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Regular physical activity is essential for maintaining good health; however, people have varying fitness 

levels, health conditions, and goals. Most traditional exercise programs employ a one-size-fits-all 

approach, often resulting in suboptimal results or a lack of motivation. A personalized approach is 

necessary to better match individual needs and help users stay on track. Advanced technology and 

machine learning enable the collection of detailed activity data and the development of intelligent training 

systems. This paper proposes an intelligent method to create personalized exercise programs using Deep 

Reinforcement Learning (DRL) and data mining (PEP-DRL-DM). The system utilizes the PAMAP2 

Physical Activity Monitoring dataset, which comprises sensor data such as heart rate and movement 

during various activities. Data mining techniques are applied to learn patterns from this data, such as 

user fitness levels, activity habits, and performance trends. These patterns help the DRL model understand 

each user’s current state. Then, Proximal Policy Optimization (PPO) is used to decide the best type, 

duration, and intensity of exercises. A virtual training setup gives feedback based on how users improve 

over time. Experimental results indicate that PEP-DRL-DM obtains a 17.11% improvement in fitness 

result, a personalization score of 0.65 to 0.93, and 85% user retention over 10 sessions, surpassing 

baseline methods. The system adapted well to different user needs and fitness conditions. In conclusion, 

combining data mining with PPO helps build personalized and flexible exercise programs that improve 

user progress and engagement over time. 

Povzetek: Za personalizirano načrtovanje vadbe je razvit PEP-DRL-DM, ki združuje rudarjenje 

podatkov in proksimalno optimizacijo politike (PPO) za samodejno prilagajanje vadbenih načrtov glede 

na senzorske podatke PAMAP2. Gre za za inteligentno, dolgoročno osebno vadbo in spremljanje 

zdravja. Sistem izboljša rezultate, personalizacijo in ohrani uporabnike. 

 

1 Introduction 
The increased consciousness about well-being and 

health has triggered demand for exercise programs 

tailored to specific needs [1]. With the availability of 

smartphones, wearable technology, and fitness tracking 

devices, it is simpler to monitor real-time data on 

physical activity, heart rate, caloric expenditure, and 

more [2]. However, despite the potential for 

personalization that the data holds, most training 

programs remain based on broad exercise guidelines [3]. 

These broad strategies fail to account for variation in 

age, health status, goals, and fitness levels [4]. As a 

result, people do not readily adhere to their exercise 

programs or realize significant gains in performance 

and health [5]. 

Artificial intelligence (AI) and machine learning 

have been very promising in solving the problems they 

have presented lately [6]. More intelligent systems can 

use user data and learning from patterns over time to 

provide personalized diet, sleep, and physical activity 

advice. Exercise technology that combines data 

analysis and AI can individualize exercise routines to 

change with evolving needs [7]. These systems can 

offer real-time feedback, adjust according to progress, 

and adjust according to user performance. 

Interventions of this kind can enhance health gains, 

increase user participation, and promote long-term 

adherence to a fitness regime [8]. 

Reinforcement Learning (RL), a branch of 

machine learning, has been recognized as an effective 

solution to sequential decision-making tasks [9]. In 

training for exercise, this capacity to learn from users' 

dynamic states renders RL a good candidate for 

personalization [10]. While static rule-based 

approaches are limited to learning optimal training 

strategies by exploring the environment and receiving 

feedback, RL can achieve this through exploration and 

learning from feedback [11]. For instance, it can 

identify when to add intensity, change activity types, or 

suggest rest days depending on the performance and 

progress of the user. This adaptability is necessary in a 
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quest to come up with practical and sustainable fitness 

plans [12]. 

 

 

 

Challenge addressed 

Despite the availability of personal monitoring 

devices and wearable sensors, most exercise programs 

have not leveraged individual data to tailor training 

sessions. Existing fitness platforms combine static 

suggestions that do not consider the individual's 

evolving physical condition, past training, and goals. 

The absence of personalization results in suboptimal 

performance, low compliance, and user disengagement. 

Although some smartphone apps allow slight 

personalization, they are under stringent regulations 

and cannot dynamically adapt to actual user 

information. The challenge lies in creating a system 

that comprehends the user's current fitness level and 

dynamically changes as recommendations are made 

while the user gets better. Additionally, training 

sessions must balance intensity, recovery, and 

motivation, depending on decision-making through 

ongoing feedback.  

 

Methodological approach 

The PEP-DRL-DM combines deep reinforcement 

learning and data mining as a hybrid approach for 

planning individualized exercise. The point of 

departure is to apply the PAMAP2 dataset to extract 

core physical activity features from heart rate, motion, 

and activity labels. Data mining processes organize this 

data into user-specific fitness states that capture present 

states and past performance. These states are input to 

the learning model. PEP-DRL-DM's structure relies on 

PPO, a robust and scalable DRL algorithm. PPO learns 

to acquire the best exercise tactics by experimenting in 

an artificial training system and is rewarded for 

improvement and reliability. The system dynamically 

modifies exercises' type, intensity, and duration for 

permanent adjustment and customization. 

 

Significance of the paper 

To introduce PEP-DRL-DM, an auto-adaptive 

personalized exercise plan optimization mechanism 

based on DRL and data mining. 

The PAMAP2 dataset can construct realistic real-

life physical activity profiles, enabling proper and 

accurate decisions. 

Maximize exercise efficacy and compliance by 

creating personalized routines tailored to each user's 

progress. 

To check the performance of the PEP-DRL-DM 

model to enhance physical outcomes via a stable PPO-

based reinforcement learning approach. 

 

Structure of the paper 

The paper's organization is as follows: Section 2 is a 

literature review about personalized fitness and DRL. 

Section 3 explains the dataset and the preprocessing 

techniques. Section 4 describes the implementation of the 

PEP-DRL-DM methodology. Section 5 outlines 

experiments and results. Section 6 concludes with a 

summary of the main contributions and advantages of 

personalized training. 

2 Related works 
New artificial intelligence and wearable technologies 

have made it possible to adopt more tailored practices in 

exercise planning. Original programs do not regard 

variances among persons in fitness, preference, and 

progress. Researchers have moved into addressing data 

mining methods to activity and physiology data analysis 

and adaptive choice reinforcement learning algorithms. 

These have been combined to introduce smart training 

systems that respond in real time. This review addresses 

recent research in data-driven fitness planning for the PEP-

DRL-DM model placement. 

El Mistiri et al. [13] also presented a Data-Driven 

Mobile Health system for delivering individualized 

physical activity interventions via mobile technologies. It 

was proposed that the shortcomings of uniform exercise 

plans be overcome by real-time personalization of 

interventions. The authors utilized system identification 

techniques and hybrid model predictive control for 

personalized activity coaching. The system effectively 

accommodated user-specific requirements and generated 

dynamic exercise plans. Yet, its popularity was thwarted 

by reliance on well-formatted data and the generalizability 

of the parameters for models across populations of users. 

