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Modern business settings are complex and risk-sensitive, requiring sophisticated and adaptable solutions for
informed organizational decision-making. Existing solutions use static or rule-based models that cannot
dynamically analyze real-time decision risks. This research introduces DynaRisk-OptNet, a deep learning
system for enterprise decision risk optimization that combines Hierarchical Dual-Attention Temporal Graph
Reinforcement Network (HDAT-GRN) and Soft Actor-Critic (SAC) reinforcement learning. The model
dynamically captures temporal dependencies, cross-feature interactions, and structural risk propagation. Dual
attention weights and gradient-based saliency improve interpretability. Results on a real-world enterprise risk
dataset showed that the system outperformed recent transformer-based benchmarks with a TRPE of 0.93, an
AASI of 3.8, and an FAF'S of 0.89 for feature attribution fidelity. To achieve scalability and high inference speed
(17.6 ms/sample), the implementation made use of PyTlorch and DGL. These findings confirm that the model is
both practically applicable and easily explicable, making it an excellent choice for fast-paced, high-stakes
business settings. As a result, DynaRisk-OptNet offers a robust and intelligent framework for risk-aware

organizational decision optimization.

Povzetek: Razvita je dinamicna optimizacija podjetniskih tveganj DynaRisk-OptNet: hierarhicni dvojno-
pozorni casovni graf okrepitvenega ucenja (HDAT-GRN) s SAC. Sistem razlozi vplive, preseze transformerje
(TRPE 0,93; AASI 3,8, FAFS 0,89) in omogoca hitro skiepanje.

1 Introduction

Enterprises face increasingly complicated and turbulent
situations in the digital age. Organizational executives face
market volatility, regulatory changes, technological
disruption, and internal operational changes [1]. Intelligent
decision-making is more crucial than ever as companies
strive for agility and long-term sustainability. Poor
decisions harm an organization's reputation, compliance,
stakeholder confidence, and finances [2]. Thus, decision-
makers require sophisticated models that can accurately
predict risks, weigh outcomes, and recommend optimal
methods in real-time.

Deterministic models and predefined rule sets hinder
the adaptability of traditional enterprise risk management
(ERM) systems to real-time uncertainty [3]. These systems
struggle with changing data and miss latent decision
variable dependencies. In fast-paced situations like
investment planning, resource allocation, and supply chain
operations, static approaches hamper rapid and accurate
decision-making [4]. Enterprise data cannot model
temporal dynamics or structural changes, requiring
innovative solutions. Demand for intelligent systems that

learn from historical data and adjust dynamically is rising
to fill this gap.

Deep learning advances in reinforcement learning,
temporal graph networks, and attention processes promise
adaptive decision systems [5]. These models use attention-
based interpretation to record sequential behavior, detect
structural risk propagation, and highlight crucial decision
determinants. By optimizing long-term performance in
uncertain contexts, reinforcement learning systems like
Soft Actor-Critic (SAC) enable autonomous policy
development [6]. Input importance scores promote
transparency in attention systems. Integrating these
components creates interpretable and scalable models.
This research uses these strengths to develop DynaRisk-
OptNet for real-time, risk-aware enterprise decision
optimization [7].

Traditional decision-making systems' static rules and
limited temporal awareness make them unsuitable for real-
time risk variables in dynamic corporate situations. The
proposed research introduces DynaRisk-OptNet, a deep
learning-based platform for dynamically analyzing and
optimizing corporate management decision risks [8]. A
Hierarchical Dual-Attention Temporal Graph
Reinforcement Network (HDAT-GRN) captures temporal
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patterns, cross-feature interactions, and structural
dependencies. When combined with the Soft Actor-Critic
(SAC) method, it generates an optimal policy under
uncertainty. In various corporate situations, this method
enhances risk-aware decision-making, reduces losses, and
improves operational efficiency.

1.2 Research problem and objectives

1. Despite advances in intelligent analytics, most
business decision support systems still rely on static rule-
based frameworks or retrospective statistical models.
Conventional techniques often overlook temporal
variations and complex interdependencies among risk
factors, and they cannot dynamically adjust to changing
business circumstances [9]. Since they cannot capture real-
time choice risks, they often fail to guide optimum actions
under uncertainty. This constraint highlights the need for a
more adaptable, context-aware, and data-driven model,
such as DynaRisk-OptNet, to enhance decision-making
accuracy and mitigate enterprise-level risk. The key
objectives of this research are:

2. To provide a dynamic deep learning system for
corporate decision risk assessment using multi-source,
real-time operational data.

3. To improve strategic decisions by reducing risk
effects and increasing operational advantages and policy
stability using reinforcement learning, especially Soft
Actor-Critic (SAC).

1.3. Methodology overview

This research suggests that DynaRisk-OptNet can be
used to solve the problem. This system utilizes a
Hierarchical Dual-Attention Temporal Graph
Reinforcement Network (HDAT-GRN) to describe the
states of large companies as temporal graphs, with nodes
representing divisions, key performance indicators (KPIs),
and variables that influence decisions, and edges
representing interdependencies or influence [10]. The
HDAT-GRN architecture collects consecutive interactions
and contextual linkages across business functions using
attention-enhanced LSTM encoders [11]. Dual attention is
employed to focus on high-impact temporal trends and
critical decision-making elements. A Soft Actor-Critic
(SAC) reinforcement learning system balances exploration
and exploitation, ensuring integration of optimal actions
under unpredictability to learn the decision policy [12].
The Contributions of Research presents several notable
contributions to the field of intelligent enterprise risk
management and decision optimization:

To introduce a new hierarchical dual-attention
framework to model dynamic interdependencies among
enterprise variables over time and organizational levels.

To implement a temporal graph-based learning
technique to mirror real-world business networks and their
shifting risk structures.

To integrate a deep reinforcement learning module
(SACQ) to enhance decision-making in complex enterprise
environments.
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To enhance model interpretability by prioritizing
crucial decision features and time points with dual-
attention layers.

To validate the model on a real-world enterprise
dataset and compare it to conventional approaches,
proving improved accuracy and risk reduction.

Developed for enterprise decision risk modeling,
DynaRisk-OptNet is unique in that it combines a dual-
attention mechanism with temporal graph neural networks.
This area is currently understudied in deep reinforcement
learning. Previous models like Decision Transformer and
PSO-SDAE have tackled time-series risk or feature
learning. Still, they don't have the power to adapt in real-
time or provide uniform interpretability. Enabling both
fine-grained attribution and stable optimization under
uncertain, multi-factor contexts, our strategy uniquely
blends hierarchical attention over graph-structured risk
data with SAC-driven policy learning. In addition, unlike
other systems that rely solely on transformers, this one can
be understood using SHAP and Integrated Gradients,
which boosts confidence in enterprise applications. These
integrations add something substantial to the current
approaches.

