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Physical fitness significantly supports students' health, academic success, and overall development in
modern education. Many educational institutions now adopt advanced technologies to monitor
physical activities and suggest personalized training programs based on individual needs. However,
most existing systems rely on simple models that cannot fully capture the complex relationships among
various fitness indicators, such as heart rate, endurance, and flexibility. These systems also face
challenges in processing large datasets efficiently and delivering real-time, personalized feedback to
diverse student groups. The Graph-Based Intelligent Cloud Framework for Student Fitness (GICF-SF)
has been developed to address these challenges. GICF-SF utilizes Graph Neural Networks (GNNs) to
analyze complex interactions within physical fitness data, enabling a more accurate understanding
and recommendation. Additionally, Cloud Computing supports fast data storage, processing, and real-
time response, providing scalability for multiple users across different locations. GICF-SF integrates
machine learning and cloud technologies to deliver tailored training suggestions by learning from
each student's unique fitness profile. The cloud infrastructure allows the framework to serve schools,
fitness centers, and online platforms efficiently without performance.The proposed GICF-SF model
uses a 3-layer Spatial-Temporal Graph Convolutional Network (ST-GCN) with ReLU activation and
dropout. The student fitness dataset (10,421 records) was split into 70% training, 20% testing, and 10%
validation sets. Evaluation was performed using precision, recall, F1-score, MAE, and RMSE metrics
under 5-fold cross-validation. Results show that GICF-SF improved recommendation accuracy by

12.8% and reduced training time by 17.3% over traditional methods.

Povzetek: Clanek predstavi grafno-nevronski in oblacni sistem za analizo telesne pripravljenosti dijakov
GICF-SF. ST-GCN model zajame prostorsko-casovne povezave med kazalniki in izdela personalizirane
treninge. Oblacna infrastruktura omogoca sprotno obdelavo, razsirljivost in krajsi cas ucenja.

1 Introduction

Educational institutions globally value physical fitness
for student growth and well-being. Regular physical
activity protects against obesity and cardiovascular
disease, and improves cognitive, academic, and mental
health[1]. The World Health Organization (2023) reports
that just 19% of adolescents worldwide meet the 60-
minute daily physical exercise recommendation[2]. This
alarming trend underlines the need for novel student
fitness programs.

Traditional educational fitness assessments include
standardized testing throughout the year. Standard
examinations examine cardiovascular strength, muscular
power, flexibility, as well as body composition[3].
Conventional methods don't provide constant monitoring
or targeted instruction based on students' requirements and
development patterns. Technology like wearables, mobile
apps, and data analytics platforms has transformed fitness
monitoring[4]. These technologies track heart rate, steps,

burned calories, and sleep habits. Institutions are using
these tools to track student fitness more closely, but it isn't
easy to interpret this amount of data and turn it into
meaningful insights and individualized suggestions[5].

The research addresses the technical issue of existing
student fitness analysis systems, which struggle to model
and analyze complex relationships between fitness
indicators while delivering personalized recommendations
at scale[6]. Current systems have an accuracy limit of
76.4%, processing efficiency of 3.7 seconds for single
student data, and a scalability constraint of 42% increased
latency when user numbers exceed 1,000 concurrent
connections[7]. These limitations hinder educational
institutions from utilizing the growing volume of fitness
data to improve student health outcomes and physical
development.

Despite advances in fitness monitoring and data
analysis, there are research gaps in applying advanced
computational methods to student fitness data[8].
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Traditional fitness recommendation systems use machine
learning methods to treat fitness indicators as independent
variables[9]. These systems fail with variable student
populations and complex fitness trajectories. Most systems
use standalone computing, which limits their ability to
handle huge amounts of data or offer real-time
feedback[10]. Current approaches ignore individual fitness
progression, personal preferences, and improvement needs
by making demographic-based recommendations. Gaps
show the need for a more advanced strategy[11].

Technical motivation for fitness data analysis and
recommendation systems comes from graph-based
machine  learning and  distributed  computing
architectures[12]. Graph Neural Networks (GNNs) are
appropriate for studying complex fitness parameter
interdependencies  because they model complex
interactions in interconnected data structures[13]. GNNs
can capture complicated physiological linkages, such as
biomarker interactions in cardiovascular health monitoring,
improving predicted accuracy[14]. Data-intensive apps
can process fitness data in real time using cloud
computing[15]. GNNs with cloud computing enable more
accurate modeling of complicated fitness interactions,
rapid processing of large-scale fitness data, real-time
analysis and suggestion generation, and smooth scalability
for expanding user numbers. The Graph-Based Intelligent
Cloud Framework for Student Fitness (GICF-SF) uses
GNNs and cloud computing to assess student fitness data
and provide more accurate training recommendations.

The main objectives are:

To develop a model for GICF-SF using GNNs to
effectively analyze and capture complex relationships
within students’ physical fitness data.

To design and implement the GICF-SF
recommendation system that provides personalized
training programs tailored to each student’s unique fitness
profile.

To integrate cloud computing technologies within
GICEF-SF for efficient storage, scalable processing, and
real-time analysis of large volumes of fitness data.

To enhance the performance of GICF-SF by
improving recommendation accuracy and reducing
response time compared to traditional fitness data analysis
and training systems.

This research aims to address the following research
questions:

e RQI: Can a graph-based approach (GNN)
improve recommendation accuracy (RA) by at
least 10% over traditional ML-based fitness
recommendation systems?

e RQ2: Does the integration of cloud computing
infrastructure reduce system training and
adaptation time by at least 15%?
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e RQ3: Can the proposed GICF-SF framework
maintain high throughput and low latency when
scaled to support over 1,000 concurrent users?

The primary goal of GICF-SF is to enhance
personalized fitness recommendations by significantly
improving RA, reducing model training time, and enabling
scalable, real-time deployment across educational
institutions.

A summary of the research follows. Second section:
thorough literature and research methodological review.
Section 3 covers the study plan, methods, and processing;
Section 4 presents analysis results. Conclusion as well as
future work are in Section 5.

