
https://doi.org/10.31449/inf.v49i9.9651 Informatica 49 (2025) 393–408 393

Enhancing Real-Time VR Scene Rendering with Optimized Task Path

Scheduling Via Dynamic Programming Techniques

Jing Ma

College of nursing health，Yunnan Open University, Kun’ming650500, Yunnan, China

E-mail: majing140627@163.com

Keywords: dynamic programming algorithm, real time rendering, virtual reality, performance optimization

Received: June 11, 2025

This article proposes a dynamic programming rendering path optimization algorithm for virtual reality

scenes, which innovatively introduces real-time feedback mechanism and sliding window resource

scheduling, effectively improving rendering performance under multi scene concurrency conditions.

Compared with traditional greedy, genetic, and local search methods, this method can achieve global

optimal path selection and has been experimentally verified to achieve significant improvements in key

indicators such as average frame rate and resource utilization. All experiments in this article were

independently repeated 5 times, and the results were tested for variance and significance. This article

proposes for the first time a dynamic programming path scheduling strategy that combines sliding

window real-time feedback, solving the problem of generating the global optimal path in multi task high

concurrency environments. Compared with traditional heuristic and intelligent optimization algorithms,

the proposed method significantly improves system stability and rendering performance, and has

stronger practicality and promotional value. All variables and parameters are clearly defined in the

Methods section, and the experimental process and evaluation criteria follow internationally recognized

standards to ensure the reproducibility and rigor of the conclusions. The system conducted experiments

on three types of virtual environments: typical city blocks, natural terrain, and indoor exhibition halls

on the Unity platform. The results showed that after introducing dynamic programming, the average

frame rate increased from 76.9 FPS to 86.3 FPS, GPU utilization increased from 85.1% to 91.6%, task

completion rate increased from 92.8% to 98.2%, and rendering failure rate decreased from 3.1% to

0.9%. The solution significantly improves the real-time performance, stability, and resource utilization

efficiency of the system while ensuring image quality. Compared with traditional static scheduling

methods, this method exhibits better response capability and scalability in multi task high concurrency

environments, providing efficient technical support for complex virtual reality rendering tasks.

Povzetek: Za izboljšanje realnočasnega izrisovanja VR-prizorov je razvit algoritem dinamičnega

programiranja (DP-RPS), ki združuje drsno okno in sprotno povratno zanko za optimizirano

razporejanje poti nalog. Na platformi Unity doseže zelo dobre rezultate. Zagotovi stabilno, prilagodljivo

in energetsko učinkovito izrisovanje VR-prizorov z globalno optimizacijo poti pri večopravilnosti in

visoki sočasnosti.

1 Introduction
With the widespread application of virtual reality

technology in games, movies, healthcare, architecture,

and other fields, users' demands for immersive experience

and response speed are constantly increasing, which

drives the evolution of rendering systems themselves to

achieve high efficiency and intelligence. In 3D scenes

with massive details, real-time rendering systems require

graphic rendering and final result presentation in a short

amount of time, ensuring frame rate while controlling

resource fluctuations and delays. However, traditional

solutions based on fixed pipelines or static scheduling are

no longer sufficient to meet the needs of multi task

parallelism, heterogeneous inputs, and environmental

changes. It is necessary to construct a new intelligent

scheduling system.

Although some improvements have been made in image

compression and hardware acceleration, the constraints of

resource allocation, execution path, and task sequence often

result in frame rate jitter and delay in the interactive

environment. Therefore, this study adopted dynamic

programming techniques to re optimize the scheduling

strategy and improve the overall efficiency of the system.

Xionghui et al. pointed out in their study of interactive

virtual systems that the consistency of task paths and the

accuracy of feedback links directly affect immersion and

operational response quality [1], thus verifying the impact

of path optimization on real-time performance. Lumpkin T

L et al.’s research shows that familiarity, aesthetics, and

https://doi.org/10.31449/inf.v49i9.96

394 Informatica 49 (2025) 393–408 J. Ma

change type affect visual memory in VR, influencing

system frame rate stability and load control[2], which

reflects the important role of real-time task scheduling

mechanism in system performance optimization.Sainz

M's research shows that accelerating real-time global

illumination rendering can effectively improve the

system's response speed and image realism, thereby

enhancing user immersion and interactive experience

[3],Further verification has shown that the rational

optimization of routing paths and task scheduling

strategies is a critical requirement for this system to have

real-time and stable feedback.

By constructing task dependency structures through

state transition models, dynamic programming can

generate optimal rendering paths that balance frame rate

and stability. The virtual behavior modeling method

proposed by Htun N S et al. [4] provides a supporting

framework for task prediction and state control in this

study. Compared to heuristic algorithms, dynamic

programming has global optimization and real-time

correction capabilities, making it suitable for

high-density interactive scenarios.

Although there have been studies using dynamic

programming and other optimization algorithms for

virtual reality rendering scheduling, there are often

issues with insufficient global optimality or lack of

real-time feedback mechanisms. This article constructs a

dynamic programming state transition model and

introduces sliding window feedback adjustment to

achieve global optimization and dynamic adaptation of

path planning, significantly improving rendering frame

rate and resource utilization.

This study starts from two dimensions: algorithm

construction and system integration, designs task nodes

and path mechanisms suitable for VR rendering

processes, and implements closed-loop scheduling

optimization in the platform.Owens J D et al.'s research

shows that GPU computing technology significantly

enhances large-scale parallel processing capabilities,

providing strong support for high-performance

computing and real-time rendering, thereby promoting

the development of resource scheduling mechanisms for

complex systems [5].

The goal of this study is to build an embeddable and

multi scene adaptive real-time rendering optimization

framework, with dynamic programming as the core, to

solve the bottleneck problems in current virtual reality

rendering and provide stable and efficient technical

support for image generation systems.Based on the

above analysis, this study mainly focuses on the

following two core issues: (1) How to optimize the

rendering path scheduling of virtual reality scenes based

on dynamic programming, and achieve real-time and

stability improvement under high concurrency and high

complexity tasks? (2) Can the proposed scheduling

algorithm achieve significant optimization in core

metrics such as frame rate and GPU utilization compared

to existing mainstream methods in different typical

scenarios?

2 Related work
Virtual reality systems require extremely high real-time

rendering performance, and rendering efficiency has

become a key factor affecting the system's interactive

experience. Early technological methods mainly relied on

fixed pipeline mechanisms, which achieved frame by frame

generation of graphic images through static task sequential

execution. However, in scenarios with high task intensity

and frequent perspective switching, the fixed path mode is

difficult to fully utilize computing resources, often

resulting in the coexistence of delay fluctuations and

resource redundancy.

To improve rendering performance, scheduling has

become one of the optimizations focuses. Heuristic

strategies are widely used in early scheduling design, such

as priority-based sorting mechanisms, local greedy methods,

and task complexity estimation models. These methods

respond quickly in scenarios with light computational

burden, but due to their local optimization properties, they

lack dynamic perception and regulation of the global state,

making it difficult to run stably in complex environments

such as high concurrency and asynchronous input.

To overcome the above bottlenecks, some strategies

integrate intelligent optimization methods such as genetic

algorithm, ant colony algorithm, simulated annealing, etc.,

using global search capabilities to avoid the problem of

path getting stuck in local optima. Although this type of

method improves path quality, it relies heavily on

computing power, has complex parameter tuning, and an

unstable training process, which limits its efficiency in

systems with high real-time requirements.Li B et al.'s

review pointed out that the application of deep learning

technology in virtual reality and augmented reality

significantly improves the perception ability and interaction

efficiency of the system, providing theoretical support for

the structured design and feedback mechanism of complex

tasks [6].

The dynamic programming algorithm demonstrates

advantages in multi-stage path decision-making through

state recursion and sub problem optimal solution

mechanisms. By constructing a state transition network and

cost function model, the rendering process can be

decomposed into ordered subtasks, and the optimal path can

be calculated layer by layer while recording intermediate

results.The image processing pipeline optimization method

proposed by Ragan Kelley J et al. achieves flexible and

efficient image processing performance improvement by

decoupling the algorithm from scheduling, providing

technical support for the construction of complex tasks in

virtual environments [7].Chae L R et al. pointed out that the

humanoid level of virtual characters significantly affects

users' trust and acceptance, which in turn affects users'

tolerance for system latency. This provides a psychological

reference for behavior perception embedding in scheduling

mechanisms [8]. The existing optimization strategies have

their own characteristics in path generation logic,

scheduling objectives, system response, and other aspects.

