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Regular physical activity is essential for maintaining good health; however, people have varying fitness
levels, health conditions, and goals. Most traditional exercise programs employ a one-size-fits-all
approach, often resulting in suboptimal results or a lack of motivation. A personalized approach is
necessary to better match individual needs and help users stay on track. Advanced technology and
machine learning enable the collection of detailed activity data and the development of intelligent training
systems. This paper proposes an intelligent method to create personalized exercise programs using Deep
Reinforcement Learning (DRL) and data mining (PEP-DRL-DM). The system utilizes the PAMAP?2
Physical Activity Monitoring dataset, which comprises sensor data such as heart rate and movement
during various activities. Data mining techniques are applied to learn patterns from this data, such as
user fitness levels, activity habits, and performance trends. These patterns help the DRL model understand
each user’s current state. Then, Proximal Policy Optimization (PPO) is used to decide the best type,
duration, and intensity of exercises. A virtual training setup gives feedback based on how users improve
over time. Experimental results indicate that PEP-DRL-DM obtains a 17.11% improvement in fitness
result, a personalization score of 0.65 to 0.93, and 85% user retention over 10 sessions, surpassing
baseline methods. The system adapted well to different user needs and fitness conditions. In conclusion,
combining data mining with PPO helps build personalized and flexible exercise programs that improve
user progress and engagement over time.

Povzetek: Za personalizirano nacrtovanje vadbe je razvit PEP-DRL-DM, ki zdruzuje rudarjenje
podatkov in proksimalno optimizacijo politike (PPO) za samodejno prilagajanje vadbenih nacrtov glede
na senzorske podatke PAMAP2. Gre za za inteligentno, dolgorocno osebno vadbo in spremljanje
zdravja. Sistem izboljsa rezultate, personalizacijo in ohrani uporabnike.

analysis and Al can individualize exercise routines to
change with evolving needs [7]. These systems can
offer real-time feedback, adjust according to progress,
and adjust according to user performance.
Interventions of this kind can enhance health gains,
increase user participation, and promote long-term
adherence to a fitness regime [8].

1 Introduction

The increased consciousness about well-being and
health has triggered demand for exercise programs
tailored to specific needs [1]. With the availability of
smartphones, wearable technology, and fitness tracking
devices, it is simpler to monitor real-time data on

physical activity, heart rate, caloric expenditure, and
more [2]. However, despite the potential for
personalization that the data holds, most training

programs remain based on broad exercise guidelines [3].

These broad strategies fail to account for variation in
age, health status, goals, and fitness levels [4]. As a
result, people do not readily adhere to their exercise
programs or realize significant gains in performance
and health [5].

Artificial intelligence (Al) and machine learning
have been very promising in solving the problems they
have presented lately [6]. More intelligent systems can
use user data and learning from patterns over time to
provide personalized diet, sleep, and physical activity
advice. Exercise technology that combines data

Reinforcement Learning (RL), a branch of
machine learning, has been recognized as an effective
solution to sequential decision-making tasks [9]. In
training for exercise, this capacity to learn from users'
dynamic states renders RL a good candidate for
personalization [10]. While static rule-based
approaches are limited to learning optimal training
strategies by exploring the environment and receiving
feedback, RL can achieve this through exploration and
learning from feedback [11]. For instance, it can
identify when to add intensity, change activity types, or
suggest rest days depending on the performance and
progress of the user. This adaptability is necessary in a
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quest to come up with practical and sustainable fitness
plans [12].

Challenge addressed

Despite the availability of personal monitoring
devices and wearable sensors, most exercise programs
have not leveraged individual data to tailor training
sessions. Existing fitness platforms combine static
suggestions that do not consider the individual's
evolving physical condition, past training, and goals.
The absence of personalization results in suboptimal

performance, low compliance, and user disengagement.

Although some smartphone apps allow slight
personalization, they are under stringent regulations
and cannot dynamically adapt to actual user
information. The challenge lies in creating a system
that comprehends the user's current fitness level and
dynamically changes as recommendations are made
while the user gets better. Additionally, training
sessions must balance intensity, recovery, and
motivation, depending on decision-making through
ongoing feedback.

Methodological approach

The PEP-DRL-DM combines deep reinforcement
learning and data mining as a hybrid approach for
planning individualized exercise. The point of
departure is to apply the PAMAP2 dataset to extract
core physical activity features from heart rate, motion,
and activity labels. Data mining processes organize this
data into user-specific fitness states that capture present
states and past performance. These states are input to
the learning model. PEP-DRL-DM's structure relies on
PPO, a robust and scalable DRL algorithm. PPO learns
to acquire the best exercise tactics by experimenting in
an artificial training system and is rewarded for
improvement and reliability. The system dynamically
modifies exercises' type, intensity, and duration for
permanent adjustment and customization.

Significance of the paper

To introduce PEP-DRL-DM, an auto-adaptive
personalized exercise plan optimization mechanism
based on DRL and data mining.

The PAMAP2 dataset can construct realistic real-
life physical activity profiles, enabling proper and
accurate decisions.

Maximize exercise efficacy and compliance by
creating personalized routines tailored to each user's
progress.

To check the performance of the PEP-DRL-DM
model to enhance physical outcomes via a stable PPO-
based reinforcement learning approach.

Structure of the paper
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The paper's organization is as follows: Section 2 is a
literature review about personalized fitness and DRL.
Section 3 explains the dataset and the preprocessing
techniques. Section 4 describes the implementation of the
PEP-DRL-DM  methodology. Section 5 outlines
experiments and results. Section 6 concludes with a
summary of the main contributions and advantages of
personalized training.

2 Related works

New artificial intelligence and wearable technologies
have made it possible to adopt more tailored practices in
exercise planning. Original programs do not regard
variances among persons in fitness, preference, and
progress. Researchers have moved into addressing data
mining methods to activity and physiology data analysis
and adaptive choice reinforcement learning algorithms.
These have been combined to introduce smart training
systems that respond in real time. This review addresses
recent research in data-driven fitness planning for the PEP-
DRL-DM model placement.

