When
encountering high-frequency interactions or scene
switches, the algorithm can backtrack to a stable state
and re plan, achieving fast convergence and enhancing
the fault tolerance and real-time performance of the
scheduling system.

3.2 Method for building rendering task
nodes
In the real-time rendering process of virtual reality
scenes, the granularity division of rendering tasks and
the node construction method directly affect the
scheduling efficiency and response delay of the system.
To adapt to the state update mechanism of dynamic
programming algorithms, rendering tasks need to be
structurally reorganized based on spatial location,
functional characteristics, and computational cost, so
that each node has both computational independence and
logical dependencies, thereby decoupling complex
scenes into several controllable subunits and providing a
structural basis for path optimization and scheduling.
Node construction is divided into three stages:
firstly, task segmentation is performed, dividing the
original content such as model loading, lighting
calculation, shadow generation, texture mapping, etc.

matica 49 (2025) 393-408 397

into the smallest computing units based on their
dependency relationships and scene positions; The second
step is to establish a task dependency graph, which
constructs a topology structure by analyzing the data
coupling relationship between input and output tasks,
ensuring accurate expression of node execution order and
resource utilization; Thirdly, attribute tags are introduced to
record estimated costs, execution time, resource
consumption, and frame rate weights, providing parameter
support for path selection.The real-time rendering method
for complex scenes based on neural radiation caching
proposed by Fan Y et al. effectively improves rendering
efficiency and image quality, providing technical support
for task chain construction and skill path optimization in
virtual reality systems [16].

Nodes are usually divided into static rendering nodes,
dynamic interaction nodes, and system control nodes. Li P
et al. conducted immersive industrial design teaching with
the support of virtual reality. By integrating and
reconstructing the process of nodes and interaction paths,
they improved interaction efficiency and response clarity,
confirming the effectiveness of node optimization in
complex scenarios [17]. Different node types are assigned
different priorities and execution strategies, which affect
path value calculation and pruning mechanisms in dynamic
programming.

To improve the visualization and debugging efficiency
of task structure, a graph structure can be introduced to
represent the logical relationships between various nodes.
As shown in Table 2, the system unfolds tasks in frame
order, with stage order vertically and parallel nodes
horizontally, clearly expressing the dependency path and
resource intersection area of task scheduling:

Table 2 : Node Structure and Parameter Configuration for Virtual Reality Scene Rendering Tasks

Node . . More like
Belonging Predecessor Estimated
?umbe Node Type stage node cost (ms) gg?uency (
NO1 Static Nodes Loading phase not have 8.4 1
Dynamic -
NO7 interactive node Rendering Stage | NO1 12.7 60
N11 Control node Controlling NO7 3.1 30

The setting of node cost is adjusted using a predictive
model combined with empirical coefficients, taking into
account hardware layer factors such as GPU time slice
distribution and data transmission delay, as well as
behavioral layer factors such as user operation frequency
and action prediction, to improve the accuracy and
timeliness of cost evaluation. In multi-user collaboration
or high-density interaction scenarios, the system can
dynamically adjust the node graph structure and achieve
adaptive reconstruction of scheduling by adding or
removing child nodes or merging parallel paths.
Through the above node construction mechanism,
rendering tasks not only have good structural clarity and
dependency constraints, but also achieve preliminary
balance in cost distribution and resource allocation. This
provides a concrete data input foundation for the
subsequent path selection, pruning determination, and

state update of dynamic programming algorithms, and
effectively supports the unified scheduling and control of
multi-source rendering processes in the system.

3.3 Path generation algorithm and execution
process

After completing the task node construction, the rendering
system needs to generate the optimal execution path from
the starting node to the ending node based on node
dependencies and resource constraints. This path not only
determines the task scheduling order, but also affects frame
rate, response delay, and resource utilization. To achieve
the construction and updating of paths, the system is based
on dynamic programming algorithms, deducing node
selection through cost matrix and state transition function,
ensuring the dual goals of minimizing cost and stable
execution under dependency structure.

398 Informatica 49 (2025) 393-408

The first step in path generation is to construct a task
topology map, sort the rendering task nodes
topologically, and ensure that there are no loops in the
map. The sorted nodes enter the path generation module
in order, and the path is updated based on the
predecessor node cost value of each node, combined
with the current path cost function. The cost function
comprehensively considers execution time, resource
conflicts, and inter frame fluctuations, and is
transformed into a unified path cost score through linear
weighting. For equivalent predecessor nodes, the
algorithm prioritizes selecting paths with high resource
redundancy and low load to enhance parallelism and
robustness. Ogawa Y et al. developed a virtual reality
system based on Unity and machine vision, and verified
the practicality of path switching and state tracking
mechanisms under low latency conditions by
dynamically controlling animal behavior feedback
through path control [18].

During the path construction process, the system
adopts a sliding window strategy to maintain a finite set
of states, avoiding memory overhead and computational
redundancy caused by full graph enumeration. At the
same time, a local pruning mechanism is introduced to
directly exclude branches with expected costs exceeding
the current optimal path threshold, thereby controlling
the growth of the state space. This mechanism is suitable
for complex scenes such as large-scale animations or
concurrent interactions, which can effectively shorten
computation time and ensure real-time performance.
Birkheim L S et al. pointed out through their research on
the dynamic reconstruction mechanism of task paths in
VR environments that the flexibility of system path
scheduling directly determines the generation speed and

J. Ma

accuracy of feedback chains in complex scenes, indicating
that the path construction mechanism plays a central role in
task adaptability and feedback efficiency [19].

When the path is generated, the scheduling engine
solidifies it into a set of execution sequences as the
rendering instructions for the current frame. Each task node
records its true cost and execution time during the running
process, and provides feedback to the evaluation module.
The system continuously revises the cost model based on
this data, dynamically updates the subsequent path planning,
and forms a closed-loop mechanism of “prediction
feedback correction”. This mechanism can quickly adjust
the path during rapid scene switching or high-frequency
operations, avoiding performance loss caused by path
solidification.

To cope with multi-user or multitasking rendering, the
path module supports multi-path parallel planning
mechanism. A coexistence graph is constructed between
independent task flows through task labels and resource
exclusivity determination, and the optimal paths are
planned separately. The scheduling and conflict avoidance
are carried out during the execution phase. This method is
suitable for high-density task scenarios such as
collaborative virtual environments and multi perspective
reconstruction, improving system load capacity and
stability.

In order to more conveniently characterize the process
of path generation, this study designed a process diagram
for path state update (as shown in Figure 1), which includes
transition rules for path selection states, pruning judgment
mechanisms, and path determination rules. The use of
graphical models can further improve debugging efficiency
and accuracy of abnormal path localization.