Sinnige [14] developed an evidence-based 

individualized prognosis-making system for supervised 

exercise therapy in intermittent claudication patients. The 

system directed clinicians towards person-centered care 

and maximized therapeutic effect. Statistical modeling, 

incorporating clinical and activity data, was applied to 

predict patient-specific outcomes. It proved beneficial in 

facilitating treatment personalization and decision support. 

The system was not dynamically interfaced with adaptive 

or real-time interventions, which limited its ability to 

continuously adapt and improve with the patient. 

Geng [15] created an innovative interactive system for 

customized fitness training sessions. The system was 

designed to promote user motivation and interest by 

incorporating digital entertainment elements into training 

exercises. It used interactive technologies to tailor training 

sessions to user responses and interests. Findings indicated 

that adherence and satisfaction were improved among 

participants in the customized programs. Although 

promising, the system had a limitation in that user-

interaction data tends to be subjective in nature, which can 

compromise consistency and reliability during training for 

personalization. 

Al-Shaikh et al. [16] presented a reinforcement 

learning framework-based load balancing algorithm for 
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Publish/Subscribe systems, called RL-LB, which consists 

of PPO, UCB, and Epsilon-Greedy algorithms. It was 

designed to address adaptive load balancing issues in 

dynamic network environments. The proposed solution 

achieved better throughput and latency compared to static 

algorithms. Its performance was hyperparameter-sensitive 

and needed long training time to converge. 

Wackerhage & Schoenfeld [17] have defined 

individualized, evidence-based exercise prescriptions to 

facilitate health, fitness, and performance objectives. 

Using scientific literature-informed training 

recommendations, it was intended to link standardized 

programs with the individual needs of users. The suggested 

scheme emphasized adapting the program to user fitness 

testing and objectives. Although guidelines offered 

structured and targeted plans, the process was not 

automated and could not dynamically adapt to changes in 

user data or feedback during training; therefore, it was less 

adaptable in the long term. 

Li et al. [18] created an IoT-based training network 

that applied deep reinforcement learning for resource and 

virtualization management in physical education. It was 

developed to enhance the efficiency and scalability of 

fitness training delivery between interconnected platforms. 

The system utilized DRL algorithms to allocate resources 

efficiently and enhance network performance. The 

framework proved effective in optimizing training delivery 

infrastructure. However, its emphasis was on system-level 

optimization rather than tailored exercise material, thereby 

restricting its application to individual fitness adaptation. 

Oyebode et al. [19] provided a synopsis of machine 

learning in adaptive and personalized wellbeing and health 

systems to identify practical ways of adapting health 

interventions based on user behavior and profiles. The 

writers discussed some ML models and described their 

contributions towards adapting to wellness platform users. 

The work presented lacked application to an integrated 

system, despite providing detailed insights. It did not 

validate procedures through real-time, individualized 

exercise situations, limiting its practical application to 

ongoing fitness planning. 

Jamil et al. [20] developed an IoT, blockchain, and 

machine learning-based secure fitness tracking system. 

Data privacy and integrity issues in connected health were 

suggested to be addressed. The system adopted Blockchain 

technology to manage data and ML algorithms to derive 

fitness-related information safely. It had strong data 

security and accurate user tracking. While these were 

successes, the system prioritized security infrastructure 

over customized or adaptive fitness exercises, and a lack 

of individualized training optimization remained. 

Yang [21] introduced an AI-driven personalized 

recommendation optimization approach for online e-

commerce sites, aiming to improve user experience and 

conversion rates. The approach used user behavior 

analysis and adaptive learning models to provide more 

precise product recommendations. Experiment outcomes 

revealed a significant increase in click-through and buying 

rates compared to conventional recommendation systems. 

The model's performance, however, declined with sparse 

user data and was plagued by scalability issues in large 

real-time settings. 

Fang et al. [22] proposed a machine learning-based 

system for setting individualized exercise goals on online 

health platforms. The system would enhance motivation 

and performance by adapting targets based on individuals' 

progress patterns. Through predictive modeling, the 

system sets optimal goal levels for the users. Improved 

compliance and satisfaction were reported, along with 

personalized targets. However, the strategy did not include 

adaptive compensation for ongoing training, and there 

were no feedback mechanisms to refine the real-time 

exercise strategy. 

 Zhao et al. [23] tested XGBoost in analyzing exercise 

data and adapting to training strategy. The system was able 

to extract high-quality information from vast amounts of 

exercise data and suggest performance-improving 

adaptations. XGBoost was utilized because it can express 

intricate relationships between data and the order of 

meaningful features. The approach could effectively 

discover the factors that affect successful training. 

However, the method did not adjust plans according to 

sequential feedback and therefore was less useful for 

continuous and individualized exercise programming. 

Research gap 

Even though there is prior work on personalized 

fitness using machine learning or reinforcement learning, 

most of these efforts are either not dynamically adaptive or 

involve decision-making at query time. For instance, 

algorithms like DDMH [13] and ML-PGS [22] provide 

minimal personalization in terms of hard-coded rules or 

predefined user objectives, without dynamic adaptation as 

the user drills down. IoT-DRL [18] is a system-level 

resource optimization approach, rather than an exercise 

scheduling method at the user level. In contrast, the PEP-

DRL-DM framework presented is an innovative 

combination of data mining and deep reinforcement 

learning customized for individualized exercise. It applies 

clustering, association rule mining, and mutual 

information to construct personalized user states, which 

are used to induce policy learning using PPO. The system's 

feedback loop mechanism also learns exercise type, 

intensity, and duration based on modifications in user 

behavior and physiological response. These blended 

characteristics make PEP-DRL-DM ideal for real-time, 

adaptive fitness training, taking up where previous efforts 

left off. 

3 Dataset and preprocessing 
3.1 Dataset explanation 

The PAMAP2 Physical Activity Monitoring dataset is 

an extensive benchmarking dataset for testing human 

physical activity detection and fitness monitoring 

wearables [24]. Nine subjects were captured performing 



302   Informatica 49 (2025) 299–314                                                                                                                                            H. Qin

  
 

various activities, such as daily living and exercise, like 

walking, jogging, cycling, rope jumping, and homework. 

Each participant had three inertial measurement units on 

the wrist, chest, and ankle that captured dense motion and 

physiological data like 3D accelerometer, gyroscope, 

magnetometer measurements, temperature, and heart rate. 

With more than 50 features at each time step and activity 

labels, the data enables rich temporal analysis of motion 

patterns. Its high-density activity set and multimodal 

sensor information render it particularly suitable for 

training and testing personalized exercise planning models. 

PAMAP2 emulates user-specific training reactions and 

optimizes adaptive exercise programs with the introduced 

PEP-DRL-DM approach. The real-world usefulness and 

granularity of the dataset enable the development of 

cognitive, data-driven fitness systems. 