2 Related works

2.1 Intelligent recommendation systems in
health and education

Gm et al.[16]examined 60 papers from major databases on
education's e-learning and personalised recommendation
systems. It shows content ignorance, student discontinuity,
language hurdles, study material confusion, and poor
infrastructure and finance. The review suggests Fluxy Al,
Twin technological advances, Al-powered virtual
evaluating, and Alter Ego to deal with these challenges.
These technologies can offer an engaging, interactive
classroom for students and educators, boosting
individualised learning, comprehension capacity, and
speech disordered students' learning experience.

Zheng et al.[17] showed that Natural Language
Processing or NLP is a field that uses computer science,
artificial intelligence, and linguistics to comprehend,
process, create, and imitate human language. It includes
looking at the structure, meaning, syntax, and use of
language, as well as using statistics to analyze and model
big corpora. This paper uses deep learning and NLP to
explore patients' remarks and find the best drugs. This
leads to accurate prescriptions and individualized
suggestions. Linguistics, computer science, and statistics
are the main ideas behind NLP.

2.2 Graph neural networks for fitness and
behavioral data modeling

Zhang et al.[18] investigated posture recognition and
motion capture for skeleton-based action recognition in
everyday fitness. A spatiotemporal pyramidal graph
convolutional network with edge significance scores and
multi-level feature representation improves performance.
The model achieves 85.89 mAP on the UW-IOM as well
as TUM kitchen datasets. The study found that skeleton
information correctness improves action recognition
ability, whereas picture feature fusion can help in cases of
limited or faulty image information. Comparing the
method to others shows its benefits.
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Wang and Liu[19] explored a deep learning-based
Life Log Sharing Model or LLSM to improve teenage
fitness and exercise. The TS-CNN-BILSTM model
predicts physical activity using multimodal life log data's
temporal, textual, and visual aspects. The model beat state-
of-the-art methods by 1.9—4.4%. Temporal aspects are
needed to identify repetitive behaviours and workouts. The
study found that multimodal life log data and deep learning
accurately characterise physical activity. The TS-CNN-
BiLSTM model's accuracy allows personalised health
promotion tactics like interventions, behavioural
incentives, and social support to increase adolescent
physical activity, as well as public health education along
with management.

2.3 Cloud computing in smart health and
education platforms

Raghav et al.[20] provided that Cloud computing and the
IoT are transforming healthcare. This revolution allows
healthcare organizations to safely manage and analyze
massive amounts of patient data, improving patient care
and well-being. The IoT has expanded healthcare beyond
clinical settings through its connected gadgets and sensors,
generating constant patient data. Remote monitoring,
tailored medicine, and predictive analytics offer proactive
healthcare interventions thanks to this synergy. Cloud and
IoT-powered telemedicine has improved healthcare access
in remote and underdeveloped places. However, security
and privacy remain crucial. The Cloud-IoT revolution in
healthcare is a paradigm shift that prioritizes patient care
and well-being.

Sundas et al.[21] presented that the Chronic and
lifestyle-related diseases pose major social and economic
issues worldwide. A innovative Smart Patient Monitoring
and Recommendation or SPMR framework uses Deep
Learning as well as cloud analytics. SPMR monitors and
expects a patient's health using vital signs as well as
contextual activities from Ambient Aided Living devices.
Unbalanced Chronic Blood Pressure Disorder case study
datasets forecast real-world health situations using
Categorical Cross Entropy Optimization. Effectiveness is
shown by the model's 18% accuracy increase and 17% and
36% increases in overall and emergency class F-scores.

2.4 Integration of machine learning with
physical fitness assessment

Zhao et al.[22] presented that the Daily vigor and resilience
are indicators of physical fitness. With machine learning,
wearables, apps, and data analysis, fitness is improving.
Wearable fitness trackers with sensors collect massive
amounts of activity, sleep, and vital sign data. The Gradient
Probabilistic Automated Recommender System with
Machine Learning or GPA-RS-ML, is a novel fitness
assessment and training program recommendation system
recommendation system. This technology analyzes fitness
data and recommends personalized training plans using
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machine learning. The GPA-RS-ML method improves
training efficiency and effectiveness. This research
improves automated fitness assessment and suggestion
systems, helping fitness professionals optimize results and
training adherence.

Su et al.[23] showed that Intelligent Education
Cloud Platforms have transformed educational resource
sharing and consumption, making learning more
accessible and flexible. Distributed sharing and
personalized recommendation systems improve resource
accessibility and student engagement in college preschool.
Traditional methods lack flexibility and scalability for
dynamic resource allocation, hampering customized
education. To circumvent these constraints, KAEN and
ALPS are proposed. KAEN optimizes resource
recommendation and personalizes learning using graph-
based knowledge representation, dynamic content
alignment networks, and reinforcement learning.
Experimental validation indicates significant resource
utilization efficiency and adaptive content delivery quality
improvements.

2.5 Challenges and advances in personalized
training program design

Noone et al.[24] examined internal and extrinsic factors
affecting exercise response variance and health outcomes.
Internal influences include sex, age, hormonal state,
race/ethnicity, and genetics, whereas extrinsic factors
include exercise timing, sleep habits, food combinations,
and medication use. Genomic-epigenomic, proteomic-
post-translational, transcriptomic, metabolic-metabolomic,
as well as lipidomic exercise molecular transducers are
also reviewed. It describes the difficulties of creating
personalised exercise prescriptions and MoTrPAC's efforts
to solve them. Researchers must study more health
outcomes across all populations.

Romero et al.[25] showed that disease and treatment
side effects put lower-extremity sarcoma survivors at risk
of physical performance dysfunctions and poor quality of
life. Their functionality and quality of life depend on safe
exercise routines. Clinical presentation and development
vary; therefore, the success of physical activity and
exercise in these survivors is uncertain. This study suggests
creating a training program to preserve fitness and quality
of life. Sarcoma survivors should do low-intensity, short-
duration exercise before surgery and alter their routine
during clinical therapy. Healthy habits, including regular
exercise, should be developed under professional
supervision for disease-free survival.

