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Physical fitness significantly supports students' health, academic success, and overall development in 

modern education. Many educational institutions now adopt advanced technologies to monitor 

physical activities and suggest personalized training programs based on individual needs. However, 

most existing systems rely on simple models that cannot fully capture the complex relationships among 

various fitness indicators, such as heart rate, endurance, and flexibility. These systems also face 

challenges in processing large datasets efficiently and delivering real-time, personalized feedback to 

diverse student groups. The Graph-Based Intelligent Cloud Framework for Student Fitness (GICF-SF) 

has been developed to address these challenges. GICF-SF utilizes Graph Neural Networks (GNNs) to 

analyze complex interactions within physical fitness data, enabling a more accurate understanding 

and recommendation. Additionally, Cloud Computing supports fast data storage, processing, and real-

time response, providing scalability for multiple users across different locations.GICF-SF integrates 

machine learning and cloud technologies to deliver tailored training suggestions by learning from 

each student's unique fitness profile. The cloud infrastructure allows the framework to serve schools, 

fitness centers, and online platforms efficiently without performance.The proposed GICF-SF model 

uses a 3-layer Spatial-Temporal Graph Convolutional Network (ST-GCN) with ReLU activation and 

dropout. The student fitness dataset (10,421 records) was split into 70% training, 20% testing, and 10% 

validation sets. Evaluation was performed using precision, recall, F1-score, MAE, and RMSE metrics 

under 5-fold cross-validation. Results show that GICF-SF improved recommendation accuracy by 

12.8% and reduced training time by 17.3% over traditional methods. 

Povzetek: Članek predstavi grafno-nevronski in oblačni sistem za analizo telesne pripravljenosti dijakov 

GICF-SF. ST-GCN model zajame prostorsko-časovne povezave med kazalniki in izdela personalizirane 

treninge. Oblačna infrastruktura omogoča sprotno obdelavo, razširljivost in krajši čas učenja. 

 

1  Introduction 
Educational institutions globally value physical fitness 

for student growth and well-being. Regular physical 

activity protects against obesity and cardiovascular 

disease, and improves cognitive, academic, and mental 

health[1]. The World Health Organization (2023) reports 

that just 19% of adolescents worldwide meet the 60-

minute daily physical exercise recommendation[2]. This 

alarming trend underlines the need for novel student 

fitness programs. 

Traditional educational fitness assessments include 

standardized testing throughout the year. Standard 

examinations examine cardiovascular strength, muscular 

power, flexibility, as well as body composition[3]. 

Conventional methods don't provide constant monitoring 

or targeted instruction based on students' requirements and 

development patterns. Technology like wearables, mobile 

apps, and data analytics platforms has transformed fitness 

monitoring[4]. These technologies track heart rate, steps, 

burned calories, and sleep habits. Institutions are using 

these tools to track student fitness more closely, but it isn't 

easy to interpret this amount of data and turn it into 

meaningful insights and individualized suggestions[5]. 

The research addresses the technical issue of existing 

student fitness analysis systems, which struggle to model 

and analyze complex relationships between fitness 

indicators while delivering personalized recommendations 

at scale[6]. Current systems have an accuracy limit of 

76.4%, processing efficiency of 3.7 seconds for single 

student data, and a scalability constraint of 42% increased 

latency when user numbers exceed 1,000 concurrent 

connections[7]. These limitations hinder educational 

institutions from utilizing the growing volume of fitness 

data to improve student health outcomes and physical 

development. 

Despite advances in fitness monitoring and data 

analysis, there are research gaps in applying advanced 

computational methods to student fitness data[8]. 
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Traditional fitness recommendation systems use machine 

learning methods to treat fitness indicators as independent 

variables[9]. These systems fail with variable student 

populations and complex fitness trajectories. Most systems 

use standalone computing, which limits their ability to 

handle huge amounts of data or offer real-time 

feedback[10]. Current approaches ignore individual fitness 

progression, personal preferences, and improvement needs 

by making demographic-based recommendations. Gaps 

show the need for a more advanced strategy[11]. 