Task topology Transitions Dynamic Pre Pruning
» programming path - >
diagram generation determined determination
Deny
Yes
A 4
Scheduling .
< Determine the path
Execution

Figure 1 : Path generation and scheduling flowchart

In summary, this path generation algorithm can
efficiently generate paths while meeting the real-time
and stability requirements in virtual reality systems, with
limited computational overhead. It also provides a stable
and high degree of freedom path generation foundation
for the integration of subsequent system modules and the
execution mechanism of system modules.

Algorithm 1: Dynamic Programming-Based Path
Generation (Pseudocode)

Input: Task node set N, dependency graph G, resource
constraint R
Output: Optimal execution path P_opt

1. Perform topological sort on G to obtain task sequence S
2. Initialize state table V; set optimal path table P_opt as
empty
3. For each task node n in S, do:

3.1. For each predecessor node pre in Pred(n):

3.1.1. Compute cumulative cost: cost = V[pre] + g(pre, n)

Enhancing Real-Time VR Scene Rendering with Optimized...

3.1.2. If cost < V[n], then: a) Update V[n] = cost b) Set
P_opt[n] = pre

3.2. Check if resource constraint R is satisfied; if not,
prune this branch
4, Backtrack P_opt to generate the optimal path
sequence

5. Return P_opt

The algorithm takes task queue and resource status

as inputs, adopts multi-stage dynamic resource
allocation, and key parameters o and measure delay
and fluctuation weights respectively. It performs
adaptive scheduling through real-time status feedback.
Please refer to Algorithm 1 for detailed pseudocode.

3.4 Algorithm integration and system
operation mechanism

In order to ensure the stable operation and efficient
scheduling of dynamic programming algorithms in
virtual reality rendering systems, it is necessary to build
a complete algorithm integration mechanism that covers
multiple aspects such as task input, path generation,
execution control, and feedback correction, forming a
closed-loop optimization process with frame cycles.
Drawing on the real-time closed rendering mechanism
proposed by Junjie Y et al. [20], the system relies on the
dynamic programming core module for path calculation,
and dynamically schedules the task chain through a
series of communication interfaces and task
management mechanisms.

The system architecture consists of four main
modules: task input module, task graph construction
module, path calculation module, and feedback
correction module. The task input module receives
real-time changes in perspective, user interaction, and
scene dynamic information, generates task description

vector Xt , and calls the node generation mechanism
based on its features to construct a directed acyclic graph

G(V’ E). After the graph construction is completed,
the path calculation module estimates the cost of each
feasible path based on dynamic programming strategy,
combined with task priority and resource overhead.

Based on the traversal strategy, the system
calculates the path cost for the current candidate node
using the following method:

1 ..
C, =Cj + A—+ 1),
pI (3)

C| 1 H
Among them, is the cost of nodel, Jis the

cost of its predecessor node J , A and # respectively
adjust the impact of priority and resource overhead on

path selection.Among them, P' represents the task

priority of predecessor node !, which reflects the
urgency and scheduling priority of the task after

normalization; Ul represents the resource occupancy
conflicts and inter frame fluctuations on the path from

matica 49 (2025) 393-408 399

node J to | , combined with the actual resource
scheduling fluctuations during task execution. Both are
linearly normalized according to the data collected by the
system, with units consistent with the aforementioned
indicators such as execution delay and resource conflicts.
The specific mapping is shown in the experimental
parameter table. This model avoids complex minimum
value solving forms and adopts a mechanism of "node by
node traversal+cost superposition™, which improves overall
scheduling efficiency while ensuring response speed.

It should be noted that in the formula of this article,

Ci refers to the cumulative total cost from the starting node

to node i. Its recursive structure is consistent with v (I) in
the previous text, and it does not simply refer to the local
cost of the current node i, but includes the cumulative total
cost of each predecessor node in the path. Please pay
attention to distinguishing the different semantics of
"cumulative path cost" and "single node local cost" in the
formula.

The task scheduling phase adopts an asynchronous
parallel mechanism, where the system continuously updates
path decisions on the main thread while sub threads execute
the rendering task of the current frame in parallel. The
graphic resources, texture data, and lighting information
corresponding to each node will be dynamically loaded, and
the GPU will execute tasks in the queue through pipeline
processing to ensure that the rendering process does not
experience frame rate jitter due to scheduling delays. After
the execution is completed, the feedback module will

actual est
collect the actual execution time i , predicted time

, and error behavior & of each task node, and adjust the
subsequent path decision through the following cost
correction function:

Y Y HE [(tactual __ tes .
C (j,l)—aC(j,l)+,B(ti e t)WLJ/gi (4)

The three coefficients & , B ,and 7 in this
formula reflect the impact weights of historical path cost,
execution deviation, and error feedback, respectively, and
are used to dynamically balance the scheduling priority
logic of the system under different rendering objectives.
The feedback mechanism can dynamically update between
frames, enabling the algorithm to have scene adaptability
and stable performance recovery capability.

In system integration design, the algorithm and the
main rendering engine perform task calls and feedback
feedback through abstract interfaces. The interfaces
encapsulate task IDs, path node sequences, GPU load
parameters, and performance record formats to ensure that
each module operates decoupled in high frame rate and high
concurrency environments. At the same time, the platform
supports cross system deployment and can run on
heterogeneous ~ GPU architectures that support
CUDA/OpenCL and OpenGL graphics interfaces, adapting
to various virtual reality rendering frameworks.

Through this integration method, dynamic
programming algorithms not only achieve real-time

400 Informatica 49 (2025) 393408

iterative optimization of path scheduling logic, but also
effectively avoid the inhibitory effect of resource
bottleneck nodes on global performance, providing
stable, efficient, and scalable technical support for
dynamic rendering tasks in complex scenes.

