
https://doi.org/10.31449/inf.v49i34.9666 Informatica 49 (2025) 17–24 17 

 

Adaptive Weighted Case-Based Reasoning for Intelligent Coal Mine 

Decision Support Systems 

Zhiqiang Zhang1, Kai Tan2, Changjun Yang1, Yong Li2, Chunhua Huang2*, Wei Li1 

1National Energy Group Ningxia Coal Industry Co., Ltd. Hongliu Coal Mine, Ningxia 750000, China 
2Chongqing Institute of China Coal Technology & Engineering Group, Chongqing 400039, China  

E-mail: 15000431@ceic.com, tan9446@163.com, 18995218111@189.com, 42948400@qq.com, 

zzhiqiang1214@163.com, shevl@163.com 
*Corresponding author 

 
Keywords: coal mine, intelligent decision support system, case reasoning, adaptive weight dynamic case retrieval 

algorithm, experimental simulation 

 

Received: June 12, 2025 

Under the background of intelligent transformation of coal mines, an intelligent decision support system 

based on case-based reasoning (CBR) has become crucial for improving production control. This paper 

constructs such a system and innovatively proposes an adaptive weight dynamic case retrieval algorithm 

(AWDCR). The algorithm leverages real-time monitoring of multi-source production data, dynamically 

adjusting case attribute weights based on data change characteristics and decision influence through a 

hybrid AHP-entropy weight mechanism. Using MATLAB simulation with 100,000+ actual production 

records across 100 scenarios (normal, equipment failure, environmental anomaly), results show 

AWDCR reduces average retrieval time by 20% and improves decision accuracy from 80% to 90% 

compared to traditional CBR. enhancing retrieval accuracy by 20%. The system effectively enhances 

production efficiency and safety, laying a foundation for intelligent coal mining. 

Povzetek: Algoritem AWDCR z dinamičnim uteževanjem atributov primerov omogoča bolj kvalitetno 

podporo odločanju v inteligentnih premogovnikih, saj presega tradicionalni CBR po hitrosti iskanja in 

točnosti odločitev. 

 

1 Introduction 
Coal occupies a pivotal position in the national energy 
system. As the primary energy source for a long time, it 
has provided solid power support for industrial 
development and social operation. However, the 
traditional coal mine production method is full of 
drawbacks. From a safety perspective, the complex 
geological conditions underground and the limitations of 
manual operation have led to frequent safety accidents, 
such as gas explosions and water seepage, which 
seriously threaten miners' lives. Regarding production 
efficiency, the mining and transportation processes that 
rely on the workforce are cumbersome, and the degree of 
equipment coordination is low, resulting in low overall 
production efficiency [1]. At the same time, a large 
amount of workforce investment has kept the labor cost 
high, restricting the improvement of the economic 
benefits of coal mining enterprises. 
Intelligent transformation has become an inevitable 
choice for the coal mining industry to break through the 
development bottleneck. By introducing advanced 
information technology and intelligent equipment, it is 
possible to monitor the underground environmental 
parameters and equipment operation status in real-time, 
warn of safety hazards in advance, and significantly 
improve the level of safe production [2]. The 
collaborative operation of automated and intelligent 
production equipment can dramatically improve 
production efficiency and reduce time waste in the 
production process. In addition, applying intelligent  

 
systems can dramatically reduce the number of front-line  
operators and effectively reduce labor costs.  
Globally, coal-producing countries such as the United 
States and Australia have widely applied intelligent 
technology to achieve highly automated mining [3]. China 
has also responded positively, and major coal companies 
have laid out intelligent mine construction. From 
intelligent coal mining faces to intelligent ventilation and 
transportation systems, the intelligent development of 
coal mines is in full swing. 

Case-based reasoning (CBR) technology has been 
applied to a certain extent in the coal mining field due to its 
unique advantages. In the coal mining process, the relevant 
system can formulate reasonable mining plans for different 
geological conditions based on previous mining cases to 
improve mining efficiency and resource recovery rate [4]. 
With the help of CBR technology, the intelligent ventilation 
system refers to historical ventilation cases to control the 
ventilation volume and ensure underground air quality 
accurately. In the transportation process, CBR technology 
can quickly diagnose and solve transportation equipment 
failures based on past transportation failure cases to ensure 
smooth transportation. 

However, there are still many problems in the existing 
coal mine system based on CBR technology. The case 
library update mechanism is lagging, and it is impossible to 
incorporate new complex working conditions in time, 
resulting in an outdated system decision-making basis [5]. 
The case retrieval accuracy is insufficient, and it isn't easy 
to accurately match the case that best fits the current 
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working conditions in many cases, affecting the accuracy 
of decision-making. When faced with complex and 
changeable working conditions, such as sudden changes in 
geological conditions and new equipment failures, the 
system has poor adaptability and cannot provide adequate 
decision support. 