Dugyala et al.[27] presented Cloud computing has
evolved significantly in the past two decades, yet intrusion
detection has become a security issue. This study offers an
enhanced Intrusion Detection System (IDS) using Graph
Neural Networks and Leader K-means clustering to
improve detection accuracy and efficiency. For data
clustering, the system uses Leader K-means, improves
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Grasshopper Optimization, and uses Advanced Encryption
Standard encryption and steganography. The research,
implemented on Java with CloudSim support, improves
detection accuracy and processing efficiency over existing
methods.
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The summary of related works, system, datasets, and
performance metrics is shown in Table 1(a) below:

Table 1(a): Summary of related works: systems, datasets, and performance metrics

Authors System/Model Name

Datasets Used

Reported Performance Metrics

Gm et al. [16] Al-based Educational
Recommenders (Fluxy Al,

Alter Ego, Al Evaluators)

Not specified (Systematic
Literature Review)

Not reported (conceptual/review-
based)

Zheng et al. [17] | NLP-EAR (NLP for

Custom clinical comment

Accuracy (not quantified),

Effective Al-based datasets Personalization Precision
Recommendation) (conceptual)
Zhang et al. [18] | Spatiotemporal Pyramidal UW-IOM, TUM Kitchen | mAP: 85.89
GCN (Graph Convolution datasets
Network)
Wang and Liu TS-CNN-BIiLSTM (Life Multimodal life log data | Accuracy gain: 1.9—4.4% over
[19] Log Prediction Model) (textual, visual, temporal) | baselines
Raghav et al. Cloud-IoT Healthcare Not specified Conceptual performance: improved
[20] Framework monitoring & access (qualitative)
Sundas et al. SPMR (Smart Patient Chronic BP disorder case | Accuracy 1 18%, F1-score: 117%
[21] Monitoring & datasets (overall), 136% (emergency class)
Recommendation)

Zhao et al. [22] | GPA-RS-ML (Gradient
Probabilistic Recommender

with ML)

Wearable sensor data

Improved training effectiveness (not
numerically stated)

Elomari et al. ML-based REC Optimizer

Tarragona energy usage

Cost reduction & green energy

[23] (for Renewable Energy and climate data utilization optimized; no F1 or
Communities) precision reported

Noone et al. MoTrPAC Molecular Multi-omic datasets No metrics; focus on biological

[24] Fitness Response (transcriptomic, factors and personalization
Framework proteomic, etc.) variability

Romero et al.
[25]

Personalized Training for
Sarcoma Survivors

Clinical treatment data

Qualitative outcomes: safety,
improved QOL; no specific metrics

Despite notable contributions, state-of-the-art (SOTA)
systems such as CFRS, NLP-EAR, and MLFR present
several limitations. CFRS lacks the capacity to model
interdependencies between fitness indicators; NLP-EAR
performs poorly on structured physiological data; and
MLEFR's reliance on traditional classifiers restricts its
adaptability. These methods typically plateau at around
76.4% accuracy and often exclude critical performance
metrics such as MAE and RMSE. Moreover, they operate
without scalable infrastructure, limiting their deployment
in real-time educational environments. To address these

issues, the proposed GICF-SF framework integrates Graph
Neural Networks and cloud computing to deliver scalable,
high-precision, and  real-time  student fitness
recommendations.

3 Graph-based intelligent cloud

framework for student fitness

The Graph-Based Intelligent Cloud Framework for
Student Fitness (GICF-SF) is a computational architecture
designed to analyze student physical fitness data and
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provide personalized training recommendations. It
integrates graph neural networks (GNNs) with cloud
computing to create a scalable, efficient solution for
educational institutions. The system addresses the
limitations of traditional fitness analysis systems by
capturing complex relationships between fitness metrics
and delivers tailored recommendations with increased
accuracy and reduced processing time.

The system includes various data sources and acquisition
layers, such as wearable devices, PE Records Database
Connector, Fitness Test Measurement System, Health
Record System, and Activity Logging Subsystem. Data
security and privacy are ensured through end-to-end
encryption, role-based access control, and data
anonymization protocols.

B B8 O

Data Sources Data Preprocessing  Cloud Computing
Layer Layer Platform

(Student Physical
Education Performance
Dataset)

/7\@( ore Prﬂ(usmg Engml.

Graph Neural
Network

Intelligent
Recommendation
System

End Users
(Students, educators,
and school
administrations)

Figure 1: GICF-SF system architecture

In Figure 1, the data preprocessing layer covers noise
filtering, outlier identification, data validation, temporal
alignment, feature engineering, missing data management,
graph structure development, and cloud computing
infrastructure. Distributed storage, computing resource
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management,  networking, = communication, and
performance metrics monitoring and observability are used.
The primary processing engine uses an ST-GCN
architecture with input, hidden, attention, pooling, and
output layers. Data extraction is efficient with the feature
extraction technique.

The system uses graph embedding generation,
topological feature analysis, subgraph pattern mining, and
pattern recognition modules. Machine learning is used for
fitness profile learning, training program development, and
model training and validation. The intelligent
recommendation system includes a tailored training
module, exercise selection algorithm, session sequencing,
and progress tracking. The technology also collects user
comments and explains training reasoning.

The system performs well in throughput, storage
efficiency, suggestion quality, user happiness, and
computational efficiency. The method reduced training
time by 17.3% and used 76% of the GPU during peak
processing. Future growth options include extended data
integration, enhanced analytics, and system adaptability.

Nutrition tracking, sleep quality analysis, academic
performance correlation analysis, mental wellbeing
assessment, explainable Al layer for transparent

recommendation justification, and federated learning for
privacy-preserving multi-institution collaboration are
future expansions. Curriculum alignment modules
integrate educational standards, API versioning method
ensures backward compatibility, and a configuration
management system customizes deployment.