Technical motivation for fitness data analysis and 

recommendation systems comes from graph-based 

machine learning and distributed computing 

architectures[12]. Graph Neural Networks (GNNs) are 

appropriate for studying complex fitness parameter 

interdependencies because they model complex 

interactions in interconnected data structures[13]. GNNs 

can capture complicated physiological linkages, such as 

biomarker interactions in cardiovascular health monitoring, 

improving predicted accuracy[14]. Data-intensive apps 

can process fitness data in real time using cloud 

computing[15]. GNNs with cloud computing enable more 

accurate modeling of complicated fitness interactions, 

rapid processing of large-scale fitness data, real-time 

analysis and suggestion generation, and smooth scalability 

for expanding user numbers. The Graph-Based Intelligent 

Cloud Framework for Student Fitness (GICF-SF) uses 

GNNs and cloud computing to assess student fitness data 

and provide more accurate training recommendations. 

The main objectives are: 

To develop a model for GICF-SF using GNNs to 

effectively analyze and capture complex relationships 

within students’ physical fitness data. 

To design and implement the GICF-SF 

recommendation system that provides personalized 

training programs tailored to each student’s unique fitness 

profile. 

To integrate cloud computing technologies within 

GICF-SF for efficient storage, scalable processing, and 

real-time analysis of large volumes of fitness data. 

To enhance the performance of GICF-SF by 

improving recommendation accuracy and reducing 

response time compared to traditional fitness data analysis 

and training systems. 

This research aims to address the following research 

questions: 

• RQ1: Can a graph-based approach (GNN) 

improve recommendation accuracy (RA) by at 

least 10% over traditional ML-based fitness 

recommendation systems? 

• RQ2: Does the integration of cloud computing 

infrastructure reduce system training and 

adaptation time by at least 15%? 

• RQ3: Can the proposed GICF-SF framework 

maintain high throughput and low latency when 

scaled to support over 1,000 concurrent users? 

The primary goal of GICF-SF is to enhance 

personalized fitness recommendations by significantly 

improving RA, reducing model training time, and enabling 

scalable, real-time deployment across educational 

institutions. 

A summary of the research follows. Second section: 

thorough literature and research methodological review. 

Section 3 covers the study plan, methods, and processing; 

Section 4 presents analysis results. Conclusion as well as 

future work are in Section 5. 

 

2  Related works  
2.1 Intelligent recommendation systems in 

health and education 
Gm et al.[16]examined 60 papers from major databases on 

education's e-learning and personalised recommendation 

systems. It shows content ignorance, student discontinuity, 

language hurdles, study material confusion, and poor 

infrastructure and finance. The review suggests Fluxy AI, 

Twin technological advances, AI-powered virtual 

evaluating, and Alter Ego to deal with these challenges. 

These technologies can offer an engaging, interactive 

classroom for students and educators, boosting 

individualised learning, comprehension capacity, and 

speech disordered students' learning experience. 

Zheng et al.[17] showed that Natural Language 

Processing or NLP  is a field that uses computer science, 

artificial intelligence, and linguistics to comprehend, 

process, create, and imitate human language. It includes 

looking at the structure, meaning, syntax, and use of 

language, as well as using statistics to analyze and model 

big corpora. This paper uses deep learning and NLP  to 

explore patients' remarks and find the best drugs. This 

leads to accurate prescriptions and individualized 

suggestions. Linguistics, computer science, and statistics 

are the main ideas behind NLP. 

 

2.2 Graph neural networks for fitness and 

behavioral data modeling 
Zhang et al.[18] investigated posture recognition and 

motion capture for skeleton-based action recognition in 

everyday fitness. A spatiotemporal pyramidal graph 

convolutional network with edge significance scores and 

multi-level feature representation improves performance. 