This paper deeply studies the control and key 
technologies of the intelligent decision support system 
for coal mines based on CBR. It aims to improve the 
system's adaptability to complex and changeable 
working conditions by optimizing the case library update 
strategy and innovating the case retrieval algorithm. It 
also aims to build a more efficient and accurate intelligent 
decision support system, providing strong technical 
support for coal mine safety production and efficient 
operation. Specifically, the research targets a 10–15% 
improvement in retrieval accuracy (from 80% to ≥90%) 
and a ≥20% reduction in retrieval time (to ≤100ms) in 
high-gas (≥1%) and high-temperature (≥40°C) scenarios 
[6]. 

 

2 Architecture of intelligent decision 

support system for coal mines 

based on CBR 
2.1 Overall framework design of the system 
2.1.1 Data acquisition layer 

The data acquisition layer is the foundation of the 
intelligent decision support system for coal mines. It is 
like the "eyes and ears" of the system, providing key 
information for subsequent decisions. In various 
production areas of coal mines, multiple sensors are 
reasonably arranged according to different monitoring 
needs. In underground mining workers, gas concentration 
sensors are essential to ensure safe production. Since gas 
explosion is one of the significant safety hazards in coal 
mines, gas concentration sensors are usually densely 
installed in this area to monitor gas concentration 
changes in real time and accurately. Temperature sensors 
are distributed near electrical equipment, tunnel walls, 
goaves, and other locations to monitor equipment 
operating temperature and ambient temperature to 
prevent fire or equipment damage caused by overheating. 
Equipment operating status sensors are installed on key 
equipment such as coal mining machines, scraper 
conveyors, and ventilators to collect equipment operating 
parameters such as speed, vibration, and pressure in real-
time. The frequency of data collection is determined 
based on the importance and change characteristics of the 
monitored object. For parameters such as gas 
concentration that change rapidly and significantly 
impact safety, the collection frequency is set to once per 
minute to ensure that abnormal fluctuations in gas 
concentration can be captured promptly. For relatively 
stable environmental parameters, such as tunnel 
humidity, the collection frequency can be appropriately 
reduced to once every 5-10 minutes. 

Data transmission methods are divided into wired and 
wireless. Wired transmission methods, such as Ethernet 
and optical fiber, have the advantages of high 
transmission rate, strong stability, and good anti-
interference ability. They are suitable for areas with short 
distances and relatively stable environments, such as 

sensor data transmission of underground fixed equipment. 
Wireless transmission methods, such as ZigBee and Wi-
Fi, have the characteristics of flexible installation, low 
cost, and easy expansion and are suitable for sensor data 
transmission in mobile devices or areas where it is 
difficult to lay cables. The collected raw data is 
preliminarily processed at the sensor node. After 
identification information such as timestamp and sensor 
number are added, it is packaged into a data frame that 
conforms to the receiving format of the upper module and 
is sent out through the corresponding transmission 
method. 

2.1.2 Case library construction and management 

module 
The case library is a knowledge treasure house of the 

system and the cases it constructs come from a wide range 
of sources. Historical production data is one of the essential 
sources of cases. It records various practical problems 
encountered in the production process of coal mines and the 
corresponding treatment measures. These data can be 
obtained from coal mines' production logs, equipment 
operation records, safety accident reports, etc. Expert 
experience is also a key source of cases. Experts in the coal 
mining field can provide many valuable cases and solutions 
with years of practical experience. The framework 
representation is used to describe the case. A case 
framework contains multiple slots, each corresponding to 
an attribute. For example, the "fault type" slot is used to 
clarify the specific category of equipment failure or 
production abnormality, such as motor failure, poor 
ventilation, etc.; the "production conditions" slot describes 
the environmental parameters, equipment operating status, 
and other information when the fault occurs; the "measures 
taken" slot records the specific processing methods and 
steps taken for the fault. 

The case library management function is rich. The case 
addition function allows newly generated cases to be 
included in the case library promptly to ensure timeliness. 
When a case is no longer of a reference value or has errors, 
it can be removed from the case library through the case 
deletion function. The case modification function is used to 
update the attribute information of the case to keep it 
consistent with the actual situation. To improve the 
efficiency of case retrieval, an index structure based on the 
key attributes of the case will be established, such as 
classified indexing according to fault type, production 
conditions, etc., and the index will be regularly maintained 
and updated to ensure its accuracy and effectiveness. 

2.1.3 Reasoning engine module 
The reasoning engine is the core "brain" of the system, 

responsible for case retrieval, matching, and adjustment in 
the case library based on the input of current production 
status data to generate a decision plan. Its core reasoning 
process is as follows: 

First, the input current production status data is 
preprocessed to remove noise and outliers and normalized 
to improve the quality and comparability of the data. Then, 
feature extraction is performed to extract key features that 
reflect the production status from the preprocessed data. 
Next, the nearest neighbor algorithm retrieves cases in the 
case library. The principle of the nearest neighbor algorithm 
is to calculate the similarity between the input data and each 
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case in the case library, usually using measurement 
methods such as Euclidean distance and Manhattan 
distance. The higher the similarity, the more the case 
matches the current problem. 