To compare the adaptability and limitations of different

methods more clearly, Table 1 summarizes and organizes

the mainstream rendering scheduling optimization

methods:

Enhancing Real-Time VR Scene Rendering with Optimized… matica 49 (2025) 393–408 395

Table 1: Comparison of mainstream rendering scheduling optimization methods

Method
Type

Core mechanism advantage limitation Applicable scenarios

heuristic
strategy

Rule based local
path selection

Simple
implementation
and fast speed

Easy to fall into local
optima and lack
global control

Low complexity, fixed
task flow

intelligent
optimization
algorithm

Genetic algorithm,
ant colony,
simulated annealing,
etc

Strong global
search capability

Complex parameter
tuning and high
computational cost

Medium complexity
and offline scheduling
scenarios

reinforceme
nt learning
model

Strategy learning
based on reward
feedback

Can adapt to some
dynamic task
changes

Long training time
and weak
generalization ability

A small amount of
dynamic and highly
trainable environment

Graph
Neural
Network

Representation and
Propagation
Learning Based on
Graph Structure

Capable of
modeling complex
task dependencies

Strong data
dependency, difficult
to migrate

Clear diagram
structure, stable task
environment

Dynamic
Programmin
g

Optimal
combination
strategy of state
transition and
subproblem

Path
controllability,
global
optimization,
strong stability

High initial
modeling
requirements and
structured
representation of
tasks

Complex scenarios
with multiple
dependencies and
optimal path
requirements

Overall, current mainstream rendering scheduling

methods such as heuristic and intelligent optimization

algorithms have certain performance advantages in some

scenarios, but are susceptible to factors such as local

optima, parameter sensitivity, and poor generalization,

making it difficult to meet the system requirements of

high concurrency, complex dependencies, and real-time

performance. The dynamic programming strategy

introduced in this article has the advantages of global

path search and structured decomposition, which can

effectively improve the optimality of scheduling and the

stability of the system, and solve the core problems of

uneven resource allocation and scheduling lag in

traditional methods in multitasking and high complexity

scenarios.

Some studies have introduced dynamic

programming ideas into the graphics rendering pipeline.

Constructing a task graph model in multi-threaded task

scheduling and utilizing dynamic programming to

generate the shortest execution path; Combining cost

evaluation mechanism in GPU instruction sorting for

batch processing optimization has improved frame rate

stability and memory utilization efficiency, verifying its

adaptability in rendering systems.

Son D et al. found that changes in lighting in virtual

neighborhoods affect users' spatial perception,

suggesting that scheduling strategies should have

environmental adaptability [9]. Navarro J D pointed out

that imbalanced scheduling of audiovisual resources can

cause channel interference and reduce overall rendering

performance [10].The research by Figueroa J A et al.

shows that real-time dynamic global illumination

technology based on deep learning significantly

improves the visual effects of immersive virtual

environments, providing technical support for resource

scheduling and priority adjustment [11],This provides a

basis for feedback driven intelligent scheduling

mechanisms.

Virtual reality rendering tasks have complex structures,

strong dependencies, and frequent changes, and urgently

require global optimization and adaptive scheduling

capabilities. Traditional static paths or heuristic strategies

have insufficient response to environmental changes and

task dynamics, and are prone to falling into local optima.

The dynamic programming path generation mechanism can

systematically divide tasks, avoid bottlenecks, and adapt to

complex rendering requirements.

Current research mostly focuses on local optimization

at the image level, lacking a complete path that embeds

dynamic programming from the scheduling architecture

level. To this end, this study proposes an optimization

mechanism with dynamic programming as the core,

constructs a task graph structure and multi-stage path

planning algorithm, improves system real-time

performance, stability, and resource utilization, and

provides efficient rendering support for complex VR scenes

while ensuring image quality.

3 Suggested solutions
3.1 Dynamic programming algorithm
Dynamic programming is an optimization algorithm

suitable for multi-stage decision-making problems, which

decomposes the original problem into sub problems and

records their optimal solutions, gradually constructing the

overall global optimal solution. This algorithm has good

stability and optimization capabilities in fields such as path

planning, task scheduling, and resource allocation. In

virtual reality scenes, rendering task nodes have complex

characteristics such as dependency relationships and

resource conflicts, which make the entire process have

obvious stages and structures. It is suitable to introduce

396 Informatica 49 (2025) 393–408 J. Ma

dynamic programming to achieve path control and task

compression.

In the rendering system, tasks can be modeled as

directed graphs, with each node serving as a rendering

unit and edge weights representing costs. Dynamic

programming gradually generates the minimum total

cost path by maintaining a state table and cost function.

The group manipulation technique proposed by Li X et al.

improves the accuracy of multi task control through

particle collaboration, confirming the advantages of this

method in path regulation [12];The real-time dynamic

environment masking technology based on deep neural

networks proposed by Liu Y et al. effectively enhances

the light and shadow representation in virtual

environments, improves the user's immersive experience,

and provides a theoretical basis for the design of

dynamic feedback mechanisms [13].This process can be

succinctly expressed as:

() () () () iejijcjViV Pr∣,min +=
（1）

Among them,
()iV

 represents the minimum total

cost from the starting node to node i ,
()jV

 is the

cumulative cost of predecessor node
j

,
()ijC ,

is the

path cost function, and
()iePr

 shows the set of

predecessor tasks that can reach the current node.

Among them,
()ijC ,

represents the cost incurred

during the process of switching from task
j

to task i . In

this article, the cost not only includes the scheduling

delay of the task itself, but also takes into account

multiple factors such as GPU resources consumed and

resource fluctuations during execution. The system

assigns weights to dimensions such as latency, resource

utilization, and load balancing based on experimental

objectives, and calculates the weighted sum of these

factors as the final path cost, achieving flexible

adjustment of different optimization objectives in the

dynamic scheduling process. All weight parameters and

indicator definitions are consistent with subsequent

performance analysis.

Unlike greedy or heuristic strategies, dynamic

programming can traverse paths globally, avoid

redundant calculations through pruning and cost caching,

and ensure the global optimality of solutions. In virtual

reality systems, scenes frequently switch and

interactions are complex. Static paths can easily lead to

resource waste and delay, while dynamic programming

allows for estimating the optimal path during the loading

phase, improving frame rate stability and rendering

efficiency.The efficient real-time rendering method

based on adaptive path sampling proposed by Wei L et al.

effectively improves the rendering performance of

complex scenes, provides technical support for the

regulation of dynamic path structures, and promotes the

optimization of rendering scheduling in high interaction

environments [14].

To meet the real-time rendering requirements, this

study simplifies the structure of dynamic programming

and adjusts the cost function: on the one hand, it introduces

a weight decay mechanism to eliminate redundant paths in

advance and reduce the state space; On the other hand,

setting the cost function as a weighted combination of inter

frame resource fluctuations and delays enables path

selection to balance computational cost and stability.The

style based generative adversarial network architecture

proposed by Karras T provides advanced generative model

support for the design and optimization of dynamic path

mechanisms in virtual reality platforms, significantly

improving system response efficiency and stability [15].

To improve the engineering feasibility of the algorithm,

the key components of dynamic programming are

illustrated as follows:

(1) State space

Make t the current scheduling phase,

()trtitS _,__ =
 the system status,

ti _
the number

of the currently executed rendering task, and
tr _

the

GPU remaining resource vector. The global state space

consists of all reachable sets up to
tS _

.

(2) State transition rules

At each stage, the decision is made to select the next

task
 1_ +ti

, and the state transition is:

()
1

,11 +
−= ++ tittt criS

（2）

Among them,
  1__ +tic

represents the resource

consumption of task
 1_ +ti

 Transfer is only valid for

  1___ +− tictr
hours.

(3) Cost function

This study defines the stage cost function as the

weighted sum of task execution delay and GPU resource

fluctuations:

() () ()iViDig += 
（3）

Where D (i) is task delay, V (i) represents resource

fluctuations, and α and β are weighting coefficients.

(4) Recursive equation for dynamic programming

Dynamic programming is used to solve the optimal

scheduling path, with a cost function of：

()
()

() () SViSgSV t
SAi

t
+= +


1,min

（4）

Among them,
()SA

 is the current state schedulable

task set, and S  is the state after executing the task.

Application example explanation:

Taking the rendering of actual urban blocks as an

example,
ti _

 represents the task number of model

loading, lighting, shadows, etc. to be processed in the

current frame, and
tr _

represents the remaining GPU

memory and computing units. Task resource consumption

  1__ +tic
and latency are obtained from the

performance sampling of the previous frame, while
Delay

Enhancing Real-Time VR Scene Rendering with Optimized… matica 49 (2025) 393–408 397

and arV are updated in real-time through the monitoring

API. All parameters are automatically adjusted

according to task priority to ensure that the optimal path

for each round of scheduling can adapt to real-time

changes in the scene.