3.2 Data preprocessing 
The preprocessing phase in the proposed PEP-DRL-

DM framework is essential for preparing raw sensor data 

from the PAMAP2 dataset for effective modeling and 

personalized training plan generation. Initially, the raw 

signals from accelerometers, gyroscopes, and heart rate 

monitors are filtered to remove high-frequency noise using 

a Butterworth low-pass filter. This filtering stage is 

important because PAMAP2 has dense sensor signals that 

are susceptible to the detection of motion artifacts, jitter, or 

amplitude-large oscillations in high-intensity activities, 

such as rope jumping. A 20 Hz cutoff, 4th-order 

Butterworth filter was selected empirically to retain 

motion-significant frequencies and attenuate noise, 

thereby sustaining the fidelity of the signal across various 

activities. After denoising, normalization is applied to 

standardize data values across different sensor types, using 

either z-score or min-max scaling, to ensure comparability 

and improve model convergence. Z-score normalization is 

applied to acceleration and heart rate data to produce 

standardized Gaussian distributions that are well-suited for 

learning algorithms. Min-max scaling is applied to 

magnetometer and gyroscope signals to preserve relative 

magnitude and orientation.  

The continuous time-series data is then segmented into 

overlapping windows to capture temporal patterns relevant 

to physical activities.   The sliding window approach is 

used with a dynamic window length (2–5 seconds), set 

according to the activity type label (shorter for running, 

longer for standing), with a 50% overlap to prevent loss of 

transitional activity information. This segmentation offers 

a smooth transition and high-resolution feature mapping. 

Smooth transition offers good consistency among 

successive sessions. Each segment extracts meaningful 

statistical and domain-specific features such as mean 

acceleration, signal magnitude area (SMA), energy, and 

rest period ratio. Along with these, heart rate trend 

(tracking the difference from start to finish of the segment) 

and a new Heart Rate Variability Index (HRVI) are 

calculated, the latter quantifying physical recovery or 

stress. These were chosen because they can consolidate 

activity quality, intensity, and physiological response into 

a concise form, with a dense description of user state 

arising. These features serve as compact, informative 

representations of the user’s physical state and activity, 

which are then used by the data mining and reinforcement 

learning modules for personalized decision-making. Table 

1 shows the preprocessing steps. 

Table 1: List of preprocessing steps 

Steps Technique Equation / Description Purpose 

Noise Filtering Low-pass 

Butterworth 

Filter 

𝑦(𝑡) =
1

1+(
𝜔𝑐
𝜔
)
2𝑛 𝑥(𝑡)  

Remove high-frequency noise 

Normalization Z-score / Min-

max Scaling 
𝑧𝑖 =

𝑥𝑖−𝜇

𝜎
,   𝑥𝑖

′ =
𝑥𝑖−𝑥𝑚𝑖𝑛

𝑥𝑚𝑎𝑥−𝑥𝑚𝑖𝑛
 Standardize data across features 

Segmentation Sliding 

Window 

𝑊𝑖 = {𝑥𝑖 , 𝑥𝑖+1, . . . , 𝑥𝑖+𝑤−1}  Divide the time series into fixed 

time frames 

Feature 

Extraction 

(Mean) 

Statistical 

Mean 
𝜇 =

1

𝑁
∑ 𝑎𝑖
𝑁
𝑖=1   Summarize the average activity 

in the window 

Feature 

Extraction 

(SMA) 

Signal 

Magnitude 

Area 

𝑆𝑀𝐴 =
1

𝑁
∑ (∣ 𝑎𝑥(𝑖) ∣ +∣ 𝑎𝑦
𝑁
𝑖=1

(𝑖) ∣ +∣ 𝑎𝑧(𝑖) ∣)  

Average of the total absolute 

acceleration 

Feature 

Extraction 

(Energy) 

Signal Energy 𝐸𝑛𝑒𝑟𝑔𝑦 = ∑ 𝑎𝑖
2𝑁

𝑖=1  Measure movement intensity 

Feature 

Extraction 

(Rest) 

Rest Period 

Ratio 

𝑅 =
(𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑎𝑚𝑝𝑙𝑒𝑠 𝑤𝑖𝑡ℎ ∣∣𝑎∣∣< 𝛿 )

𝑁
  

Proportion of time the 

acceleration magnitude 
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Feature 

Extraction (HR 

Trend) 

Heart Rate 

Trend 
𝑆𝑙𝑜𝑝𝑒 =

𝐻𝑅𝑒𝑛𝑑−𝐻𝑅𝑠𝑡𝑎𝑟𝑡

𝑡
  Observe fitness response 

𝑥(𝑡)  = Raw input signal at time t, 𝑦(𝑡)  = Filtered 

output signal, 𝜔𝑐  = Cutoff frequency of the filter, 𝜔  = 

Frequency of the signal, 𝑛 = Order of the filter (controls 

smoothness), 𝑥𝑖 = Original feature value, 𝜇 = Mean of the 

feature, 𝜎 = Standard deviation of the feature, 𝑥𝑚𝑖𝑛 , 𝑥𝑚𝑎𝑥  

= Minimum and maximum values in the dataset, 𝑤 = 

window size, 𝑁 = Number of samples in a window, 𝑎𝑖 = 

Acceleration magnitude at time 𝑖 , 𝑎𝑥 , 𝑎𝑦 , 𝑎𝑧  = 

Acceleration values in x, y, z axes, 𝛿  = Threshold for 

determining rest state, 𝐻𝑅𝑠𝑡𝑎𝑟𝑡 , 𝐻𝑅𝑒𝑛𝑑 = Heart rate at start 

and end of the window, 𝑡  = Duration of the window (in 

seconds). 

4 PEP-DRL-DM methodology 
While each of the individual elements of the suggested 

framework—profiling via data mining and policy learning 

with PPO—is rooted in proven techniques, their 

intentional integration into a single, behavior-based 

architecture is new. In contrast to existing techniques that 

personalize them statically or with limited feedback 

adaptation, PEP-DRL-DM addresses this challenge by 

integrating structured fitness state modeling with dynamic 

decision-making to continuously personalize exercise 

plans by type, intensity, and duration. This integrated but 

modular system architecture presents a new contribution 

to digital health interventions, focusing on adaptation, and 

illustrates how reinforcement learning can be applied to 

user-specific planning using real-world sensor data. 

This section introduces the general architecture of the 

envisioned PEP-DRL-DM methodology, which integrates 

data mining methods and Deep Reinforcement Learning 

(DRL) to produce user-specific and adaptive exercise 

training programs. The system starts with preprocessing 

sensor-derived physiological data to extract significant 

features. These features are then utilized to build user 

profiles based on clustering and pattern analysis. Once the 

profiles are attained, the Proximal Policy Optimization 

algorithm is applied to learn and recommend state-of-the-

art training actions. The system continuously improves 

through feedback loops, ensuring that the generated plans 

align with user intentions, interaction levels, and physical 

performance improvements. Figure 1 shows the 

architecture of the PEP-DRL-DM Methodology. 

 

Figure 1: Architecture of the PEP-DRL-DM Methodology 

 

4.1 User profile generation (data mining) 
Establishing a user profile is crucial in constructing 

customized fitness training systems. It involves examining 

person-specific movement patterns, physiological signals, 

and compliance behavior through data mining procedures. 