Adaptively adjust the retrieved cases according to the 
degree of matching. If the matching degree is high, the 
solution can be directly adopted; if it is average, the 
solution needs to be appropriately modified and 
optimized according to the specific situation of the 
current problem. For example, when the equipment 
failure type is similar, but the environmental conditions 
under which the failure occurs are different, the treatment 
measures must be adjusted accordingly to ensure the 
solution's effectiveness. 

2.1.4 Decision output and feedback module 

The decision output is in various forms to meet the 
needs of different users. The system will generate a visual 
operation suggestion report for coal mine managers, 
which will intuitively display the decision results and 
related analysis in the form of charts, text, etc., to help 
them quickly understand the situation and make 
decisions. The automated control system will output 
automatic control instructions to directly control the 
operating status of the equipment and realize the 
computerized adjustment of the production process. 

After the decision is executed, the effect data will be 
transmitted back to the system through the feedback 
mechanism. These data include changes in the operating 
status of the equipment, the completion of production 
indicators, the elimination of safety hazards, etc. The 
system will analyze and evaluate these feedback data, 
update the case information in the case library according 
to the evaluation results, optimize the parameters and 
strategies of the reasoning engine, form a closed-loop 
decision support system, and continuously improve the 
decision accuracy and adaptability of the system. 

 

2.2 Detailed description of the functions of 

each module 
2.2.1 Data acquisition layer Data source and 

acquisition method 
The data acquisition layer is the foundation of the 

intelligent decision support system for coal mines. It is 
like the "eyes and ears" of the system, providing key 
information for subsequent decisions. In various 
production areas of coal mines, multiple sensors are 
reasonably arranged according to different monitoring 
needs. In underground mining workers, gas concentration 
sensors are essential to ensure safe production. Since gas 
explosion is one of the significant safety hazards in coal 
mines, gas concentration sensors are usually densely 
installed in this area to monitor gas concentration 
changes in real time and accurately. Temperature sensors 
are distributed near electrical equipment, tunnel walls, 
goaves, and other locations to monitor equipment 
operating temperature and ambient temperature to 
prevent fire or equipment damage caused by overheating. 
Equipment operating status sensors are installed on key 

equipment such as coal mining machines, scraper 
conveyors, and ventilators to collect equipment 
operating parameters such as speed, vibration, and 
pressure in real-time. The frequency of data collection 

is determined based on the importance and change 
characteristics of the monitored object. For parameters 
such as gas concentration that change rapidly and 
significantly impact safety, the collection frequency is set 
to once per minute to ensure that abnormal fluctuations in 
gas concentration can be captured promptly. For relatively 
stable environmental parameters, such as tunnel humidity, 
the collection frequency can be appropriately reduced to 
once every 5-10 minutes. 

Data transmission methods are divided into wired and 
wireless. Wired transmission methods, such as Ethernet and 
optical fiber, have the advantages of high transmission rate, 
strong stability, and good anti-interference ability. They are 
suitable for areas with short distances and relatively stable 
environments, such as sensor data transmission of 
underground fixed equipment. Wireless transmission 
methods, such as ZigBee and Wi-Fi, have the 
characteristics of flexible installation, low cost, and easy 
expansion and are suitable for sensor data transmission in 
mobile devices or areas where it is difficult to lay cables. 
The collected raw data is preliminarily processed at the 
sensor node. After identification information such as 
timestamp and sensor number are added, it is packaged into 
a data frame that conforms to the receiving format of the 
upper module and is sent out through the corresponding 
transmission method. 

2.2.2 Case library construction principles and case 

representation methods 
The case library is a knowledge treasure house of the 

system and the cases it constructs come from a wide range 
of sources. Historical production data is one of the essential 
sources of cases. It records various practical problems 
encountered in the production process of coal mines and the 
corresponding treatment measures. These data can be 
obtained from coal mines' production logs, equipment 
operation records, safety accident reports, etc. Expert 
experience is also a key source of cases. Experts in the coal 
mining field can provide many valuable cases and solutions 
with years of practical experience. The framework 
representation is used to describe the case. A case 
framework contains multiple slots, each corresponding to 
an attribute. For example, the "fault type" slot is used to 
clarify the specific category of equipment failure or 
production abnormality, such as motor failure, poor 
ventilation, etc.; the "production conditions" slot describes 
the environmental parameters, equipment operating status, 
and other information when the fault occurs; the "measures 
taken" slot records the specific processing methods and 
steps taken for the fault. 