El Mistiri et al. [13] also presented a Data-Driven
Mobile Health system for delivering individualized
physical activity interventions via mobile technologies. It
was proposed that the shortcomings of uniform exercise
plans be overcome by real-time personalization of
interventions. The authors utilized system identification
techniques and hybrid model predictive control for
personalized activity coaching. The system effectively
accommodated user-specific requirements and generated
dynamic exercise plans. Yet, its popularity was thwarted
by reliance on well-formatted data and the generalizability
of the parameters for models across populations of users.

Sinnige [14] developed an evidence-based
individualized prognosis-making system for supervised
exercise therapy in intermittent claudication patients. The
system directed clinicians towards person-centered care
and maximized therapeutic effect. Statistical modeling,
incorporating clinical and activity data, was applied to
predict patient-specific outcomes. It proved beneficial in
facilitating treatment personalization and decision support.
The system was not dynamically interfaced with adaptive
or real-time interventions, which limited its ability to
continuously adapt and improve with the patient.

Geng [15] created an innovative interactive system for
customized fitness training sessions. The system was
designed to promote user motivation and interest by
incorporating digital entertainment elements into training
exercises. It used interactive technologies to tailor training
sessions to user responses and interests. Findings indicated
that adherence and satisfaction were improved among
participants in the customized programs. Although
promising, the system had a limitation in that user-
interaction data tends to be subjective in nature, which can
compromise consistency and reliability during training for
personalization.

Al-Shaikh et al. [16] presented a reinforcement
learning framework-based load balancing algorithm for
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Publish/Subscribe systems, called RL-LB, which consists
of PPO, UCB, and Epsilon-Greedy algorithms. It was
designed to address adaptive load balancing issues in
dynamic network environments. The proposed solution
achieved better throughput and latency compared to static
algorithms. Its performance was hyperparameter-sensitive
and needed long training time to converge.

Wackerhage & Schoenfeld [17] have defined
individualized, evidence-based exercise prescriptions to
facilitate health, fitness, and performance objectives.
Using scientific literature-informed training
recommendations, it was intended to link standardized
programs with the individual needs of users. The suggested
scheme emphasized adapting the program to user fitness
testing and objectives. Although guidelines offered
structured and targeted plans, the process was not
automated and could not dynamically adapt to changes in
user data or feedback during training; therefore, it was less
adaptable in the long term.

Li et al. [18] created an IoT-based training network
that applied deep reinforcement learning for resource and
virtualization management in physical education. It was
developed to enhance the efficiency and scalability of
fitness training delivery between interconnected platforms.
The system utilized DRL algorithms to allocate resources
efficiently and enhance network performance. The
framework proved effective in optimizing training delivery
infrastructure. However, its emphasis was on system-level
optimization rather than tailored exercise material, thereby
restricting its application to individual fitness adaptation.

Oyebode et al. [19] provided a synopsis of machine
learning in adaptive and personalized wellbeing and health
systems to identify practical ways of adapting health
interventions based on user behavior and profiles. The
writers discussed some ML models and described their
contributions towards adapting to wellness platform users.
The work presented lacked application to an integrated
system, despite providing detailed insights. It did not
validate procedures through real-time, individualized
exercise situations, limiting its practical application to
ongoing fitness planning.

Jamil et al. [20] developed an IoT, blockchain, and
machine learning-based secure fitness tracking system.
Data privacy and integrity issues in connected health were
suggested to be addressed. The system adopted Blockchain
technology to manage data and ML algorithms to derive
fitness-related information safely. It had strong data
security and accurate user tracking. While these were
successes, the system prioritized security infrastructure
over customized or adaptive fitness exercises, and a lack
of individualized training optimization remained.

Yang [21] introduced an Al-driven personalized
recommendation optimization approach for online e-
commerce sites, aiming to improve user experience and
conversion rates. The approach used user behavior
analysis and adaptive learning models to provide more
precise product recommendations. Experiment outcomes
revealed a significant increase in click-through and buying
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rates compared to conventional recommendation systems.
The model's performance, however, declined with sparse
user data and was plagued by scalability issues in large
real-time settings.

Fang et al. [22] proposed a machine learning-based
system for setting individualized exercise goals on online
health platforms. The system would enhance motivation
and performance by adapting targets based on individuals'
progress patterns. Through predictive modeling, the
system sets optimal goal levels for the users. Improved
compliance and satisfaction were reported, along with
personalized targets. However, the strategy did not include
adaptive compensation for ongoing training, and there
were no feedback mechanisms to refine the real-time
exercise strategy.

Zhao et al. [23] tested XGBoost in analyzing exercise
data and adapting to training strategy. The system was able
to extract high-quality information from vast amounts of
exercise data and suggest performance-improving
adaptations. XGBoost was utilized because it can express
intricate relationships between data and the order of
meaningful features. The approach could effectively
discover the factors that affect successful training.
However, the method did not adjust plans according to
sequential feedback and therefore was less useful for
continuous and individualized exercise programming.

Research gap

Even though there is prior work on personalized
fitness using machine learning or reinforcement learning,
most of these efforts are either not dynamically adaptive or
involve decision-making at query time. For instance,
algorithms like DDMH [13] and ML-PGS [22] provide
minimal personalization in terms of hard-coded rules or
predefined user objectives, without dynamic adaptation as
the user drills down. IoT-DRL [18] is a system-level
resource optimization approach, rather than an exercise
scheduling method at the user level. In contrast, the PEP-
DRL-DM framework presented is an innovative
combination of data mining and deep reinforcement
learning customized for individualized exercise. It applies
clustering, association rule mining, and mutual
information to construct personalized user states, which
are used to induce policy learning using PPO. The system's
feedback loop mechanism also learns exercise type,
intensity, and duration based on modifications in user
behavior and physiological response. These blended
characteristics make PEP-DRL-DM ideal for real-time,
adaptive fitness training, taking up where previous efforts
left off.