3.1 Data source layer

GICF-SF is built upon the Student Physical Education
Performance Dataset[26], like a solid foundation. To
enable intelligent analysis and individualized fitness
suggestions, this dataset is crucial. A student's general
physical health, activity levels, and performance
capabilities are reflected in the structured and semi-
structured data that it combines from multiple sources.

Table 1. Categorization of fitness-related features used in GICF-SF framework

Category Feature Name Description
Cardiovascular Metrics HR Heart Rate (bpm)
VO: Max Maximal Oxygen Uptake
RHR Resting Heart Rate
BP Blood Pressure (Systolic/Diastolic)
PR Pulse Rate
RR Respiratory Rate
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SpO- Oxygen Saturation

HRV Heart Rate Variability

ECG Avg Signal | Average ECG Signal

Recovery Rate Post-exercise recovery response
Physical Performance Indicators | AGI Agility

MS Muscular Strength

BMI Body Mass Index

FLEX Flexibility

END Endurance

BAL Balance score

SPRINT Sprint speed (time)

VERT JUMP Vertical jump height

SIT UP Sit-up count

PUSH UP Push-up count
Supplementary Attributes Age Age of the student

Height Height (in cm)

Weight Weight (in kg)

Weekly Activity | Frequency of physical activity per week

Table 1(b) presents a complete list of the 24 fitness-
related features used in the GICF-SF framework,
categorized into cardiovascular metrics, physical
performance indicators, and supplementary attributes,

ensuring transparency, feature clarity, and reproducibility
of the experimental setup.

Table 2: Integrated fitness profile construction and graph mapping

Symbol Definition Mathematical Expression /
Description
X Combined feature vector for Xi=[W:, Pi, Fi, Hi, A
student ;
Gi = Vi, &) Fitness graph for student ; V:i: features as nodes, &;: inter-
feature edges
Z; Node embedding from GNN Z; = GNN(G;, X))
Y; Predicted recommendation Yi=1(Z;; 0)
vector

Table 2 describes how to create a thorough fitness
profile and graph it for each student i. The feature vector
X; i combines data from several sources, including
wearables, PE records, fitness tests, health records, and
activity logs. This vector is transferred into a fitness graph.

Gi = (V;, &), where nodes represent features and edges
represent their associations. A Graph Neural Network
(GNN) generates node embeddings Z;, which a learnt
function f uses to anticipate individualized training
suggestions Z;.
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3.2 Data preprocessing

Data must be preprocessed to guarantee consistency and
correctness before being used in the virtual environment.
Here are a few important things to keep in consideration:

Handling missing values

Data must be processed effectively to avoid bias and
account for missing values due to data collecting errors or
partial responses. Two typical strategies include imputing
missing values (where current data is used to infer missing
data) and removing instances with missing values (helpful
for tiny but potentially loss-causing occurrences). The
following equation (1) replaces the feature's mean for
missing values in mean imputation, a common method.

xmissing:%Z‘{l:l xi
ey

where the missing value is denoted by Xp;55ing, the
number of non-missing values for the feature is denoted by
n, and the non-missing values are denoted by x;Replace
missing values with the mean of the k-nearest neighbors
using available features—the formula for this imputation
from equation (2).

xmissing:% Z{'c:1 Xi
@)

Here, k is the count of closest neighbours taken into
account, andx; stands for the values of the relevant feature
in those KNNss.

Normalize the data:

By bringing all numerical features into a consistent
range, normalization guarantees that each feature has an
equal impact on the model. Two ways often used for
normalization are: Min-Max Scaling: Reduce the size of
the features to a predetermined interval, usually from 0 to
1. For min-max scaling, the equation (3) is as follows:

) _ X—Xmin
Xnormalized = _ i
Xmax~Xmin

3

where the normalized value is denoted by X,,0rmatized>
the original value is denoted by x , the minimum value of
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the feature is denoted by x,,,;,, and the maximum value of
the feature is signified by x,4-

To normalize Z-scores, it is necessary to scale the
characteristics with a mean of zero and a variance of one.
To normalize z-scores, the following equation (4) is used,

_x-u
Xnormalized = P

“

in which the normalized value is represented by
Xnormalized, the original value is represented by x, the
mean of the feature is denoted by p, and the standard
deviation of the feature is denoted by o.

Encoding categorical variables

Machine learning can only process numerically
represented categorical variables. One-hot encoding
creates A (1, 0, 0), B (0, 1, 0), as well as C (0, 0, 1), while
label encoding assigns numerical values to each category.
For example, A becomes 0, B becomes 1, while C becomes
2.

Records with more than 30% missing values were
excluded. For incomplete entries, missing numerical
attributes were imputed using the mean of the
corresponding feature, while categorical variables were
filled using mode imputation. Two features with over 85%
null values and negligible correlation to the target variable
were removed. All features were normalized using z-score
standardization prior to training.

3.3 Cloud computing platform

The GICF-SF is a comprehensive system that handles
student physical fitness data analysis through multiple
stages. The process begins with the ingestion of raw fitness
data, which is then processed through various security
checks to prevent unauthorized access or malicious inputs.
The system also handles error handling, ensuring that
invalid or corrupted data is isolated for review, correction,
or exclusion from further processing in Figure 2. The
system categorizes encrypted data into three primary
formats: Time Series Data, Document Data, and Graph
Data. Database storage options include Time Series,
Document, and Graph DB. Parallel data processing
efficiently processes large volumes of student fitness data
across multiple computing nodes. Real-time analytics on
streaming data is provided, allowing for immediate
feedback and intervention when necessary.