The case library management function is rich. The case 
addition function allows newly generated cases to be 
included in the case library promptly to ensure timeliness, 
employing a daily incremental update with a 6-month 
recency threshold and 3-usage frequency filter. When a case 
is no longer of reference value or has errors, it can be 
removed from the case library through the case deletion 
function. The case modification function is used to update 
the attribute information of the case to keep it consistent 
with the actual situation. To improve the efficiency of case 
retrieval, an index structure based on the key attributes of 
the case will be established, such as classified indexing 
according to fault type, production conditions, etc., and the 
index will be regularly maintained and updated to ensure its 
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accuracy and effectiveness. New complex cases (e.g., gas 
leaks) are prioritized via a queue with 24-hour integration 
latency. 

2.2.3 Inference engine workflow 
The reasoning engine is the core "brain" of the 

system, responsible for case retrieval, matching, and 
adjustment in the case library based on the input of 
current production status data to generate a decision plan. 
Its core reasoning process is as follows: 

First, the input current production status data is 
preprocessed to remove noise and outliers and 
normalized to improve the quality and comparability of 
the data. Then, feature extraction is performed to extract 
key features that reflect the production status from the 
preprocessed data. Next, the nearest neighbor algorithm 
retrieves cases in the case library. The principle of the 
nearest neighbor algorithm is to calculate the similarity 
between the input data and each case in the case library, 
usually using measurement methods such as Euclidean 
distance and Manhattan distance. The higher the 
similarity, the more the case matches the current 
problem. 

Adaptively adjust the retrieved cases according to the 
degree of matching. If the matching degree is high, the 
solution can be directly adopted; if it is average, the 
solution needs to be appropriately modified and 
optimized according to the specific situation of the 
current problem. For example, when the equipment 
failure type is similar, but the environmental conditions 
under which the failure occurs are different, the treatment 
measures must be adjusted accordingly to ensure the 
solution's effectiveness. 

 

3 Adaptive weighted dynamic case 

retrieval algorithm (AWDCR) 

3.1 Algorithm design ideas 

3.1.1 Multi-source data real-time monitoring 

mechanism 

Building a real-time data acquisition network is the 
key to achieving comprehensive and accurate control of 
coal mine production. The network relies on various 
sensors, such as equipment operation status sensors, 
environmental parameter sensors, and personnel 
positioning sensors, which are distributed in multiple 
links such as coal mining, transportation, and ventilation, 
to achieve synchronous collection of equipment 
operation data (such as coal mining machine speed 𝑣𝑐𝑚, 
scraper conveyor current 𝐼𝑠𝑐 ), environmental parameter 
data (gas concentration 𝐶𝑔, temperature 𝑇) and personnel 

status data (position coordinates (𝑥𝑝, 𝑦𝑝, 𝑧𝑝)). 

The data collected by the sensor is transmitted to the 
data aggregation center in real time through wired or 
wireless communication technology. During the 
transmission process, to ensure the accuracy and 
timeliness of the data, a timestamp mechanism is 
introduced to mark the collection time 𝑡  for each data 
point. Suppose the collected multi-source data set is 𝐷 =

{𝑑1, 𝑑2, ⋯ , 𝑑𝑛}, where 𝑑𝑖 represents the 𝑖 data point, 𝑑𝑖 =

(𝑡𝑖, value  𝑖, sensor  type 𝑖
) , 𝑡𝑖is the collection time, value 

 𝑖 is the data value, and sensor type  𝑖 is the sensor type. 

Multi-source data are integrated using data fusion 
technology. Standard data fusion methods include 
weighted averaging and Kalman filtering. Taking the 
weighted averaging method as an example, for data from 
different sensors that reflect the same physical quantity, 
such as data 𝐶𝑔1, 𝐶𝑔2, ⋯ , 𝐶𝑔𝑚  collected by multiple gas 

concentration sensors, the fused value 𝐶𝑔
𝑓
 is calculated as 

follows: 

𝐶𝑔
𝑓

= ∑  𝑚
𝑖=1 𝑤𝑖𝐶𝑔𝑖                                               (1) 

Among them, 𝑤𝑖   is the weight of the 𝑖 sensor data, and 
∑𝑖=1

𝑚  𝑤𝑖 = 1, and the weight 𝑤𝑖   is determined according to 
the accuracy and reliability of the sensor. The fused data 
provides a comprehensive and accurate data basis for the 
subsequent dynamic adjustment of the weight. 

3.1.2 Principle of dynamic weight allocation strategy 
The case attribute weight is not fixed, but is dynamically 

adjusted according to the real-time change trend of the data 
and the degree of influence of the data on the decision 
result. Taking gas concentration as an example, its rising 
rate 𝑟𝐶𝑔

  can be calculated by the following formula: 

𝑟𝐶𝑔
=

𝐶𝑔(𝑡2)−𝐶𝑔(𝑡1)

𝑡2−𝑡1
                                            (2) 

Among them, 𝐶𝑔(𝑡1)  and 𝐶𝑔(𝑡2)   are the gas 

concentrations at time 𝑡1  and  𝑡2 respectively. 