3 Dataset and preprocessing

3.1 Dataset explanation

The PAMAP2 Physical Activity Monitoring dataset is
an extensive benchmarking dataset for testing human
physical activity detection and fitness monitoring
wearables [24]. Nine subjects were captured performing
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various activities, such as daily living and exercise, like
walking, jogging, cycling, rope jumping, and homework.
Each participant had three inertial measurement units on
the wrist, chest, and ankle that captured dense motion and
physiological data like 3D accelerometer, gyroscope,
magnetometer measurements, temperature, and heart rate.
With more than 50 features at each time step and activity
labels, the data enables rich temporal analysis of motion
patterns. Its high-density activity set and multimodal
sensor information render it particularly suitable for

training and testing personalized exercise planning models.

PAMAP2 emulates user-specific training reactions and
optimizes adaptive exercise programs with the introduced
PEP-DRL-DM approach. The real-world usefulness and
granularity of the dataset enable the development of
cognitive, data-driven fitness systems.

3.2 Data preprocessing

The preprocessing phase in the proposed PEP-DRL-
DM framework is essential for preparing raw sensor data
from the PAMAP2 dataset for effective modeling and
personalized training plan generation. Initially, the raw
signals from accelerometers, gyroscopes, and heart rate
monitors are filtered to remove high-frequency noise using
a Butterworth low-pass filter. This filtering stage is
important because PAMAP2 has dense sensor signals that
are susceptible to the detection of motion artifacts, jitter, or
amplitude-large oscillations in high-intensity activities,
such as rope jumping. A 20 Hz cutoff, 4th-order
Butterworth filter was selected empirically to retain
motion-significant frequencies and attenuate noise,
thereby sustaining the fidelity of the signal across various
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activities. After denoising, normalization is applied to
standardize data values across different sensor types, using
either z-score or min-max scaling, to ensure comparability
and improve model convergence. Z-score normalization is
applied to acceleration and heart rate data to produce
standardized Gaussian distributions that are well-suited for
learning algorithms. Min-max scaling is applied to
magnetometer and gyroscope signals to preserve relative
magnitude and orientation.

The continuous time-series data is then segmented into
overlapping windows to capture temporal patterns relevant
to physical activities. The sliding window approach is
used with a dynamic window length (2-5 seconds), set
according to the activity type label (shorter for running,
longer for standing), with a 50% overlap to prevent loss of
transitional activity information. This segmentation offers
a smooth transition and high-resolution feature mapping.
Smooth transition offers good consistency among
successive sessions. Each segment extracts meaningful
statistical and domain-specific features such as mean
acceleration, signal magnitude area (SMA), energy, and
rest period ratio. Along with these, heart rate trend
(tracking the difference from start to finish of the segment)
and a new Heart Rate Variability Index (HRVI) are
calculated, the latter quantifying physical recovery or
stress. These were chosen because they can consolidate
activity quality, intensity, and physiological response into
a concise form, with a dense description of user state
arising. These features serve as compact, informative
representations of the user’s physical state and activity,
which are then used by the data mining and reinforcement
learning modules for personalized decision-making. Table
1 shows the preprocessing steps.

Table 1: List of preprocessing steps

Steps Technique Equation / Description Purpose
Noise Filtering | Low-pass y(t) = _r x(t) Remove high-frequency noise
wc Zn
Butterworth 1+(7)
Filter
Normalization | Z-score/Min- | z, = X8 x| = XiTXmin Standardize data across features
max Scaling 7 Hmax~Xmin
Segmentation Sliding W; = {x;, Xi41, - Xizw—1} Divide the time series into fixed
Window time frames
Feature Statistical U= 1 N Summarize the average activity
Extraction Mean N in the window
(Mean)
Feature Signal’ SMA = %Z{V: (a1 +la, Average 'of the total absolute
Extraction Magnitude ; , acceleration
@ 1 +la @D
(SMA) Area
Feature Signal Energy | Energy = YN, a? Measure movement intensity
Extraction
(Energy)
Feature Rest Period R = Proportion of time the
Extraction Ratio (Number of samples with |a|< §) acceleration magnitude
(Rest) N
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Feature Heart Rate Slope =
Extraction (HR | Trend
Trend)

HRend—HRstart

t

Observe fitness response

x(t) = Raw input signal at time t, y(t) = Filtered
output signal, w, = Cutoff frequency of the filter, w =
Frequency of the signal, n = Order of the filter (controls
smoothness), x; = Original feature value, 4 = Mean of the
feature, o = Standard deviation of the feature, X,,in, Xmax
= Minimum and maximum values in the dataset, w =
window size, N = Number of samples in a window, a; =
Acceleration magnitude at time i , a,, ay, a,
Acceleration values in X, y, z axes, § = Threshold for
determining rest state, HR;qr¢, HReng = Heart rate at start
and end of the window, t = Duration of the window (in
seconds).

4 PEP-DRL-DM methodology

While each of the individual elements of the suggested
framework—profiling via data mining and policy learning
with PPO—is rooted in proven techniques, their
intentional integration into a single, behavior-based
architecture is new. In contrast to existing techniques that
personalize them statically or with limited feedback
adaptation, PEP-DRL-DM addresses this challenge by

Final Output
'ﬂ n
4 = ¢+
')

Happy User and

£2

Fitness Chart

PAMAP2 Dataset

Preprocessing

User Profile Generation

integrating structured fitness state modeling with dynamic
decision-making to continuously personalize exercise
plans by type, intensity, and duration. This integrated but
modular system architecture presents a new contribution
to digital health interventions, focusing on adaptation, and
illustrates how reinforcement learning can be applied to
user-specific planning using real-world sensor data.

This section introduces the general architecture of the
envisioned PEP-DRL-DM methodology, which integrates
data mining methods and Deep Reinforcement Learning
(DRL) to produce user-specific and adaptive exercise
training programs. The system starts with preprocessing
sensor-derived physiological data to extract significant
features. These features are then utilized to build user
profiles based on clustering and pattern analysis. Once the
profiles are attained, the Proximal Policy Optimization
algorithm is applied to learn and recommend state-of-the-
art training actions. The system continuously improves
through feedback loops, ensuring that the generated plans
align with user intentions, interaction levels, and physical
performance improvements. Figure 1 shows the
architecture of the PEP-DRL-DM Methodology.