To unify the expression of path cost (edge weight)
under different stages and structures, this paper adopts

the following normalization method: C(J") in
formula (1) is the general path cost, and in actual
implementation, according to application requirements
and scenario characteristics, formula 3)

1 .
A—+u-uj,l
pi is more suitable for scheduling

. . . W, .
priority sensitive scenarios or formula (5) " is suitable
for scenarios dominated by changes in task resource flow
for measurement. Both types of expressions are mapped

to different forms of the main model C(J" through
weight normalization and parameter configuration,
ensuring consistency between theoretical analysis and
engineering implementation. All weights, normalization
methods and sub item definitions are detailed in the table
of experimental parameters and relevant chapters. All
path optimization in this paper is based on this unified
model.
Algorithm 2:
(Pseudocode)
Input: - Current execution error E_t

- Historical path cost Cost_hist

- Execution deviation Dev

- Error feedback Err
Output: - Updated scheduling priority and path score
1. Initialize correction weight parameters: alpha, beta,
gamma
2. Compute total correction value: Correction = alpha *
Cost_hist + beta * Dev + gamma * Err
3. Update path score: Path_Score = Path_Score -
Correction
4. If Correction exceeds threshold, trigger path
replanning
5. Return updated Path_Score

Feedback Correction Mechanism

4 Results

4.1 Experimental environment
construction and task configuration

All experiments were independently repeated for 5
rounds in three typical scenarios, and the mean and
standard deviation were reported. The statistical
significance of the performance improvement was
verified using t-test (p<0.01). All source code and
datasets have been open sourced, please refer to the
appendix or additional materials for details.

To comprehensively evaluate the performance of
dynamic programming algorithms in virtual reality
rendering, the experimental platform is built on a
heterogeneous parallel computing architecture, aiming

J. Ma

to simulate real-time rendering requirements in high
concurrency, multitasking, and heavy computing
scenarios.The experimental platform is based on a
high-performance workstation (high-end CPU, RTX series
GPU, 64GB memory, Ubuntu operating system), developed
using a combination of Unity rendering engine and
self-developed scheduling module to achieve real-time
rendering and multitasking scheduling of complex scenes.

The experiment mainly set up three typical virtual
environments: (1) urban streets (large outdoor areas,
dynamic viewpoint switching), (2) natural terrain (large
texture data, complex terrain interaction), and (3) indoor
exhibition halls (multiple light sources, multiple materials,
and high-density tasks). Each type of scene includes a 120
second Al/user hybrid interaction, and each frame in the
scene needs to dynamically allocate 3-8 rendering and
computing subtasks, including model loading, lighting,
special effects, etc. All task nodes are divided into three
categories: static rendering, dynamic interaction, and
system control, assigned different priorities and resource
requirements, simulating real VR rendering loads.

The system records core performance indicators such
as task completion rate, GPU utilization rate, rendering
failure rate, and frame rate for each frame, and all
experiments are repeated five times to ensure stable and
reliable data. Combining with the optimization strategy of
sparse voxel octree proposed by Laine S et al[21],This
system integrates LUT lookup mechanism and sampling
reconstruction method in cross threaded task scheduling.
Each module interacts with gRPC and Protobuf protocols to
achieve efficient and low latency communication under
different frame loads, and can dynamically adjust thread
resource allocation strategies.

The experiment mainly uses three typical virtual
environments: urban streets (outdoor high detail); Natural
terrain (large texture modification); Indoor exhibition hall
(multiple light sources and materials). Each scenario is set
with a customized interaction task of 120 seconds, which
achieves visual processing requirements for continuously
refreshing the actual operation process through the set Al
path, randomly generated viewpoint switching points, and
interaction event initiation points.

The task configuration adopts a frame based dynamic
allocation strategy, which means that during the system
operation, the background is generated with a rendering
frame frequency of 90fps, and each frame includes 3-8
processing types of concurrent sub task nodes; These task
types include but are not limited to model loading, lighting
rendering, shadows, and post effects. Each task type is
marked and segmented based on resource requirements and
task processing time. And it includes information such as
the priority of the corresponding task level, required GPU
resources, and estimated running time to meet subsequent
routing calculations and cost estimates. The routing
planning section performs routing calculations and task
planning within the first 5ms of each frame to meet
real-time requirements and balance resource utilization.

In addition, to enhance the controllability and
comparability of the evaluation process, the system can also
record the completion ratio, GPU utilization, rendering
failure rate, and average frame speed of each job sequence

Enhancing Real-Time VR Scene Rendering with Optimized...

on the rendering path as a function of the experimental
results. All data can be instantly generated by the
rendering statistics section and recorded in the form of
journal files and curves. The system also has the function
of adjusting log levels and tracking markers, which can
identify the performance characteristics of the rendering
process and rendering scheduling process, and can
automatically store grouped experimental data. Each set
of experiments will be run five times to eliminate the
influence of random sample errors and ensure the
typicality and reliability of the data.

This experimental platform not only provides a
unified execution foundation for subsequent algorithm
path generation, system operation mechanism, feedback
correction, etc., but also lays a solid technical support for
data processing, performance statistics, and comparative
experiments in the future.

4.2 Input data processing and structure
generation
The application of dynamic programming algorithms in
virtual reality rendering relies on structured input of task
data and efficient construction of graph models. At the
initial stage of operation, the system enables
multi-threaded data listeners to capture real-time user
interaction behavior, viewpoint trajectories, scene state
changes, and frame rendering feedback. The raw data is
input into the scheduling module through a unified
interface and encoded into rendering task units with
temporal and resource characteristics. Each unit is
represented as a quintuple %; _(ti’li’ri"gi'ci) ,
corresponding to trigger time, scene position, GPU
resource estimation, lighting status, and task category.
All task units form state sequence

X—{Xl,XZ,...,Xn}, and the system slides and
aggregates them based on the timing window to form a
continuous frame task set. Subsequently, a clustering
algorithm based on task content and resource conflicts
was adopted to divide the task set into structurally
similar clusters, simplifying the complexity of
subsequent path graph construction. Each cluster is

treated as a virtual task node
-

resource request vector I'i and a schedulable execution

i g

stre i

Ti, with an abstract

period

To achieve automatic task grouping, the system
adopts the K-means clustering method. Each rendering
task unit will be encoded based on five main features,
including its triggering time, scene spatial position, GPU
resource prediction, lighting status, and task type. In the
actual clustering process, the system normalizes the
above features and groups them by comparing the
comprehensive similarity between task units. The
number of clusters K is dynamically adjusted based on
the number of tasks in each round, usually forming a
group every 10-20 frames. The task cluster label is
determined by the task type and resource characteristics

matica 49 (2025) 393-408 401

with the highest proportion within the group. The similarity
threshold is set at around 0.6 based on the training sample
experience, and the clustering labels and grouping results
are automatically refreshed every 5 frames to adapt to
changes in task load.

The system constructs task graph G(V’ E) during
the composition phase, where node set

V={TT,..T.}

clusters, and edge set E represents the sequential logic,
resource conflicts, and path coupling between tasks. The
edge weight is defined by the following function:

W; = vy - r H+\P2'H[té>tg] +1P3'pij

originates from the aforementioned

(5)

[Tr-r 11

Among them, represents the difference

_ ey _ _
in task resource vectors, [te>ts] is the sequential constraint

indicator function, Pij is the statistical value of historical
scheduling failure rate, and the three weight
parameters?W1, W2 and¥3are fixed after experimental
optimization, used to dynamically balance execution
coupling, temporal risk, and stability expectations.