378  Informatica 49 (2025) 371-388

B. Gao

itness Data Input

(Wearables, PE

Records., Tests

Security Validation

ves

Error Handling

Data Encryption

(AES-256)

Time series

Time Series DB
(Fitness Metrics)

Graph

Document

Document DB
(Student Profiles)

Graph DB
(Relationships)

Parallel Data Processing (Distributed Task Execution with Load
Balancing)

Real-time Analytics on Streaming

Data

Deliver Insights to
User

Generate Alert

Figure 2: Cloud computing platform - data processing

In Figure 2, Output generation includes anomaly
detection, which generates alerts for
coaches/administrators, and insight delivery, where critical
findings trigger notifications to appropriate stakeholders.
The final stage presents processed fitness data, trends, and
personalized recommendations to end users. The flowchart
demonstrates a fault-tolerant architecture with dedicated
error handling paths, distributed computing elements
supporting scalability for multiple educational institutions,

and a multi-database architecture optimizing storage and
retrieval based on data characteristics. Security controls
are integrated throughout the pipeline, and real-time
processing capabilities are implemented for immediate
fitness feedback. This data processing flow enables the
GICF-SF system to achieve performance improvements of
12.8% in recommendation accuracy and 17.3% reduction
in training time compared to traditional methods.
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The mathematical framework for cloud-GNN
integration involves a GNN model in the cloud, which is
used for training and inference. The model uses a graph
representation of fitness data, with edges based on
similarity in physical fitness profiles.

l 1 -
hl(ﬂ) =0 (ZueN(v)aW(Dhg 1)) (5)
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In equation 5, h,(f) is denoted as the Embedding of
node v at layer LN (v) is denoted as the Neighbors of v,
C,, is denoted as the Normalization constant, W® is
denoted as the Learnable weight matrix, ¢ is denoted as
the Activation function (e.g., ReLU).

Table 3: Fitness dataset (stored in cloud)

Student ID Heart Rate Endurance Flexibility Speed BMI Vital Capacity
S101 76 bpm 11 mins 12 cm 6.1s 23.4 3900 ml
S102 71 bpm 9 mins 8 cm 6.8s 25.1 3600 ml
S103 64 bpm 13 mins 15 cm 59s 20.8 4100 ml

In table 3, The Fitness Dataset, stored on a cloud
computing platform, contains student physical fitness
records with key health metrics like heart rate, endurance,
flexibility, speed, BMI, and vital capacity. This structured
dataset allows real-time analysis and personalized fitness

recommendations using Graph Neural Networks. Cloud
storage ensures scalable access, secure encryption, and
efficient parallel processing across large student
populations.

Table 4: GICF-SF graph neural network (ST-GCN) architecture and hyperparameters

Component Specification
Graph Model Type Spatial-Temporal Graph Convolutional Network (ST-GCN)
Number of ST-GCN Layers 4

Hidden Layer Dimensions

[64, 128, 256, 128]

Graph Convolution Type Spatial-Temporal Graph Convolution (ST-GCN block)
Activation Function ReLU

Dropout Rate 0.3

Batch Size 64

Optimizer Adam

Learning Rate 0.001

Weight Decay le-5

Epochs 200

Loss Function

Cross-Entropy Loss

Early Stopping

Patience = 20 epochs

Graph Adjacency Matrix

Dynamically learned (trainable edge weights)

Temporal Kernel Size 9
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Normalization

BatchNorm

Table 4 outlines the detailed architecture and
hyperparameters of the GICF-SF model, including ST-
GCN layers, activation functions, learning settings, and
optimization techniques used for model training and
reproducibility.

3.4 Core processing engine

A Graph Neural Network (GNN) models fitness
relationships, and Machine Learning (ML) components
classify and regress in this module. GNN-based fitness
representations treat students as nodes in graphs with edges
indicating physical fitness vector similarity. Each node's
Embedding is updated by the GCN layer using neighboring
data.ML classification and regression components can
classify kids into performance tiers and predict BMI and
test scores. The ML prediction function leverages the
GNN-generated student embedding, and model training
splits the input into training and testing sets. The model
training procedure employing training and testing sets is
explained for ML-based recommendation using GNN
embeddings. The Decision Tree, SVM, or XGBoost model
is trained using the ML model.

Each student is represented as a node in a graph G, with
edges reflecting similarity based on physical fitness
vectors like heart rate, speed, and endurance.

G = (V,E),V ={v,vp, .., 0}, E = {(vi,v}) | sim(vi,

(6)

Qutput

Personalized
feedback

In equation 6, V is denoted as the Student nodes, E is
denoted as the edges (similarity-based links), and 0 is
the similarity threshold.

HOD = (D124 D-1/2HOW O

@)

In equation 7, A is denoted as the adjacency matrix with
added self-loops, D~%/2 is denoted as the degree matrix of
A, HW is denoted as the node features at layer I, W® is
denoted as the trainable weight matrix at layer 1,0 is
denoted as the activation function, typically ReLU.Using
GNN's student embeddings, ML models can be used for
classification as well as regression tasks, categorizing
students into performance tiers and predicting numeric
scores like BMI and test scores.

¥i = fu(Z) (3

In equation 8,7; is the GNN-generated embedding for
student i, fj,, is the ML model (e.g., Decision Tree, SVM,
or XGBoost).

— Xi=1Yi log(@) ©)

Lreg == ?:1(3’1’ -9) (10)

In equation 9 and 10, the Regression Loss penalises
incorrect predictions by measuring the class probability
match with genuine class labels. It emphasises severe
errors by measuring the average squared difference
between projected values and actual continuous values
using the Mean Squared Error (MSE). Both losses are
minimised during training to increase model performance.

!

Los =

Figure 3: Core processing engine

The Core Processing Engine is a crucial component of
the Graph-Based Intelligent Cloud Framework for Student
Fitness (GICF-SF). It consists of five stages that transform
raw fitness data into personalized feedback. The first stage
involves collecting preprocessed fitness features from

various sources, such as wearables, PE records, and tests.
This ensures consistency, handles missing values, and
normalizes measurements for comparable analysis.



Graph Neural Network and Cloud-Based Intelligent Recommendation...