Structure of the rest of the paper: Section 2 reviews
enterprise risk management, deep reinforcement learning,
and temporal graph modeling research. Section 3 describes
the DynaRisk-OptNet framework and its HDAT-GRN
architecture. Section 4 describes the experimental setup,
dataset, and model testing measures. Results, comparative
analysis, and interpretability are covered in Section 5.
Section 6 concludes the paper by presenting the findings,
discussing real-world implications, and outlining future
research directions.

1.4. Research questions

The following research questions guide the research:

1. How can real-time enterprise decision risk
assessment and optimization use deep learning
and reinforcement learning?

2. How do temporal and feature-level attention
mechanisms improve enterprise decision model
interpretability and effectiveness?

3. Can temporal graph-based reinforcement learning

outperform risk assessment and decision-making in
enterprise settings?

2 Related work

Crovini et al. [13] The research employs a qualitative case
study technique, incorporating embedded risk analysis and
an inductive reasoning algorithm, to identify patterns in
decision-making and risk perception. The collection
includes data from three North-West Italian manufacturing
SME:s of various sizes and ownership. Research indicates
that risk management is fundamentally intertwined with
entrepreneurial decision-making, supporting the RM-DM
(Risk Management—Decision Making) paradigm. The tiny
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sample size limits generalizability but offers substantial
theoretical ~contributions. Integrating intuitive risk
reactions with formal decision tools improves SME
resilience and strategic planning, according to the study.

Settembre-Blundo et al. [14] This study links risk
management to sustainability goals across organizational
levels using an economic hermeneutics-based interpretive
algorithm. The multidimensional risk evaluation model is
constructed using theoretical concepts and qualitative
assessments. The significant findings include a dual
theoretical and operational paradigm for risk and
sustainability management, which enables risk-based
evaluations of sustainability. The conceptual paradigm
lacks empirical confirmation and needs real-world
implementation. The research employs an integrated risk
analysis to assess sustainability, thereby supporting the
company's long-term resilience and development goals.

Rajagopal et al. [15] This study compares Al-based
and human-driven policymaking in terms of decision
precision, innovation effect, data volume, speed, and
generalizability using a contextual mapping method. No
numerical dataset is employed; instead, the research
develops a conceptual model using literature and corporate
examples. Al improves entrepreneurial decisions when
linked with consumer expectations, industry norms, and
stakeholder engagement. It relies on theoretical ideas
without empirical testing, which is its main drawback. This
research develops a strategic framework that ties Al tools
to decision-making efficiency, enabling the ethical
integration of technology in company policymaking.

Hu et al. [16] The study proposes a fuzzy multi-rule-
based decision-making algorithm that guides Al
integration in internal audit frameworks using soft
computing, fuzzy set theory, and multi-attribute decision-
making. Modeling strategy interdependencies using expert
judgments does not utilize an empirical dataset. The
findings prioritize Al application strategy, governance,
human aspects, and data infrastructure. Its most significant
drawback is expert subjectivity and a lack of cross-
industry validation. The concept optimizes Al audit
deployment in complicated corporate contexts using a
structured, multidimensional framework.

2.2 Deep learning in risk assessment and
optimization

Cui et al. [17] This study introduces the PSO-SDAE model,
which enhances supply chain financial risk forecasting by
incorporating Particle Swarm Optimization, Stacked
Denoising Autoencoders, and a distributed Reinforcement
Learning (RL) algorithm. Real-time logistics and
procurement financial datasets are utilized to extract
robust feature representations and inform optimized
decisions. High forecasting accuracy and higher
processing rates enable proactive and real-time risk
reduction. Model complexity, computational load, and
sensitivity to starting parameters are drawbacks. Deep
learning and reinforcement learning (RL) enable adaptive,
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data-driven financial decision-making in predictive risk
analytics.

Yang et al. [18] Deep generative models—specifically,
GANs and VAEs—are evaluated for risk control in
financial time series prediction during crises. The models
were tested for Value at Risk (VaR) and return rate
prediction accuracy using historical stock market datasets,
including crash volatility and return data. GANs
outperformed VAR estimation, VAEs surpassed return
forecasting, and the integration of hybrid models enhanced
performance. Model instability amid intense volatility and
significant resource needs is a limitation. This study
presents a robust framework for utilizing generative deep-
learning models to improve financial risk assessments and
informed decision-making.

Oyewola et al. [19] This study predicts oil and gas
stock prices using Deep LSTM Q-Learning (DLQL) and
DLAQL models in a Markov Decision Process (MDP)
framework. Both models learned optimal trading rules
from CVE, MPLX, LNG, and SU stock data. Attention
methods improved DLAQL's crucial feature capture
accuracy. Our models enhanced forecast accuracy and
decision-making efficiency. Overfitting to historical data
and market oddities is a limitation. This research promotes
the use of reinforcement learning-based financial risk and
investment strategy forecasting in turbulent environments.

Wang et al. [20] Machine learning (ML) applications
in risk and resilience assessment for buildings, bridges,
pipelines, and electric power systems are reviewed in this
article. It integrates deep learning, support vector machines,
and ensemble models for damage detection, fragility
modeling, and system recovery prediction. ML's rising
significance in automated, accurate, and scalable
evaluations is highlighted in the paper through the use of
structural health monitoring, sensor-based metrics,
simulations, and post-disaster reporting. The results
demonstrate significant improvements in predictive and
real-time decision-making. Data paucity for infrequent
hazard events, poor cross-domain generalizability, and
uninterpretable models remain. This study enhances the
understanding of how machine learning (ML) improves
structural resilience evaluation and lays the groundwork
for intelligent infrastructure system research.

2.3 Integrated frameworks for dynamic risk
optimization

Hu et al. [21] This study optimizes 17 Al-driven cost
management elements in civil engineering projects using a
hybrid  Multi-Criteria  Decision-Making (MCDM)
algorithm that combines Delphi, Interpretive Structural
Modeling (ISM), and MICMAC analysis. Expert surveys
and structured interviews collected infrastructure project
data. Results highlighted Al-based risk mitigation, real-
time estimating, and data analytics integration as
significant influencers of cost control. Expert judgment,
subjectivity, and a lack of long-term project data limit the
study. This structured MCDM approach enables civil
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engineering stakeholders to select Al strategies that
optimize budget efficiency and ensure financial certainty.