The resource request vector f consists of five
dimensions, corresponding to the estimated demands of
GPU computing power, video memory, bandwidth, texture
processing unit, and real-time frame rate for each task
cluster during scheduling. The system extracts resource
usage characteristics for each original task unit, and forms a
five-dimensional vector representing node resource
requirements through normalization and weighted
aggregation. Each component is based on the actual
sampled data of the current frame, expressed in percentages.
The sequential constraint indicates that function [té>‘4]
has a value of 0 or 1. If task i must be started after task j is

. =1 o .
executed, then e ; otherwise, it is 0. This
criterion is automatically generated by task dependency
relationships and scene logic, ensuring the correctness of
the graph structure and dynamic switching between task
serial/parallel scheduling. The historical scheduling failure

rate of Pl is used to quantify the risk weight of inter node
connections in the system by dividing the number of
scheduling failures caused by resource scarcity,
dependency blocking, or priority conflicts in the historical
multi round experiments or running logs of task i by the
total number of scheduling failures, with a value range of
[0,1]. The statistical cycle of parameters is synchronized
with the runtime of the scene, and the experiment is
automatically reset to zero and recalculated every time it is
restarted.

The edge weight parameters in this article are¥1, ¥2
and¥3 As global hyperparameters, they are the results of
the installation, testing, and optimization phase of the entire
system. From the perspective of method steps, they remain

402 Informatica 49 (2025) 393408

unchanged during the actual operation of the algorithm
and are weights set through multiple experiments
throughout the entire process. The three weights are
continuously adjusted based on past experimental data
analysis and system performance goals. During the
execution process, they accumulate and reflect the
system's sensitivity to comprehensive execution,
sequential danger, and stability. Although the weight
itself does not change with real-time operation, its
"dynamic" performance is reflected in the weight of
various factors affecting path calculation. Therefore, in
this article, "dynamic" performance is reflected in the
weighting operation of each factor, rather than the
weight changing over time. Therefore, this design not
only considers the robustness of the system but also
considers computational efficiency. The sentence is:, A
feedback based weight dynamic adjustment mechanism
can be introduced in the subsequent readjustment
strategy.

To improve the response speed of the scheduling
system in high concurrency environments, the structure
of nodes and edges is translated into sparse matrix
format and cached on the GPU side to avoid frequent
data handling and memory mapping operations. At the
same time, to ensure the availability of nodes in path
planning, the system uses Boolean masking mechanism
to mark and remove abnormal tasks, ensuring the
connectivity and reliability of the graph structure in the
path generation stage.

After the structure generation is completed, the
system starts the graph traversal verification module,
performs DFS detection on the connected branches of
the graph, identifies unreachable task clusters, and feeds
them back to the preprocessing module for feature
correction. Each frame level graph construction is bound
to the current timestamp and user interaction sequence,
supporting full link backtracking analysis of scheduling
logic.

Through the above process, the system accurately
maps real-time input data to standard inputs for dynamic
programming scheduling diagrams. This not only
establishes the priority order and resource connections
between tasks, but also provides a structural foundation
and data support for path calculation, execution control,
and feedback correction. The data processing
mechanism fully meets the dual requirements of high
frame rate virtual reality rendering for structure
generation speed and scheduling map scalability, while

50%’7

Frame rate (fps) Utilization rate(%)

J. Ma

balancing and

accuracy.

computational efficiency expression

4.3 Collection and statistics of key
performance indicators

To systematically analyze the optimization effect of
dynamic programming algorithms in virtual reality
rendering, this study sets four key performance indicators
for real-time collection and statistics: average frame rate
(FPS), GPU utilization, task completion rate, and rendering
failure rate. The above indicators are achieved through the
combination of rendering scheduling module and
performance monitoring plugin. The running cycle of each
experiment is 120 seconds, and the rendering output
interval is fixed at 11 milliseconds to ensure data accuracy
and comparison reliability.

The average frame rate statistics are based on the
complete rendering output, eliminating data disturbances
caused by faulty skip frames and delayed frames,
calculating the average value of normal frames, and
measuring the real-time performance of the system. GPU
utilization is sampled 60 times per second, capturing the
graphics card core and memory load through NVIDIA SMI
interface to reflect resource usage. The completion rate of
tasks is calculated based on the execution status of task
nodes in each frame, and the proportion of successful
completion is counted; The rendering failure rate is the
proportion of task termination caused by scheduling
failures, resource overflow, or logical errors.Combining
Dachsbacher C et al. proposed the technique of reflective
shadow mapping [22],This study integrates image
reconstruction efficiency and frame rate fluctuation
features in indicator collection to construct a more stable
performance evaluation mechanism.

As shown in Figure 2, after introducing the dynamic
programming scheduling algorithm, the average frame rate
of the system increased from 77.3 FPS under the original
algorithm to 86.1 FPS, an increase of 11.4%; The GPU
utilization rate remains stable at around 91.7%, an increase
of nearly 7 percentage points compared to 84.9% before
optimization, indicating that the scheduling algorithm has
achieved better load allocation at the resource coordination
level; The task completion rate has shown the most
significant improvement, increasing from 92.8% to 98.3%,
significantly reducing the phenomenon of task backlog and
waiting; The rendering failure rate decreased from 3.2% to
0.9%, further verifying the synchronous improvement of
path scheduling accuracy and resource prediction accuracy.

Before optimization O After optimization

92,8 98,3

3,2

Failure Rate (%)

0,9

NN

Completion rate (%)

Figure 2: Bar chart comparing key performance indicators before and after optimization of dynamic programming algorithm

Enhancing Real-Time VR Scene Rendering with Optimized...

To ensure the representativeness of statistical data,
the experiment conducted five rounds of replication runs
on three typical application scenarios, and the average
values of all indicator results were taken, with an error
range controlled within + 1.1%. System log records
show that during resource intensive stages, dynamic
programming algorithms are more likely to prioritize
scheduling task chains with lower resource costs,
avoiding "bottleneck nodes" from blocking the full
frame progress, thereby stabilizing frame rates and
execution efficiency. Especially in indoor scenes with
frequent lighting switching and dense material loading,
the fluctuation amplitude of frame rate is significantly
reduced compared to before optimization, and the GPU
response curve tends to be stable.