The procedure helps the system identify typical fitness 

styles, habits, and learning stages. Sensor data, such as 

accelerometer, gyroscope, and heart rate readings from 

wearable sensors (e.g., from the PAMAP2 dataset), are 

examined to identify relevant features. These properties 
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group users by performance, detect cyclical activity 

patterns, and summarize data. The resulting state 

representation is an adequate representation of the user's 

physical state, preferences, and training history. This state 

representation is passed into the decision engine in the 

PEP-DRL-DM architecture. 

 

 

 

 

a. Clustering (e.g., k-Means) 

Clustering techniques, such as k-Means, classify users 

based on comparable motion and physiological 

characteristics. The input is a set of feature vectors (𝑋 =
 {𝑥1, 𝑥2, … , 𝑥𝑛} ) that describe each user point. k-Means 

groups the vectors into k clusters based on minimizing the 

within-cluster sum of squared distances. This could be 

obtained using equation 1. 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒𝐶 ∑ ∑ ∥ 𝑥𝑖 − 𝜇𝑗 ∥
2

𝑥𝑖∈𝐶𝑗
𝑘
𝑗=1   

     (1) 

where 𝜇𝑗: centroid of cluster 𝑗 , 𝐶𝑗  :  cluster 𝑗 ’s 

members. For example, one cluster may comprise novice 

practitioners with less coordinated and slower movements, 

while another may comprise master practitioners with 

smooth, well-coordinated postures and stable 

physiological responses. The output generated is therefore 

a set of users segmented into various fitness levels or 

training groups, with personalized exercise 

recommendations tailored to each group's profile. 

 

b. Association rule mining 

Association rule mining is a research-based practice 

that determines significant relationships between activity 

pattern sets and performance outcome measures. It helps 

reveal how often certain sets of behavior recur and to what 

extent they're linked to specific outcomes. 

Support: The support of a rule quantifies the 

proportion of sessions in which both the condition (𝑋) and 

the outcome (𝑌) occur as in equation 2. 

𝑆𝑢𝑝𝑝𝑜𝑟𝑡(𝑋 → 𝑌) =
𝑂𝑐𝑐𝑢𝑟𝑟𝑒𝑛𝑐𝑒𝑠 𝑜𝑓 𝑋∪𝑌

𝑇𝑜𝑡𝑎𝑙 𝑠𝑒𝑠𝑠𝑖𝑜𝑛𝑠
  

   (2) 

Confidence: The confidence measures the likelihood 

that the outcome (𝑌) will occur given that condition (𝑋) 

has occurred in equation 3. 

𝐶𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒(𝑋 → 𝑌) =
𝑆𝑢𝑝𝑝𝑜𝑟𝑡(𝑋∪𝑌)

𝑆𝑢𝑝𝑝𝑜𝑟𝑡(𝑋)
   

   (3) 

Lift: The lift approximates the strength of the 

relationship by dividing the observed confidence by the 

predicted probability of (𝑌), and it shows whether the rule 

is statistically significant. This is shown in equation 4. 

𝐿𝑖𝑓𝑡(𝑋 → 𝑌) =
𝐶𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒(𝑋→𝑌)

𝑆𝑢𝑝𝑝𝑜𝑟𝑡(𝑌)
   

    (4) 

For instance, a derived rule like "If a high step count 

follows an evening session, then it is likely to lead to a high 

heart rate, which in turn is related to low adherence the 

following day" detects a sequence of causality that can be 

employed to make individually based intervention 

decisions. These relationships facilitate adaptive planning 

to optimize user performance and participation. 

 

c. Feature selection using mutual information 

For enhanced model effectiveness and prediction 

capability, feature selection based on mutual information 

is employed to retain only the most descriptive features. 

Mutual information measures the association between 

candidate feature X and target label Y, which is the amount 

of information one variable provides when the other is 

known. The mutual information 𝐼(𝑋; 𝑌)  is formally 

defined as in equation 5. 

𝐼(𝑋; 𝑌) = {
∑ ∑ 𝑝(𝑥, 𝑦) ∙𝑦∈𝑌𝑥 𝐴

𝐴 = 𝑙𝑜𝑔 (
𝑝(𝑥)𝑝(𝑦)

𝑝(𝑥,𝑦)
)

   

   (5) 

where 𝑋  is the input variable (i.e., motion intensity, 

heart rate variability), 𝑌 is the class label of interest (i.e., 

performance cluster), and 𝑝(𝑥, 𝑦)  is the joint probability 

distribution of y and x. It can model both linear and non-

linear relationships and is, therefore, suitable for analyzing 

subtle physiological and behavioral data. 

By this strategy, the properties chosen for subsequent 

modeling enable the assessment of motion intensity (e.g., 

Signal Magnitude Area or SMA), session duration, 

recovery time, and maximum heart rate, all of which 

provide rich information about the user's activity-

performance relationship. By removing less informative 

variables, the system minimizes computational overhead 

and improves generalization in the learning model. A 

structured state vector (𝑠𝑡 ∈ 𝑅
5) The dataset is constructed 

for each user session and is presented in Table 2. 

 

Table 2: Structured State Vector for each user session. 

Component Description 

f1: Fitness Level Cluster ID from k-means analysis 

f2: Activity Type Most frequently performed activity segments 

f3: Adherence Trend Average session participation rate over recent days 

f4: Intensity Score Aggregated motion and heart rate indicators 

f5: Time Preference User’s most consistent workout time (e.g., AM/PM) 
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The structure state vector is represented as 𝑠𝑡 = [𝑓1, 𝑓2
, 𝑓3, 𝑓4, 𝑓5]. This personalized state representation is passed 

to the DRL module in the PEP-DRL-DM framework for 

intelligent fitness recommendation. Mutual information 

was employed since it quantifies linear and nonlinear 

interactions in features and user performance clusters. It is 

necessary in modeling intricate physiological and 

behavioral information. It is more effective than simpler 

filters by selecting features that capture the most about the 

training results, thereby boosting model efficiency and 

generalization. 

4.2 Policy learning with deep reinforcement 

learning (PPO) 
The present study utilizes PPO as a stable, scalable, 

and highly applicable deep reinforcement learning (DRL) 

algorithm to facilitate adaptive and intelligent decision-

making in personalized exercise training. PPO is used for 

stability, scalability, and performance with high-

dimensional, continuous action spaces.  PPO was chosen 

because it is stable and performs well in continuous, high-

dimensional action spaces and thus can be employed for 

fitness planning. Its clipped objective also helps avoid 

drastic policy jumps, which is particularly useful in 

handling noisy and delayed user input. In contrast to others, 

such as A3C or DDPG, PPO offers a better trade-off 

between learning performance and convergence stability, 

and thus works better in user-centric environments. 

The DRL agent is trained in a simulated exercise 

environment. It generates optimal exercise 

recommendations by optimizing a cumulative reward 

signal that incorporates both physiological gain and 

behavioral consistency. The agent makes decisions at 

discrete time steps. At time step 𝑡 , the agent observes a 

state vector (𝑠𝑡), which includes the user profile (obtained 

through data mining) and recent activity history. From this 

state, the agent selects an action ( 𝑎𝑡 ): exercise 

recommendations such as type, duration, and intensity. The 

virtual environment provides a reward (𝑟𝑡), which captures 

bodily advancement (e.g., lowered heart rate, increased 

endurance) and plan compliance. Across a series of 

episodes, the PPO agent updates its policy (𝜋𝜃(𝑎𝑡 ∣ 𝑠𝑡)), 
where 𝜃 are the policy parameters, to maximize the long-

term expected reward. Figure 2 shows the policy learning 

module using PPO. 