Ov
Ov
0O x

Feedback Loop

Evaluation

Dynamic Plan
Recommendation

Policy Learning Module
(DRL using PPO)

Figure 1: Architecture of the PEP-DRL-DM Methodology

4.1 User profile generation (data mining)
Establishing a user profile is crucial in constructing
customized fitness training systems. It involves examining
person-specific movement patterns, physiological signals,
and compliance behavior through data mining procedures.

The procedure helps the system identify typical fitness
styles, habits, and learning stages. Sensor data, such as
accelerometer, gyroscope, and heart rate readings from
wearable sensors (e.g., from the PAMAP2 dataset), are
examined to identify relevant features. These properties
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group users by performance, detect cyclical activity
patterns, and summarize data. The resulting state
representation is an adequate representation of the user's
physical state, preferences, and training history. This state
representation is passed into the decision engine in the
PEP-DRL-DM architecture.

a. Clustering (e.g., k-Means)

Clustering techniques, such as k-Means, classify users
based on comparable motion and physiological
characteristics. The input is a set of feature vectors (X =
{x1, x5, ..., x,}) that describe each user point. k-Means
groups the vectors into k clusters based on minimizing the
within-cluster sum of squared distances. This could be
obtained using equation 1.

Minimizec ¥f-, Toec; I xi = I?

Q)
where u;: centroid of cluster j, C; : cluster j’s
members. For example, one cluster may comprise novice
practitioners with less coordinated and slower movements,
while another may comprise master practitioners with
smooth,  well-coordinated  postures and  stable
physiological responses. The output generated is therefore
a set of users segmented into various fitness levels or
training  groups, with  personalized  exercise

recommendations tailored to each group's profile.

b. Association rule mining

Association rule mining is a research-based practice
that determines significant relationships between activity
pattern sets and performance outcome measures. It helps
reveal how often certain sets of behavior recur and to what
extent they're linked to specific outcomes.

Support: The support of a rule quantifies the
proportion of sessions in which both the condition (X) and
the outcome (Y) occur as in equation 2.

Support(X 5 Y) — Occurrences of XUY

)

Confidence: The confidence measures the likelihood
that the outcome (Y) will occur given that condition (X)
has occurred in equation 3.

Total sessions
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Confidence(X »Y) = %
3
Lift: The lift approximates the strength of the
relationship by dividing the observed confidence by the
predicted probability of (Y), and it shows whether the rule
is statistically significant. This is shown in equation 4.

. __ Confidence(X-Y)
Llft(X - Y) - Support(Y)

“

For instance, a derived rule like "If a high step count
follows an evening session, then it is likely to lead to a high
heart rate, which in turn is related to low adherence the
following day" detects a sequence of causality that can be
employed to make individually based intervention
decisions. These relationships facilitate adaptive planning
to optimize user performance and participation.

C. Feature selection using mutual information

For enhanced model effectiveness and prediction
capability, feature selection based on mutual information
is employed to retain only the most descriptive features.
Mutual information measures the association between
candidate feature X and target label Y, which is the amount
of information one variable provides when the other is
known. The mutual information I(X;Y) is formally
defined as in equation 5.

I(X Y) ZnyeyP(xxJ’) ‘A

V) = p()p(¥)
A= log( p(xy) )
%

where X is the input variable (i.e., motion intensity,
heart rate variability), Y is the class label of interest (i.e.,
performance cluster), and p(x, y) is the joint probability
distribution of y and x. It can model both linear and non-
linear relationships and is, therefore, suitable for analyzing
subtle physiological and behavioral data.

By this strategy, the properties chosen for subsequent
modeling enable the assessment of motion intensity (e.g.,
Signal Magnitude Area or SMA), session duration,
recovery time, and maximum heart rate, all of which
provide rich information about the user's activity-
performance relationship. By removing less informative
variables, the system minimizes computational overhead
and improves generalization in the learning model. A
structured state vector (s, € R%) The dataset is constructed
for each user session and is presented in Table 2.

Table 2: Structured State Vector for each user session.

Component

Description

f1: Fitness Level

Cluster ID from k-means analysis

f2: Activity Type

Most frequently performed activity segments

f3: Adherence Trend

Average session participation rate over recent days

f4: Intensity Score

Aggregated motion and heart rate indicators

f5: Time Preference

User’s most consistent workout time (e.g., AM/PM)
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The structure state vector is represented as s; = [f1, f>
, f3, fa, f5]. This personalized state representation is passed
to the DRL module in the PEP-DRL-DM framework for
intelligent fitness recommendation. Mutual information
was employed since it quantifies linear and nonlinear
interactions in features and user performance clusters. It is
necessary in modeling intricate physiological and
behavioral information. It is more effective than simpler
filters by selecting features that capture the most about the
training results, thereby boosting model efficiency and
generalization.

4.2 Policy learning with deep reinforcement

learning (PPO)

The present study utilizes PPO as a stable, scalable,
and highly applicable deep reinforcement learning (DRL)
algorithm to facilitate adaptive and intelligent decision-
making in personalized exercise training. PPO is used for
stability, scalability, and performance with high-
dimensional, continuous action spaces. PPO was chosen
because it is stable and performs well in continuous, high-
dimensional action spaces and thus can be employed for
fitness planning. Its clipped objective also helps avoid

=h

\i

o™ 1 PPQ Agent .
) \/ 0 {| (Core Learning Engine)
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drastic policy jumps, which is particularly useful in
handling noisy and delayed user input. In contrast to others,
such as A3C or DDPG, PPO offers a better trade-off
between learning performance and convergence stability,
and thus works better in user-centric environments.