Safaeian et al. [22] This study proposes an enhanced
catastrophe risk management framework that incorporates
a utility-based optimization model, taking into account
interdependent risk linkages. One exact optimization
method and two metaheuristic algorithms—Genetic
Algorithm (GA) and Particle Swarm Optimization
(PSO)—are used to determine optimal risk response
methods. The study shows improved strategy selection and
resilience planning using synthetic and historical disaster
management datasets aligned with worldwide project
management standards. Key results suggest that
metaheuristics outperform precise approaches in terms of
scalability and solution diversity. Modeling risk
interdependence and generalizability to large-scale, real-
time disaster scenarios is a drawback. This work optimizes
strategic  catastrophe response by accounting for
complicated risk interconnections.

Riad et al. [23] This paper presents a conceptual
framework for Al-enhanced supply chain resilience,
utilizing machine learning, predictive analytics, and real-
time data processing. No dataset is used because it's
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conceptual, but empirical ideas and case studies are. Al
enhances demand forecasting, inventory optimization, and
risk response while facilitating seamless stakeholder data
exchange. The lack of empirical testing and theoretical
assumptions may limit real-world application. The work
proposes a strategic approach for Al-driven resilience
planning in complicated supply chains.

Shahbazi et al. [24] The Cross-Domain Adaptive
Recommendation System (CDARS) personalizes social
media, e-commerce, and entertainment suggestions using
real-time behavioral tracking, multimodal sentiment
analysis, and time-aware embeddings. An Explainable
Adaptive Learning (EAL) module, combined with the
development of knowledge graphs, enables visible and
real-time preference adjustments. Experimental results on
multi-domain benchmark datasets demonstrate 7.8%
improvements in click-through rate (CTR) and 8.3% in
engagement over current models. Real-time learning has
processing overhead, and less active user profiles may
have sparse data. CDARS introduces dynamic,
interpretable, and emotionally aware recommendation
systems.

Table 1: Summary of Al and deep learning in risk management

Study Focus Key Idea

Limitation Gap

SMEs & Risk

Needs broader validation

Crovini et al. [13]

Risk is part of decision-
making in SMEs

Small sample

Settembre-Blundo
et al. [14]

Risk & Sustainability

Creates a combined model for
risk and sustainability

No real-world test

Needs implementation in
practice

Rajagopal et al. [15]

Al vs. Human Policy

Al improves decisions when
aligned with the context

Theoretical only

It needs real data testing

financial risk

model

Hu et al. [16] Al in Audits Uses fuzzy logic to guide Al Expert bias Needs cross-industry testing
use in audits
Cui et al. [17] Supply Chain Uses deep learning + RL for Complex, heavy Needs simpler versions

Yang et al. [18]

Financial Crises

GANSs/VAEs improve risk
prediction

Model instability

Needs better handling of
volatility

building/bridge risk

Oyewola et al. [19] Oil & Gas RL models learn trading rules Overfitting risk It needs more general
models
Wang et al. [20] Infrastructure ML helps assess Limited disaster data | It needs better

generalization & data

Hu et al. [21]

Civil Projects

MCDM ranks Al cost-saving
tools

Expert-based

Needs more data from
projects

forecasting, and planning

Safaeian et al. [22] Disasters Uses GA/PSO to improve Synthetic data It needs real disaster data
disaster response
Riad et al. [23] Supply Chain Al helps resilience, No testing Needs a working prototype

Shahbazi et al. [24]

Personalization

Real-time recommendation
system with emotion analysis

High processing load

Needs optimization for slow
users
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Recent works in enterprise risk modeling have adopted
Al-driven methods for better forecasting and decision
support. Studies such as Cui et al. [17] and Yang et al. [18]
emphasize the role of deep learning and reinforcement
learning in financial risk forecasting. Oyewola et al. [19]
extend this to real-time trading decisions with attention-
based mechanisms. However, these approaches often lack
comprehensive  interpretability and  cross-domain
generalization. Table 1 summarizes the key contributions
and limitations of these models. It emphasizes
reinforcement learning, fuzzy logic, GANs, and multi-
criteria decision-making. These methods enhance decision
accuracy, forecasting, and resilience; however, drawbacks
include the use of short datasets, a lack of real-world
testing, and model complexity. Though theoretically sound,
the study typically lacks empirical support. The results
indicate that Al is becoming increasingly crucial in
dynamic risk assessment; however, further efforts are
needed to simplify models, enhance generalizability, and
apply frameworks to real-world scenarios.

Temporal Risk
Encoder

Feature Attention

Temporal
Embedding
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3 Research methodology

The architecture of DynaRisk-OptNet, a deep learning-
based dynamic model for business decision risk
assessment and optimization, is illustrated in Figure 1. The
Input Data Layer collects time-series measurements (net
loss, frequency, and severity) and business unit data (risk
categories and dependencies). The Temporal Risk Encoder
uses LSTM and dual attention layers to extract temporal
relationships and key characteristics across time steps
from these inputs. A Temporal Graph Convolutional
Network (T-GCN) models business unit correlations and
shared hazards to create an Enterprise Risk Graph from
this output. The Decision Optimizer dynamically
generates risk-minimizing and return-maximizing policies
using Soft Actor-Critic (SAC) reinforcement learning.
Finally, Interpretability Modules (SHAP, Heat Map)
provide both visual and analytical insights into risk factors.
The architecture supports DynaRisk-OptNet aims by
enabling real-time, adaptable, and interpretable decision-
making in complicated corporate contexts.
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Figure 1: The architecture of DynaRisk-OptNet: A deep learning framework for enterprise risk assessment and
optimization

The primary data elements of the risk-based decision
optimization model are described in Table 2. Each area
helps analyze, model, and optimize enterprise-level risks,
encompassing financial and operational risk factors such
as loss frequency, severity, recovery, and business unit
context. Deep learning models require these traits to

recognize temporal patterns, assess risk, and predict high-
impact events. Detailed descriptors enable data-driven
decision-making across organizational domains by
ensuring comprehensive analysis and informed decision-
making.
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Table 2: Data field description for risk-based decision optimization

Field Name Description Relevance to Research

Business Refers to the operational division (e.g., | It helps identify risk patterns across
Retail Banking, Asset Management). different sectors.

Risk Category Type of risk event (e.g., External It is crucial for classifying and modeling
Fraud, Employment Practices). risk profiles.

Frequency Number of occurrences of a specific Enables temporal analysis and event-
risk event. based training in deep learning models.

Gross Loss Total financial loss before any Useful for training models to predict and
recovery. flag high-risk scenarios.

Net Loss The final loss after recovery is Essential for cost estimation and
deducted from the gross loss. financial impact modeling.

Recovery Amount Amount recovered through insurance It helps assess the effectiveness of risk
or mitigation actions. response strategies.

Severity Impact per event (inferred or equal to Enables prioritization of risk events
net loss per event). based on damage potential.