 

Figure 2: Policy Learning using PPO 

 

PPO enhances training by avoiding sudden policy 

updates, thus guaranteeing steady learning. The 

underlying concept is to optimize a clipped surrogate 

objective.  

𝐿𝐶𝐿𝐼𝑃(𝜃) =

{
  
 

  
 
𝐸𝑡[min(𝑟𝑡(𝜃)𝐴̂𝑡 ,  𝑐𝑙𝑖𝑝(𝑟𝑡(𝜃), 1 − 𝜖, 1 + 𝜖)𝐴̂𝑡)]

𝑟𝑡(𝜃) =
𝜋𝜃(𝑎𝑡∣∣𝑠𝑡 )

𝜋𝜃𝑜𝑙𝑑
(𝑎𝑡∣∣𝑠𝑡 )

 

𝐴̂𝑡 = ∑ (𝛾𝜆)𝑙𝛿𝑡+𝑙
𝑇
𝑙=0

𝛿𝑡 = 𝑟𝑡 + 𝛾𝑉(𝑠(𝑡+1)) − 𝑉(𝑠𝑡)

 

   (6) 

In equation 6 , where 𝑟𝑡(𝜃)  = probability ratio 

between new and old policies. 𝐴̂𝑡 = Advantage estimate, 

which measures how much better the action (𝑎𝑡) was 

than expected, 𝜖 = A small threshold (e.g., 0.2) prevents 

overly large policy updates, and the clip function limits 

policy changes to avoid destabilizing learning. 

Algorithm 1 shows the PPPO algorithm for 

personalized fitness training. 
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Algorithm 1: PPO Algorithm for Personalized Exercise Training 
Input:  

    𝜋_𝜃  ← Initialized policy parameters 

    𝜀     ← Simulated user environment 

    𝑟(𝑠, 𝑎) ← Composite reward function with weights α₁, α₂, α₃, α₄ 

    N     ← : Number of training iterations 

    K     ← : Number of PPO epochs per iteration 

 

Output:  

    𝜋𝜃
∗  ← Optimized personalized policy 

 

1: for iteration = 1 to N do 

2:     Initialize environment ε with user profile and fitness state 

3:     Collect trajectories 𝜏 =  {(𝑠_𝑡, 𝑎_𝑡, 𝑟_𝑡, 𝑠_(𝑡 + 1))} using 𝜋_𝜃 

4:     Compute cumulative rewards 𝑅_𝑡 =  ∑_{𝑙 = 0}^{𝑇 − 𝑡} 𝛾^𝑙 ∗  𝑟_{𝑡 + 𝑙} 

5:     Estimate the advantages Â_𝑡 =  𝑅_𝑡 −  𝑉(𝑠_𝑡) 

6:      

7:     for epoch = 1 to K do 

8:         Optimize policy 𝜋_𝜃 by maximizing the PPO objective: 

9:             𝐿^𝐶𝐿𝐼𝑃(𝜃)  =  𝐸_𝑡 [𝑚𝑖𝑛(𝑟_𝑡(𝜃)Â_𝑡, 𝑐𝑙𝑖𝑝(𝑟_𝑡(𝜃), 1 − 𝜀, 1 + 𝜀)Â_𝑡)] 

10:    end for 

11: end for 

12: return 𝜋𝜃
∗  

Algorithm 1 optimizes a policy (𝜋𝜃) sequentially 

with PPO to customize exercise recommendations. It 

first conducts user simulations on existing 

recommendations, gathering experience trajectories. 

Rewards and gains are calculated to measure the 

performance of each action. The policy is subsequently 

updated with a clipped objective for stable learning. 

Repeating the above several times results in an optimal 

policy (𝜋𝜃
∗  ) which can produce adaptive, user-centric 

training recommendations for better fitness and 

consistency. 

Under PPO, the suggested PEP-DRL-DM 

approach learns to dynamically adapt exercise 

schedules based on user activity and physiological 

improvement over time. An analytically clipped policy 

goal is adopted here, ensuring the convergence of 

resulting policies under noisy or sparse reward signals, 

making it usable for long-term, customized health 

interventions. 

4.3 Dynamic plan recommendation 
The Dynamic Plan Recommendation module 

creates and modifies a personalized exercise schedule 

in real-time, based on the user's profile, past 

performance, and activity. The module is the output 

layer of the PEP-DRL-DM system, translating policy 

( 𝜋𝜃
∗  ) learned by DRL into executable exercise 

parameters. Every recommended plan includes: 1. type 

of activity (e.g., Tai Chi, walking, strength training), 2. 

level of intensity (e.g., light, moderate, vigorous), and 

3. duration (in minutes). These parameters are 

adaptively tuned after every session based on feedback 

on performance metrics, such as energy spent, heart rate 

profiles, and consistency of attendance. Let the 

recommended plan be at the time step (𝑡) be defined as 

in equation 7. 

𝑃𝑡 =

{
 
 

 
 {𝑎𝑡

𝑡𝑦𝑝𝑒
, 𝑎𝑡
𝑖𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦

, 𝑎𝑡
𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛}

𝑎𝑡
𝑡𝑦𝑝𝑒

∈ 𝐴𝑡𝑦𝑝𝑒

𝑎𝑡
𝑖𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦

∈ 𝐴𝑖𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦

𝑎𝑡
𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛 ∈ 𝑅+

  

     (7) 

where 𝑎𝑡
𝑡𝑦𝑝𝑒

 = Activity type from a predefined set 

(e.g., Tai Chi, running, etc.), 𝑎𝑡
𝑖𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦

 = Intensity level, 

𝑎𝑡
𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛   = Duration in minutes. The best plan is 

obtained from learned policy ( 𝜋𝜃
∗  ) conditioned on 

current user state (𝑠𝑡) build on mined behavior features 

and recent exercise performance as in equation 8. 

𝑃𝑡 = 𝜋𝜃
∗(𝑠𝑡) = {

argmax
𝑎𝑡

𝐵

𝐸[∑ 𝛾𝑘𝑟𝑡+𝑘
∞
𝑘=0 ]

  

     (8) 
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where 𝑟𝑡+𝑘  = the reward for all future actions, and 

𝛾 ∈ (0,1) = The discount factor that emphasizes close-

by over distant rewards. 