The DRL agent is trained in a simulated exercise
environment. It generates optimal exercise
recommendations by optimizing a cumulative reward
signal that incorporates both physiological gain and
behavioral consistency. The agent makes decisions at
discrete time steps. At time step t, the agent observes a
state vector (s;), which includes the user profile (obtained
through data mining) and recent activity history. From this
state, the agent selects an action ( a, ): exercise
recommendations such as type, duration, and intensity. The
virtual environment provides a reward (13), which captures
bodily advancement (e.g., lowered heart rate, increased
endurance) and plan compliance. Across a series of
episodes, the PPO agent updates its policy (mg(a; | s¢)),
where 6 are the policy parameters, to maximize the long-
term expected reward. Figure 2 shows the policy learning
module using PPO.

Simulated Environment
(User Response)

v\ Policy Network mg ﬁ _ﬁ i
Structured Value Network Vj —> ¥
User Profile ;N A T
Action Sampling & Execution H K T
e a; ~ ma(ay | s¢)
/P lJ
Ay
\ /v -
Recent Activity Reward Calculation
History re =wy - PSi +wy- ERy + ws - FIy + wy - ADy

Feedback loop

Policy Update

LOUP(g) = E, [man (n(e)jg, clip(re(6),1 — &, 1 + e)i,)}

lFinaI Qutput

‘ Learned Policy my ‘

Figure 2: Policy Learning using PPO

PPO enhances training by avoiding sudden policy
updates, thus guaranteeing steady learning. The
underlying concept is to optimize a clipped surrogate
objective.

LCLIP(Q) —
E[min(r:(0)4,, clip(r:(0),1 —€,1 + €)4,)]

g) = _"e(aelSt)
rt( ) n901d(atlst)
Ac = zT:o(V/Dl‘StH
6 =1+ VV(S(t+1)) —V(se)

(6)

In equation 6 , where 7,(6) = probability ratio
between new and old policies. A, = Advantage estimate,
which measures how much better the action (a;) was
than expected, € = A small threshold (e.g., 0.2) prevents
overly large policy updates, and the clip function limits
policy changes to avoid destabilizing learning.
Algorithm 1 shows the PPPO algorithm for
personalized fitness training.
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Algorithm 1: PPO Algorithm for Personalized Exercise Training

Input:
m_0 « Initialized policy parameters
& <« Simulated user environment

N« : Number of training iterations
K <« : Number of PPO epochs per iteration

Output:
1y <« Optimized personalized policy

for iteration = 1 to N do

1:
2
3
4:
5:  Estimate the advantages At =Rt - V(s_t)
6.
7:  forepoch=1 to K do

8

12: return 1y

r(s, a) < Composite reward function with weights ou, o2, o, o

Initialize environment € with user profile and fitness state
Collect trajectories T = {(s_t,a_t,r_t,s_(t + 1))} using ©_6
Compute cumulative rewards R_t = Y _{l = O}MT —t}y"l = r_{t + [}

Optimize policy m_6 by maximizing the PPO objective:

9: LACLIP(9) = E_t [min(r_t(0)A_t, clip(r_t(0),1 —&,1 + £)A_t)]
10: end for
11: end for

Algorithm 1 optimizes a policy (mg) sequentially
with PPO to customize exercise recommendations. It
first conducts user simulations on existing
recommendations, gathering experience trajectories.
Rewards and gains are calculated to measure the
performance of each action. The policy is subsequently
updated with a clipped objective for stable learning.
Repeating the above several times results in an optimal
policy (my) which can produce adaptive, user-centric
training recommendations for better fitness and
consistency.

Under PPO, the suggested PEP-DRL-DM
approach learns to dynamically adapt exercise
schedules based on user activity and physiological
improvement over time. An analytically clipped policy
goal is adopted here, ensuring the convergence of
resulting policies under noisy or sparse reward signals,
making it usable for long-term, customized health
interventions.

4.3 Dynamic plan recommendation

The Dynamic Plan Recommendation module
creates and modifies a personalized exercise schedule
in real-time, based on the user's profile, past
performance, and activity. The module is the output
layer of the PEP-DRL-DM system, translating policy
(my ) learned by DRL into executable exercise
parameters. Every recommended plan includes: 1. type

of activity (e.g., Tai Chi, walking, strength training), 2.
level of intensity (e.g., light, moderate, vigorous), and
3. duration (in minutes). These parameters are
adaptively tuned after every session based on feedback
on performance metrics, such as energy spent, heart rate
profiles, and consistency of attendance. Let the
recommended plan be at the time step (t) be defined as
in equation 7.

type _intensity _duration
{a;7™" a; )t }

type
a; € Atype

Pt = . .
m.tenSlty
a; € Aintensity
agluration € Rt
(7
where a;”?® = Activity type from a predefined set

. . . intensit
(e.g., Tai Chi, running, etc.), a, V=

Intensity level,
advration — Dyration in minutes. The best plan is
obtained from learned policy (mp) conditioned on
current user state (s;) build on mined behavior features

and recent exercise performance as in equation 8.

argmax B
at

k=0 Vkrt+k ]
(3)

Py =my(se) = {E
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where 13, = the reward for all future actions, and
y € (0,1) = The discount factor that emphasizes close-
by over distant rewards.

4.4 Evaluation and feedback loop

To provide ongoing improvement and tailored
adaptation of exercise regimes, the PEP-DRL-DM
model integrates a process of assessment and feedback
into the reinforcement learning loop. The method
enables monitoring of user performance, adaptation of
the reward function, and improvement of the decision
policy over time. Four metrics are used to evaluate the
system's performance. Personalization Score captures
how well the suggested training programs align with the
user's past behavior and personal preferences. The
Engagement Rate measures the pace at which users
adhere to suggested programs, reflecting their level of
commitment. Fitness improvement measures include
changes in physiological parameters such as endurance,
flexibility, and heart rate recovery, as observed before
and after training. Finally, the Adaptability Score is
examined in terms of how well the system adapts its
recommendations based on changes in the user's state,
i.e., fatigue or enhanced performance. These metrics
control the learning process to deliver an adaptive and
user-focused training experience.