3.1 Temporal risk sequence encoder
Contemporary enterprise decision-making processes are
complicated and vulnerable to multiple threats from
turbulent market dynamics, operational disruptions, and
unexpected business abnormalities. Traditional, static, or
rule-based risk management frameworks are often
ineffective in evaluating and optimizing decisions in real
time. DynaRisk-OptNet dynamically models and
optimizes enterprise decision risks using deep learning and
advanced reinforcement learning algorithms to address
this major constraint.

a) Dual-attention weight calculation

The model consists of a temporal graph structure G, =
(V, Et, X;), reflecting interactions between business units,
risk categories, and operational indicators over time. On
this graph, the Hierarchical Dual-Attention Temporal
Graph Reinforcement Network (HDAT-GRN) prioritizes
node-specific and temporal risk features through dual
attention. At time t, the attention weight between two
nodes is defined as in equation 1:

gt = _ P @ Whiwh;))
Y Zkengexp (o(al [Wh||Whi]))

)

The HDAT-GRN model's dual-attention mechanism
utilizes the attention coefficient to compute the weight of
attention between different pairs of nodes by combining
feature vectors, a learnable weight vector, and a nonlinear
activation function. Important business characteristics,
such as Net Loss and Severity, are highlighted through
interactions between nodes.

afj To determine the relative importance of node j's
features in refining node i's state representation at time ¢.
To compute this, the concatenated feature vectors of nodes
i and j are passed through a learnable weight vector a and

a nonlinear activation function o () as [Wh;||[Wh;Using
the weight matrix W, business risk attributes, including
gross loss, frequency, and severity, are projected onto a
higher-dimensional latent space, enabling richer relational
modeling. Using the concatenation operator, transformed
vectors are merged before compatibility scoring. To ensure
positivity, the score is exponentiated using exp(:) and
normalized using a softmax across the neighborhood of
nodes directly connected to i at time t. This normalization
ensures that all attention coefficients add up to one,
allowing the model to balance neighbor influences while
updating node representations proportionally. This method
highlights operationally critical risk propagation patterns.
A proprietary LSTM encoder captures temporal
relationships in risk data, allowing the model to recognize
oscillations and latent patterns across sequential data
points.

b) Soft actor-critic (SAC) policy

The advanced off-policy, model-free reinforcement
learning approach, Soft Actor-Critic (SAC), is designed for
continuous action spaces and high-variance decision
contexts. To balance exploration and exploitation, SAC
promotes policy stochasticity with an entropy
regularization term, unlike deterministic strategies. SAC is
suitable for volatile enterprise decision-making
environments because it maximizes predicted cumulative
benefits and policy entropy, thereby minimizing
convergence to restricted, risk-prone strategies. Its dual Q-
function design and temperature-adjustable entropy term
enable stable, sample-efficient learning, allowing the
model to negotiate uncertain operational landscapes and
improve risk-sensitive management strategies through
adaptive, data-driven optimization.

J(@) = Esa-p[Q(s, a) — alogm(als)]
2)
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The Soft Actor-Critic (SAC) policy goal is described
in equation (2). In this goal, the exploratory behavior is
ensured by the entropy term, which is scaled by a
temperature parameter o. The value of actions under
uncertainty is evaluated using enterprise decision data by
the Q-function. Objective function J(m) To optimize
policy m, balancing reward maximization and action
entropy for balanced decision-making. The expectation
term [, Averages state-action pairings from a dataset
made of enterprise decision records or replay buffers. The
Q(s,a) Function predicts the cumulative reward from
choosing action and in state s and obeying policy . The
temperature parameter a influences the weight of the
entropy component, with greater values favoring broad
exploration and lower values promoting targeted, high-
reward activities. The entropy term, logm(a|s), accounts
for uncertainty or unpredictability in action selection,
preventing inflexible strategies from forming prematurely.
This structure lets the agent make adaptive, risk-aware
decisions in dynamic enterprise situations while iteratively
learning from data.

3.2 Enterprise risk graph constructor

The DynaRisk-OptNet system models enterprise
management decision risk as a dynamic, time-evolving
graph, where business units are represented as nodes and
interdependencies are depicted via shared or correlated
risk categories as edges. This module uses a Temporal
Graph Convolutional Network (T-GCN) with enhanced
Laplacian normalization and temporal attention techniques
to capture structural linkages and temporal risk
propagation. In a temporal enterprise graph at time t, G, =
(V,E,) with node feature matrix X, € RV*F where N is
the number of businesses. The graph convolution
procedure for layer [ + 1 is expressed as in equation 3:

1 1
Ht(Hl) _ a(ﬁt ZAtﬁt th(l)W(l) + B®)
(€)

Adjacency matrix in the proposed Temporal Graph
Convolutional Network (T-GCN) model: A, = At +1
indicates business unit connections at time t, including
self-loops for separate risk data processing. The diagonal
matrix: D, The degree (number of connections) for each
unit is stored in t. Features of nodes Ht(l)Layer-by-layer
updates of Ht(l) are made using learnable weights W ®Vand
B® Biases. Nonlinear activation functions, such as ELU
or LeakyReLU, capture complex patterns. This structure
simulates the relationships and evolution of risk.

Concatenating node embeddings across time slices
and passing them through a temporal attention method
integrates temporal dependencies expressed in equation 4:
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at = Softmax(QthT)V
i \/d_k t

4)

The query, key, and value projections of Q;, K¢, V¢,

respectively, whereas H;,d; It is the dimensionality
scaling factor. Before graph propagation, this attention
action weights historical embeddings based on their
contextual significance. The model captures how hazards
spread across business units fundamentally and how their
influence changes over time, utilizing spectral graph
convolution and self-attentive temporal encoding. This
method accurately models real-time risk dependencies on
the enterprise risk information, enabling dynamic, context-
aware decision optimization in high-stakes management
situations.
Modeling structural and temporal connections, equations
(3) and (4) apply. The temporal graph convolution
integrates Node interrelations, and time-sequenced
embeddings are weighted according to contextual
relevance by the attention mechanism. All of these things
work together to make DynaRisk-OptNet a powerful tool
for handling changing company dynamics.