The model achieves 85.89 mAP on the UW-IOM as well 

as TUM kitchen datasets. The study found that skeleton 

information correctness improves action recognition 

ability, whereas picture feature fusion can help in cases of 

limited or faulty image information. Comparing the 

method to others shows its benefits. 
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Wang and Liu[19] explored a deep learning-based 

Life Log Sharing Model or LLSM to improve teenage 

fitness and exercise. The TS-CNN-BiLSTM model 

predicts physical activity using multimodal life log data's 

temporal, textual, and visual aspects. The model beat state-

of-the-art methods by 1.9–4.4%. Temporal aspects are 

needed to identify repetitive behaviours and workouts. The 

study found that multimodal life log data and deep learning 

accurately characterise physical activity. The TS-CNN-

BiLSTM model's accuracy allows personalised health 

promotion tactics like interventions, behavioural 

incentives, and social support to increase adolescent 

physical activity, as well as public health education along 

with management. 

 

2.3 Cloud computing in smart health and 

education platforms 
Raghav et al.[20] provided that Cloud computing and the 

IoT are transforming healthcare. This revolution allows 

healthcare organizations to safely manage and analyze 

massive amounts of patient data, improving patient care 

and well-being. The IoT has expanded healthcare beyond 

clinical settings through its connected gadgets and sensors, 

generating constant patient data. Remote monitoring, 

tailored medicine, and predictive analytics offer proactive 

healthcare interventions thanks to this synergy. Cloud and 

IoT-powered telemedicine has improved healthcare access 

in remote and underdeveloped places. However, security 

and privacy remain crucial. The Cloud-IoT revolution in 

healthcare is a paradigm shift that prioritizes patient care 

and well-being. 

Sundas et al.[21] presented that the Chronic and 

lifestyle-related diseases pose major social and economic 

issues worldwide. A innovative Smart Patient Monitoring 

and Recommendation or SPMR framework uses Deep 

Learning as well as cloud analytics. SPMR monitors and 

expects a patient's health using vital signs as well as 

contextual activities from Ambient Aided Living devices. 

Unbalanced Chronic Blood Pressure Disorder case study 

datasets forecast real-world health situations using 

Categorical Cross Entropy Optimization. Effectiveness is 

shown by the model's 18% accuracy increase and 17% and 

36% increases in overall and emergency class F-scores. 

2.4 Integration of machine learning with 

physical fitness assessment 
Zhao et al.[22] presented that the Daily vigor and resilience 

are indicators of physical fitness. With machine learning, 

wearables, apps, and data analysis, fitness is improving. 

Wearable fitness trackers with sensors collect massive 

amounts of activity, sleep, and vital sign data. The Gradient 

Probabilistic Automated Recommender System with 

Machine Learning or GPA-RS-ML, is a novel fitness 

assessment and training program recommendation system 

recommendation system. This technology analyzes fitness 

data and recommends personalized training plans using 

machine learning. The GPA-RS-ML method improves 

training efficiency and effectiveness. This research 

improves automated fitness assessment and suggestion 

systems, helping fitness professionals optimize results and 

training adherence. 

Su et al.[23] showed that Intelligent Education 

Cloud Platforms have transformed educational resource 

sharing and consumption, making learning more 

accessible and flexible. Distributed sharing and 

personalized recommendation systems improve resource 

accessibility and student engagement in college preschool. 

Traditional methods lack flexibility and scalability for 

dynamic resource allocation, hampering customized 

education. To circumvent these constraints, KAEN and 

ALPS are proposed. KAEN optimizes resource 

recommendation and personalizes learning using graph-

based knowledge representation, dynamic content 

alignment networks, and reinforcement learning. 

Experimental validation indicates significant resource 

utilization efficiency and adaptive content delivery quality 

improvements. 
 

2.5 Challenges and advances in personalized 

training program design 
Noone et al.[24] examined internal and extrinsic factors 

affecting exercise response variance and health outcomes. 