We use UnityPofider and our self-developed
logging system to collect frame rates. After the frame
ends, we collect the time spent on rendering and
automatically validate the results using the frame rate
trend line provided by UnityPofiler. The initial value
processing method uses the original frame rate collected
by the script to obtain the average and standard deviation
after removing the frame rate. The experimental group
and the control group are repeated 5 times in the same
environment to ensure fairness and comparability of
each indicator.

To enhance the statistical reliability of the results,
this article reported the mean and standard deviation of
five independent experiments for each core performance
indicator. For example, after dynamic programming
optimization, the average frame rate of urban block
scenes is 86.3 £ 2.1 FPS, natural terrain is 84.1 £ 2.5 FPS,
and indoor exhibition halls are 88.0 = 1.9 FPS. Further
paired t-test analysis was used to determine the extent of
improvement in each indicator, and the results showed
that the improvement in FPS and GPU utilization was
statistically significant (p<0.01) in all typical scenarios,
fully demonstrating the reliability of the optimization
effect of this method.

In summary, the dynamic programming method has
advantages in the above main indicators, which can
improve the real-time and stability of system operation,
reduce the frequency of accidents, save system resource
consumption, and provide data basis for the construction
of more complex target graphs and the expansion of
scheduling schemes in the future.

4.4 Performance changes under dynamic
programming algorithm

In order to compare and analyze the actual performance
of dynamic programming technology before and after
the application of VR rendering engines, experimental
comparative tests were conducted on the frame rate
performance indicators, load rate indicators, task
running status indicators, and task scheduling accuracy
indicators involved before and after the application. The
tested basic running objects included three different
typical types of scenes: streets, urban blocks, natural
terrain, and indoor exhibition halls. Five sets of

matica 49 (2025) 393-408 403

experiments were conducted under the same software and
hardware configuration environment to obtain reliable data
as a comparison basis.

After introducing dynamic programming, the average
frame rate of each typical scene has significantly improved.
Specifically, the city block scene has increased from 76.9
FPS to 86.3 FPS, an increase of 12.2%; The natural terrain
has increased from 74.5FPS to 84.1FPS, an increase of
12.9%; The indoor exhibition hall has increased from
80.4FPS to 88.0FPS, an increase of 9.5%. The overall
improvement level is significant, indicating that the
proposed algorithm can effectively optimize real-time
rendering performance in different environments.

The GPU utilization rate increased from 85.1%, 87.2%,
and 82.5% to 91.6%, 92.4%, and 91.0% in three scenarios,
with an increase of 7.6%, 5.9%, and 10.3%, respectively.
This method can further optimize resource allocation in
complex task scenarios.

In terms of task completion rate, the system's
completion rates in three scenarios have increased from
91.3%, 93.1%, and 94.0% to 97.8%, 98.2%, and 98.7%,
respectively. The overall average completion rate has
increased from 92.8% to 98.2%, achieving efficient
execution under almost full load. This improvement is
particularly evident in exhibition hall scenarios with
large-scale concurrent tasks, indicating that the algorithm's
scheduling performance is more prominent in complex
lighting and material processing.

The rendering failure rate has also significantly
decreased, from 3.4%, 3.1%, and 2.8% before optimization
to 1.0%, 0.7%, and 0.9% after optimization, with an
average reduction of over 2 percentage points. Failed tasks
are mainly caused by resource competition conflicts and
scheduling delays. After introducing feedback correction
mechanisms, the system can effectively predict bottleneck
nodes and adjust path planning, improving overall
execution stability and accuracy.

In terms of the average execution time of tasks, the
average processing time of rendering tasks in the three
types of scenes decreased from 21.3ms, 22.1ms, and 20.8ms
to 18.7ms, 18.3ms, and 17.9ms, respectively, with a
reduction of about 13%. The system dynamically adjusts
the predicted execution time through inter frame feedback,
enabling the scheduler to more accurately balance task
density and execution time in the next cycle.

Scheduling response delay, as a core indicator of
dynamic systems, has also been effectively improved. The
original system had an average scheduling delay of 8.4ms
when dealing with viewpoint switching and new task
injection, which was reduced to 5.2ms under dynamic
programming mechanism, resulting in an overall
improvement of 38.1%. The scheduler uses a path cost
prediction function to calculate the next frame task path in
advance within each frame period, providing sufficient data
support for scheduling delay compression.

The success rate of loading graphic resources has also
been improved, from 95.6% in the original system to 98.8%,
mainly due to the collaborative effect of graph structure
compression and task node priority reordering mechanism,

404 Informatica 49 (2025) 393408

which avoids loading failures caused by resource
fragmentation.

Taking into account 14 core performance indicators
(as shown in Table 3), over 85% of the performance
items have achieved an improvement of over 5% with
the support of dynamic programming algorithms, with 6

J. Ma

items showing an improvement of over 10%, demonstrating
the algorithm's adaptability and scheduling accuracy in
complex concurrent scenarios.

Table 3: Bar chart comparing performance indicators before and after dynamic programming rendering optimization

Urban blocks . o
- Natural terrain (before/after | Indoor exhibition hall

performance index (before/after P P
optimization) optimization) (before/after optimization)

Average frame rate (FPS) 76.9/86.3 74.5/84.1 80.4/88.0

GPU utilization rate (%) 85.1/91.6 87.2/92.4 82.5/91.0

task completion rate (%) 91.3/97.8 93.1/98.2 94.0/98.7

Rendering failure rate (%) 3.4/1.0 3.1/07 2.8/0.9

Execution duration (ms) 21.3/18.7 2217183 20.8/17.9

Table 3 reflects 14 performance parameter
indicators, including frame rate before and after
rendering, GPU utilization, task completion rate, task
failure rate, and task scheduling response time. The
comparison between before and after rendering
optimization intuitively reflects the improvement of
various performance indicators, which is also the basis
for performance analysis in this study.

In summary, dynamic programming algorithms
have greatly improved the response rate and task
scheduling accuracy of virtual reality tasks in rendering
systems, establishing more stable and adaptable
rendering scheduling methods, and thus forming
technical support for widespread application in complex
scene rendering.

5 Discussions

5.1 Comparative advantages with existing
optimization algorithms

In virtual reality rendering systems, traditional static
scheduling and depth first path algorithms often exhibit
low resource scheduling efficiency and response latency
in task intensive scenarios due to the lack of dynamic
feedback, making it difficult to maintain high frame rates
and low failure rates. The dynamic programming
algorithm introduced in this study enhances the
responsiveness and robustness of the scheduling system
through task priority adjustment and path feedback
correction. Combining the real-time construction
method of KD tree based on graphics hardware proposed
by Zhou K et al. [23],The algorithm used in this study
can dynamically switch paths based on real-time
interactive changes, enhancing system stability.