The second stage involves building a similarity graph
based on student data, representing student fitness profiles
as nodes in an interconnected graph structure. This graph
representation captures complex relationships between
different fitness parameters, enabling the system to identify
patterns and connections that traditional tabular analysis
would miss.

The third stage involves generating latent embeddings
for each student, processed by Graph Neural Network
algorithms. These embeddings capture essential fitness
characteristics and relationships. The fourth stage uses
these embeddings to create ML models, categorizing
students into fitness groups or predicting future
performance or optimal training parameters. The final
stage is the output, which translates analytical results into
tailored recommendations. This engine generates
individualized training programs based on a student's

Pseudocode 1: GICF-SF recommendation engine
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unique fitness profile, provides specific guidance for
physical education instructors, and delivers personalized
student progress tracking and goal setting. The pipeline
demonstrates how graph-based machine learning can
transform fitness data analysis from simple statistical
models to a comprehensive understanding of
interconnected fitness parameters.

3.5 Intelligent recommendation system

The Intelligent Recommendation System uses GNN
outputs and ML models to predict recommended training
focus areas. It uses Python to preprocess a Student DataSet,
initialize GNN parameters, and perform features extraction,
embedding, and recommendation embedding for each
student. The system then appends the recommended
recommendations to the PersonalizedRecommendations
output.

Input:

- Student dataset D = {d, dz, ..., dn}, where each d; contains features: W; (Wearable data), P; (Physical test scores), F; (Fitness logs), H; (Health records), A; (Activity

patterns)
- Target labels Y = {y1, y2, ..., ya}, representing desired fitness categories or outcomes
Output:
- Personalized recommendations R = {r1, 12, ..., I}
Step 1: Preprocessing
For each student d; in D:
- Normalize features: Wi, Pi, Fi, H;, A;
- Concatenate features: X; < [W;, P, F;, Hi, Aj]
Step 2: Graph Construction
-Nodes V — {Xi, X, ..., Xa}
- Edges E based on similarity (e.g., cosine similarity)
- Construct graph G = (V, E)
Step 3: GNN Training
- Initialize GNN parameters ©
For epoch =1 to N:
- H « GNN_Forward(G, X, ®) // Node embeddings
- loss «<— CrossEntropyLoss(H, Y)
- ® « UpdateParameters(loss, ©)
Step 4: Recommendation Inference
For each student d; in D:
- Concatenate features: x; «— [W;, Pi, Fi, Hi, Ai]
- Generate embedding: h; «— GNN_Forward(G, xi, ®)
- Predict: r; «— ML_Classifier.predict(h;)
- R.append(r;)

Return: R
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Pseudocode 1 outlines the core workflow of the GICF-SF
recommendation engine, covering data preprocessing,
graph construction, GNN-based training, and inference. It
explicitly defines input features, label usage, embedding
updates, and prediction logic. The structure ensures clarity,
reproducibility, and highlights how graph-based reasoning
enhances personalized fitness recommendations.

4 Result analysis

4.1 Experiment setup

The GICF-SF framework was tested on a student physical
education performance dataset[26], consisting of 10,421
records with 24 fitness-related features. The GNN
architecture was implemented in PyTorch, consisting of
three graph convolutional layers and a readout layer. The
model was qualified using Adam optimizer and early
stopping. A containerized architecture on AWS was used,
with Kubernetes for orchestration. The infrastructure
included 3 instances for application servers, 2 instances
for database services, and variable compute resources for
the ML inference pipeline. Performance was assessed
using MAE, RMSE, precision, recall, as well as F1-score
metrics for recommendation quality, while system
performance was measured through response time,
throughput, and resource utilization. A controlled pilot
deployment involving 312 students from 5 educational
institutions was conducted over 8 weeks, with weekly
fitness tracking and training program adjustments.

The dataset comprising 10,421 records was partitioned
using a stratified 70:15:15 split for training, validation,
and testing, respectively. To ensure model robustness,
five-fold cross-validation was applied during training.
Hyperparameter tuning was conducted using grid search
across the validation set, optimizing parameters such as
learning rate (0.0005-0.01), dropout rate (0.2—0.5), and
hidden layer dimensions ([64, 128, 256]).

The dataset includes records from multiple institutions
across urban and semi-urban regions, with balanced
representation of genders and students aged 14-22.

10

B. Gao

However, limited inclusion of rural populations and
cultural diversity may affect generalizability. These
limitations are acknowledged, and future work will
involve expanding the dataset for broader demographic
and geographic coverage.

4.2 Comparative study

The GICF-SF was compared to three recommendation
models: CFRS [16], NLP-EAR [17], and MLFR [22].
User-item similarity guides CFRS recommendations, but
limited fitness data lowers Precision (P) and Recall (R).
The NLP-EAR's text-based emotion analysis works well
for medication but not for organized physical fitness data,
resulting in inconsistent F1-Score and Recommendation
Accuracy. The MLFR uses classic classifiers like SVM
and DT, which are stable but inadequate at capturing
complicated feature interactions, resulting in greater
MAE and RMSE. GICF-SF models complex fitness
indicator dependencies using Graph Neural Networks
(GNNs) and Cloud Computing (CC) for scalable, real-
time processing. GICF-SF enhances RA 12.8%, F1-Score
14.5%, MAE 11.6%, and training adaption time 17.3%.
Since cloud infrastructure increases throughput by 21.6%,
GICF-SF is ideal for individualized student fitness
recommendations.

4.3 Recommendation accuracy (RA)
Recommendation Accuracy (RA) is a system's ability to
accurately recommend personalized fitness programs
based on a student's health and performance features.

RA =3, (,%Z?il JGDE Wtj)
(11)

In equation 11, m is the total number of fitness
features (e.g., HR, VO2, BMI), n; is the number of
students for feature j,7;; is the actual class/score for
student i on feature j,7; is the predicted recommendation,
8 is the indicator function = 1 if correct, 0 otherwise. w;
is the weight based on feature importance or sensitivity.