4.4 Evaluation and feedback loop 
To provide ongoing improvement and tailored 

adaptation of exercise regimes, the PEP-DRL-DM 

model integrates a process of assessment and feedback 

into the reinforcement learning loop. The method 

enables monitoring of user performance, adaptation of 

the reward function, and improvement of the decision 

policy over time. Four metrics are used to evaluate the 

system's performance. Personalization Score captures 

how well the suggested training programs align with the 

user's past behavior and personal preferences. The 

Engagement Rate measures the pace at which users 

adhere to suggested programs, reflecting their level of 

commitment. Fitness improvement measures include 

changes in physiological parameters such as endurance, 

flexibility, and heart rate recovery, as observed before 

and after training. Finally, the Adaptability Score is 

examined in terms of how well the system adapts its 

recommendations based on changes in the user's state, 

i.e., fatigue or enhanced performance. These metrics 

control the learning process to deliver an adaptive and 

user-focused training experience. 

The PEP-DRL-DM mechanism feedback loop 

facilitates ongoing adaptation of exercise 

recommendations based on user performance. Four 

evaluation measures—Personalization Score ( 𝑃𝑆𝑡 ), 
Engagement Rate (𝐸𝑅𝑡 ), Fitness Improvement (𝐹𝐼𝑡  ), 
and Adaptability Score (𝐴𝐷𝑡)—are computed after each 

session. These are used to estimate a composite reward 

function (𝑟𝑡) based on equation 9. 

𝑟𝑡 = 𝑤1 ⋅ 𝑃𝑆𝑡 + 𝑤2 ⋅ 𝐸𝑅𝑡 + 𝑤3 ⋅ 𝐹𝐼𝑡 + 𝑤4 ⋅ 𝐴𝐷𝑡   
    (9) 

where 𝑤1, 𝑤2, 𝑤3, 𝑤4 ∈ [0,1]  = Scalar weights 

used to manage the contribution of each metric to the 

total reward. Scalar reward 𝑟𝑡 = The feedback provided 

to the reinforcement learning agent in this instance is 

from PPO. The agent optimizes policy parameters θ 

with the gradient of the clipped objective function 

( 𝐿𝐶𝐿𝐼𝑃(𝜃) ,) 𝜃 ← 𝜃 + 𝛼𝛻𝜃𝐿𝐶𝐿𝐼𝑃(𝜃) , where α is the 

learning rate. The new policy ( 𝜋𝜃  ) subsequently 

produces a new exercise plan 𝑃𝑡+1, more in line with 

the user's changing state and preferences. This closed-

loop procedure enables real-time personalization by 

optimizing recommendations through short-term 

feedback and longer-term user performance and 

interaction trends.  

Example: Assume a 60-year-old patient with a 

moderate activity history who has recently lost 

compliance through recent high-intensity workouts. 

Based on patterns mined and recent user input, the 

policy could suggest: 

 

Table 3: Final Output of PEP-DRL-DM System 

Component Description Example Output 

Activity Type Recommended type of physical activity based on user 

profile and preferences 

Tai Chi 

Intensity Suggested effort level appropriate for current fitness and 

adherence trends 

Light 

Duration Adaptive session length based on engagement history 

and physiological response 

35 minutes 

Adaptation Criteria Adjusts based on engagement rate, heart rate 

improvement, and adherence consistency 

Gradual increase in 

duration/intensity 

Next Session Plan Automatically evolves from previous sessions to 

optimize long-term outcomes. 

Tai Chi, Moderate, 40 

minutes 

Expected Outcome Higher adherence, reduced fatigue, improved fitness 

(e.g., endurance, heart rate recovery). 

+15% adherence, -5 

bpm resting HR 

Table 3 shows the outcome of the PEP-DRL-DM 

system, presenting how personalized exercise routines are 

developed and dynamically updated. Every routine 

specifies the activity type, intensity, and duration 

according to the individual's fitness profile and past 

exercise history. The recommendations are adjusted based 

on real-time feedback to ensure continued adherence and 

physical improvement. For example, a session of Tai Chi 

at a light intensity can be prescribed initially, followed by 

incremental intensification based on performance criteria 

such as heart rate and consistency, to ensure long-term 

effectiveness and user satisfaction. 

4.4 Contribution overview 
The suggested PEP-DRL-DM system is based on the 

synergistic combination of proven methods—clustering, 

association rule discovery, mutual information-based 

feature extraction, and Proximal Policy Optimization 

(PPO)—into an end-to-end pipeline for adaptive exercise 
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tailoring. No new theoretical level algorithms are proposed, 

but the system presents a practical and modular workflow 

allowing for continuous user modeling, adaptive policy 

updating, and real-time feedback incorporation. Such 

convergence is designed specifically to bridge the gap in 

non-served digital health platforms, offering dynamic, 

data-driven user personalization based on individual 

physiological and behavioral characteristics. The novelty 

of this research lies in leveraging established techniques to 

create a working, end-to-end solution that can be easily 

scaled into other health-interactive settings. 

5 Results and discussions 
5.1 Experimental setup 

The PPO agent was trained in the simulated 

environment, and each user episode consisted of 10 

sessions. The state vector involved included fitness level, 

trend in adherence, and intensity score. The action space 

varied across discrete choices of exercise type, intensity 

(low/medium/high), and duration (10–60 minutes). The 

reward involved personalization, engagement, fitness 

enhancement, and adaptability scores equally weighted. 

PPO was trained with stable-baselines3 and important 

hyperparameters: learning_rate = 3e-4, gamma = 0.99, 

clip_range = 0.2, batch_size = 64, nb_epochs = 10, and 

500k train steps. Last policies were tested on unseen user 

profiles after environment resets. 

The experimental configuration for the designed PEP-

DRL-DM framework was a comparative simulation using 

the PAMAP2 Physical Activity Monitoring dataset. Sensor 

signals were preprocessed by filtering noise, normalization, 

and segmented into sliding windows for extracting features. 

User profiles were created using clustering and association 

rule mining, and the deep reinforcement learning agent, 

using PPO, discovered optimal training suggestions. For 

comparative performance, three cutting-edge methods 

were chosen: Data-Driven Mobile Health (DDMH) [13], 

IoT-based DRL Training Network (IoT-DRL) [18], and 

ML-based Personalized Goal Setting (ML-PGS) [22]. 

These were compared against PEP-DRL-DM on four key 

metrics: personalization score, progress adaptability, 

fitness outcome gain improvement, and user retention or 

engagement rate. The testing platform was a synthetic user 

model trained across various episodes to track long-term 

performance. Results showed that PEP-DRL-DM 

surpassed baseline approaches across the board in 

personalizing exercise recommendations for individual 

users, providing higher engagement and fitness gains, 

while sustaining the effectiveness of exercising data 

mining and reinforcement learning for exercise 

personalization. 

5.2 Personalization score 
The Personalization Score measures how much the 

suggested exercise program matches the user's taste, 

behavior history, and body type. The higher the score, the 

more tailored the plan will be to the individual's traits and 

requirements. This could be identified through equation 10. 

𝑃𝑒𝑟𝑠𝑜𝑛𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛 𝑆𝑐𝑜𝑟𝑒 (𝑃𝑆) = {
1 −

1

𝑛
∑ 𝑁𝐷𝑛
𝑖=1

𝑁𝐷 =
∣𝑅𝑖−𝑃𝑖∣

𝑚𝑎𝑥(𝑅𝑖,𝑃𝑖)

     (10) 

Where 𝑅𝑖  = Weight of relevance of the suggested 

parameter (e.g., best duration, intensity), 𝑃𝑖   = Real 

historical preference or behavior rating of the user for the 

same parameter, 𝑛  = Number of adjustable parameters 

(e.g., type, duration, intensity). 𝑁𝐷  = Normalized 

deviation, the subtraction from 1 ensures that a higher 

value reflects better personalization.  