In terms of frame rate, traditional algorithms use static
path allocation, which causes significant fluctuations in
frame rate when the load increases. In urban block
scenes, the average frame rate is 76.9FPS, which
increases to 86.3FPS after introducing dynamic
programming. The other two types of scenes also have
an increase of over 10%, improving visual coherence.

In terms of resource scheduling, the original GPU
utilization rates were 85.1%, 87.2%, and 82.5%, which
were improved to 91.6%, 92.4%, and 91.0% after
dynamic scheduling. The task allocation became more

reasonable, and the problem of resource congestion and idle
coexistence was significantly alleviated.

In terms of task completion rate, under traditional
methods, the three types of scenarios range from 91.3% to
94.0%, and after optimization, they have been improved to
97.8%, 98.2%, and 98.7%, respectively. The scheduler
improves continuous allocation capability through path
prediction and bottleneck avoidance, significantly
suppressing blocking phenomena.

In terms of rendering failure rates, the original strategy
had failure rates of 3.4%, 3.1%, and 2.8%, which were
reduced to 1.0%, 0.7%, and 0.9% after optimization. With
the help of node feedback mechanism, the system can avoid
conflicting resources and ensure stable task execution.

In terms of system response delay, the average
processing delay of the original algorithm was 8.4ms,
which was reduced to 5.2ms after optimization, an increase
of 38%. The predictive scheduling structure can complete
task preparation in advance and reduce user waiting
experience.

In terms of resource loading, traditional algorithms
have deficiencies in resource priority control, resulting in
loading failures or disorderly order. The new strategy
improves the resource loading rate from 95.6% to 98.8%
and enhances the overall rendering fluency by restructuring
the graph structure and node sorting. Engel K et al.
proposed a series of core technologies for real-time volume
rendering, focusing on efficient data structures, voxel data
stream processing, and parallel rendering frameworks,
significantly improving the real-time visualization
capability of large-scale volume data in virtual reality and
other scenarios. This method provides important support
for high-quality volume rendering and interactive
performance optimization of complex 3D scenes [24].

In summary, compared with traditional scheduling
strategies, dynamic programming algorithms can achieve
logical optimization of scheduling, rationality of resource
scheduling, and stability of system scheduling, and have
broader application prospects in high concurrency and high
load rendering tasks.

5.2 Analysis of adaptability and stability of
algorithm performance

In the increasingly complex and ever-changing virtual
reality rendering environment, the rendering performance

Enhancing Real-Time VR Scene Rendering with Optimized...

of virtual reality systems and user interaction experience
depend on the algorithm compatibility and stability of
the system. This research method combines dynamic
programming and path cost estimation algorithms with
task priority control strategies, demonstrating strong
environmental adaptability and high operational stability.
Especially when facing challenging tasks and
environments such as a large number of parallel tasks,
frequent task switching, and resource constraints, the
advantages are particularly prominent.Luebke et al.
pointed out that GPU architecture innovation has
significantly improved real-time graphics rendering and
large-scale computing capabilities [25].0n this basis,
this study aims to improve the relationship between path
discrimination and behavioral response, and enhance the
system's ability to adapt to task interference through
self-regulation.

This algorithm can adaptively adjust its scheduling
algorithm based on the parallelism and characteristics of
tasks to meet different environmental requirements.
Taking indoor exhibition halls as an example, the
dynamic programming algorithm increased the average
frame rate from 80.4fps to 88.0fps under high-density
rendering and frequent task switching conditions,
significantly reducing fluctuations, while maintaining
high GPU utilization and task completion rates. This
method does not require preset parameters and can adapt
to complex application loads, demonstrating good
generalization ability.

In terms of task density, dynamic programming also
demonstrates strong adaptability. In the exhibition hall
scene, the conventional algorithm GPU occupancy rate
is 82.5%, with resource idle issues. After renovation, it
increased to 91.0%; The task completion rate has
increased from 94.0% to 98.7%, which means that the
system can continue to operate in high-density scenarios,
avoiding scheduling conflicts and pauses, and
maintaining high efficiency.

In terms of system stability, dynamic programming
algorithms have strong fault tolerance and correction
mechanisms. The failure rate of rendering in three types
of scenes has significantly decreased, such as the
exhibition hall dropping from 2.8% to 0.9%, and the city
block dropping from 3.4% to 1.0%. This is attributed to
the algorithm's ability to identify bottleneck nodes in
advance, complete path migration and load sharing in a
timely manner, and reduce error occurrence. In terms of
scheduling response delay, the original average was
8.4ms, which was compressed to 5.2ms after
optimization. It can still be stably maintained within
5.4ms in sudden natural terrain task scenarios, ensuring
users' real-time interaction experience. Based on the
efficient management and resource optimization method
of medical data in virtual reality environment proposed

matica 49 (2025) 393-408 405

by Sik-L & nyi et al. [26],The system achieves higher
accuracy in delay prediction and congestion modeling,
providing data support for path migration and scheduling
fine-tuning.

Overall, the dynamic programming scheduling strategy
can quickly adapt and stabilize system performance under
complexity, strength, and bottleneck conditions,
demonstrating significant advantages in anti-interference,
resource elasticity, and path optimization, providing solid
technical support for virtual reality rendering systems.

5.3 Feasibility assessment of computing
resource consumption and system
deployment

Although dynamic programming algorithms have improved
the scheduling efficiency of rendering tasks, their resource
load during deployment still needs to be carefully evaluated.
Based on the comparison results of the experimental
platform, the dynamic strategy has increased from 52.4% to
58.7% in terms of CPU usage, mainly due to the increased
computational burden of path prediction and priority
backtracking. The peak utilization rate of GPU increased
from 89.3% to 94.8%, indicating a more centralized
resource scheduling and a significant improvement in the
utilization efficiency of the graphics pipeline. The memory
overhead has increased from 7.3GB to 7.5GB, and the
newly added structure is mainly used for scheduling cache
and feedback modules, accounting for 2.7%, with limited
impact on the platform. The initialization time of the
algorithm has been extended from the traditional strategy of
2.5 seconds to 4.2 seconds, mainly due to the loading
process of the cost matrix and scene feature index; The full
deployment cycle has been extended from 8.2 minutes to
9.0 minutes, with limited latency, and can be further
compressed through parallelization and automatic
deployment mechanisms in the future.