The PEP-DRL-DM mechanism feedback loop
facilitates ~ ongoing  adaptation of  exercise
recommendations based on user performance. Four
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evaluation measures—Personalization Score ( PS;),
Engagement Rate (ER;), Fitness Improvement (FI;),
and Adaptability Score (AD;)—are computed after each
session. These are used to estimate a composite reward
function (7;) based on equation 9.

rt=W1‘PSL—+W2'ERL—+W3'FIt+W4'ADt
€))

where wy,w,, w3, w, € [0,1] = Scalar weights
used to manage the contribution of each metric to the
total reward. Scalar reward r; = The feedback provided
to the reinforcement learning agent in this instance is
from PPO. The agent optimizes policy parameters 0
with the gradient of the clipped objective function
(Lepp(60),) 8 « 0+ aVgLeyp(0), where a is the
learning rate. The new policy (1 ) subsequently
produces a new exercise plan P;,,, more in line with
the user's changing state and preferences. This closed-
loop procedure enables real-time personalization by
optimizing recommendations through short-term
feedback and longer-term user performance and
interaction trends.

Example: Assume a 60-year-old patient with a
moderate activity history who has recently lost
compliance through recent high-intensity workouts.
Based on patterns mined and recent user input, the
policy could suggest:

Table 3: Final Output of PEP-DRL-DM System

Component Description Example Output
Activity Type Recommended type of physical activity based on user Tai Chi
profile and preferences
Intensity Suggested effort level appropriate for current fitness and | Light
adherence trends
Duration Adaptive session length based on engagement history 35 minutes
and physiological response
Adaptation Criteria | Adjusts based on engagement rate, heart rate Gradual increase in
improvement, and adherence consistency duration/intensity
Next Session Plan Automatically evolves from previous sessions to Tai Chi, Moderate, 40
optimize long-term outcomes. minutes
Expected Outcome Higher adherence, reduced fatigue, improved fitness +15% adherence, -5
(e.g., endurance, heart rate recovery). bpm resting HR

Table 3 shows the outcome of the PEP-DRL-DM
system, presenting how personalized exercise routines are
developed and dynamically updated. Every routine
specifies the activity type, intensity, and duration
according to the individual's fitness profile and past
exercise history. The recommendations are adjusted based
on real-time feedback to ensure continued adherence and
physical improvement. For example, a session of Tai Chi
at a light intensity can be prescribed initially, followed by
incremental intensification based on performance criteria

such as heart rate and consistency, to ensure long-term
effectiveness and user satisfaction.

4.4 Contribution overview

The suggested PEP-DRL-DM system is based on the
synergistic combination of proven methods—clustering,
association rule discovery, mutual information-based
feature extraction, and Proximal Policy Optimization
(PPO)—into an end-to-end pipeline for adaptive exercise
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tailoring. No new theoretical level algorithms are proposed,
but the system presents a practical and modular workflow
allowing for continuous user modeling, adaptive policy
updating, and real-time feedback incorporation. Such
convergence is designed specifically to bridge the gap in
non-served digital health platforms, offering dynamic,
data-driven user personalization based on individual
physiological and behavioral characteristics. The novelty
of this research lies in leveraging established techniques to
create a working, end-to-end solution that can be easily
scaled into other health-interactive settings.

5 Results and discussions

5.1 Experimental setup

The PPO agent was trained in the simulated
environment, and each user episode consisted of 10
sessions. The state vector involved included fitness level,
trend in adherence, and intensity score. The action space
varied across discrete choices of exercise type, intensity
(low/medium/high), and duration (10—60 minutes). The
reward involved personalization, engagement, fitness
enhancement, and adaptability scores equally weighted.
PPO was trained with stable-baselines3 and important
hyperparameters: learning rate = 3e-4, gamma = 0.99,
clip_range = 0.2, batch_size = 64, nb_epochs = 10, and
500k train steps. Last policies were tested on unseen user
profiles after environment resets.

The experimental configuration for the designed PEP-
DRL-DM framework was a comparative simulation using
the PAMAP2 Physical Activity Monitoring dataset. Sensor
signals were preprocessed by filtering noise, normalization,
and segmented into sliding windows for extracting features.
User profiles were created using clustering and association
rule mining, and the deep reinforcement learning agent,
using PPO, discovered optimal training suggestions. For

=#= FEP-DRL-DM
#- DDMH
0951 =+ WT-DAL
4 MLPGS

Personalization Score

Training Iteration
(a) Personalization Score Progression Across Iterations for
Different Methods.

H. Qin

comparative performance, three cutting-edge methods
were chosen: Data-Driven Mobile Health (DDMH) [13],
IoT-based DRL Training Network (IoT-DRL) [18], and
ML-based Personalized Goal Setting (ML-PGS) [22].
These were compared against PEP-DRL-DM on four key
metrics: personalization score, progress adaptability,
fitness outcome gain improvement, and user retention or
engagement rate. The testing platform was a synthetic user
model trained across various episodes to track long-term
performance. Results showed that PEP-DRL-DM
surpassed Dbaseline approaches across the board in
personalizing exercise recommendations for individual
users, providing higher engagement and fitness gains,
while sustaining the effectiveness of exercising data
mining and reinforcement learning for exercise
personalization.

5.2 Personalization score

The Personalization Score measures how much the
suggested exercise program matches the user's taste,
behavior history, and body type. The higher the score, the
more tailored the plan will be to the individual's traits and
requirements. This could be identified through equation 10.

1—=¥™ ND
Personalization Score (PS) = " IR;—P;|
ND = ———
max(R;,P;)
(10)

Where R; = Weight of relevance of the suggested
parameter (e.g., best duration, intensity), P; = Real
historical preference or behavior rating of the user for the
same parameter, n = Number of adjustable parameters
(e.g., type, duration, intensity). ND = Normalized
deviation, the subtraction from 1 ensures that a higher
value reflects better personalization.