During path execution, the system updates the task

status and rating matrix in a rolling manner, and adjusts

the transition direction based on the current input. When

encountering high-frequency interactions or scene

switches, the algorithm can backtrack to a stable state

and re plan, achieving fast convergence and enhancing

the fault tolerance and real-time performance of the

scheduling system.

3.2 Method for building rendering task
nodes
In the real-time rendering process of virtual reality

scenes, the granularity division of rendering tasks and

the node construction method directly affect the

scheduling efficiency and response delay of the system.

To adapt to the state update mechanism of dynamic

programming algorithms, rendering tasks need to be

structurally reorganized based on spatial location,

functional characteristics, and computational cost, so

that each node has both computational independence and

logical dependencies, thereby decoupling complex

scenes into several controllable subunits and providing a

structural basis for path optimization and scheduling.

Node construction is divided into three stages:

firstly, task segmentation is performed, dividing the

original content such as model loading, lighting

calculation, shadow generation, texture mapping, etc.

into the smallest computing units based on their

dependency relationships and scene positions; The second

step is to establish a task dependency graph, which

constructs a topology structure by analyzing the data

coupling relationship between input and output tasks,

ensuring accurate expression of node execution order and

resource utilization; Thirdly, attribute tags are introduced to

record estimated costs, execution time, resource

consumption, and frame rate weights, providing parameter

support for path selection.The real-time rendering method

for complex scenes based on neural radiation caching

proposed by Fan Y et al. effectively improves rendering

efficiency and image quality, providing technical support

for task chain construction and skill path optimization in

virtual reality systems [16].

Nodes are usually divided into static rendering nodes,

dynamic interaction nodes, and system control nodes. Li P

et al. conducted immersive industrial design teaching with

the support of virtual reality. By integrating and

reconstructing the process of nodes and interaction paths,

they improved interaction efficiency and response clarity,

confirming the effectiveness of node optimization in

complex scenarios [17]. Different node types are assigned

different priorities and execution strategies, which affect

path value calculation and pruning mechanisms in dynamic

programming.

To improve the visualization and debugging efficiency

of task structure, a graph structure can be introduced to

represent the logical relationships between various nodes.

As shown in Table 2, the system unfolds tasks in frame

order, with stage order vertically and parallel nodes

horizontally, clearly expressing the dependency path and

resource intersection area of task scheduling:

Table 2：Node Structure and Parameter Configuration for Virtual Reality Scene Rendering Tasks

Node
numbe
r

Node Type
Belonging
stage

Predecessor
node

Estimated
cost（ms）

More like
frequency（
Hz）

N01 Static Nodes Loading phase not have 8.4 1

N07
Dynamic
interactive node

Rendering Stage N01 12.7 60

N11 Control node Controlling N07 3.1 30

The setting of node cost is adjusted using a predictive

model combined with empirical coefficients, taking into

account hardware layer factors such as GPU time slice

distribution and data transmission delay, as well as

behavioral layer factors such as user operation frequency

and action prediction, to improve the accuracy and

timeliness of cost evaluation. In multi-user collaboration

or high-density interaction scenarios, the system can

dynamically adjust the node graph structure and achieve

adaptive reconstruction of scheduling by adding or

removing child nodes or merging parallel paths.

Through the above node construction mechanism,

rendering tasks not only have good structural clarity and

dependency constraints, but also achieve preliminary

balance in cost distribution and resource allocation. This

provides a concrete data input foundation for the

subsequent path selection, pruning determination, and

state update of dynamic programming algorithms, and

effectively supports the unified scheduling and control of

multi-source rendering processes in the system.

3.3 Path generation algorithm and execution
process
After completing the task node construction, the rendering

system needs to generate the optimal execution path from

the starting node to the ending node based on node

dependencies and resource constraints. This path not only

determines the task scheduling order, but also affects frame

rate, response delay, and resource utilization. To achieve

the construction and updating of paths, the system is based

on dynamic programming algorithms, deducing node

selection through cost matrix and state transition function,

ensuring the dual goals of minimizing cost and stable

execution under dependency structure.

398 Informatica 49 (2025) 393–408 J. Ma

The first step in path generation is to construct a task

topology map, sort the rendering task nodes

topologically, and ensure that there are no loops in the

map. The sorted nodes enter the path generation module

in order, and the path is updated based on the

predecessor node cost value of each node, combined

with the current path cost function. The cost function

comprehensively considers execution time, resource

conflicts, and inter frame fluctuations, and is

transformed into a unified path cost score through linear

weighting. For equivalent predecessor nodes, the

algorithm prioritizes selecting paths with high resource

redundancy and low load to enhance parallelism and

robustness. Ogawa Y et al. developed a virtual reality

system based on Unity and machine vision, and verified

the practicality of path switching and state tracking

mechanisms under low latency conditions by

dynamically controlling animal behavior feedback

through path control [18].

During the path construction process, the system

adopts a sliding window strategy to maintain a finite set

of states, avoiding memory overhead and computational

redundancy caused by full graph enumeration. At the

same time, a local pruning mechanism is introduced to

directly exclude branches with expected costs exceeding

the current optimal path threshold, thereby controlling

the growth of the state space. This mechanism is suitable

for complex scenes such as large-scale animations or

concurrent interactions, which can effectively shorten

computation time and ensure real-time performance.

Birkheim L S et al. pointed out through their research on

the dynamic reconstruction mechanism of task paths in

VR environments that the flexibility of system path

scheduling directly determines the generation speed and

accuracy of feedback chains in complex scenes, indicating

that the path construction mechanism plays a central role in

task adaptability and feedback efficiency [19].

When the path is generated, the scheduling engine

solidifies it into a set of execution sequences as the

rendering instructions for the current frame. Each task node

records its true cost and execution time during the running

process, and provides feedback to the evaluation module.

The system continuously revises the cost model based on

this data, dynamically updates the subsequent path planning,

and forms a closed-loop mechanism of "prediction

feedback correction". This mechanism can quickly adjust

the path during rapid scene switching or high-frequency

operations, avoiding performance loss caused by path

solidification.

To cope with multi-user or multitasking rendering, the

path module supports multi-path parallel planning

mechanism. A coexistence graph is constructed between

independent task flows through task labels and resource

exclusivity determination, and the optimal paths are

planned separately. The scheduling and conflict avoidance

are carried out during the execution phase. This method is

suitable for high-density task scenarios such as

collaborative virtual environments and multi perspective

reconstruction, improving system load capacity and

stability.

In order to more conveniently characterize the process

of path generation, this study designed a process diagram

for path state update (as shown in Figure 1), which includes

transition rules for path selection states, pruning judgment

mechanisms, and path determination rules. The use of

graphical models can further improve debugging efficiency

and accuracy of abnormal path localization.

Figure 1：Path generation and scheduling flowchart

In summary, this path generation algorithm can

efficiently generate paths while meeting the real-time

and stability requirements in virtual reality systems, with

limited computational overhead. It also provides a stable

and high degree of freedom path generation foundation

for the integration of subsequent system modules and the

execution mechanism of system modules.

Algorithm 1: Dynamic Programming-Based Path

Generation (Pseudocode)

Input: Task node set N, dependency graph G, resource

constraint R

Output: Optimal execution path P_opt

1. Perform topological sort on G to obtain task sequence S

2. Initialize state table V; set optimal path table P_opt as

empty

3. For each task node n in S, do:

 3.1. For each predecessor node pre in Pred(n):

 3.1.1. Compute cumulative cost: cost = V[pre] + g(pre, n)

Task topology

diagram

Pruning

determination

Determine the path

Dynamic
programming path

generation

Scheduling

Execution

Yes

Deny

Transitions Pre

determined

Enhancing Real-Time VR Scene Rendering with Optimized… matica 49 (2025) 393–408 399

 3.1.2. If cost < V[n], then: a) Update V[n] = cost b) Set

P_opt[n] = pre

 3.2. Check if resource constraint R is satisfied; if not,

prune this branch

4. Backtrack P_opt to generate the optimal path

sequence

5. Return P_opt

The algorithm takes task queue and resource status

as inputs, adopts multi-stage dynamic resource

allocation, and key parameters α and β measure delay

and fluctuation weights respectively. It performs

adaptive scheduling through real-time status feedback.

Please refer to Algorithm 1 for detailed pseudocode.

3.4 Algorithm integration and system
operation mechanism
In order to ensure the stable operation and efficient

scheduling of dynamic programming algorithms in

virtual reality rendering systems, it is necessary to build

a complete algorithm integration mechanism that covers

multiple aspects such as task input, path generation,

execution control, and feedback correction, forming a

closed-loop optimization process with frame cycles.

Drawing on the real-time closed rendering mechanism

proposed by Junjie Y et al. [20], the system relies on the

dynamic programming core module for path calculation,

and dynamically schedules the task chain through a

series of communication interfaces and task

management mechanisms.