Based on the resource measurement and optimization
strategy proposed by Kuk et al. for parallel scheduling of
dynamic programming tasks on multiprocessor platforms
[27],And improved the accuracy of scheduling while
maintaining its control load;At the same time, Ma ¢ ek et al.
reviewed the response evaluation and performance analysis
methods of dynamic programming parallelization systems
[28],To demonstrate that this strategy can achieve a
reasonable trade-off between performance and resource
consumption, and provide strong reliability and
effectiveness for its engineering practice. In fact, the use of
buffering technology enables dynamic strategies to
gradually alleviate the load at startup, increase the
utilization rate of routing, and enable faster recovery of
failed tasks, which helps it to scale up to large-scale
environments and mature. The quantitative comparison
results of the main resource consumption indicators under
various algorithm strategies are shown in Table 4:

406 Informatica 49 (2025) 393408 J. Ma
Table 4 : Comparison of resource consumption and deployment indicators under different algorithms
- - Dynamic
Indicator items Static scheduling programming Difference explanation
strategy strategy
Increase by 6.3% for path prediction

CPU usage (%) 52.4 58.7 calculation
GPU peak 89.3 948 5.5% increase, more centralized resource
utilization (%))) scheduling

. Increase by 0.2GB, with limited proportion
memory footprint (GB) | 7.3 75 of structural expansion _
Initialization time (s) 25 4.9 Ilgg(rﬁg;ed by 1.7 seconds due to cost matrix
Complete deployment 8.2 90 Add 0.8 minutes, which can be automatically
cycle (m) : : optimized for compression

In order to further demonstrate the detailed performance
of system resource scheduling, this study synchronously
recorded the average processing time per frame and task
queuing delay in the experimental analysis. The results
showed that under the dynamic programming strategy,
the average processing time per frame of indoor
exhibition hall scenes decreased from 20.8ms to 17.9ms,
and the task queuing delay was reduced from 3.4ms to
1.7ms. The above data are the average of five
independent experiments, demonstrating the significant
advantages of the new algorithm in improving response
speed and reducing system bottleneck. These
supplementary indicators effectively enhance the
scientificity and comparability of overall resource
consumption evaluation, further supporting the
feasibility analysis of algorithm deployment in practice.

In summary, although dynamic programming
methods have high consumption, their efficiency is
better, and all related resource consumption is within the
acceptable range of the system. Based on the current
computing power of high-performance computers and
graphics workstations, this algorithm has strong
installation adaptability and scalability, and works well
for virtual reality system scenes that require frame rate
control and multitasking. If it can be combined with
cloud GPU deployment platform and dynamic model
compression technology in the future, it should further
enhance the efficiency and workload allocation ability of
the algorithm.

In this way, the "sliding window" technology of the
system is applied in the process of generating paths and
updating states. This technology can reasonably control
the number of nodes and states that need to be examined
in each round of computation, thereby effectively
allocating limited memory and avoiding the need for a
large amount of computation and storage load for a
comprehensive search of the entire graph, in order to
meet the requirements of real-time rendering. In the
initial stage, it is necessary to first build a complete
execution process and path cost, so it is necessary to read
and process all node and edge information at once, that is,
the structure of the "cost matrix" or graph. This
operation process will generate a large amount of
computational load and memory usage, but it only exists
in the installation or scene change stage. The layering of
this method has the effect of improving the efficiency of

the entire system and balancing the distribution of
computational loads in various execution stages.

5.4 The practical significance and expansion
prospects of research results

This study proposes a dynamic programming-based
implementation method for assigning virtual reality
rendering task paths, which can meet the requirements for
rendering delay and stability in the state of a large number
of complex tasks. A large number of experimental results
have shown that this method can effectively improve user
experience in terms of frame rate, GPU utilization,
workload utilization, workload loss rate, task scheduling
delay, and has the possibility of implementation compared
to existing methods.

The results of this study can play a key role in
promoting the industrialization of VR technology. In fields
such as digital exhibition halls, simulation cockpits, and 3D
models, users are faced with the need for smoothness and
real-time performance. Through dynamic scheduling
strategies, it is possible to more efficiently respond to
rendering systems in different scenarios, ensure their
stability, effectively reduce user waiting time on the system,
enhance user immersion, and further enhance the product
value and market competitiveness of this technology.

In terms of expansion, it has good universality and can
be applied in other scenarios such as digital twin
applications, digital factories and visualization applications,
massive augmented reality interactive applications, etc.
After combining reinforcement learning algorithms with
automatic adaptation and edge collaborative computing
strategies, it is expected to build task computing systems
with more autonomous, efficient, and discrete
characteristics, providing forward-looking support for
real-time computing and intelligent interactive
applications.

6 Conclusion

This study proposes a dynamic programming based
scheduling path optimization method to address the issues
of insufficient optimization of rendering task scheduling
and poor resource utilization in VR scenes. The scheduling
strategy is experimentally validated for typical scenarios,
and the experimental results demonstrate that the
scheduling algorithm can effectively improve frame rate,
GPU utilization, task success probability, and response time,
demonstrating good adaptability and practicality;

Enhancing Real-Time VR Scene Rendering with Optimized...

Compared to static scheduling and depth first, dynamic
programming is more suitable for complex
multi-threaded scenarios, which can further improve the
reliability and real-time rendering of the system. At the
same time, this article comprehensively evaluates the
proposed solution from the perspectives of algorithm
fault tolerance, power consumption, and installation
dependencies, summarizes its specific application scope
and practical application path, and has good reference
significance for future practical applications. At the
same time, this solution also provides an effective
scheduling optimization strategy for tasks with high
real-time requirements such as VR scenes and smart
cities. The next step is to combine reinforcement
learning with distributed architecture to enhance the
practical application potential of this solution in
distributed architecture scenarios such as heterogeneous
intelligent terminals. In summary, the algorithm
proposed in this article has demonstrated good
theoretical innovation and engineering effectiveness in
virtual reality multi scene scheduling optimization, and
has strong academic value and application prospects.

References

[1] Xionghui L, Xiaoyu Z, Jiaming Q , et al.“Fake it,
you can touch it”: a study of virtual touch effects
based on VR technology([J].Virtual
Reality,2024,29(1):15-15.https://dol:10.1007/s10
055-024-01092-y.

[2] Lumpkin T L , Nutt C G , Folds P E et
al.Influence of Familiarity, Aesthetic Value, and
Change Type on Visual Memory of Real-World
Scenes in a Virtual Reality Change/No-Change
Paradigm[J].Journal of Vision, 2024,
24(10):2.https://dol:
10.1167/j0v.24.10.948.