Internal influences include sex, age, hormonal state, 

race/ethnicity, and genetics, whereas extrinsic factors 

include exercise timing, sleep habits, food combinations, 

and medication use. Genomic-epigenomic, proteomic-

post-translational, transcriptomic, metabolic-metabolomic, 

as well as lipidomic exercise molecular transducers are 

also reviewed. It describes the difficulties of creating 

personalised exercise prescriptions and MoTrPAC's efforts 

to solve them. Researchers must study more health 

outcomes across all populations. 

Romero et al.[25] showed that disease and treatment 

side effects put lower-extremity sarcoma survivors at risk 

of physical performance dysfunctions and poor quality of 

life. Their functionality and quality of life depend on safe 

exercise routines. Clinical presentation and development 

vary; therefore, the success of physical activity and 

exercise in these survivors is uncertain. This study suggests 

creating a training program to preserve fitness and quality 

of life. Sarcoma survivors should do low-intensity, short-

duration exercise before surgery and alter their routine 

during clinical therapy. Healthy habits, including regular 

exercise, should be developed under professional 

supervision for disease-free survival. 

Dugyala et al.[27] presented Cloud computing has 

evolved significantly in the past two decades, yet intrusion 

detection has become a security issue. This study offers an 

enhanced Intrusion Detection System (IDS) using Graph 

Neural Networks and Leader K-means clustering to 

improve detection accuracy and efficiency. For data 

clustering, the system uses Leader K-means, improves 
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Grasshopper Optimization, and uses Advanced Encryption 

Standard encryption and steganography. The research, 

implemented on Java with CloudSim support, improves 

detection accuracy and processing efficiency over existing 

methods. 

 

 The summary of  related works, system, datasets, and 

performance metrics is shown in Table 1(a) below:

Table 1(a): Summary of related works: systems, datasets, and performance metrics 

Authors System/Model Name Datasets Used Reported Performance Metrics 

Gm et al. [16] AI-based Educational 

Recommenders (Fluxy AI, 

Alter Ego, AI Evaluators) 

Not specified (Systematic 

Literature Review) 

Not reported (conceptual/review-

based) 

Zheng et al. [17] NLP-EAR (NLP for 

Effective AI-based 

Recommendation) 

Custom clinical comment 

datasets 

Accuracy (not quantified), 

Personalization Precision 

(conceptual) 

Zhang et al. [18] Spatiotemporal Pyramidal 

GCN (Graph Convolution 

Network) 

UW-IOM, TUM Kitchen 

datasets 

mAP: 85.89 

Wang and Liu 

[19] 

TS-CNN-BiLSTM (Life 

Log Prediction Model) 

Multimodal life log data 

(textual, visual, temporal) 

Accuracy gain: 1.9–4.4% over 

baselines 

Raghav et al. 

[20] 

Cloud-IoT Healthcare 

Framework 

Not specified Conceptual performance: improved 

monitoring & access (qualitative) 

Sundas et al. 

[21] 

SPMR (Smart Patient 

Monitoring & 

Recommendation) 

Chronic BP disorder case 

datasets 

Accuracy ↑ 18%, F1-score: ↑17% 

(overall), ↑36% (emergency class) 

Zhao et al. [22] GPA-RS-ML (Gradient 

Probabilistic Recommender 

with ML) 

Wearable sensor data Improved training effectiveness (not 

numerically stated) 

Elomari et al. 

[23] 

ML-based REC Optimizer 

(for Renewable Energy 

Communities) 

Tarragona energy usage 

and climate data 

Cost reduction & green energy 

utilization optimized; no F1 or 

precision reported 

Noone et al. 

[24] 

MoTrPAC Molecular 

Fitness Response 

Framework 

Multi-omic datasets 

(transcriptomic, 

proteomic, etc.) 

No metrics; focus on biological 

factors and personalization 

variability 

Romero et al. 