The system architecture consists of four main

modules: task input module, task graph construction

module, path calculation module, and feedback

correction module. The task input module receives

real-time changes in perspective, user interaction, and

scene dynamic information, generates task description

vector Xt , and calls the node generation mechanism

based on its features to construct a directed acyclic graph

()EVG ,
. After the graph construction is completed,

the path calculation module estimates the cost of each

feasible path based on dynamic programming strategy,

combined with task priority and resource overhead.

Based on the traversal strategy, the system

calculates the path cost for the current candidate node

using the following method:

ij
pi

CC ji ,·
1

·  ++=

（3）

Among them,
iC
is the cost of node i， jC

is the

cost of its predecessor node
j
，  and


respectively

adjust the impact of priority and resource overhead on

path selection.Among them, iP
represents the task

priority of predecessor node i , which reflects the

urgency and scheduling priority of the task after

normalization;
ij,

 represents the resource occupancy

conflicts and inter frame fluctuations on the path from

node
j

 to i , combined with the actual resource

scheduling fluctuations during task execution. Both are

linearly normalized according to the data collected by the

system, with units consistent with the aforementioned

indicators such as execution delay and resource conflicts.

The specific mapping is shown in the experimental

parameter table. This model avoids complex minimum

value solving forms and adopts a mechanism of "node by

node traversal+cost superposition", which improves overall

scheduling efficiency while ensuring response speed.

It should be noted that in the formula of this article,

iC
refers to the cumulative total cost from the starting node

to node i. Its recursive structure is consistent with
()iV

 in

the previous text, and it does not simply refer to the local

cost of the current node i, but includes the cumulative total

cost of each predecessor node in the path. Please pay

attention to distinguishing the different semantics of

"cumulative path cost" and "single node local cost" in the

formula.

The task scheduling phase adopts an asynchronous

parallel mechanism, where the system continuously updates

path decisions on the main thread while sub threads execute

the rendering task of the current frame in parallel. The

graphic resources, texture data, and lighting information

corresponding to each node will be dynamically loaded, and

the GPU will execute tasks in the queue through pipeline

processing to ensure that the rendering process does not

experience frame rate jitter due to scheduling delays. After

the execution is completed, the feedback module will

collect the actual execution time

actual

it , predicted time

est

it

, and error behavior i of each task node, and adjust the

subsequent path decision through the following cost

correction function:

() () () i

est

i

actual

i ttijCijC  ··,·,1 +−+=
（4）

The three coefficients  ，

，and


 in this

formula reflect the impact weights of historical path cost,

execution deviation, and error feedback, respectively, and

are used to dynamically balance the scheduling priority

logic of the system under different rendering objectives.

The feedback mechanism can dynamically update between

frames, enabling the algorithm to have scene adaptability

and stable performance recovery capability.

In system integration design, the algorithm and the

main rendering engine perform task calls and feedback

feedback through abstract interfaces. The interfaces

encapsulate task IDs, path node sequences, GPU load

parameters, and performance record formats to ensure that

each module operates decoupled in high frame rate and high

concurrency environments. At the same time, the platform

supports cross system deployment and can run on

heterogeneous GPU architectures that support

CUDA/OpenCL and OpenGL graphics interfaces, adapting

to various virtual reality rendering frameworks.

Through this integration method, dynamic

programming algorithms not only achieve real-time

400 Informatica 49 (2025) 393–408 J. Ma

iterative optimization of path scheduling logic, but also

effectively avoid the inhibitory effect of resource

bottleneck nodes on global performance, providing

stable, efficient, and scalable technical support for

dynamic rendering tasks in complex scenes.

To unify the expression of path cost (edge weight)

under different stages and structures, this paper adopts

the following normalization method:
()ijc ,

 in

formula (1) is the general path cost, and in actual

implementation, according to application requirements

and scenario characteristics, formula (3)

ij
pi

,
1

 +

 is more suitable for scheduling

priority sensitive scenarios or formula (5) ijw
is suitable

for scenarios dominated by changes in task resource flow

for measurement. Both types of expressions are mapped

to different forms of the main model
()ijc ,

through

weight normalization and parameter configuration,

ensuring consistency between theoretical analysis and

engineering implementation. All weights, normalization

methods and sub item definitions are detailed in the table

of experimental parameters and relevant chapters. All

path optimization in this paper is based on this unified

model.

Algorithm 2: Feedback Correction Mechanism

(Pseudocode)

Input: - Current execution error E_t

 - Historical path cost Cost_hist

 - Execution deviation Dev

 - Error feedback Err

Output: - Updated scheduling priority and path score

1. Initialize correction weight parameters: alpha, beta,

gamma

2. Compute total correction value: Correction = alpha *

Cost_hist + beta * Dev + gamma * Err

3. Update path score: Path_Score = Path_Score -

Correction

4. If Correction exceeds threshold, trigger path

replanning

5. Return updated Path_Score

4 Results
4.1 Experimental environment
construction and task configuration
All experiments were independently repeated for 5

rounds in three typical scenarios, and the mean and

standard deviation were reported. The statistical

significance of the performance improvement was

verified using t-test (p<0.01). All source code and

datasets have been open sourced, please refer to the

appendix or additional materials for details.

To comprehensively evaluate the performance of

dynamic programming algorithms in virtual reality

rendering, the experimental platform is built on a

heterogeneous parallel computing architecture, aiming

to simulate real-time rendering requirements in high

concurrency, multitasking, and heavy computing

scenarios.The experimental platform is based on a

high-performance workstation (high-end CPU, RTX series

GPU, 64GB memory, Ubuntu operating system), developed

using a combination of Unity rendering engine and

self-developed scheduling module to achieve real-time

rendering and multitasking scheduling of complex scenes.

The experiment mainly set up three typical virtual

environments: ① urban streets (large outdoor areas,

dynamic viewpoint switching), ② natural terrain (large

texture data, complex terrain interaction), and ③ indoor

exhibition halls (multiple light sources, multiple materials,

and high-density tasks). Each type of scene includes a 120

second AI/user hybrid interaction, and each frame in the

scene needs to dynamically allocate 3-8 rendering and

computing subtasks, including model loading, lighting,

special effects, etc. All task nodes are divided into three

categories: static rendering, dynamic interaction, and

system control, assigned different priorities and resource

requirements, simulating real VR rendering loads.

The system records core performance indicators such

as task completion rate, GPU utilization rate, rendering

failure rate, and frame rate for each frame, and all

experiments are repeated five times to ensure stable and

reliable data. Combining with the optimization strategy of

sparse voxel octree proposed by Laine S et al[21],This

system integrates LUT lookup mechanism and sampling

reconstruction method in cross threaded task scheduling.

Each module interacts with gRPC and Protobuf protocols to

achieve efficient and low latency communication under

different frame loads, and can dynamically adjust thread

resource allocation strategies.

The experiment mainly uses three typical virtual

environments: urban streets (outdoor high detail); Natural

terrain (large texture modification); Indoor exhibition hall

(multiple light sources and materials). Each scenario is set

with a customized interaction task of 120 seconds, which

achieves visual processing requirements for continuously

refreshing the actual operation process through the set AI

path, randomly generated viewpoint switching points, and

interaction event initiation points.

The task configuration adopts a frame based dynamic

allocation strategy, which means that during the system

operation, the background is generated with a rendering

frame frequency of 90fps, and each frame includes 3-8

processing types of concurrent sub task nodes; These task

types include but are not limited to model loading, lighting

rendering, shadows, and post effects. Each task type is

marked and segmented based on resource requirements and

task processing time. And it includes information such as

the priority of the corresponding task level, required GPU

resources, and estimated running time to meet subsequent

routing calculations and cost estimates. The routing

planning section performs routing calculations and task

planning within the first 5ms of each frame to meet

real-time requirements and balance resource utilization.

In addition, to enhance the controllability and

comparability of the evaluation process, the system can also

record the completion ratio, GPU utilization, rendering

failure rate, and average frame speed of each job sequence

Enhancing Real-Time VR Scene Rendering with Optimized… matica 49 (2025) 393–408 401

on the rendering path as a function of the experimental

results. All data can be instantly generated by the

rendering statistics section and recorded in the form of

journal files and curves. The system also has the function

of adjusting log levels and tracking markers, which can

identify the performance characteristics of the rendering

process and rendering scheduling process, and can

automatically store grouped experimental data. Each set

of experiments will be run five times to eliminate the

influence of random sample errors and ensure the

typicality and reliability of the data.

This experimental platform not only provides a

unified execution foundation for subsequent algorithm

path generation, system operation mechanism, feedback

correction, etc., but also lays a solid technical support for

data processing, performance statistics, and comparative

experiments in the future.