 
(a) Personalization Score Progression Across Iterations for 

Different Methods. 

 
(b) Personalization Score Comparison Across User 

Categories 

 

Figure 3: Personalization score comparison analysis 

 

Figure 3(a) illustrates the trend of personalization 

scores after 10 rounds of training for four approaches: 

PEP-DRL-DM, DDMH, IoT-DRL, and ML-PGS. The new 

DM-PEP-DRL has a flatter and slanted rising trend, from 
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0.65 to a maximum of 0.93, and performs better than others. 

It demonstrates a more efficient learning of user interests 

over time. However, the standard models, such as DDMH 

and ML-PGS, have limited adaptability. The research 

emphasizes PEP-DRL-DM's enhanced adaptability and 

reaction dynamics in customized training environments. 

Figure 3 (b) compares personalization scores of different 

models across three levels of users: Beginner, Intermediate, 

and Advanced. The PEP-DRL-DM model consistently 

demonstrates higher scores across all three levels, with a 

maximum of 0.91 for advanced users. DDMH, IoT-DRL, 

and ML-PGS exhibit relatively flat performance with 

lower adaptability to levels of user experience. The PEP-

DRL-DM not only learns effectively in the long run but is 

also more capable of accommodating diverse user profiles, 

thereby being more robust across demographic and skill-

based user categories. 

5.3 Adaptability to progress 
Adaptability to Progress is defined as the extent to 

which an individualized exercise system adjusts its 

recommendations based on a user's evolving level of 

fitness, usage habits, or physiological responses over time. 

An extremely adaptable system would dynamically adjust 

parameters such as activity type, intensity, or duration in 

real-time based on the user's actual progress or relapse. 

This could be obtained from equation 11.  

𝐴𝑆 = {

1

𝑇
∑ 1 − 𝐶𝑇
𝑡=1

𝐶 = (
∣𝛥𝑅𝑡−𝛥𝑃𝑡∣

𝑚𝑎𝑥(𝛥𝑅𝑡,𝛥𝑃𝑡)+𝜖
)
   

     (11) 

Where 𝑇 = Total number of sessions or periods, 𝛥𝑅𝑡 = 

Suggested change in training load at time t (e.g., increase 

in intensity), 𝛥𝑃𝑡  = True observed increase in user 

performance (e.g., increased endurance), 𝜖  = Small 

constant to prevent division by zero. 

 

Figure 4: User adaptability scores across sessions 

 

The 10 users' performances on adaptability (unitless) 

across 10 sessions are presented in Figure 4, a visual 

representation of user performance and learning trajectory 

over time. Each cell is a user's adaptability score in a 

session, standardized between 0 and 1, with higher values 

representing greater adaptability across tasks or system 

states. Columns enable session-to-session comparison, 

such as possibly more demanding sessions like Session 6 

and Session 10. The rows illustrate user patterns for 

individual users, including stable performers (User 5) and 

those with changing patterns (User 4). With a YlGnBu 

colormap, high and low adaptability regions are easily 

discernible using a color gradient. This visualization can 

facilitate more in-depth analysis in domains such as 

human-computer interaction, adaptive learning systems, 

and usability testing. It can inform further statistical 

modeling or user clustering to design and train the system 

optimally. 
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Figure 5: Comparative adaptability scores of models (PEP-DRL-DM, DDMH, IoT-DRL, ML-PGS) across 10 users 

 

Figure 5 illustrates the adaptability scores of the four 

models across ten users. For every user, there are four 

grouped bars, and each of the four bars in a group is 

associated with the adaptability score of one model for that 

user. PEP-DRL-DM has a better adaptability score than 

DDMH, IoT-DRL, and ML-PGS for all but one or two 

users, which indicates enhanced capability to adjust to user 

feedback and transition fitness states. User heterogeneity 

also reflects variation in model responsiveness that is user-

specific, highlighting the significance of personalization. 

In general, this comparison highlights the efficacy of the 

proposed PEP-DRL-DM strategy in delivering adaptive, 

user-specific recommendations. 

5.4 Fitness outcome improvement 
Fitness Outcome Improvement (FOI) refers to the 

quantifiable enhancement in a user's performance or 

adaptability over time, resulting from training, system 

exposure, or practice. FOI can be calculated to find out 

how much a user has progressed since the start. This can 

be obtained from equation 12. 

𝐹𝑂𝐼𝑖 = {

1

𝑛−1
∑ 𝐷 × 100𝑛
𝑗=2

𝐷 =
𝐴𝑖,𝑗−𝐴𝑖,𝑗−1

𝐴𝑖,𝑗−1

   

     (12) 

This calculates the session-to-session rate of change 

and averages these changes to arrive at the overall rate of 

improvement. 

 

 

Table 4: Fitness outcome improvement (FOI) of individual users over 10 sessions 

User Session 1 Score 

(𝑨𝒊,𝟏) 

Session 10 

Score (𝑨𝒊,𝟏𝟎) 

FOI (%) Interpretation 

User 1 0.82 0.83 +1.22% Slight improvement 

User 2 0.78 0.73 −6.41% Moderate decline 

User 3 0.87 0.79 −9.20% Noticeable decline 

User 4 0.77 0.71 −7.79% Consistent decline 

User 5 0.84 0.85 +1.19% Stable improvement 

User 6 0.82 0.78 −4.88% Mild decline 

User 7 0.82 0.81 −1.22% Slight decline 

User 8 0.87 0.70 −19.54% Sharp decline 

User 9 0.79 0.83 +5.06% Notable improvement 

Table 4 presents the percentage change in adaptability 

for participants in Session 1 and Session 10. The positive 

values of FOI indicate better adaptability, while negative 

values indicate performance loss. Users 1, 5, and 9 exhibit 

small to moderate gains, reflecting good learning or system 

usage. By contrast, Users 3, 4, and particularly User 8 

exhibit losses of flexibility, possibly due to interface 

complexity, fatigue, or inconsistent system behavior. This 
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analysis allows identification of high- and low-performing 

users for subsequent investigation or intervention. 

Table 5: Fitness Outcome Improvement (FOI) comparison across adaptive system methods 

Methods Initial Score 

(𝑨𝟏) 

Final Score 

(𝑨𝒏) 

FOI (%) Interpretation 

PEP-

DRL-DM 

0.76 0.89 +17.11% Substantial improvement with stable 

learning 

DDMH 0.80 0.85 +6.25% Moderate improvement 

IoT-DRL 0.78 0.81 +3.85% Gradual learning curve 

ML-PGS 0.82 0.84 +2.44% Slight improvement, potentially plateauing. 