[25] 

Personalized Training for 

Sarcoma Survivors 

Clinical treatment data Qualitative outcomes: safety, 

improved QOL; no specific metrics 

Despite notable contributions, state-of-the-art (SOTA) 

systems such as CFRS, NLP-EAR, and MLFR present 

several limitations. CFRS lacks the capacity to model 

interdependencies between fitness indicators; NLP-EAR 

performs poorly on structured physiological data; and 

MLFR's reliance on traditional classifiers restricts its 

adaptability. These methods typically plateau at around 

76.4% accuracy and often exclude critical performance 

metrics such as MAE and RMSE. Moreover, they operate 

without scalable infrastructure, limiting their deployment 

in real-time educational environments. To address these 

issues, the proposed GICF-SF framework integrates Graph 

Neural Networks and cloud computing to deliver scalable, 

high-precision, and real-time student fitness 

recommendations. 

3  Graph-based intelligent cloud 

framework for student fitness  
The Graph-Based Intelligent Cloud Framework for 

Student Fitness (GICF-SF) is a computational architecture 

designed to analyze student physical fitness data and 
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provide personalized training recommendations. It 

integrates graph neural networks (GNNs) with cloud 

computing to create a scalable, efficient solution for 

educational institutions. The system addresses the 

limitations of traditional fitness analysis systems by 

capturing complex relationships between fitness metrics 

and delivers tailored recommendations with increased 

accuracy and reduced processing time. 

The system includes various data sources and acquisition 

layers, such as wearable devices, PE Records Database 

Connector, Fitness Test Measurement System, Health 

Record System, and Activity Logging Subsystem. Data 

security and privacy are ensured through end-to-end 

encryption, role-based access control, and data 

anonymization protocols. 

 

 

Figure 1: GICF-SF system architecture 

 

In Figure 1, the data preprocessing layer covers noise 

filtering, outlier identification, data validation, temporal 

alignment, feature engineering, missing data management, 

graph structure development, and cloud computing 

infrastructure. Distributed storage, computing resource 

management, networking, communication, and 

performance metrics monitoring and observability are used. 

The primary processing engine uses an ST-GCN 

architecture with input, hidden, attention, pooling, and 

output layers. Data extraction is efficient with the feature 

extraction technique. 

The system uses graph embedding generation, 

topological feature analysis, subgraph pattern mining, and 

pattern recognition modules. Machine learning is used for 

fitness profile learning, training program development, and 

model training and validation. The intelligent 

recommendation system includes a tailored training 

module, exercise selection algorithm, session sequencing, 

and progress tracking. The technology also collects user 

comments and explains training reasoning. 

The system performs well in throughput, storage 

efficiency, suggestion quality, user happiness, and 

computational efficiency. The method reduced training 

time by 17.3% and used 76% of the GPU during peak 

processing. Future growth options include extended data 

integration, enhanced analytics, and system adaptability. 

Nutrition tracking, sleep quality analysis, academic 

performance correlation analysis, mental wellbeing 

assessment, explainable AI layer for transparent 

recommendation justification, and federated learning for 

privacy-preserving multi-institution collaboration are 

future expansions. Curriculum alignment modules 

integrate educational standards, API versioning method 

ensures backward compatibility, and a configuration 

management system customizes deployment. 

3.1 Data source layer  
GICF-SF is built upon the Student Physical Education 

Performance Dataset[26], like a solid foundation. To 

enable intelligent analysis and individualized fitness 

suggestions, this dataset is crucial. A student's general 

physical health, activity levels, and performance 

capabilities are reflected in the structured and semi-

structured data that it combines from multiple sources. 

 

Table 1. Categorization of fitness-related features used in GICF-SF framework 

Category Feature Name Description 

Cardiovascular Metrics HR Heart Rate (bpm) 

VO₂ Max Maximal Oxygen Uptake 

RHR Resting Heart Rate 

BP Blood Pressure (Systolic/Diastolic) 

PR Pulse Rate 

RR Respiratory Rate 
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SpO₂ Oxygen Saturation 

HRV Heart Rate Variability 

ECG Avg Signal Average ECG Signal 

Recovery Rate Post-exercise recovery response 

Physical Performance Indicators AGI Agility 

MS Muscular Strength 

BMI Body Mass Index 

FLEX Flexibility 

END Endurance 

BAL Balance score 

SPRINT Sprint speed (time) 