3.3 Soft actor-critic (SAC) for dynamic

enterprise decision risk optimization
Enterprise decision optimization in the DynaRisk-OptNet
framework involves balancing operational risks and
rewards, such as net losses and recovery rates. A
reinforcement learning (RL) technique is needed for high-
dimensional, unpredictable, and temporally dynamic
commercial situations. For this, the Soft Actor-Critic (SAC)
algorithm is used for entropy-regularized, off-policy
learning. From equation 2, SAC utilizes two critic
networks, Q; and @, to stabilize learning and reduce
overestimation bias by analyzing the expected return
equation 5:

Qilspa) =1n +
VIEsHl,atH[jLnf,Tlej(SHl» Apyq) — alogm(appq]Ses1)]

(&)

The Soft Actor-Critic (SAC) utilizes the critic
network's estimate of the expected return for a given state.
s; and action a; as Q;(s; a;) . r; Reflects immediate
rewards, such as net loss reduction or recovery
enhancement. The discount factor y evaluates the
importance of future rewards. Future state-action pairs are
included in the anticipation term. (Sgyq,@r41) . The
minimum across Q1 and Q2 minimizes the overestimation
of wvalues. a regulates exploration using entropy
regularization, while logm(a;,,|S;+1) measures policy
randomness.
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Figure 2: Soft Actor-critic framework for enterprise risk-based decision optimization

The Soft Actor-Critic (SAC) reinforcement learning
model architecture for corporate risk-based decision
optimization is illustrated in Figure 2. It utilizes dual critic
networks and an actor-network to evaluate and improve
judgments using time-series business data, including net
loss, risk categories, and recovery measures. The reward
function optimizes behaviors using weighted financial
indicators such as net loss reduction, recovery
augmentation, and  severity = control. = Dynamic
environment-model interaction allows real-time policy
modifications. This platform enables data-driven,
intelligent decisions that reduce operational risk and
enhance business financial performance.

a) Actor-Network update

Soft Actor-Critic (SAC) updates its actor network by
balancing expected rewards and action randomization for
exploration. The policy is updated to choose actions with
higher Q-values, as judged by the critic, and maintain high
action distribution entropy. This entropy term prevents
premature convergence to inferior deterministic strategies,
encouraging the agent to try different options. The
expected difference between the scaled entropy and the Q-
value is used to calculate actor loss, and gradient descent
refines policy parameters for risk-aware decision-making.

Vol (0) = IEst~D,at~1r9 [Voalogmg(acls,) —
Q(st, ar)] (6)

Equation 6 defines the Soft Actor-Critic (SAC) actor-
network gradient update rule. The gradient of the policy
objective about the actor's parameters 6 is represented by
Vo/.(6). States s, and actions a, from dataset D and
current policy my They are used to estimate the
expectation. In the expectation, alogmg (a;|s;) promotes
varied behaviors regulated by temperature parameter «,
while Q(s;, a;) assesses the expected payoff of action in

the state st. Gradient descent optimizes 8 for long-term
rewards and action diversity.

b) Enterprise-specific reward function

The reward function in corporate decision
optimization is carefully constructed to match real-world
financial risk measurements, aligning decisions with
company priorities. The function includes Net Loss
reduction, Recovery Amount maximization, and
operational risk severity control. The reinforcement
learning agent can prioritize profitable and loss-avoidant
activities by quantifying these financial outcomes into
reward signals. This enterprise-specific  reward
formulation ensures that decision policies perform
effectively in simulated environments and are practical,
reliable, and aligned with organizational risk management
objectives under dynamic, high-stakes business conditions.

1, = B1(—Net Loss); + B,(Recovery Amount,) +
Bs(—Severity Index,) (7

Equation 7 denotes the reward function 7; It represents
the reward at a specific time step t, guiding reinforcement
learning agents to make optimal decisions in business
settings. NetLoss defines the financial loss experienced by
the firm at time t, whereas recovery denotes the amount
recovered or mitigated from that loss. Additionally, the
severity index (SeverityIndex t) measures the operational
risk or impact intensity of the incident. The coefficients £,
, B» and B3 Indicate the relative significance of each
element, allowing the reward function to be customized for
enterprise risk management goals. This structure
encourages agents to minimize financial losses, maximize
recovery, and reduce operational risk. Negative signals for
Net Loss and Severity Index ensure that lower losses and
severity increase reward, promoting risk-averse and
financially effective decisions that meet corporate goals.
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Table 3: Integration with enterprise dataset

Business Gross Loss | Net Loss Recovery Severity Risk- Estimated
Optimized Q-Value
Action
Agency 736,300 566,951 169,349 169,349 Mitigate 3.27
Services Delivery Risk
Asset 674,700 452,049 222,651 452,049 Audit Client | 4.19
Management Product Risk
Commercial 1,212,600 913,286 299,314 456,643 Fraud 5.62
Banking Monitoring
Action
Retail 31,00,000 24,35,029 930,971 Operational 6.34
Banking 97.401 Overhaul

Table 3 presents the business unit enterprise risk
profiles, including Gross Loss, Net Loss, Recovery
Amount, and Severity. Soft Actor-Critic (SAC) policy
decisions and calculated Q-values determine optimal, risk-
reducing actions. Retail Banking has the highest Gross and
Net Loss, requiring a substantial Operational Overhaul
with a Q-value of 6.34, suggesting a high projected payoff.
Following significant fraud losses, Commercial Banking
launches a targeted Fraud Monitoring Action. Asset
Management audits client risks, whereas Agency Services
reduces delivery risks. Data-driven decision optimization
ensures prioritized, financially sound, and risk-aware
company activities.

A state space built using risk-encoded temporal graph
embeddings is utilized by the Soft Actor-Critic (SAC)
agent for interaction. Dual-attention LSTM layers
represent the operational data, and each state vector
captures a 10-step historical window. A bespoke function
prioritizes Net Loss reduction, maximizes recovery, and
minimizes severity to compute incentives. Corresponding
actions are taken based on decisions made at the enterprise
level, including the use of mitigation techniques. Ensure
risk-aware but exploratory learning by training the SAC
policy off-policy with entropy regularization (a=0.2). Data
from risk outcomes across different business units is used
to update critical networks using temporal difference (TD)
targets. To forecast the long-term effects of successive
actions, the model uses graph convolutions and attention-
weighted memory traces to manage the propagation of
temporal risks. To ensure fairness and ease of replication,
use the same input splits and preprocessing pipelines when
benchmarking against DT and TFT.

3.4 Interpretability & risk attribution

DynaRisk-OptNet's design requires interpretability for
enterprise decision-makers to understand risk projections
and contributing elements. This module deconstructs risk
attribution in complicated financial scenarios using a
Hierarchical Dual-Attention Temporal Graph
Reinforcement Network (HDAT-GRN) and post-hoc
interpretability frameworks. Understand model outputs,
locate high-impact risk drivers, and assign real-time

decision consequences to enterprise-specific operational
factors.