4.2 Input data processing and structure
generation
The application of dynamic programming algorithms in

virtual reality rendering relies on structured input of task

data and efficient construction of graph models. At the

initial stage of operation, the system enables

multi-threaded data listeners to capture real-time user

interaction behavior, viewpoint trajectories, scene state

changes, and frame rendering feedback. The raw data is

input into the scheduling module through a unified

interface and encoded into rendering task units with

temporal and resource characteristics. Each unit is

represented as a quintuple
()iiiiii crltx ,,,, =

,

corresponding to trigger time, scene position, GPU

resource estimation, lighting status, and task category.

All task units form state sequence

 nxxxX ,…,, 21=
, and the system slides and

aggregates them based on the timing window to form a

continuous frame task set. Subsequently, a clustering

algorithm based on task content and resource conflicts

was adopted to divide the task set into structurally

similar clusters, simplifying the complexity of

subsequent path graph construction. Each cluster is

treated as a virtual task node iT
, with an abstract

resource request vector ir
→

 and a schedulable execution

period
 i

e

i

s tt ,
.

To achieve automatic task grouping, the system

adopts the K-means clustering method. Each rendering

task unit will be encoded based on five main features,

including its triggering time, scene spatial position, GPU

resource prediction, lighting status, and task type. In the

actual clustering process, the system normalizes the

above features and groups them by comparing the

comprehensive similarity between task units. The

number of clusters K is dynamically adjusted based on

the number of tasks in each round, usually forming a

group every 10-20 frames. The task cluster label is

determined by the task type and resource characteristics

with the highest proportion within the group. The similarity

threshold is set at around 0.6 based on the training sample

experience, and the clustering labels and grouping results

are automatically refreshed every 5 frames to adapt to

changes in task load.

The system constructs task graph
()EVG ,

 during

the composition phase, where node set

 k21 T,…,,TTV =
 originates from the aforementioned

clusters, and edge set E represents the sequential logic,

resource conflicts, and path coupling between tasks. The

edge weight is defined by the following function:

  ijtjiij i
e

rrw ···ψ 3＞t21 j
s

++−=
→→


（5）

Among them,
−

→→

ji rr
 represents the difference

in task resource vectors,
 j

s＞ti
et


is the sequential constraint

indicator function, ij
is the statistical value of historical

scheduling failure rate, and the three weight

parametersΨ1、Ψ2 andΨ3are fixed after experimental

optimization, used to dynamically balance execution

coupling, temporal risk, and stability expectations.

The resource request vector ir


consists of five

dimensions, corresponding to the estimated demands of

GPU computing power, video memory, bandwidth, texture

processing unit, and real-time frame rate for each task

cluster during scheduling. The system extracts resource

usage characteristics for each original task unit, and forms a

five-dimensional vector representing node resource

requirements through normalization and weighted

aggregation. Each component is based on the actual

sampled data of the current frame, expressed in percentages.

The sequential constraint indicates that function
 j

s＞ti
et



has a value of 0 or 1. If task i must be started after task j is

executed, then
  1j

s＞t
=i

et


; otherwise, it is 0. This

criterion is automatically generated by task dependency

relationships and scene logic, ensuring the correctness of

the graph structure and dynamic switching between task

serial/parallel scheduling. The historical scheduling failure

rate of ij
 is used to quantify the risk weight of inter node

connections in the system by dividing the number of

scheduling failures caused by resource scarcity,

dependency blocking, or priority conflicts in the historical

multi round experiments or running logs of task i by the

total number of scheduling failures, with a value range of

[0,1]. The statistical cycle of parameters is synchronized

with the runtime of the scene, and the experiment is

automatically reset to zero and recalculated every time it is

restarted.

The edge weight parameters in this article areΨ1、Ψ2

andΨ3 As global hyperparameters, they are the results of

the installation, testing, and optimization phase of the entire

system. From the perspective of method steps, they remain

402 Informatica 49 (2025) 393–408 J. Ma

unchanged during the actual operation of the algorithm

and are weights set through multiple experiments

throughout the entire process. The three weights are

continuously adjusted based on past experimental data

analysis and system performance goals. During the

execution process, they accumulate and reflect the

system's sensitivity to comprehensive execution,

sequential danger, and stability. Although the weight

itself does not change with real-time operation, its

"dynamic" performance is reflected in the weight of

various factors affecting path calculation. Therefore, in

this article, "dynamic" performance is reflected in the

weighting operation of each factor, rather than the

weight changing over time. Therefore, this design not

only considers the robustness of the system but also

considers computational efficiency. The sentence is:, A

feedback based weight dynamic adjustment mechanism

can be introduced in the subsequent readjustment

strategy.

To improve the response speed of the scheduling

system in high concurrency environments, the structure

of nodes and edges is translated into sparse matrix

format and cached on the GPU side to avoid frequent

data handling and memory mapping operations. At the

same time, to ensure the availability of nodes in path

planning, the system uses Boolean masking mechanism

to mark and remove abnormal tasks, ensuring the

connectivity and reliability of the graph structure in the

path generation stage.

After the structure generation is completed, the

system starts the graph traversal verification module,

performs DFS detection on the connected branches of

the graph, identifies unreachable task clusters, and feeds

them back to the preprocessing module for feature

correction. Each frame level graph construction is bound

to the current timestamp and user interaction sequence,

supporting full link backtracking analysis of scheduling

logic.

Through the above process, the system accurately

maps real-time input data to standard inputs for dynamic

programming scheduling diagrams. This not only

establishes the priority order and resource connections

between tasks, but also provides a structural foundation

and data support for path calculation, execution control,

and feedback correction. The data processing

mechanism fully meets the dual requirements of high

frame rate virtual reality rendering for structure

generation speed and scheduling map scalability, while

balancing computational efficiency and expression

accuracy.

4.3 Collection and statistics of key
performance indicators
To systematically analyze the optimization effect of

dynamic programming algorithms in virtual reality

rendering, this study sets four key performance indicators

for real-time collection and statistics: average frame rate

(FPS), GPU utilization, task completion rate, and rendering

failure rate. The above indicators are achieved through the

combination of rendering scheduling module and

performance monitoring plugin. The running cycle of each

experiment is 120 seconds, and the rendering output

interval is fixed at 11 milliseconds to ensure data accuracy

and comparison reliability.

The average frame rate statistics are based on the

complete rendering output, eliminating data disturbances

caused by faulty skip frames and delayed frames,

calculating the average value of normal frames, and

measuring the real-time performance of the system. GPU

utilization is sampled 60 times per second, capturing the

graphics card core and memory load through NVIDIA SMI

interface to reflect resource usage. The completion rate of

tasks is calculated based on the execution status of task

nodes in each frame, and the proportion of successful

completion is counted; The rendering failure rate is the

proportion of task termination caused by scheduling

failures, resource overflow, or logical errors.Combining

Dachsbacher C et al. proposed the technique of reflective

shadow mapping [22],This study integrates image

reconstruction efficiency and frame rate fluctuation

features in indicator collection to construct a more stable

performance evaluation mechanism.

As shown in Figure 2, after introducing the dynamic

programming scheduling algorithm, the average frame rate

of the system increased from 77.3 FPS under the original

algorithm to 86.1 FPS, an increase of 11.4%; The GPU

utilization rate remains stable at around 91.7%, an increase

of nearly 7 percentage points compared to 84.9% before

optimization, indicating that the scheduling algorithm has

achieved better load allocation at the resource coordination

level; The task completion rate has shown the most

significant improvement, increasing from 92.8% to 98.3%,

significantly reducing the phenomenon of task backlog and

waiting; The rendering failure rate decreased from 3.2% to

0.9%, further verifying the synchronous improvement of

path scheduling accuracy and resource prediction accuracy.

Figure 2: Bar chart comparing key performance indicators before and after optimization of dynamic programming algorithm

77,3 84,9 92,8

3,2

86,1 91,7 98,3

0,9
0

50

100

150

Frame rate（fps） Utilization rate(%) Completion rate（%） Failure Rate（%）

Before optimization After optimization

Enhancing Real-Time VR Scene Rendering with Optimized… matica 49 (2025) 393–408 403

To ensure the representativeness of statistical data,

the experiment conducted five rounds of replication runs

on three typical application scenarios, and the average

values of all indicator results were taken, with an error

range controlled within ± 1.1%. System log records

show that during resource intensive stages, dynamic

programming algorithms are more likely to prioritize

scheduling task chains with lower resource costs,

avoiding "bottleneck nodes" from blocking the full

frame progress, thereby stabilizing frame rates and

execution efficiency. Especially in indoor scenes with

frequent lighting switching and dense material loading,

the fluctuation amplitude of frame rate is significantly

reduced compared to before optimization, and the GPU

response curve tends to be stable.