VERT JUMP Vertical jump height 

SIT UP Sit-up count 

PUSH UP Push-up count 

Supplementary Attributes Age Age of the student 

Height Height (in cm) 

Weight Weight (in kg) 

Weekly Activity Frequency of physical activity per week 

 

Table 1(b) presents a complete list of the 24 fitness-

related features used in the GICF-SF framework, 

categorized into cardiovascular metrics, physical 

performance indicators, and supplementary attributes, 

ensuring transparency, feature clarity, and reproducibility 

of the experimental setup. 

 

 

Table 2: Integrated fitness profile construction and graph mapping 

Symbol Definition Mathematical Expression / 

Description 

𝑋ᵢ Combined feature vector for 

student ᵢ 
𝑿ᵢ = [𝑾ᵢ , 𝑷ᵢ , 𝑭ᵢ , 𝑯ᵢ , 𝑨ᵢ] 

𝒢ᵢ =  (𝒱ᵢ, ℰᵢ) Fitness graph for student ᵢ 𝓥ᵢ: features as nodes, 𝓔ᵢ: inter-

feature edges 

𝑍ᵢ Node embedding from GNN 𝒁ᵢ = GNN(𝓖ᵢ, 𝑿ᵢ) 

𝑌̂ᵢ Predicted recommendation 

vector 

𝒀 ̂ᵢ = f(𝒁ᵢ; θ) 

Table 2 describes how to create a thorough fitness 

profile and graph it for each student i. The feature vector 

𝑋ᵢ  ᵢ combines data from several sources, including 

wearables, PE records, fitness tests, health records, and 

activity logs. This vector is transferred into a fitness graph.  

𝒢ᵢ =  (𝒱ᵢ, ℰᵢ) , where nodes represent features and edges 

represent their associations. A Graph Neural Network 

(GNN) generates node embeddings 𝑍ᵢ , which a learnt 

function f uses to anticipate individualized training 

suggestions 𝑍ᵢ. 
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3.2 Data preprocessing  
Data must be preprocessed to guarantee consistency and 

correctness before being used in the virtual environment. 

Here are a few important things to keep in consideration: 

Handling missing values 

Data must be processed effectively to avoid bias and 

account for missing values due to data collecting errors or 

partial responses. Two typical strategies include imputing 

missing values (where current data is used to infer missing 

data) and removing instances with missing values (helpful 

for tiny but potentially loss-causing occurrences). The 

following equation (1) replaces the feature's mean for 

missing values in mean imputation, a common method. 

 

𝑥
𝑚𝑖𝑠𝑠𝑖𝑛𝑔=

1

𝑛
∑ 𝑥𝑖

𝑛
𝑖=1

    

 (1) 

where the missing value is denoted by 𝑥𝑚𝑖𝑠𝑠𝑖𝑛𝑔, the 

number of non-missing values for the feature is denoted by 

𝑛, and the non-missing values are denoted by 𝑥𝑖Replace 

missing values with the mean of the 𝑘-nearest neighbors 

using available features—the formula for this imputation 

from equation (2). 

 

𝑥
𝑚𝑖𝑠𝑠𝑖𝑛𝑔=

1

𝑘
∑ 𝑥𝑖

𝑘
𝑖=1

    

 (2) 

Here, 𝑘 is the count of closest neighbours taken into 

account, and𝑥𝑖  stands for the values of the relevant feature 

in those KNNs. 

Normalize the data: 

By bringing all numerical features into a consistent 

range, normalization guarantees that each feature has an 

equal impact on the model. Two ways often used for 

normalization are: Min-Max Scaling: Reduce the size of 

the features to a predetermined interval, usually from 0 to 

1. For min-max scaling, the equation (3) is as follows:  

𝑥𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 =
𝑥−𝑥𝑚𝑖𝑛

𝑥𝑚𝑎𝑥−𝑥𝑚𝑖𝑛
   

 (3) 

where the normalized value is denoted by 𝑥𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 , 

the original value is denoted by 𝑥 , the minimum value of 

the feature is denoted by 𝑥𝑚𝑖𝑛 , and the maximum value of 

the feature is signified by 𝑥𝑚𝑎𝑥 . 