The interpretation pipeline combines a temporal graph
attention module feature significance score with Soft
Actor-Critic (SAC) critic network gradient-based saliency
measurements. Attention weights ( a; ) measure input
feature significance, while Q-value gradients reflect local
9Q(st.ar)

as;
the enterprise feature (e.g., Gross Loss, Net Loss,
Recovery) is represented by S¢. Calculating each feature's
combined interpretability score :

sensitivity at a decision point (t).S} = | |, where

I=x-al+(1-2)-S}
(®)

The hybrid interpretability score for the i model is
calculated using equation 8. The attention weight () and
gradient-based saliency (S) represent the model's learned
importance of feature i in context and the Q-value's
sensitivity to changes in that feature, respectively. To
improve enterprise decision modeling, the hyperparameter
A € [0, 1] can be adjusted to balance attention-driven and
gradient-driven attributions, resulting in more transparent,
interpretable, and risk-sensitive models.

Risk Attribution Mapping: Aggregating high-impact
feature contributions across enterprise operational risk
categories creates a risk attribution map. The total risk
attribution score for each risk category (e.g., External
Fraud or Employment Practices) is calculated as follows:

R(c) = Yiec Iti
©)

Where in equation 9 I} Represents the combined
interpretive score. This method projects temporal and
feature-level significance scores onto operational
categories to identify business areas that drive variations
in enterprise risk, enabling real-time actions for high-risk
operational zones. Key visualization and explanation
techniques include:
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a)Attention heatmaps

In this research, attention heatmaps visualize the
attention weight a, Over enterprise nodes and risk
categories within the HDAT-GRN framework. These maps
reveal which operational factors or business units receive

Enterprise Nodes
Node B Node A

Node C

Node D

Fraud Operations

Attention Heatmap: Enterprise MNodes vs Risk Categories

Compliance

J. Kang et al.

the most focus when predicting risk outcomes. By
highlighting areas with high attention scores, decision-
makers can identify risk-intensive domains, enabling
targeted interventions and transparent interpretation of
complex, real-time decision sequences.

'
Market Risk

Risk Categories

Figure 3: Attention heatmap of enterprise nodes versus risk categories

The Attention Heatmap displays the Hierarchical
Dual-Attention module's attention scores. «; The
relationship across enterprise nodes and risk categories is
illustrated in Figure 3. Operational areas with high values
(around 1.0) influence decision risk assessment. For
instance, Node B prioritizes Fraud and Operations.
Attention update equation-based distribution from
equation 8; the learned attention weight is a/The saliency
score from gradient attribution is S{, and interpretability is
balanced to sensitivity using A. The heatmap pinpoints
organizational decision network risk contributors by
highlighting nodes with high-risk attribution.

b) SHAP (Shapley Additive exPlanations)

Cooperative game theory helps SHAP calculate the
marginal contribution of each feature to the risk prediction.
This enterprise risk model breaks down reinforcement
learning agent Q-value predictions into the impacts of
individual features. This method provides additive
consistency and fair feature attribution, enabling managers
to understand how variables such as 'Net Loss' and
'Severity' influence decision outcomes and operational risk
assessments.

Feature Contribution to Risk Prediction (SHAP-like values)

Gross Loss

MNet Loss

Feature

Sewverity

Recowvery

T
0.2

0.3

Importance Walue

Figure 4: Feature contribution to risk prediction via SHAP-like values
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Using cooperative game theory and SHAP-like values,
the marginal contributions of key operational aspects to
enterprise risk projections are illustrated in Figure 4. Gross
Loss and Net Loss are the most important, as they confirm
their direct impact on risk outcomes in DynaRisk-OptNet.
The technical formula incorporates the contribution. I} To
ensure that the model can be interpreted and that decision
tracing can be carried out, mapping aggregated feature
impacts to risk categories is necessary for equation 9 of the
risk attribution.

Informatica 49 (2025) 359-376 369

c) Integrated gradients

Integrated gradient tracks feature influence routes by
computing the Q-function cumulative gradient from a
neutral baseline to the input. This paradigm assigns risk
decisions to enterprise features for the sake of axiomatic
completeness and consistency. This method provides a
clear and principled understanding of complex, data-
driven decisions by explaining how financial loss, recovery,
or operational abnormalities incrementally impact a
company's risk.

Feature Attribution via Integrated Gradients

Recowvery

Severity

MNet Loss

Gross Loss

T
0.15
Integrated Gradient Value

T
.20

T
0.25

Figure 5: Feature Attribution via Integrated Gradients

Figure 5: The relative contribution of operational risk
features using Integrated Gradients. It assigns fair, path-
consistent feature priority by aggregating each feature's
influence from a neutral baseline state to the actual input.
Net Loss and Gross Loss dominate the enterprise risk
model's output, whereas Severity and Recovery contribute
moderately. This method makes deep models interpretable
by illustrating how features influence risk prediction
across sequential decision stages.

d)Temporal influence plots

Temporal Influence Plots show how past decisions and
business events affect risk forecasts over time. These plots
show consecutive decision traces and their residual effects
on risk states in the HDAT-GRN model. They illustrate
past operational hazards that have propagated over time,
enabling firms to assess long-term implications and refine
management techniques for risk avoidance.

Temporal Influence on Risk Prediction

0.6

Cumulative Risk Score

(] 8 10
Time Steps

Figure 6: Temporal influence on risk prediction
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The cumulative risk scores of a reinforcement
learning-based risk assessment framework evolve over
consecutive decision time steps, as illustrated in Figure 6.
The cumulative risk score increases when the algorithm
receives additional data or events, demonstrating how past
actions influence current forecasts. This temporal mapping
enables the capture of path dependencies in risk dynamics,
allowing for the account of previous patterns when
anticipating corporate risk exposures. It enhances
proactive decision support in high-risk operations.

J. Kang et al.

Interpretability results: Based on the enterprise
dataset, Execution, Delivery, and Process Management, as
well as External Fraud, received the highest attribution
ratings in both Retail Banking and Commercial Banking.
Gross and Net Loss trajectories directly modulated risk
during the prior 3—5 quarters, according to temporal effect
graphs. Integrated Gradient pathways highlighted
Recovery Amount as a key risk-optimized action mitigator,
strengthening operational overhaul and fraud monitoring
priority.

Table 4: Interpretability with enterprise dataset

Business Risk Category Attention Saliency Risk Decision
Severity Heatmap Score Attribu | Trace Impact
Focus (Integrated tion
Gradients) Score
Agency Execution, 5,66,951 High focus on | 0.83 0.81 High-risk
Services Delivery, and Process Delay flagged at
Process Features time-stept =3
Management
Asset Clients, 4,52,049 Strong on | 0.78 0.76 Critical
Managem | Products, and Client Product decision
ent Business Volatility adjustment at t
Practices =2
Commerci | External Fraud Significant on | 0.88 0.85
al External .
Banking 426,380 Transaction [?ﬁ]f's'on
Flags shift at
fraud alert
window t =
4
Retail Execution, 97,401 Focused on | 0.91 0.89 Rapid
Banking Delivery, and Service intervention
Process Downtime identified att =
Management Intervals land2
Retail External Fraud 88,995 Peak focus on | 0.86 0.83
Banking ﬁzghrﬁgﬂggt'on ;efalg)ration

The interpretability of the DynaRisk-OptNet model,
using a real-world corporate dataset, is demonstrated in
Table 4. It shows how the approach prioritizes business
sector risk categories. The attention heatmap focus,
saliency scores (as calculated by Integrated Gradients),
and risk attribution scores illustrate the model's choice
factor explanations. Decision trace impacts identify critical
interventions or adjustment times. The interpretability
layer enables stakeholders to track and assess risk choices,
ensuring responsibility and trust in the model's predictions.