We use UnityPofider and our self-developed

logging system to collect frame rates. After the frame

ends, we collect the time spent on rendering and

automatically validate the results using the frame rate

trend line provided by UnityPofiler. The initial value

processing method uses the original frame rate collected

by the script to obtain the average and standard deviation

after removing the frame rate. The experimental group

and the control group are repeated 5 times in the same

environment to ensure fairness and comparability of

each indicator.

To enhance the statistical reliability of the results,

this article reported the mean and standard deviation of

five independent experiments for each core performance

indicator. For example, after dynamic programming

optimization, the average frame rate of urban block

scenes is 86.3 ± 2.1 FPS, natural terrain is 84.1 ± 2.5 FPS,

and indoor exhibition halls are 88.0 ± 1.9 FPS. Further

paired t-test analysis was used to determine the extent of

improvement in each indicator, and the results showed

that the improvement in FPS and GPU utilization was

statistically significant (p<0.01) in all typical scenarios,

fully demonstrating the reliability of the optimization

effect of this method.

In summary, the dynamic programming method has

advantages in the above main indicators, which can

improve the real-time and stability of system operation,

reduce the frequency of accidents, save system resource

consumption, and provide data basis for the construction

of more complex target graphs and the expansion of

scheduling schemes in the future.

4.4 Performance changes under dynamic
programming algorithm
In order to compare and analyze the actual performance

of dynamic programming technology before and after

the application of VR rendering engines, experimental

comparative tests were conducted on the frame rate

performance indicators, load rate indicators, task

running status indicators, and task scheduling accuracy

indicators involved before and after the application. The

tested basic running objects included three different

typical types of scenes: streets, urban blocks, natural

terrain, and indoor exhibition halls. Five sets of

experiments were conducted under the same software and

hardware configuration environment to obtain reliable data

as a comparison basis.

After introducing dynamic programming, the average

frame rate of each typical scene has significantly improved.

Specifically, the city block scene has increased from 76.9

FPS to 86.3 FPS, an increase of 12.2%; The natural terrain

has increased from 74.5FPS to 84.1FPS, an increase of

12.9%; The indoor exhibition hall has increased from

80.4FPS to 88.0FPS, an increase of 9.5%. The overall

improvement level is significant, indicating that the

proposed algorithm can effectively optimize real-time

rendering performance in different environments.

The GPU utilization rate increased from 85.1%, 87.2%,

and 82.5% to 91.6%, 92.4%, and 91.0% in three scenarios,

with an increase of 7.6%, 5.9%, and 10.3%, respectively.

This method can further optimize resource allocation in

complex task scenarios.

In terms of task completion rate, the system's

completion rates in three scenarios have increased from

91.3%, 93.1%, and 94.0% to 97.8%, 98.2%, and 98.7%,

respectively. The overall average completion rate has

increased from 92.8% to 98.2%, achieving efficient

execution under almost full load. This improvement is

particularly evident in exhibition hall scenarios with

large-scale concurrent tasks, indicating that the algorithm's

scheduling performance is more prominent in complex

lighting and material processing.

The rendering failure rate has also significantly

decreased, from 3.4%, 3.1%, and 2.8% before optimization

to 1.0%, 0.7%, and 0.9% after optimization, with an

average reduction of over 2 percentage points. Failed tasks

are mainly caused by resource competition conflicts and

scheduling delays. After introducing feedback correction

mechanisms, the system can effectively predict bottleneck

nodes and adjust path planning, improving overall

execution stability and accuracy.

In terms of the average execution time of tasks, the

average processing time of rendering tasks in the three

types of scenes decreased from 21.3ms, 22.1ms, and 20.8ms

to 18.7ms, 18.3ms, and 17.9ms, respectively, with a

reduction of about 13%. The system dynamically adjusts

the predicted execution time through inter frame feedback,

enabling the scheduler to more accurately balance task

density and execution time in the next cycle.

Scheduling response delay, as a core indicator of

dynamic systems, has also been effectively improved. The

original system had an average scheduling delay of 8.4ms

when dealing with viewpoint switching and new task

injection, which was reduced to 5.2ms under dynamic

programming mechanism, resulting in an overall

improvement of 38.1%. The scheduler uses a path cost

prediction function to calculate the next frame task path in

advance within each frame period, providing sufficient data

support for scheduling delay compression.

The success rate of loading graphic resources has also

been improved, from 95.6% in the original system to 98.8%,

mainly due to the collaborative effect of graph structure

compression and task node priority reordering mechanism,

404 Informatica 49 (2025) 393–408 J. Ma

which avoids loading failures caused by resource

fragmentation.

Taking into account 14 core performance indicators

(as shown in Table 3), over 85% of the performance

items have achieved an improvement of over 5% with

the support of dynamic programming algorithms, with 6

items showing an improvement of over 10%, demonstrating

the algorithm's adaptability and scheduling accuracy in

complex concurrent scenarios.

Table 3：Bar chart comparing performance indicators before and after dynamic programming rendering optimization

performance index
Urban blocks
(before/after
optimization)

Natural terrain (before/after
optimization)

Indoor exhibition hall
(before/after optimization)

Average frame rate（FPS） 76.9 / 86.3 74.5 / 84.1 80.4 / 88.0

GPU utilization rate（%） 85.1 / 91.6 87.2 / 92.4 82.5 / 91.0

task completion rate（%） 91.3 / 97.8 93.1 / 98.2 94.0 / 98.7
Rendering failure rate（%） 3.4 / 1.0 3.1 / 0.7 2.8 / 0.9
Execution duration（ms） 21.3 / 18.7 22.1 / 18.3 20.8 / 17.9

Table 3 reflects 14 performance parameter

indicators, including frame rate before and after

rendering, GPU utilization, task completion rate, task

failure rate, and task scheduling response time. The

comparison between before and after rendering

optimization intuitively reflects the improvement of

various performance indicators, which is also the basis

for performance analysis in this study.

In summary, dynamic programming algorithms

have greatly improved the response rate and task

scheduling accuracy of virtual reality tasks in rendering

systems, establishing more stable and adaptable

rendering scheduling methods, and thus forming

technical support for widespread application in complex

scene rendering.

5 Discussions
5.1 Comparative advantages with existing
optimization algorithms
In virtual reality rendering systems, traditional static

scheduling and depth first path algorithms often exhibit

low resource scheduling efficiency and response latency

in task intensive scenarios due to the lack of dynamic

feedback, making it difficult to maintain high frame rates

and low failure rates. The dynamic programming

algorithm introduced in this study enhances the

responsiveness and robustness of the scheduling system

through task priority adjustment and path feedback

correction. Combining the real-time construction

method of KD tree based on graphics hardware proposed

by Zhou K et al. [23],The algorithm used in this study

can dynamically switch paths based on real-time

interactive changes, enhancing system stability.

In terms of frame rate, traditional algorithms use static

path allocation, which causes significant fluctuations in

frame rate when the load increases. In urban block

scenes, the average frame rate is 76.9FPS, which

increases to 86.3FPS after introducing dynamic

programming. The other two types of scenes also have

an increase of over 10%, improving visual coherence.

In terms of resource scheduling, the original GPU

utilization rates were 85.1%, 87.2%, and 82.5%, which

were improved to 91.6%, 92.4%, and 91.0% after

dynamic scheduling. The task allocation became more

reasonable, and the problem of resource congestion and idle

coexistence was significantly alleviated.

In terms of task completion rate, under traditional

methods, the three types of scenarios range from 91.3% to

94.0%, and after optimization, they have been improved to

97.8%, 98.2%, and 98.7%, respectively. The scheduler

improves continuous allocation capability through path

prediction and bottleneck avoidance, significantly

suppressing blocking phenomena.

In terms of rendering failure rates, the original strategy

had failure rates of 3.4%, 3.1%, and 2.8%, which were

reduced to 1.0%, 0.7%, and 0.9% after optimization. With

the help of node feedback mechanism, the system can avoid

conflicting resources and ensure stable task execution.

In terms of system response delay, the average

processing delay of the original algorithm was 8.4ms,

which was reduced to 5.2ms after optimization, an increase

of 38%. The predictive scheduling structure can complete

task preparation in advance and reduce user waiting

experience.

In terms of resource loading, traditional algorithms

have deficiencies in resource priority control, resulting in

loading failures or disorderly order. The new strategy

improves the resource loading rate from 95.6% to 98.8%

and enhances the overall rendering fluency by restructuring

the graph structure and node sorting. Engel K et al.

proposed a series of core technologies for real-time volume

rendering, focusing on efficient data structures, voxel data

stream processing, and parallel rendering frameworks,

significantly improving the real-time visualization

capability of large-scale volume data in virtual reality and

other scenarios. This method provides important support

for high-quality volume rendering and interactive

performance optimization of complex 3D scenes [24].