N CFRS
s MLFR
BN NLP-EAR
0.8 4 EEE GICF-SF

0.6

0.4

Recommendation Accuracy (RA)

0.24

0.0-

AGI MS BMI

FLEX END

Physical Performance Features

Figure 4: Normalized recommendation accuracy (RA) for physical performance features
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Figure 4 presents the normalized Recommendation
Accuracy (RA) values for five physical performance
features across four models: CFRS, MLFR, NLP-EAR,
and GICF-SF. Each bar reflects the average accuracy
obtained via five-fold cross-validation, adhering to
Formula (11), where § is a binary correctness indicator and
final RA values are bounded within [0, 1]. Unlike earlier
stacked interpretations, this figure uses grouped bars to
represent per-feature accuracies individually, ensuring
clarity and consistency. GICF-SF outperforms other
models across all metrics, particularly in AGI and MS,
indicating its  superior ability to  personalize
recommendations across varied physical performance
parameters in a reproducible manner.
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4.4 Precision
Precision measures the proportion of accurate and relevant
recommendations among all recommendations made.
Precisiony =
TPf
TPf+FPf

In equation 12, f is the feature (e.g., HR, FLEX), TPf
is the true positives for feature f,FPy is the false positives
for feature f.

(12)
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(a)Cardiovascular Features: Y-axis shows
precision (%)

(b) Individual Precision Scores for Physical Performance Features.

Figure 5: Precision scores of features by different models

Figure 5(a) and 5(b) compare the precision
performance of the ratio of true positives to the sum of true
and erroneous positives in four recommendation systems.
Figure 5 compares CFRS, MLFR, NLP-EAR, and GICF-
SF models in two feature areas. Figure 5(a) uses bar charts
to show cardiovascular features (HR, VO2, RHR, BP, PR).
GICF-SF has the highest precision (0.85) across all
cardiovascular measures, while CFRS (purple) has the
lowest (0.7). Intermediate findings for MLFR and NLP-
EAR are 0.7-0.75. Figure 5(b) presents individual
precision scores for five physical performance features:
AGI, MS, BMI, FLEX, and END across four models,
namely CFRS, MLFR, NLP EAR, and GICF SF. Each bar
indicates the average precision for a specific model and
feature, constrained within the standard range from zero to

one. GICF SF shows consistently higher precision across
all features.

4.5 Recall score
The percentage of real instances relevant to the problem
that the model was able to recover is referred to as the

recall.
TP f

TPf+FPf

Recall; =
(13)
In equation 13, f is the feature (e.g., HR, FLEX), TPf
is the true positives for feature f, FN is the false negative
for feature f.
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Recall Scores of Cardiovascular Features by Different Models
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Figure 6: Recall Scores of cardiovascular features by different models

Figure 6 shows a heatmap visualization that compares
recall scores of four recommendation algorithms (CFRS,
NLP-EAR, MLFR, and the proposed GICF-SF) across five
key cardiovascular features. The heatmap uses a color
gradient from light yellow to dark blue for precise
comparison. The proposed GICF-SF model consistently
shows superior recall performance across all
cardiovascular parameters, achieving scores between 0.80-
0.83. The CFRS model shows the lowest recall values,
while NLP-EAR and MLFR show progressive
improvements. The most notable performance difference is
with the VO2 feature, where GICF-SF achieves a recall of
0.83 compared to CFRS's 0.67, representing a 23.9%
improvement. This consistent superiority suggests that the
graph-based approach is effective at minimizing false
negatives in cardiovascular fitness recommendations,

capturing a higher proportion of relevant cases requiring
specific training interventions.

4.6 F1-Score

F1-Score is a crucial tool in fitness data analysis, ensuring
precision and recall by utilizing the harmonic mean,
thereby mitigating health risks associated with false
positives and false negatives.

F1—Score; =2 X
PrecisiongxRecallg (14)

Precisionf+Recallf

In equation 14, the F1-Score (1) indicates a better
balance between precision and recall, useful in imbalanced
datasets where focusing solely on accuracy may be
misleading.

Table 5(a): Cardiovascular features

Model HR VO: Max RHR BP PR

CFRS 0.73 0.71 0.72 0.74 0.70
MLFR 0.76 0.75 0.77 0.76 0.74
NLP-EAR 0.79 0.78 0.78 0.80 0.77
GICF-SF 0.83 0.84 0.82 0.84 0.81

Table 5(a) compares CFRS, NLP-EAR, MLFR, and the
planned GICF-SF for predicting cardiovascular health
indicators in student fitness data. Table 5(a). F1-scores for

cardiovascular features across all models. GICF-SF
consistently outperforms the baselines, achieving the
highest scores for all metrics.
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The GICF-SF model outperforms all cardiovascular
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improved cardiovascular feature analysis implies that

characteristics with Fl-scores of 0.81-0.84. VO2 GICF-SF's graph-based approach better captures student
prediction has the highest Fl-score (0.84) for oxygen fitness data's complicated cardiovascular indicator
consumption measurements. GICF-SF surpasses CFRS by interrelationships.
16% in BP analysis, the biggest performance gap. This
Table 5b: Physical performance features

Model AGI MS BMI FLEX END

CFRS 0.72 0.70 0.69 0.68 0.67

MLFR 0.75 0.73 0.72 0.71 0.70

NLP-EAR 0.78 0.77 0.76 0.75 0.73

GICF-SF 0.84 0.83 0.82 0.81 0.80

Table 5(b) compares four models (CFRS, NLP-EAR,
MLFR, and GICF-SF) to predict student performance
using physical fitness parameters.Table 5(b). F1-scores for
physical performance features. GICF-SF demonstrates
superior performance across all categories compared to
baseline models.

The GICF-SF model consistently outperforms the
others with F1-scores of 0.83-0.86. FLEX prediction has
the highest F1-score (0.86), suggesting flexibility metrics
analysis. The study also shows that GICF-SF's graph
neural network and cloud computing methods may
capture complex fitness indicator linkages.