The equipment fault warning signal strength 𝑆𝑓𝑤 can be 

obtained by comprehensively evaluating multiple operating 
parameters of the equipment. Assuming that the equipment 
has 𝑘  operating parameters 𝑝1, 𝑝2, ⋯ , 𝑝𝑘 , each parameter 
corresponds to a weight 𝑞𝑖, then the warning signal strength 
is: 

𝑆𝑓𝑤 = ∑  𝑘
𝑖=1 𝑞𝑖𝑓(𝑝𝑖)                                        (3) 

Among them, 𝑓(𝑝𝑖)  is the function value determined 
according to the degree of deviation of parameter 𝑝𝑖  from 
the normal range. 

Through historical data analysis and expert evaluation, 
the coefficient of influence of each data on the decision 
result is determined. 𝛼𝑗 , 𝑗  represents different data types. 

The weight adjustment model is established using dynamic 
programming algorithm or adaptive control theory. Let the 
case attribute weight vector be 𝑊 = (𝑤1 , 𝑤2, ⋯ , 𝑤𝑠), 𝑠 is 
the number of case attributes. At time 𝑡 , the weight 
adjustment function 𝐹 is: 

𝑊(𝑡) = 𝐹 (𝑊(𝑡 − 1), 𝑟𝐶𝑔
(𝑡), 𝑆𝑓𝑤(𝑡), ⋯ , 𝛼𝑗)            (4) 

To ensure the timeliness of weight adjustment, a time 
interval Δ𝑡 is set, and the weight is updated every Δ𝑡. To 
avoid excessive or insufficient weight fluctuations, the 
following constraints are introduced: 

𝑤min ≤ 𝑤𝑖(𝑡) ≤ 𝑤max

 ∑  𝑠
𝑖=1  𝑤𝑖(𝑡) = 1

                                      (5) 

Among them, 𝑤min   and 𝑤max  are the minimum and 
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maximum values of the weight respectively. The general 
function F and specific formulas for dynamically adjusting 
other case attribute weights have been provided. We have 
also described the method for determining acg, the 
"coefficient of the influence of gas concentration on the 
decision result." 

3.2 Detailed steps of the algorithm 

3.2.1 Data preprocessing 
The preprocessed data is subjected to feature 

extraction, and the principal component analysis (PCA) 
method is used to convert high-dimensional data into 
low-dimensional feature vectors. The collected raw data 
is denoised by the wavelet transform denoising method. 
Suppose the original data sequence is 𝑥(𝑛) , and the 
wavelet coefficients  𝑊𝑗,𝑘and scale coefficients 𝑉𝑗,𝑘   of 

different scales are obtained through wavelet 
decomposition, and the wavelet coefficients are 
thresholder: 

𝑊̂𝑗,𝑘 = {
𝑊𝑗,𝑘 ,  if |𝑊𝑗,𝑘| > 𝜆𝑗

0,  otherwise 
                             (6) 

Among them, 𝜆𝑗 is the threshold value at the 𝑗 scale, 

which is determined by an empirical formula or data 
characteristics. Then the processed wavelet coefficients 
are used for wavelet reconstruction to obtain the denoised 
data 𝑥̂(𝑛). 

Normalization is performed, and the minimum-
maximum normalization method maps the data to the 
[0,1] interval. Let the minimum value of the data x be 
𝑥min , the maximum value be 𝑥𝑚𝑎𝑥, and the normalized 
value 𝑥norm  be: 

𝑥norm =
𝑥−𝑥min

𝑥max−𝑥min
                                          (7) 

For missing value filling, if the data missing rate is 
low, the mean of adjacent data is used; if the missing rate 
is high, a model-based method such as a linear regression 
model is used. Suppose the missing data point is 𝑥𝑚𝑖𝑠𝑠, 
and its surrounding known data points are 𝑥1, 𝑥2, ⋯ , 𝑥𝑙, 
and the filling value is predicted by the linear regression 
model: 

𝑥̂𝑚𝑖𝑠𝑠 = ∑  𝑙
𝑖=1 𝛽𝑖𝑥𝑖 + 𝛽0                                   (8) 

Among them, 𝛽𝑖 and 𝛽0  are regression coefficients 
obtained through training. 

The preprocessed data is subjected to feature 
extraction, and the principal component analysis (PCA) 
method is used to convert high-dimensional data into 
low-dimensional feature vectors. Let the original data 

matrix be 𝑋 , and its covariance matrix be 𝐶 =
1

𝑛−1
𝑋𝑇𝑋 

, and the covariance matrix is subjected to eigenvalue 
decomposition: 

𝐶 = 𝑈Λ𝑈𝑇                                                (9) 

Among them, 𝑈 is the eigenvector matrix, and Λ is 
the eigenvalue diagonal matrix. Select the eigenvectors 
corresponding to the first 𝑘 largest eigenvalues to form 
the transformation matrix 𝑃, then the eigenvector 𝑌 after 
dimensionality reduction is: 

𝑌 = 𝑋𝑃                                                 (10) 

PCA-reduced features (retaining 95% variance) serve 
as case attributes, with dynamic weights applied to 
principal components (e.g., gas-related PC1 weighted 
20% higher during anomalies). 