[3] Sainz M, Vicente R, Plaza J. Accelerating
real-time global illumination using machine
learning techniques[J]. ACM Transactions on
Graphics, 2020, 39(6): 1-16.
https://dol.org/10.1145/3414685.3417855.

[4] Htun N N S, Egami S ,Fukuda K .Activity
scenarios simulation by discovering knowledge
through activities of daily living datasets[J].SICE
Journal of Control, Measurement, and System
Integration,2024,17(1):87-105.https://dol:10.1080
/18824889.2024.2318848.

[5] Owens J D, Houston M, Luebke D, et al. GPU
computing[J]. Proceedings of the IEEE, 2008,
96(5):
879-899.https://dol.org/10.1109/JPROC.2008.917
757.

[6] LiB, TianF, Cai L, et al. Survey on deep learning
for virtual reality and augmented reality[J]. IEEE
Transactions on Visualization and Computer

Graphics, 2022, 28(7):
2900-2919.https://dol.org/10.1109/TVCG.2021.3
130997

[7] Ragan-Kelley J, Adams A, Paris S, et al

[11]

[12]

[13]

[14]

[15]

[16]

[17]

matica 49 (2025) 393-408 407

Decoupling algorithms from schedules for easy
optimization of image processing pipelines[J]. ACM
Transactions on Graphics, 2013, 32(4): 1-12.
https://dol.org/10.1145/2461912.2461978.

Chael R, LeeH, KimE. The Effects of Avatar
Human-Likeness on Psychological Closeness in
Virtual-Reality[J]. Psychology &
Marketing,2024,42(4):1132-1145.https://dol:10.100
2/mar.22168.

Son D, Im B, Her J, et al. Street lighting
environment and fear of crime: a simulated virtual
reality experiment[J].Virtual
Reality,2024,29(1):8-8.https://dol:10.1007/s10055-0
24-01080-2.

Navarro J D, Serrano A, Malpica S. Minimally
disruptive auditory cues: their impact on visual
performance in virtual reality[J].The Visual
Computer,2024,41(7):1-15.https://dol:
10.1007/s00371-024-03779-4.

Figueroa J A, Guan J, Swearngin J, et al. Deep
learning-based real-time dynamic global
illumination for immersive virtual environments[J].
ACM Transactions on Graphics, 2021, 40(4): 1-12.
https://dol.org/10.1145/3450626.3459833.

Li X ,Wang D J Dudley J J , et al.Swarm
manipulation: An efficient and accurate technique
for multi-object manipulation in virtual
reality[J].Computers &
Graphics,2024,125104113-104113.https://dol:10.10
16/j.cag.2024.104113.

Liu Y, Ren Z, Huang J, et al. Real-time dynamic
ambient occlusion using deep neural networks[J].
IEEE Transactions on Visualization and Computer
Graphics, 2020, 26(7):
2468-2477 https://dol.org/10.1109/TVCG.2019.292
3033.

Wei L, Wang W, Zou C, et al. Efficient real-time
rendering method for complex scenes using adaptive
path sampling[J]. Computer Graphics Forum, 2019,
38(7): 201-211.https://dol.org/10.1111/cgf.13734.
Karras T, Laine S, Aila T. A style-based generator
architecture for generative adversarial networks[J].
Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR),
2019:
4401-4410.https://dol.org/10.1109/CVPR.2019.0045
3.

Fan Y, Gong M, Chen Q, et al. Real-time rendering
of complex scenes via neural radiance caching[J].
ACM Transactions on Graphics, 2021, 40(6): 1-13.
https://dol.org/10.1145/3478513.3480537.

Li P ,Zhang X ,Hu X , et al.Theoretical model and
practical analysis of immersive industrial design

education based on virtual reality
technology[J].International Journal of Technology
and Design

Education,2024,(prepublish):1-28.https://dol:10.100
7/s10798-024-09946-x.

408

(18]

[19]

(21]

[22]

(23]

[24]

[25]

[26]

[27]

(28]

Informatica 49 (2025) 393-408

OgawaY, AoukarR, LeibbrandtR | et
al.Combining Unity with machine vision to create
low latency, flexible and simple virtual
realities[J].Methods in Ecology and
Evolution,2024,16(1):126-144 https://dol:
10.1111/2041-210X.14449.

Birkheim L S, Calogiuri G ,Hvalstad M , et
al.Exploring the experiences of resident doctors
in child and adolescent psychiatry with virtual
reality-based simulation training: a qualitative
study.[J].BMC health services
research,2024,24(1):1443 https://dol:
10.1186/512913-024-11941-w.

Junjie Y, Cuiying Z ,Zhen L , et al.Real-Time
Rendering Closure Method for Continuous
Cutting of Multilevel TIN Geological
Models[J].Geotechnical and Geological
Engineering,2023,42(5):3269-3285.https://dol:10.
1007/s10706-023-02729-6.

Laine S, Karras T, Aila T.Efficient sparse voxel

octrees - Analysis, extensions, and
implementation[J].ACM Transactions on
Graphics, 2010, 29(4):

101 .https://dl.acm.org/doi/10.1145/1778765.1778
803.

Dachsbacher C, Stamminger M.Reflective
shadow maps[J].ACM Transactions on Graphics,
2005, 24Q3):
756-764 .https://dl.acm.org/doi/10.1145/1073204.
1073245.

Zhou K, Gong M, Huang X, et al.Real-time

KD-tree construction on graphics
hardware[J].ACM Transactions on Graphics,
2008, 27(5):

126.https://dl.acm.org/doi/10.1145/1409060.1409
1111.

Engel K, Hadwiger M, Kniss J M, et al.Real-time
volume graphics[J].ACM Transactions on
Graphics, 2004, 23(3):
722-741 https://dl.acm.org/doi/10.1145/1015706.
10158011.

Luebke D, Humphreys G.Is graphics hardware
ready for the revolution?[J.IEEE Computer
Graphics and Applications, 2002, 22(6):
18-21.https://ieeexplore.ieee.org/document/10466
27.

Sik-Lanyi C, Poloskei Z.Virtual reality in
medicine[J].Informatica, 2018, 42(2):
209-214.https://www.informatica.si/index.php/inf
ormatica/article/view/2324.

Kuk K, Jaworski W.Parallelization of dynamic
programming algorithms for modern
multiprocessor platforms[J].Informatica, 2020,
44(3):
411-417.https://www.informatica.si/index.php/inf
ormatica/article/view/2956.

Macek A, Kukar M.A survey of parallelization
techniques for dynamic

J. Ma

programming[J].Informatica, 2015, 39(3):
333-342 https://www.informatica.si/index.php/infor
matica/article/view/560.