To normalize Z-scores, it is necessary to scale the 

characteristics with a mean of zero and a variance of one. 

To normalize z-scores, the following equation (4) is used, 

𝑥𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 =
𝑥−𝜇

𝜎
    

 (4) 

in which the normalized value is represented by 

𝑥𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 ,  the original value is represented by 𝑥 , the 

mean of the feature is denoted by  𝜇,  and the standard 

deviation of the feature is denoted by 𝜎. 

Encoding categorical variables 

Machine learning can only process numerically 

represented categorical variables. One-hot encoding 

creates A (1, 0, 0), B (0, 1, 0), as well as C (0, 0, 1), while 

label encoding assigns numerical values to each category. 

For example, A becomes 0, B becomes 1, while C becomes 

2. 

Records with more than 30% missing values were 

excluded. For incomplete entries, missing numerical 

attributes were imputed using the mean of the 

corresponding feature, while categorical variables were 

filled using mode imputation. Two features with over 85% 

null values and negligible correlation to the target variable 

were removed. All features were normalized using z-score 

standardization prior to training. 

 

3.3 Cloud computing platform 
The GICF-SF is a comprehensive system that handles 

student physical fitness data analysis through multiple 

stages. The process begins with the ingestion of raw fitness 

data, which is then processed through various security 

checks to prevent unauthorized access or malicious inputs. 

The system also handles error handling, ensuring that 

invalid or corrupted data is isolated for review, correction, 

or exclusion from further processing in Figure 2. The 

system categorizes encrypted data into three primary 

formats: Time Series Data, Document Data, and Graph 

Data. Database storage options include Time Series, 

Document, and Graph DB. Parallel data processing 

efficiently processes large volumes of student fitness data 

across multiple computing nodes. Real-time analytics on 

streaming data is provided, allowing for immediate 

feedback and intervention when necessary. 
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Figure 2: Cloud computing platform - data processing 

 

In Figure 2, Output generation includes anomaly 

detection, which generates alerts for 

coaches/administrators, and insight delivery, where critical 

findings trigger notifications to appropriate stakeholders. 

The final stage presents processed fitness data, trends, and 

personalized recommendations to end users. The flowchart 

demonstrates a fault-tolerant architecture with dedicated 

error handling paths, distributed computing elements 

supporting scalability for multiple educational institutions, 

and a multi-database architecture optimizing storage and 

retrieval based on data characteristics. Security controls 

are integrated throughout the pipeline, and real-time 

processing capabilities are implemented for immediate 

fitness feedback. This data processing flow enables the 

GICF-SF system to achieve performance improvements of 

12.8% in recommendation accuracy and 17.3% reduction 

in training time compared to traditional methods. 
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The mathematical framework for cloud-GNN 

integration involves a GNN model in the cloud, which is 

used for training and inference. The model uses a graph 

representation of fitness data, with edges based on 

similarity in physical fitness profiles. 

ℎ𝑣
(𝑙)

= 𝜎 (∑
1

𝐶𝑣𝑢
𝑊(𝑙)ℎ𝑢

(𝑙−1)
𝑢𝜖𝑁(𝑣) )                                 (5) 

In equation 5, ℎ𝑣
(𝑙)

  is denoted as the Embedding of 

node v at layer l,𝑁(𝑣)  is denoted as  the Neighbors of v, 

𝐶𝑣𝑢  is denoted as the Normalization constant, 𝑊(𝑙)  is 

denoted as the  Learnable weight matrix, 𝜎 is denoted as 

the Activation function (e.g., ReLU). 