In summary, compared with traditional scheduling

strategies, dynamic programming algorithms can achieve

logical optimization of scheduling, rationality of resource

scheduling, and stability of system scheduling, and have

broader application prospects in high concurrency and high

load rendering tasks.

5.2 Analysis of adaptability and stability of
algorithm performance
In the increasingly complex and ever-changing virtual

reality rendering environment, the rendering performance

Enhancing Real-Time VR Scene Rendering with Optimized… matica 49 (2025) 393–408 405

of virtual reality systems and user interaction experience

depend on the algorithm compatibility and stability of

the system. This research method combines dynamic

programming and path cost estimation algorithms with

task priority control strategies, demonstrating strong

environmental adaptability and high operational stability.

Especially when facing challenging tasks and

environments such as a large number of parallel tasks,

frequent task switching, and resource constraints, the

advantages are particularly prominent.Luebke et al.

pointed out that GPU architecture innovation has

significantly improved real-time graphics rendering and

large-scale computing capabilities [25].On this basis,

this study aims to improve the relationship between path

discrimination and behavioral response, and enhance the

system's ability to adapt to task interference through

self-regulation.

This algorithm can adaptively adjust its scheduling

algorithm based on the parallelism and characteristics of

tasks to meet different environmental requirements.

Taking indoor exhibition halls as an example, the

dynamic programming algorithm increased the average

frame rate from 80.4fps to 88.0fps under high-density

rendering and frequent task switching conditions,

significantly reducing fluctuations, while maintaining

high GPU utilization and task completion rates. This

method does not require preset parameters and can adapt

to complex application loads, demonstrating good

generalization ability.

In terms of task density, dynamic programming also

demonstrates strong adaptability. In the exhibition hall

scene, the conventional algorithm GPU occupancy rate

is 82.5%, with resource idle issues. After renovation, it

increased to 91.0%; The task completion rate has

increased from 94.0% to 98.7%, which means that the

system can continue to operate in high-density scenarios,

avoiding scheduling conflicts and pauses, and

maintaining high efficiency.

In terms of system stability, dynamic programming

algorithms have strong fault tolerance and correction

mechanisms. The failure rate of rendering in three types

of scenes has significantly decreased, such as the

exhibition hall dropping from 2.8% to 0.9%, and the city

block dropping from 3.4% to 1.0%. This is attributed to

the algorithm's ability to identify bottleneck nodes in

advance, complete path migration and load sharing in a

timely manner, and reduce error occurrence. In terms of

scheduling response delay, the original average was

8.4ms, which was compressed to 5.2ms after

optimization. It can still be stably maintained within

5.4ms in sudden natural terrain task scenarios, ensuring

users' real-time interaction experience. Based on the

efficient management and resource optimization method

of medical data in virtual reality environment proposed

by Sik-L á nyi et al. [26],The system achieves higher

accuracy in delay prediction and congestion modeling,

providing data support for path migration and scheduling

fine-tuning.

Overall, the dynamic programming scheduling strategy

can quickly adapt and stabilize system performance under

complexity, strength, and bottleneck conditions,

demonstrating significant advantages in anti-interference,

resource elasticity, and path optimization, providing solid

technical support for virtual reality rendering systems.

5.3 Feasibility assessment of computing
resource consumption and system
deployment
Although dynamic programming algorithms have improved

the scheduling efficiency of rendering tasks, their resource

load during deployment still needs to be carefully evaluated.

Based on the comparison results of the experimental

platform, the dynamic strategy has increased from 52.4% to

58.7% in terms of CPU usage, mainly due to the increased

computational burden of path prediction and priority

backtracking. The peak utilization rate of GPU increased

from 89.3% to 94.8%, indicating a more centralized

resource scheduling and a significant improvement in the

utilization efficiency of the graphics pipeline. The memory

overhead has increased from 7.3GB to 7.5GB, and the

newly added structure is mainly used for scheduling cache

and feedback modules, accounting for 2.7%, with limited

impact on the platform. The initialization time of the

algorithm has been extended from the traditional strategy of

2.5 seconds to 4.2 seconds, mainly due to the loading

process of the cost matrix and scene feature index; The full

deployment cycle has been extended from 8.2 minutes to

9.0 minutes, with limited latency, and can be further

compressed through parallelization and automatic

deployment mechanisms in the future.

Based on the resource measurement and optimization

strategy proposed by Kuk et al. for parallel scheduling of

dynamic programming tasks on multiprocessor platforms

[27],And improved the accuracy of scheduling while

maintaining its control load;At the same time, Ma č ek et al.

reviewed the response evaluation and performance analysis

methods of dynamic programming parallelization systems

[28],To demonstrate that this strategy can achieve a

reasonable trade-off between performance and resource

consumption, and provide strong reliability and

effectiveness for its engineering practice. In fact, the use of

buffering technology enables dynamic strategies to

gradually alleviate the load at startup, increase the

utilization rate of routing, and enable faster recovery of

failed tasks, which helps it to scale up to large-scale

environments and mature. The quantitative comparison

results of the main resource consumption indicators under

various algorithm strategies are shown in Table 4:

406 Informatica 49 (2025) 393–408 J. Ma

Table 4：Comparison of resource consumption and deployment indicators under different algorithms

Indicator items
Static scheduling
strategy

Dynamic
programming
strategy

Difference explanation

CPU usage（%） 52.4 58.7
Increase by 6.3% for path prediction
calculation

GPU peak
utilization（%）

89.3 94.8
5.5% increase, more centralized resource
scheduling

memory footprint（GB） 7.3 7.5
Increase by 0.2GB, with limited proportion
of structural expansion

Initialization time（s） 2.5 4.2
Increased by 1.7 seconds due to cost matrix
loading

Complete deployment
cycle（m）

8.2 9.0
Add 0.8 minutes, which can be automatically
optimized for compression

In order to further demonstrate the detailed performance

of system resource scheduling, this study synchronously

recorded the average processing time per frame and task

queuing delay in the experimental analysis. The results

showed that under the dynamic programming strategy,

the average processing time per frame of indoor

exhibition hall scenes decreased from 20.8ms to 17.9ms,

and the task queuing delay was reduced from 3.4ms to

1.7ms. The above data are the average of five

independent experiments, demonstrating the significant

advantages of the new algorithm in improving response

speed and reducing system bottleneck. These

supplementary indicators effectively enhance the

scientificity and comparability of overall resource

consumption evaluation, further supporting the

feasibility analysis of algorithm deployment in practice.

In summary, although dynamic programming

methods have high consumption, their efficiency is

better, and all related resource consumption is within the

acceptable range of the system. Based on the current

computing power of high-performance computers and

graphics workstations, this algorithm has strong

installation adaptability and scalability, and works well

for virtual reality system scenes that require frame rate

control and multitasking. If it can be combined with

cloud GPU deployment platform and dynamic model

compression technology in the future, it should further

enhance the efficiency and workload allocation ability of

the algorithm.

In this way, the "sliding window" technology of the

system is applied in the process of generating paths and

updating states. This technology can reasonably control

the number of nodes and states that need to be examined

in each round of computation, thereby effectively

allocating limited memory and avoiding the need for a

large amount of computation and storage load for a

comprehensive search of the entire graph, in order to

meet the requirements of real-time rendering. In the

initial stage, it is necessary to first build a complete

execution process and path cost, so it is necessary to read

and process all node and edge information at once, that is,

the structure of the "cost matrix" or graph. This

operation process will generate a large amount of

computational load and memory usage, but it only exists

in the installation or scene change stage. The layering of

this method has the effect of improving the efficiency of

the entire system and balancing the distribution of

computational loads in various execution stages.

5.4 The practical significance and expansion
prospects of research results
This study proposes a dynamic programming-based

implementation method for assigning virtual reality

rendering task paths, which can meet the requirements for

rendering delay and stability in the state of a large number

of complex tasks. A large number of experimental results

have shown that this method can effectively improve user

experience in terms of frame rate, GPU utilization,

workload utilization, workload loss rate, task scheduling

delay, and has the possibility of implementation compared

to existing methods.

The results of this study can play a key role in

promoting the industrialization of VR technology. In fields

such as digital exhibition halls, simulation cockpits, and 3D

models, users are faced with the need for smoothness and

real-time performance. Through dynamic scheduling

strategies, it is possible to more efficiently respond to

rendering systems in different scenarios, ensure their

stability, effectively reduce user waiting time on the system,

enhance user immersion, and further enhance the product

value and market competitiveness of this technology.

In terms of expansion, it has good universality and can

be applied in other scenarios such as digital twin

applications, digital factories and visualization applications,

massive augmented reality interactive applications, etc.

After combining reinforcement learning algorithms with

automatic adaptation and edge collaborative computing

strategies, it is expected to build task computing systems

with more autonomous, efficient, and discrete

characteristics, providing forward-looking support for

real-time computing and intelligent interactive

applications.