W PEP-DRL-DM
W DDMH
085 . oT-ORL
- MLPGS

Personalization Score

Intermediate Advanced

User Category

geginner

(b) Personalization Score Comparison Across User
Categories

Figure 3: Personalization score comparison analysis

Figure 3(a) illustrates the trend of personalization
scores after 10 rounds of training for four approaches:

PEP-DRL-DM, DDMH, IoT-DRL, and ML-PGS. The new
DM-PEP-DRL has a flatter and slanted rising trend, from
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0.65 to amaximum of 0.93, and performs better than others.
It demonstrates a more efficient learning of user interests
over time. However, the standard models, such as DDMH
and ML-PGS, have limited adaptability. The research
emphasizes PEP-DRL-DM's enhanced adaptability and
reaction dynamics in customized training environments.
Figure 3 (b) compares personalization scores of different
models across three levels of users: Beginner, Intermediate,
and Advanced. The PEP-DRL-DM model consistently
demonstrates higher scores across all three levels, with a
maximum of 0.91 for advanced users. DDMH, IoT-DRL,
and ML-PGS exhibit relatively flat performance with
lower adaptability to levels of user experience. The PEP-
DRL-DM not only learns effectively in the long run but is
also more capable of accommodating diverse user profiles,
thereby being more robust across demographic and skill-
based user categories.

User1l
User 2
User 3
User 4

User 5

Users

User 6

User 7

User 8

User 9

User 10

Session1l Session2 Session3 Session4 Session 5

]
Session 6
Sessions
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5.3 Adaptability to progress

Adaptability to Progress is defined as the extent to
which an individualized exercise system adjusts its
recommendations based on a user's evolving level of
fitness, usage habits, or physiological responses over time.
An extremely adaptable system would dynamically adjust
parameters such as activity type, intensity, or duration in
real-time based on the user's actual progress or relapse.
This could be obtained from equation 11.

1
IyTa1-c

AS = C=( |ARg—APy| )

max (AR, APt)+€
11

Where T = Total number of sessions or periods, AR, =
Suggested change in training load at time t (e.g., increase
in intensity), AP, = True observed increase in user
performance (e.g., increased endurance), € = Small
constant to prevent division by zero.
0.875
0.850
0.825

0.800

0.775

Adaptability Score

- 0.750

-0.725

-0.700

-0.675
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Figure 4: User adaptability scores across sessions

The 10 users' performances on adaptability (unitless)
across 10 sessions are presented in Figure 4, a visual
representation of user performance and learning trajectory
over time. Each cell is a user's adaptability score in a
session, standardized between 0 and 1, with higher values
representing greater adaptability across tasks or system
states. Columns enable session-to-session comparison,
such as possibly more demanding sessions like Session 6
and Session 10. The rows illustrate user patterns for

individual users, including stable performers (User 5) and
those with changing patterns (User 4). With a YIGnBu
colormap, high and low adaptability regions are easily
discernible using a color gradient. This visualization can
facilitate more in-depth analysis in domains such as
human-computer interaction, adaptive learning systems,
and usability testing. It can inform further statistical
modeling or user clustering to design and train the system
optimally.
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Figure 5: Comparative adaptability scores of models (PEP-DRL-DM, DDMH, IoT-DRL, ML-PGS) across 10 users

Figure 5 illustrates the adaptability scores of the four
models across ten users. For every user, there are four
grouped bars, and each of the four bars in a group is
associated with the adaptability score of one model for that
user. PEP-DRL-DM has a better adaptability score than
DDMH, IoT-DRL, and ML-PGS for all but one or two
users, which indicates enhanced capability to adjust to user
feedback and transition fitness states. User heterogeneity
also reflects variation in model responsiveness that is user-
specific, highlighting the significance of personalization.
In general, this comparison highlights the efficacy of the
proposed PEP-DRL-DM strategy in delivering adaptive,
user-specific recommendations.

5.4 Fitness outcome improvement

Fitness Outcome Improvement (FOI) refers to the
quantifiable enhancement in a user's performance or

adaptability over time, resulting from training, system
exposure, or practice. FOI can be calculated to find out
how much a user has progressed since the start. This can
be obtained from equation 12.

1
EZ;;ZD X 100
FOI; = _AyAija

Ajj-1

(12)

This calculates the session-to-session rate of change
and averages these changes to arrive at the overall rate of
improvement.

Table 4: Fitness outcome improvement (FOI) of individual users over 10 sessions

User Session 1 Score Session 10 FOI (%) Interpretation
(Ai1) Score (4; 10)

User 1 0.82 0.83 +1.22% Slight improvement

User 2 0.78 0.73 —6.41% Moderate decline

User 3 0.87 0.79 -9.20% Noticeable decline

User 4 0.77 0.71 =7.79% Consistent decline

User 5 0.84 0.85 +1.19% Stable improvement

User 6 0.82 0.78 —4.88% Mild decline

User 7 0.82 0.81 —1.22% Slight decline

User 8 0.87 0.70 —19.54% Sharp decline

User 9 0.79 0.83 +5.06% Notable improvement

Table 4 presents the percentage change in adaptability
for participants in Session 1 and Session 10. The positive
values of FOI indicate better adaptability, while negative
values indicate performance loss. Users 1, 5, and 9 exhibit

small to moderate gains, reflecting good learning or system
usage. By contrast, Users 3, 4, and particularly User 8
exhibit losses of flexibility, possibly due to interface
complexity, fatigue, or inconsistent system behavior. This
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analysis allows identification of high- and low-performing
users for subsequent investigation or intervention.
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Table 5: Fitness Outcome Improvement (FOI) comparison across adaptive system methods

Methods Initial Score | Final Score FOI (%) Interpretation
4y (G)
PEP- 0.76 0.89 +17.11% Substantial improvement with stable
DRL-DM learning
DDMH 0.80 0.85 +6.25% Moderate improvement
IoT-DRL | 0.78 0.81 +3.85% Gradual learning curve
ML-PGS 0.82 0.84 +2.44% Slight improvement, potentially plateauing.

Table 5 shows the FOI between four adaptive
decision-making or recommendation techniques based on
their initial and final adaptability scores. Out of these
techniques, PEP-DRL-DM exhibits the maximum FOI of
+17.11%, indicating significant increases in adaptability
over time due to its policy enhancement and reinforcement
learning mechanisms. DDMH also shows a positive rate
(+6.25%) by using prior knowledge and multi-hop

decisions. [oT-DRL and ML-PGS have lower gains (+3.85%

and +2.44%), indicating a flatter or limited learning curve.
This contrast helps in selecting the most suitable method
for adaptive environments or user modeling problems.