 

3.2.2 Initial weight setting 
In the initialization stage of the case library, the analytic 

hierarchy process (AHP) is used to determine the initial 
weight. Construct the judgment matrix 𝐴 , assuming that 
there are 𝑛 case attributes, and the judgment matrix element 
𝑎𝑖𝑗   represents the importance of the 𝑖 attribute relative to 

the 𝑗  attribute. The value range of 𝑎𝑖𝑗   is 1 − 9 and its 

reciprocal, and satisfies 𝑎𝑖𝑗 =
1

𝑎𝑗𝑖
, 𝑎𝑖𝑖 = 1 . 

By calculating the maximum eigenvalue 𝜆max   of the 
judgment matrix and the corresponding eigenvector 𝑊𝐴𝐻𝑃 , 
the eigenvector is normalized to be the initial weight vector. 
The maximum eigenvalue is obtained by solving the 
equation: 

𝐴𝑊𝐴𝐻𝑃 = 𝜆max𝑊𝐴𝐻𝑃                                    (11) 

Then, the consistency index 𝐶𝐼 and random consistency 
index 𝑅𝐼 are used for consistency check: 

𝐶𝐼 =
𝜆max−𝑛

𝑛−1

𝐶𝑅 =
𝐶𝐼

𝑅𝐼

                                                   (12) 

When 𝐶𝑅 < 0.1, the judgment matrix has satisfactory 
consistency. 

When using the weight extraction method, first 
calculate the feature weight 𝑝𝑖𝑗 of the 𝑖  case under the 𝑗 

attribute: 

𝑝𝑖𝑗 =
𝑥𝑖𝑗

∑  𝑚
𝑖=1  𝑥𝑖𝑗

                                                  (13) 

Among them, 𝑥𝑖𝑗  is the 𝑗 attribute value of the 𝑖 case, 

and m is the number of cases. Then calculate the entropy 
value𝑒𝑗 of the 𝑗 attribute: 

𝑒𝑗 = −
1

ln 𝑚
∑  𝑚

𝑖=1 𝑝𝑖𝑗 ln 𝑝𝑖𝑗                                    (14) 

The entropy weight 𝑤𝑗
𝑒   is: 

𝑤𝑗
𝑒 =

1−𝑒𝑗

∑  𝑛
𝑗=1  (1−𝑒𝑗)

                                               (15) 

3.2.3 Real-time weight adjustment process 
During the production process, when the monitored data 

changes, the weight adjustment module starts working. 
Taking the gas concentration attribute weight  𝑤𝐶𝑔

as an 

example, let the sensitivity coefficient of the current 
production stage to the gas concentration be  𝛾𝐶𝑔

, and its 

value is determined according to production tasks, 
ventilation conditions and other factors. The gas 
concentration weight adjustment formula is: 

𝑤𝐶𝑔
(𝑡) = 𝑤𝐶𝑔

(𝑡 − 1) + 𝛾𝐶𝑔
⋅ 𝑟𝐶𝑔

(𝑡) ⋅ 𝛼𝐶𝑔
              (16) 

Among them, 𝑤𝐶𝑔
(𝑡 − 1)  is the gas concentration 

weight at the previous moment, 𝑟𝐶𝑔
(𝑡)   is the gas 

concentration rising rate at the current moment, and 𝛼𝐶𝑔
 is 
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the coefficient of the influence of gas concentration on the 
decision result. The adjusted weight must meet the 
constraints: 

𝑤min ≤ 𝑤𝐶𝑔
(𝑡) ≤ 𝑤max

 ∑  𝑠
𝑖=1  𝑤𝑖(𝑡) = 1

                                 (17) 

If the adjusted weight exceeds the range, 
normalization is performed to ensure its rationality and 
effectiveness. Through this real-time weight adjustment 
mechanism, case retrieval can more accurately reflect the 
actual situation of current coal mine production and 
improve the accuracy and reliability of decision-making. 

4 Experimental simulation 

4.1 Experimental environment and data set 

4.1.1 Introduction to the Matlab simulation platform 
As a powerful scientific computing software, 

MATLAB has shown outstanding advantages in 
algorithm simulation, data analysis, and visualization, 
making it an ideal simulation platform for this 
experiment. It has a rich and easy-to-use function library, 
significantly simplifying the implementation process of 
complex algorithms. Regarding algorithm simulation, 
MATLAB provides efficient matrix operation functions, 
which can quickly process large-scale data and accelerate 
the iteration and verification of algorithms. For example, 
matrix operations can efficiently complete data 
transformation and weight calculation when 
implementing the adaptive weight dynamic case retrieval 
algorithm (AWDCR). 