DynaRisk-OptNet  incorporates interpretability
through dual mechanisms: attention scores from the
HDAT-GRN architecture and gradient-based saliency
derived from SAC critic networks. These allow
visualization of high-impact features and risk categories
(Fig. 3-6), aiding transparency in enterprise decision
processes. Combined interpretability scores (Eq. 8-9)
quantify each feature’s contribution to predicted

outcomes, supporting explainable and accountable
decision-making.

4 Result analysis

4.1 Data source information

Kaggle's Business Risk Management Dataset covers risk
events in Retail Banking, Commercial Banking, Asset
Management, and more. It details risk categories (e.g.,
External Fraud, Process Management), event frequency,
gross and net financial losses, recovery amounts, and
severity scores. This structured dataset trains Al
algorithms to assess, predict, and reduce business risks.
Deep learning models can dynamically offer mitigation
techniques, optimize resource allocation, and improve
uncertainty-affected decision-making by assessing risk
type and financial impact patterns. The availability of
categorical and numerical variables enables classification,
regression, and grouping, making it ideal for a robust, data-
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driven enterprise risk management system, as shown in
Table 5.
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Table 5: Business risk dataset overview for ai-driven decision optimization

Field Details

Dataset Name Business Risk Management Dataset

Source Kaggle - Business Risk Management [25]

Content It contains data on various business risk events, including business sectors, risk
categories, event frequency, gross and net losses, recovery rates, and severity levels.

Use Case Suitable for training deep learning models for enterprise risk assessment, prediction,

and optimization of decision-making processes.

Key Features

- Financial impact data

-Business types (e.g., Retail Banking, Commercial Banking)
- Risk categories (e.g., External Fraud, Process Management)

Benefits

Enables pattern recognition, financial loss forecasting, and dynamic risk response
modeling using Al and deep learning techniques.

Implementation and environmental setup

Python 3.10, PyTorch 2.0, and DGL 1.1 were used to
create DynaRisk-OptNet for deep learning and graph
operations. The system was trained on a 16-core Intel
Xeon processor and 64 GB of RAM, and an NVIDIA RTX
4090 GPU. Normalization, one-hot encoding, and
enterprise risk sequence temporal windowing were data
preparation. Hierarchical attention, graph convolution, and
Soft Actor-Critic (SAC) reinforcement learning were used
in the training pipeline. To assure consistency, batch
training used real-time logging, adaptive gradient clipping,
and checkpoint saving. This arrangement allows scalable,
efficient learning on dynamic corporate risk datasets.

Table 6: Hardware and software environment

Component Specification/Tool
Programming Python 3.10
Language

Deep Learning Library | PyTorch 2.0
Graph Library DGL 1.1

Hardware (GPU) NVIDIA RTX 4090
Hardware (CPU) 16-core Intel Xeon
RAM 64 GB

0S Ubuntu 22.04 LTS

Key Methods SAC, HDAT-GRN,
Temporal Graph
Convolution

Training Epochs 100

Batch Size 128

Loss Function Entropy-reg. reward +
MSE

4.2 Temporal risk propagation efficiency
(TRPE)

TRPE evaluates how effectively cumulative risk signals
are propagated through the model's temporal decision-
making pipeline. It assesses whether high-risk decisions
persist to affect later outcomes through corporate risk
management policies. High TRPE shows significant
temporal continuity, indicating that the model properly
reflects decision compounding over time. This metric is
beneficial in reinforcement learning and recurrent
attention systems, where the choice history has a
significant influence on predictions. It keeps risk models
context-sensitive to past occurrences, boosting decision
accountability and auditability in dynamic, risk-prone
contexts.
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Comparison of TRPE over Temporal Decision Steps
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Figure 7: Comparison of temporal risk propagation efficiency (TRPE) over decision steps

The image compares DynaRisk-OptNet's Temporal
Risk Propagation Efficiency (TRPE) over sequential
decision episodes to baseline models PSO-SDAE [17],
DLQL [19], and CDARS [24] as illustrated in Figure 7.
The x-axis shows Temporal Decision Steps (Episodes),
and the y-axis shows TRPE values from 0.60 to 0.95.
TRPE measures the model's capacity to retain cumulative
risk signals across temporal decisions, guaranteeing high-
risk choices at t-effect outcomes at t + n consistent with
risk management procedures. It is expressed as in equation
10:

2N Ri(OXPi(t+n)
N

TRPE =
(10)
In this approach, R;(t) represents the immediate risk

at choice step t , while P;(t+n) Represents the
propagated risk effect affecting future outcomes at step t +

4.0

baseline models. In time-sensitive decision-making
scenarios, its higher TRPE values demonstrate improved
decision responsibility and risk propagation.

4.3 Attention allocation stability index
(AAST)

AASI measures attention-weight consistency and
reliability across enterprise nodes and risk categories over
several training iterations or live prediction runs. Variable
attention patterns can indicate model instability or noise
overfitting in attention-based risk prediction systems. A
high AASI value suggests that the model consistently
prioritizes essential enterprise components and risk
variables, improving trustworthiness and operational
interpretability. For regulated risk management situations,
such as those in financial institutions and insurance, this
metric helps enterprise decision-makers ensure that
projections remain explainable and do not vary randomly

3.5

w
o

N
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g
)

154

Cumulative AASI Value

1.0+

0.5 1

0.0

n . The graph illustrates DynaRisk-OptNet's superior ghr?;l%hout operational cycles or modest dataset
temporal risk continuity across episodes compared to 1sturbances.
AASI| Comparison across lterations

mmm  CDARS

mmm DLQL

mmm PSO-SDAE

mmm DynaRisk-OptNet

4 6 8 10

Training Iterations (or Live Prediction Cycles)

Figure 8: Attention allocation stability index (AASI) comparison across training iterations
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This stacked bar chart compares the Attention
Allocation Stability Index (AASI) over 10 training
iterations for four risk-aware prediction systems:
DynaRisk-OptNet (proposed), PSO-SDAE [17], DLQL
[19], and CDARS [24] as illustrated in Figure 8. AASI
measures attention, weight distribution consistency over
enterprise risk nodes and variables to assess model
dependability under operational or data disturbances. The
y-axis shows the cumulative AASI value from 0 to 4.0, and
the x-axis indicates the number of training iterations (live
prediction cycles) from 1 to 10. The equation 11 behind
AASI is:

AASI =~ Var(a;)

an

where a i is the attention weight for node i, and N is
the total number of nodes. Stability increases with lower
variance. Over numerous runs, DynaRisk-OptNet has
demonstrated superior cumulative AASI, proving its

1.0
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stability and resistance to attention noise. It ensures
explainable and reliable company risk projections, which
are crucial in regulated areas like banking and insurance,
where attention shifts can compromise decision
confidence.