Evaluative metrics were calculated as follows:
personalization score by recommendation alignment with
user history (Equation. 10), improvement in fitness by
normalized improvement in performance from Session 1
to 10 (Equation. 12), and adaptability by changes in policy
with respect to user progress (Equation. 11). The users with
varying engagement or noisy heart rate showed lower
improvement, which establishes sensitivity to variation in
behavior. Whereas the system demonstrated steady
improvement over time, adaptation was slower in the long
run in users with unstable patterns, representing a potential
area for future optimization.

PEP-DRL-DM

10

DDMH

5.5 User engagement/retention rate

User Engagement and Retention Rate are key
performance indicators (KPIs) that measure the extent of
user engagement with a system and the frequency of user
return over time. In adaptive or interactive systems (e.g.,
learning systems, recommender systems, or usability
tools), the indicators capture system stickiness, user
satisfaction, and usability over the long term. The retention
rate measures the percentage of users who return or remain
active after their first interaction within a specified time
frame. User engagement refers to the frequency, depth, and
duration of user interaction with the system. The combined
ER Index can be calculated using Equation 13.

RR X ES
ER Index = { RR (%) = Fretained » 10
initial
ES; =%i-14;;
(13)

where Nipiriq; = Total number of users who started
(e.g.,in Session 1), Nyetqinea = Number of those users who
continued to interact (e.g., were still active by Session 10
or a given checkpoint). 4; ; = Adaptability or activity score
of the user (I) in session (j). n: Number of sessions.

Method

loT-DRL ML-PGS

0.8 1

=4
o

Engagement Score
o
i

0.2

0.0

User 1 User 2 User 3 User 4

User 5

User 6 User 7 User 8 User 9 User 10

User

Figure 6: Comparison of engagement scores across methods for 10 users
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Figure 6 shows the performance of 10 students in
four adaptive learning approaches: PEP-DRL-DM
(proposed), DDMH, IoT-DRL, and ML-PGS. The PEP-
DRL-DM approach exhibits the highest activity among
all students, indicating its better personalization and
adaptability. The performance of DDMH and [oT-DRL
is moderate with slight differences, while that of ML-

H. Qin

PGS is the lowest and most different. The legend is
placed at the top for better readability, and color-coded
bars are used to compare the efficiency of each
approach for every user easily. Visualization in this case
represents the performance difference between
traditional and proposed techniques.
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Figure 7: Retention rate over sessions for different methods

Figure 7 shows the variation in user retention over 10
sessions for four adaptive learning methods: PEP-DRL-
DM (new), DDMH, IoT-DRL, and ML-PGS. The PEP-
DRL-DM method exhibits the best retention at every point,
with 85% of participants remaining active at session 10,
demonstrating excellent long-term engagement. DDMH
performs very well, but there are more precipitous declines
in retention for IoT-DRL and ML-PGS, indicating weaker
long-term user commitment. Each approach is identified
by a distinctive marker design for clarity. This graph
illustrates the success of PEP-DRL-DM in sustaining user
engagement in the long term.

5.6 Ablation study

To determine the effect of the essential elements of the
PEP-DRL-DM model, ablation tests are performed by
selectively deactivating the data mining module and
replacing the PPO optimizer. When the data mining step
was excluded, the system utilized raw features and
experienced a drop in personalization score from 0.93 to
0.78, along with a 7.2% decrease in fitness increment.
Substitution of PPO with a basic policy gradient algorithm
resulted in unstable convergence and a 12% loss in
flexibility. The findings substantiate the significance of
both elements in obtaining effective, individualized policy
acquisition.

5.7 Practical evaluation context

Although the PAMAP2 dataset contains actual sensor
readings of real activity, it was tested in a simulation setup
to simulate agent-user interaction over multiple sessions.

Though not representative of real-time deployment
conditions in every aspect, the simulation was based on
realistic cycles of activity, engagement, and physiological
reaction from the dataset. Although simulated, evaluation
is thus based on real-world user activity and facilitates
scalable, reproducible testing.

5.8 Reward sensitivity analysis

The reward function used equally weighted scalars (ou
= o2 = as = ou = 1.0) to equilibrate personalization,
engagement, fitness gain, and flexibility. To investigate the
impact of weight deviation, a sensitivity test was
conducted by changing one and keeping the others equal
and constant. Outcomes indicated that minor deviations
(£0.5) did not cause any meaningful change in fitness
outcome scores. But giving too much weight to a single
dimension (e.g., ou = 3, others = 1) resulted in overfitting
to this metric and decreased overall system balance. This
affirms the application of equal weighting in this work and
demonstrates the importance of appropriately balanced
reward shaping in multi-objective optimization.

6 Conclusion

The PEP-DRL-DM is an intelligent system that
generates user-specific exercise programs with data
mining and Proximal Policy Optimization (PPO). The
users' physiological sensor readings are subjected to
preprocessing steps that remove noise, normalize values,
and derive motion intensity, duration, and heart rate
patterns. Association rule mining and clustering
algorithms identify individual behavior patterns to produce
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organized profiles indicating fitness levels, activity
preferences, and adherence patterns. These are the input
states for the PPO-based reinforcement learning agent,
which operates in an emulated environment to recommend
ideal exercise parameters, including type, intensity, and
duration. Rewards are calculated based on physical
performance and increased engagement, allowing the
policy to learn progressively. Significant improvements in
terms of personalization, engagement, responsiveness, and
fitness outcome measures in comparison to DDMH, IoT-
DRL, and ML-PGS methods. The strategy described here
is based on the ongoing adaptation of training schedules,
utilizing user-specific feedback to facilitate continuous
improvement and long-term stability. Incorporation of
reward-based learning enables the system to learn
strategies in the long term independently without any
external input. Real-time integration of sensors and affect
detection can be an ongoing development that will allow
maximum accuracy and usability in real-world fitness
settings. This provides a solid foundation for intelligent,
user-adaptive systems that promote well-being and health.
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