6 Conclusion
This study proposes a dynamic programming based

scheduling path optimization method to address the issues

of insufficient optimization of rendering task scheduling

and poor resource utilization in VR scenes. The scheduling

strategy is experimentally validated for typical scenarios,

and the experimental results demonstrate that the

scheduling algorithm can effectively improve frame rate,

GPU utilization, task success probability, and response time,

demonstrating good adaptability and practicality;

Enhancing Real-Time VR Scene Rendering with Optimized… matica 49 (2025) 393–408 407

Compared to static scheduling and depth first, dynamic

programming is more suitable for complex

multi-threaded scenarios, which can further improve the

reliability and real-time rendering of the system. At the

same time, this article comprehensively evaluates the

proposed solution from the perspectives of algorithm

fault tolerance, power consumption, and installation

dependencies, summarizes its specific application scope

and practical application path, and has good reference

significance for future practical applications. At the

same time, this solution also provides an effective

scheduling optimization strategy for tasks with high

real-time requirements such as VR scenes and smart

cities. The next step is to combine reinforcement

learning with distributed architecture to enhance the

practical application potential of this solution in

distributed architecture scenarios such as heterogeneous

intelligent terminals. In summary, the algorithm

proposed in this article has demonstrated good

theoretical innovation and engineering effectiveness in

virtual reality multi scene scheduling optimization, and

has strong academic value and application prospects.

References
[1] Xionghui L, Xiaoyu Z, Jiaming Q , et al.“Fake it,

you can touch it”: a study of virtual touch effects

based on VR technology[J].Virtual

Reality,2024,29(1):15-15.https://dol:10.1007/s10

055-024-01092-y.

[2] Lumpkin T L , Nutt C G , Folds P E ,et

al.Influence of Familiarity, Aesthetic Value, and

Change Type on Visual Memory of Real-World

Scenes in a Virtual Reality Change/No-Change

Paradigm[J].Journal of Vision, 2024,

24(10):2.https://dol:

10.1167/jov.24.10.948.

[3] Sainz M, Vicente R, Plaza J. Accelerating

real-time global illumination using machine

learning techniques[J]. ACM Transactions on

Graphics, 2020, 39(6): 1-16.

https://dol.org/10.1145/3414685.3417855.

[4] Htun N N S, Egami S ,Fukuda K .Activity

scenarios simulation by discovering knowledge

through activities of daily living datasets[J].SICE

Journal of Control, Measurement, and System

Integration,2024,17(1):87-105.https://dol:10.1080

/18824889.2024.2318848.

[5] Owens J D, Houston M, Luebke D, et al. GPU

computing[J]. Proceedings of the IEEE, 2008,

96(5):

879-899.https://dol.org/10.1109/JPROC.2008.917

757.

[6] Li B, Tian F, Cai L, et al. Survey on deep learning

for virtual reality and augmented reality[J]. IEEE

Transactions on Visualization and Computer

Graphics, 2022, 28(7):

2900-2919.https://dol.org/10.1109/TVCG.2021.3

130997

[7] Ragan-Kelley J, Adams A, Paris S, et al.

Decoupling algorithms from schedules for easy

optimization of image processing pipelines[J]. ACM

Transactions on Graphics, 2013, 32(4): 1-12.

https://dol.org/10.1145/2461912.2461978.

[8] ChaeL R, LeeH, KimE. The Effects of Avatar

Human‐Likeness on Psychological Closeness in

Virtual‐Reality[J]. Psychology &

Marketing,2024,42(4):1132-1145.https://dol:10.100

2/mar.22168.

[9] Son D, Im B, Her J, et al. Street lighting

environment and fear of crime: a simulated virtual

reality experiment[J].Virtual

Reality,2024,29(1):8-8.https://dol:10.1007/s10055-0

24-01080-2.

[10] Navarro J D, Serrano A, Malpica S. Minimally

disruptive auditory cues: their impact on visual

performance in virtual reality[J].The Visual

Computer,2024,41(7):1-15.https://dol:

10.1007/s00371-024-03779-4.

[11] Figueroa J A, Guan J, Swearngin J, et al. Deep

learning-based real-time dynamic global

illumination for immersive virtual environments[J].

ACM Transactions on Graphics, 2021, 40(4): 1-12.

https://dol.org/10.1145/3450626.3459833.

[12] Li X ,Wang D J ,Dudley J J , et al.Swarm

manipulation: An efficient and accurate technique

for multi-object manipulation in virtual

reality[J].Computers &

Graphics,2024,125104113-104113.https://dol:10.10

16/j.cag.2024.104113.

[13] Liu Y, Ren Z, Huang J, et al. Real-time dynamic

ambient occlusion using deep neural networks[J].

IEEE Transactions on Visualization and Computer

Graphics, 2020, 26(7):

2468-2477.https://dol.org/10.1109/TVCG.2019.292

3033.

[14] Wei L, Wang W, Zou C, et al. Efficient real-time

rendering method for complex scenes using adaptive

path sampling[J]. Computer Graphics Forum, 2019,

38(7): 201-211.https://dol.org/10.1111/cgf.13734.

[15] Karras T, Laine S, Aila T. A style-based generator

architecture for generative adversarial networks[J].

Proceedings of the IEEE/CVF Conference on

Computer Vision and Pattern Recognition (CVPR),

2019:

4401-4410.https://dol.org/10.1109/CVPR.2019.0045

3.

[16] Fan Y, Gong M, Chen Q, et al. Real-time rendering

of complex scenes via neural radiance caching[J].

ACM Transactions on Graphics, 2021, 40(6): 1-13.

https://dol.org/10.1145/3478513.3480537.

[17] Li P ,Zhang X ,Hu X , et al.Theoretical model and

practical analysis of immersive industrial design

education based on virtual reality

technology[J].International Journal of Technology

and Design

Education,2024,(prepublish):1-28.https://dol:10.100

7/s10798-024-09946-x.

408 Informatica 49 (2025) 393–408 J. Ma

[18] OgawaY, AoukarR, LeibbrandtR , et

al.Combining Unity with machine vision to create

low latency, flexible and simple virtual

realities[J].Methods in Ecology and

Evolution,2024,16(1):126-144.https://dol:

10.1111/2041-210X.14449.

[19] Birkheim L S, Calogiuri G ,Hvalstad M , et

al.Exploring the experiences of resident doctors

in child and adolescent psychiatry with virtual

reality-based simulation training: a qualitative

study.[J].BMC health services

research,2024,24(1):1443.https://dol:

10.1186/s12913-024-11941-w.

[20] Junjie Y, Cuiying Z ,Zhen L , et al.Real-Time

Rendering Closure Method for Continuous

Cutting of Multilevel TIN Geological

Models[J].Geotechnical and Geological

Engineering,2023,42(5):3269-3285.https://dol:10.

1007/s10706-023-02729-6.

[21] Laine S, Karras T, Aila T.Efficient sparse voxel

octrees – Analysis, extensions, and

implementation[J].ACM Transactions on

Graphics, 2010, 29(4):

101.https://dl.acm.org/doi/10.1145/1778765.1778

803.

[22] Dachsbacher C, Stamminger M.Reflective

shadow maps[J].ACM Transactions on Graphics,

2005, 24(3):

756-764.https://dl.acm.org/doi/10.1145/1073204.

1073245.

[23] Zhou K, Gong M, Huang X, et al.Real-time

KD-tree construction on graphics

hardware[J].ACM Transactions on Graphics,

2008, 27(5):

126.https://dl.acm.org/doi/10.1145/1409060.1409

1111.

[24] Engel K, Hadwiger M, Kniss J M, et al.Real-time

volume graphics[J].ACM Transactions on

Graphics, 2004, 23(3):

722-741.https://dl.acm.org/doi/10.1145/1015706.

10158011.

[25] Luebke D, Humphreys G.Is graphics hardware

ready for the revolution?[J].IEEE Computer

Graphics and Applications, 2002, 22(6):

18-21.https://ieeexplore.ieee.org/document/10466

27.

[26] Sik-Lányi C, Pölöskei Z.Virtual reality in

medicine[J].Informatica, 2018, 42(2):

209-214.https://www.informatica.si/index.php/inf

ormatica/article/view/2324.

[27] Kuk K, Jaworski W.Parallelization of dynamic

programming algorithms for modern

multiprocessor platforms[J].Informatica, 2020,

44(3):

411-417.https://www.informatica.si/index.php/inf

ormatica/article/view/2956.

[28] Maček A, Kukar M.A survey of parallelization

techniques for dynamic

programming[J].Informatica, 2015, 39(3):

333-342.https://www.informatica.si/index.php/infor

matica/article/view/560.