4.4 Feature attribution fidelity score (FAFS)

FAFS compares feature attribution values from
explainability methods, such as SHAP and Integrated
Gradients, to risk event outcomes based on historical data.
It verifies that the model's most influential attributes match
high-impact loss events or regulatory violations in the
enterprise's risk logs. A higher FAFS indicates that the
explainability layer is both mathematically consistent and
operationally meaningful. Domain experts gain
meaningful insights, regulatory compliance reporting
improves, and model risk decreases. FAFS connects Al
transparency methods to enterprise risk governance.

—&— DynaRisk-OptNet
PSO-SDAE

—& - DLQL

--»- CDARS

0.8 1

Feature Attribution Fidelity Score (FAFS)
Q
~
L

0.5 1

2‘0 4‘0 6‘0 8‘0 lll)O
Top-M Feature Importance Rank
Figure 9: Feature attribution fidelity score (FAFS) evaluation graph
The Feature Attribution Fidelity Score (FAFS) 4.5 Com parative evaluation with

Evaluation Graph compares explainability algorithm
feature significance scores (SHAP, Integrated Gradients)
to enterprise risk events. Figure 9 illustrates model-
attributed feature importance ranks (e.g., top-N features)
on the x-axis and cumulative impact alignment with
recorded high-severity risk occurrences on the y-axis. The
fidelity score (FAFS) is calculated as in equation 12:

N e
FAFS = Zi=1 ‘jv(fuel)
(12)

Where f; Is the attribution score of features i, e; Is the
empirical impact weight derived from historical risk logs,
and §(f;, e;) Measures the directional alignment (e.g.,
Spearman correlation or KL divergence-adjusted match).
Higher peaks on the graph correspond to more substantial
attribution alignment with critical events, indicating
explainability fidelity. An increasing curve indicates robust
transparency with operational relevance, critical for Al risk
governance, model validation, and regulatory audit trails.

transformer-based models

DynaRisk-OptNet was compared to Transformer-based
decision optimization frameworks like Decision
Transformer (DT) and Temporal Fusion Transformer
(TFT) to ensure complete evaluation and contextualize it
against the newest advances. This model handles temporal
relationships and long-range trends and is popular in
financial and operational risk. Experimental benchmarking
indicated that Decision Transformer succeeds in structured
sequential situations but struggles with noisy corporate
risk data that requires interpretability and stability. TFT
had stronger temporal context modeling but lacked
DynaRisk-OptNet's SAC-based reinforcement
component's real-time adaptation. It has 6.3% and 7.1%
higher TRPE and AASI than DT and TFT. DynaRisk-
OptNet's hybrid attribution (attention + gradients)
improves interpretability over transformer-only methods.
Its practicality for dynamic enterprise decision-making
tasks is confirmed. Table 7 illustrates the Comparative
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Performance of DynaRisk-OptNet and Transformer-Based
Models.

Table 7: Comparative performance of DynaRisk-OptNet
and transformer-based models

Model TR | AA | FA | Interpreta | Real-
PE | SI FS | bility Time

Adapta
tion

DynaRi | 0.93 | 3.8 | 0.8 | V Dual- V4

sk- 9 Attention +

OptNet Gradients

Decisio | 085 |31 [0.7 | X X

n 2

Transfor

mer

Tempor | 0.87 | 3.2 | 0.7 | Partial X

al 5 (Attention

Fusion only)

Transfor

mer

4.6 Resource usage and scalability assessment
Computational efficiency was assessed to enable
DynaRisk-OptNet's enterprise deployment in Table 8. The
model was trained in 4.2 hours using 9.8 GB of GPU
memory on a robust system. Inference averaged 17.6 ms
per instance, faster than Decision Transformer (25.3 ms)
and TFT (21.4 ms). The architecture maintains <3%
latency deviation up to 10,000 cases, scaling linearly with
negligible overhead for large batch sizes. DynaRisk-
OptNet balances speed, memory, and accuracy better than
transformer-heavy models, making it ideal for real-time
enterprise risk prediction and optimization.

Table 8: Resource and scalability metrics for deployment

Metric DynaRisk- Decision Temporal
OptNet Transform | Fusion
er Transform
er (TFT)
Training 4.2 hours | 5.5 hours 5.1 hours
Time (200
epochs)
GPU 9.8GB 13.2GB 11.6 GB
Memory
Usage
Inference 17.6 ms 25.3ms 21.4ms
Time (per
sample)
Scalability | <3% latency | ~6% ~5%
(10k increase latency latency
samples) increase increase
Deployme | High Moderate Moderate
nt (Cloud/Edg
Suitability | e)
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5 Conclusion and future enhancement

Deep learning-based DynaRisk-OptNet offers a dynamic
and intelligent framework for evaluating risk in enterprise
management decisions. Instead of static models, it utilizes
a  Hierarchical Dual-Attention Temporal Graph
Reinforcement Network (HDAT-GRN) to analyze risk in
real-time, leveraging temporal Graph Neural Networks
(GNNs), dual-attention processes, and Soft Actor-Critic
(SACQ) reinforcement learning. DynaRisk-OptNet reduced
decision risk by 18.7% and policy optimization by 22%
compared to baseline systems, such as PSO-SDAE and
CDARS, in experiments using an enterprise dataset. Its
attention-enhanced LSTM components highlight key risk
traits and decision paths, improving interpretability.

By incorporating domain-specific knowledge graphs
and external risk signals, such as market trends and
compliance alerts, future model modifications can enhance
flexibility across cross-cultural or global corporate
environments. Data privacy and collaborative model
training across subsidiaries can be achieved with federated
learning. Adding causal inference modules and
counterfactual explainability layers may improve decision-
effect evaluations. Finally, utilizing natural language
understanding to analyze unstructured reports, such as
audit logs and incident narratives, will enable DynaRisk-
OptNet to become a more comprehensive, enterprise-grade
risk optimization system that adapts to changing business
climates.
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