4.1.2 Description of actual production data of a coal 

mine 
The experiment selected the actual production data of 

a large coal mine with a large production scale and an 
annual coal output of millions of tons. Its mining method 
adopts advanced comprehensive mechanized coal mining 
and is equipped with modern equipment. The coal mining 
equipment consists mainly of high-power coal mining 
machines. The transportation equipment includes scraper 
conveyors, belt conveyors, etc., and the ventilation 
equipment includes axial flow fans, etc. The collected 
production data is one year, covering the entire 
production cycle, and the total data volume exceeds 
100,000 records. The data contains a variety of attributes, 
among which the production output records the daily coal 
mining volume in detail, reflecting the production 
efficiency of the coal mine. The number of equipment 
failures accurately counts the frequency of failures of 
different equipment in different periods, providing a 
basis for analyzing equipment stability. The safety 
accident rate records various safety accidents and is a key 
indicator for measuring the safety level of coal mine 
production. In addition, it also includes equipment 
operating parameters (such as coal mining machine speed 
and motor current), environmental parameters (gas 
concentration, temperature, humidity), and other data. 
These data genuinely reflect the various conditions in the 
coal mine production process, are highly authentic and 
representative, and can effectively test the algorithm's 
performance in actual scenarios. 

 

4.2 Experimental design and indicator 

setting 
4.2.1 Comparison algorithm selection (traditional 

CBR algorithm) 
The traditional CBR algorithm was selected as the 

comparison algorithm mainly because it has a specific 
application in the field of intelligent decision-making in 
coal mines and is an essential reference for evaluating the 
performance of innovative algorithms. The traditional 
CBR algorithm's basic principle is storing previous cases 
in the case library. When facing new problems, retrieve 
similar instances in the case library through similarity 
calculation and reuse the solutions of similar cases. Its 
characteristic is that it adopts a fixed-weight case retrieval 
method; that is, a fixed weight is assigned to each case 
attribute, and the weight remains unchanged during the 
entire retrieval process. The similarity calculation method 
is relatively simple, usually using Euclidean distance or 
cosine similarity. The experiment uses the same hardware 
platform (the same high-performance workstation 
configured with an Intel Xeon processor and 64GB 
memory) to ensure the consistency of the operating 
environment of the comparison algorithm and innovative 
algorithms' operating environments. It runs in the same 
MATLAB software environment. At the same time, the 
same data set and experimental scenario are input to the 
two algorithms to ensure that external factors do not 
interfere with the experimental results and can accurately 
reflect the performance differences of the algorithms 
themselves. 

4.2.2 Experimental scenario setting 
One hundred experimental scenarios were carefully 

designed to cover various working conditions in coal mine 
production comprehensively. The typical working 
condition scenario simulates the stable production state of 
the coal mine, the regular operation of the equipment, and 
the environmental parameters are within the safe range. For 
example, the gas concentration is stable between 0.5% and 
0.8%, and the equipment operating parameters fluctuate 
within the rated range. The equipment failure working 
condition scenario sets the failure conditions of various 
equipment components. For example, the coal mining 
machine pick wear scenario simulates the process from 
slight to severe pick wear. At this time, the cutting 
efficiency of the coal mining machine is reduced, and the 
motor current will increase accordingly; the scraper 
conveyor chain break scenario is manifested as the scraper 
conveyor suddenly stops running and the conveying 
volume drops to zero. The environmental abnormal 
working condition scenario includes scenarios with 
different degrees of gas concentration increase. The gas 
concentration gradually increases from the normal range to 
the safety warning value or even exceeds the warning value, 
simulating dangerous situations such as gas leakage; the 
abnormal temperature increase scenario reflects the 
potential fire hazards underground. The temperature 
gradually rises from normal temperature, triggering 
temperature alarms of different levels. By setting up these 
diverse experimental scenarios, the paper ensures that the 
input data features are rich and the range of variation is vast 
so the algorithm's performance can be thoroughly tested in 
complex actual situations. 



Adaptive Weighted Case-Based Reasoning for Intelligent Coal… Informatica 49 (2025) 17–24 23  

4.2.3 Evaluation indicators (retrieval time, decision 

accuracy, etc.) 
The retrieval time is defined as the interval from the 

input query case to the algorithm outputting the retrieval 
result in milliseconds (ms). By recording the time, it 
takes for the algorithm to retrieve the case in each 
experiment, the retrieval efficiency of the algorithm can 
be evaluated. The decision accuracy is obtained by 
comparing it with the correct decision results in actual 
production. In the experimental data, the correct decision 
plan for each scenario is pre-marked. If the decision 
result output by the algorithm is consistent with the 
proper result, it is counted as an accurate decision. Recall 
rate and average accuracy are introduced as evaluation 
indicators. The recall rate reflects the proportion of 
relevant cases the algorithm can retrieve to all 
appropriate cases. Average accuracy comprehensively 
considers the accuracy under different recall rates and 
evaluates the algorithm's performance under different 
retrieval depths. 