 

Table 5 shows the FOI between four adaptive 

decision-making or recommendation techniques based on 

their initial and final adaptability scores. Out of these 

techniques, PEP-DRL-DM exhibits the maximum FOI of 

+17.11%, indicating significant increases in adaptability 

over time due to its policy enhancement and reinforcement 

learning mechanisms. DDMH also shows a positive rate 

(+6.25%) by using prior knowledge and multi-hop 

decisions. IoT-DRL and ML-PGS have lower gains (+3.85% 

and +2.44%), indicating a flatter or limited learning curve. 

This contrast helps in selecting the most suitable method 

for adaptive environments or user modeling problems. 

Evaluative metrics were calculated as follows: 

personalization score by recommendation alignment with 

user history (Equation. 10), improvement in fitness by 

normalized improvement in performance from Session 1 

to 10 (Equation. 12), and adaptability by changes in policy 

with respect to user progress (Equation. 11). The users with 

varying engagement or noisy heart rate showed lower 

improvement, which establishes sensitivity to variation in 

behavior. Whereas the system demonstrated steady 

improvement over time, adaptation was slower in the long 

run in users with unstable patterns, representing a potential 

area for future optimization. 

5.5 User engagement/retention rate 
User Engagement and Retention Rate are key 

performance indicators (KPIs) that measure the extent of 

user engagement with a system and the frequency of user 

return over time. In adaptive or interactive systems (e.g., 

learning systems, recommender systems, or usability 

tools), the indicators capture system stickiness, user 

satisfaction, and usability over the long term. The retention 

rate measures the percentage of users who return or remain 

active after their first interaction within a specified time 

frame. User engagement refers to the frequency, depth, and 

duration of user interaction with the system. The combined 

ER Index can be calculated using Equation 13. 

𝐸𝑅 𝐼𝑛𝑑𝑒𝑥 = {

𝑅𝑅 × 𝐸𝑆

𝑅𝑅 (%) =
𝑁𝑟𝑒𝑡𝑎𝑖𝑛𝑒𝑑

𝑁𝑖𝑛𝑖𝑡𝑖𝑎𝑙
× 100

𝐸𝑆𝑖 = ∑ 𝐴𝑖,𝑗
𝑛
𝑗=1

 

     (13) 

where 𝑁𝑖𝑛𝑖𝑡𝑖𝑎𝑙 = Total number of users who started 

(e.g., in Session 1), 𝑁𝑟𝑒𝑡𝑎𝑖𝑛𝑒𝑑  = Number of those users who 

continued to interact (e.g., were still active by Session 10 

or a given checkpoint). 𝐴𝑖,𝑗 = Adaptability or activity score 

of the user (𝑖) in session (𝑗). 𝑛: Number of sessions.  

 

Figure 6: Comparison of engagement scores across methods for 10 users 
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Figure 6 shows the performance of 10 students in 

four adaptive learning approaches: PEP-DRL-DM 

(proposed), DDMH, IoT-DRL, and ML-PGS. The PEP-

DRL-DM approach exhibits the highest activity among 

all students, indicating its better personalization and 

adaptability. The performance of DDMH and IoT-DRL 

is moderate with slight differences, while that of ML-

PGS is the lowest and most different. The legend is 

placed at the top for better readability, and color-coded 

bars are used to compare the efficiency of each 

approach for every user easily. Visualization in this case 

represents the performance difference between 

traditional and proposed techniques. 

 

Figure 7: Retention rate over sessions for different methods 

 

Figure 7 shows the variation in user retention over 10 

sessions for four adaptive learning methods: PEP-DRL-

DM (new), DDMH, IoT-DRL, and ML-PGS. The PEP-

DRL-DM method exhibits the best retention at every point, 

with 85% of participants remaining active at session 10, 

demonstrating excellent long-term engagement. DDMH 

performs very well, but there are more precipitous declines 

in retention for IoT-DRL and ML-PGS, indicating weaker 

long-term user commitment. Each approach is identified 

by a distinctive marker design for clarity. This graph 

illustrates the success of PEP-DRL-DM in sustaining user 

engagement in the long term. 

5.6 Ablation study 
To determine the effect of the essential elements of the 

PEP-DRL-DM model, ablation tests are performed by 

selectively deactivating the data mining module and 

replacing the PPO optimizer. When the data mining step 

was excluded, the system utilized raw features and 

experienced a drop in personalization score from 0.93 to 

0.78, along with a 7.2% decrease in fitness increment. 

Substitution of PPO with a basic policy gradient algorithm 

resulted in unstable convergence and a 12% loss in 

flexibility. The findings substantiate the significance of 

both elements in obtaining effective, individualized policy 

acquisition. 

5.7 Practical evaluation context 
Although the PAMAP2 dataset contains actual sensor 

readings of real activity, it was tested in a simulation setup 

to simulate agent-user interaction over multiple sessions. 

Though not representative of real-time deployment 

conditions in every aspect, the simulation was based on 

realistic cycles of activity, engagement, and physiological 

reaction from the dataset. Although simulated, evaluation 

is thus based on real-world user activity and facilitates 

scalable, reproducible testing. 

5.8 Reward sensitivity analysis 
The reward function used equally weighted scalars (α₁ 

= α₂ = α₃ = α₄ = 1.0) to equilibrate personalization, 

engagement, fitness gain, and flexibility. To investigate the 

impact of weight deviation, a sensitivity test was 

conducted by changing one and keeping the others equal 

and constant. Outcomes indicated that minor deviations 

(±0.5) did not cause any meaningful change in fitness 

outcome scores. But giving too much weight to a single 

dimension (e.g., α₁ = 3, others = 1) resulted in overfitting 

to this metric and decreased overall system balance. This 

affirms the application of equal weighting in this work and 

demonstrates the importance of appropriately balanced 

reward shaping in multi-objective optimization. 

6 Conclusion 
The PEP-DRL-DM is an intelligent system that 

generates user-specific exercise programs with data 

mining and Proximal Policy Optimization (PPO). The 

users' physiological sensor readings are subjected to 

preprocessing steps that remove noise, normalize values, 

and derive motion intensity, duration, and heart rate 

patterns. Association rule mining and clustering 

algorithms identify individual behavior patterns to produce 
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organized profiles indicating fitness levels, activity 

preferences, and adherence patterns. These are the input 

states for the PPO-based reinforcement learning agent, 

which operates in an emulated environment to recommend 

ideal exercise parameters, including type, intensity, and 

duration. Rewards are calculated based on physical 

performance and increased engagement, allowing the 

policy to learn progressively. Significant improvements in 

terms of personalization, engagement, responsiveness, and 

fitness outcome measures in comparison to DDMH, IoT-

DRL, and ML-PGS methods. The strategy described here 

is based on the ongoing adaptation of training schedules, 

utilizing user-specific feedback to facilitate continuous 

improvement and long-term stability. Incorporation of 

reward-based learning enables the system to learn 

strategies in the long term independently without any 

external input. Real-time integration of sensors and affect 

detection can be an ongoing development that will allow 

maximum accuracy and usability in real-world fitness 

settings. This provides a solid foundation for intelligent, 

user-adaptive systems that promote well-being and health. 
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