Table 6: Performance comparison of GICF-SF vs. baselines with confidence intervals and statistical significance

Model Precision (%) =CI | Recall (%) =CI | F1-Score (%) +CI | p-value (F1 vs. GICF-SF)
CFRS 72.6+1.3 702+ 1.6 713+ 14 0.0012
MLFR 75.8+1.1 739+1.4 748+1.2 0.0007
NLP-EAR | 76.3+1.2 74.5+1.3 754+£13 0.0005
DeepFitNet | 789+ 1.0 772+12 78.0+1.1 0.0021
GICF-SF 88.4+£0.9 86.7+ 1.0 87.5+0.9 Nil

Table 6 presents a comparative evaluation of GICF-
SF against four baseline models using Precision, Recall,
and F1-score with 95% confidence intervals. Paired t-tests
confirm that GICF-SF significantly outperforms all other

methods, including the deep learning-based DeepFitNet,
highlighting its accuracy and statistical robustness in
fitness recommendation tasks.

Table 7: Ablation study: impact of GNN and cloud components on GICF-SF performance

Model Variant GNN Component Cloud Recommendation Accuracy (RA F1-Score Training Time
Component %) (%) (sec)
GICF-SF (Full Model) v Ng 88.4 87.5 2354
GICF-SF without GNN X (Replaced with v 80.2 78.7 241.8
MLP)

GICF-SF without Cloud v X (Local Only) 84.6 82.9 284.6
Deployment

Baseline (No GNN, No Cloud) X X 76.4 74.8 298.3

Table 7 presents an ablation study evaluating the
individual contributions of GNN and cloud components.

Results show both significantly enhance accuracy and

efficiency

compared to

baseline

configurations.
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Table 8: Evaluation of coverage, novelty, and diversity for GICF-SF and baselines

Model Coverage (%) Novelty (0-1) Diversity (0-1)
CFRS 423 0.41 0.48
MLFR 46.7 0.45 0.50
DeepFitNet 52.1 0.52 0.57
GICF-SF 65.4 0.64 0.72

Table 8 presents coverage, novelty, and diversity metrics
for all models. GICF-SF achieves the highest scores,
indicating  broader, more unique, and varied
recommendations for students.The higher scores in
coverage, novelty, and diversity highlight GICF-SF’s
strength in delivering personalized and engaging fitness
recommendations, addressing key needs in educational
contexts beyond pure accuracy.

In addition to the percentage improvement, absolute
latency values were recorded. Baseline model training
time was 284.6 seconds, while GICF-SF achieved a
reduced training time of 235.4 seconds, marking a 17.3%
improvement. Inference latency per instance also
improved, decreasing from 42 milliseconds (baseline) to
33 milliseconds with GICF-SF. These values highlight the
practical efficiency of the proposed architecture for large-

scale deployment.

4.7 Discussion

The experimental results confirm that GICF-SF
outperforms SOTA methods across key metrics including
Recommendation  Accuracy  (112.8%), Fl-score
(114.5%), and training time reduction (|17.3%). CFRS,
which depends on static user-item similarity, shows
limited adaptability to complex physiological data,
resulting in lower precision and recall. NLP-EAR, though
effective for unstructured text, underperforms in
structured, multi-modal physical fitness datasets. MLFR
exhibits stable behavior but fails to capture non-linear
dependencies among fitness indicators, leading to higher
MAE and RMSE. GICF-SF’s integration of Graph Neural
Networks enables robust modeling of feature
interdependencies, while cloud deployment ensures real-
time scalability. These advantages position GICF-SF as a
superior alternative for personalized student fitness
recommendations in dynamic and large-scale
environments.

Although  GICF-SF demonstrates  strong
performance within the evaluated dataset, its
generalizability across different regions, institutions, and
age groups may be influenced by population-specific
characteristics. Variations in fitness norms, activity
patterns, and demographic features can impact model

performance. The GNN-based architecture is adaptable
and can be retrained on new data; however, performance
may degrade without domain-specific tuning. Future
work will explore transfer learning and domain
adaptation to extend the framework's robustness across
diverse student populations.

4.8 Limitations and failure modes

Several limitations and failure modes affect the
performance of GICF-SF. The model may produce
inaccurate results when handling noisy, incomplete, or
imbalanced fitness data. Deeper layers of the GNN may
lead to over-smoothing, reducing the distinction between
node embeddings. The use of a static graph structure
limits adaptability to real-time changes in student
behavior or health status. Under high user load,
performance may degrade if cloud resources are
insufficient. Additionally, the model’s complexity makes
it difficult to interpret, which can reduce transparency.
Future work will address these issues through dynamic
graph updates and explainable Al components

5 Conclusion and future work

This research presented the GICF-SF model, a graph-based
and cloud-enabled framework for generating personalized
physical fitness recommendations. The results demonstrate
that the framework achieves notable improvements in
recommendation accuracy, computational efficiency, and
scalability when compared to conventional baselines.
These advancements position GICF-SF as a promising
solution within its current experimental context.At the
same time, it is important to acknowledge several existing
constraints. These include limited representation across
population groups, inconsistencies in data collection, and
the absence of long-term validation. Additionally,
technical challenges such as integration complexity,
privacy considerations, and the need for domain-specific
adaptation remain. While these limitations may restrict
immediate real-world deployment, they also serve as clear
indicators of future development priorities.Moving
forward, the framework will be extended through methods
such as transfer learning, enhanced explainability, and
broader dataset integration. These enhancements aim to
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improve adaptability, generalizability, and practical impact,

ultimately making GICF-SF more robust and widely
applicable in real-world educational and health monitoring
scenarios..While GICF-SF integrates security mechanisms
such as AES encryption and role-based access control, no
formal evaluation (e.g., breach simulation or overhead
analysis) was conducted in this phase. Similarly, although
explainability is supported through model reasoning and
attention weights, no formal user studies were performed.
Future work will include systematic security testing and

user-based evaluation

to assess transparency and

trustworthiness.
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