4.3 Experimental results and analysis 
Figure 4 compares the average accuracy of the 

traditional CBR and AWDCR algorithms at different 
production outputs. When the production output 
increased from 80% to 120% of the planned output, the 
average accuracy of the traditional CBR algorithm rose 
from 70% to 90%, but the overall accuracy was low; the 
average accuracy of the AWDCR algorithm increased 
from 80% to 100%, which was consistently higher than 
the traditional CBR algorithm. The AWDCR algorithm 
can accurately match the case characteristics under 
different production outputs and improve the decision 
accuracy through adaptive weight adjustment. This 
shows that the AWDCR algorithm can make more 
accurate decisions when the production output fluctuates, 
provide more precise guidance for coal mine production 
plan adjustment and output optimization, significantly 
improve the accuracy of production decisions, and is 
better than the traditional CBR algorithm. 

 

Figure 1: Comparison of algorithm retrieval time under 

different gas concentrations. 

Figure 2 compares the decision accuracy of the 
traditional CBR algorithm and AWDCR algorithms' 
decision accuracy under different equipment fault levels. 
From minor to serious faults, the accuracy of the 
conventional CBR algorithm dropped from 80% to 60%, 
a significant decrease. In comparison, the accuracy of the 

AWDCR algorithm remained above 80%, with a 
minimum of 81%. The AWDCR algorithm can accurately 
identify key features and make more accurate decisions 
when the equipment fault level changes by adaptive 
weight adjustment. This shows that the AWDCR 
algorithm has more advantages in equipment fault 
diagnosis, can effectively deal with the complex and 
changeable equipment faults in coal mine production, and 
provides a more reliable decision-making basis for 
equipment maintenance and production safety, 
significantly better than the traditional CBR algorithm. 

 

Figure 2: Comparison of algorithm decision accuracy 

under different equipment failure levels. 

Figure 3 plots the changes in recall rates of the 
traditional CBR and AWDCR algorithms under different 
ambient temperatures. When the ambient temperature rises 
from 25℃ to 40℃, the recall rate of the conventional CBR 
algorithm gradually increases from 60% to 82%, but the 
overall recall rate is low; the recall rate of the AWDCR 
algorithm rises from 70% to 92%, which is always higher 
than the traditional CBR algorithm, and the gap increases 
with the increase in temperature. The AWDCR algorithm 
can better adapt to changes in ambient temperature and 
recall more relevant cases by dynamically adjusting 
weights. This shows that the AWDCR algorithm can 
retrieve relevant cases more comprehensively when 
responding to changes in ambient temperature, providing 
richer information support for environmental monitoring 
and safety management in coal mine production and 
effectively making up for the problem of insufficient recall 
rate of the traditional CBR algorithm. 

 

Figure 3: Comparison of algorithm recall rates at different 

ambient temperatures. 

Figure 4 compares the average accuracy of the 
traditional CBR and AWDCR algorithms at different 
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production outputs. When the production output 
increased from 80% to 120% of the planned output, the 
average accuracy of the traditional CBR algorithm rose 
from 70% to 90%, but the overall accuracy was low; the 
average accuracy of the AWDCR algorithm increased 
from 80% to 100%, which was consistently higher than 
the traditional CBR algorithm. The AWDCR algorithm 
can accurately match the case characteristics under 
different production outputs and improve the decision 
accuracy through adaptive weight adjustment. 
AWDCR’s 100% accuracy at 120% production output is 
statistically significant (p<0.01) compared to traditional 
CBR’s 90%, based on paired t-tests. This shows that the 
AWDCR algorithm can make more accurate decisions 
when the production output fluctuates, provide more 
precise guidance for coal mine production plan 
adjustment and output optimization, significantly 
improve the accuracy of production decisions, and is 
better than the traditional CBR algorithm. 

 

Fig. 4. Comparison of average accuracy of algorithms under different 

production outputs. 

5  Conclusion 
This paper successfully built a coal mine intelligent 

decision support system based on CBR and implemented 
the AWDCR algorithm. Experimental simulation and 
practical application have effectively verified the 
significant advantages of the algorithm in retrieval 
efficiency and decision accuracy. By dynamically 
adjusting the case attribute weights, compared with 
traditional algorithms, the retrieval time is shortened by 
20%, and the decision accuracy is increased from 80% to 
90%, which significantly enhances the production 
control capability of coal mines, reduces the occurrence 
rate of faults, and improves production efficiency. 
However, in the face of highly complex working 
conditions, such as rare geological conditions, the 
problem of insufficient completeness of the case library 
is prominent. Future work will focus on expanding the 
scope of the case library and actively collecting special 
working condition data for supplementation; at the same 
time, integrating deep learning technology. Specifically, 
we will integrate LSTM for temporal anomaly prediction 
(e.g., temperature trends) with CBR, using a hybrid 
model where LSTM outputs adjust case weights in real-
time during retrieval, to better meet the high 
requirements of coal mine intelligent development and 
continue to provide reliable decision support for coal 

mine safety production. 
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