Table 3: Fitness dataset (stored in cloud) 

Student ID Heart Rate Endurance Flexibility Speed BMI Vital Capacity 

S101 76 bpm 11 mins 12 cm 6.1 s 23.4 3900 ml 

S102 71 bpm 9 mins 8 cm 6.8 s 25.1 3600 ml 

S103 64 bpm 13 mins 15 cm 5.9 s 20.8 4100 ml 

In table 3, The Fitness Dataset, stored on a cloud 

computing platform, contains student physical fitness 

records with key health metrics like heart rate, endurance, 

flexibility, speed, BMI, and vital capacity. This structured 

dataset allows real-time analysis and personalized fitness 

recommendations using Graph Neural Networks. Cloud 

storage ensures scalable access, secure encryption, and 

efficient parallel processing across large student 

populations. 

 

Table 4: GICF-SF graph neural network (ST-GCN) architecture and hyperparameters 

Component Specification 

Graph Model Type Spatial-Temporal Graph Convolutional Network (ST-GCN) 

Number of ST-GCN Layers 4 

Hidden Layer Dimensions [64, 128, 256, 128] 

Graph Convolution Type Spatial-Temporal Graph Convolution (ST-GCN block) 

Activation Function ReLU 

Dropout Rate 0.3 

Batch Size 64 

Optimizer Adam 

Learning Rate 0.001 

Weight Decay 1e-5 

Epochs 200 

Loss Function Cross-Entropy Loss 

Early Stopping Patience = 20 epochs 

Graph Adjacency Matrix Dynamically learned (trainable edge weights) 

Temporal Kernel Size 9 
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Normalization BatchNorm 

Table 4 outlines the detailed architecture and 

hyperparameters of the GICF-SF model, including ST-

GCN layers, activation functions, learning settings, and 

optimization techniques used for model training and 

reproducibility. 

3.4 Core processing engine 
A Graph Neural Network (GNN) models fitness 

relationships, and Machine Learning (ML) components 

classify and regress in this module. GNN-based fitness 

representations treat students as nodes in graphs with edges 

indicating physical fitness vector similarity. Each node's 

Embedding is updated by the GCN layer using neighboring 

data.ML classification and regression components can 

classify kids into performance tiers and predict BMI and 

test scores. The ML prediction function leverages the 

GNN-generated student embedding, and model training 

splits the input into training and testing sets. The model 

training procedure employing training and testing sets is 

explained for ML-based recommendation using GNN 

embeddings. The Decision Tree, SVM, or XGBoost model 

is trained using the ML model. 

Each student is represented as a node in a graph G, with 

edges reflecting similarity based on physical fitness 

vectors like heart rate, speed, and endurance. 

𝐺 = (𝑉, 𝐸), 𝑉 = {𝑣1, 𝑣2, … , 𝑣𝑛}, 𝐸 = {(𝑣𝑖, 𝑣𝑗) ∣  𝑠𝑖𝑚(𝑣𝑖,

𝑣𝑗) > 𝜃}                           (6) 

In equation 6, V is denoted as the Student nodes, E is 

denoted as the edges (similarity-based links), and θ is 

the similarity threshold. 

𝐻(𝑙+1) = 𝜎(𝐷̃−1/2𝐴 ̃𝐷̃−1/2𝐻(𝑙)𝑊(𝑙)                                   

(7) 

In equation 7, 𝐴 ̃ is denoted as the adjacency matrix with 

added self-loops,  𝐷̃−1/2 is denoted as the degree matrix of 

𝐴 ̃, 𝐻(𝑙) is denoted as the node features at layer l, 𝑊(𝑙) is 

denoted as the trainable weight matrix at layer l, 𝜎  is 

denoted as the activation function, typically ReLU.Using 

GNN's student embeddings, ML models can be used for 

classification as well as regression tasks, categorizing 

students into performance tiers and predicting numeric 

scores like BMI and test scores. 

𝑦̂𝑖 = 𝑓𝑀𝐿(𝑧𝑖)                                              (8) 

In equation 8, 𝑧𝑖  is the GNN-generated embedding for 

student i, 𝑓𝑀𝐿 is the ML model (e.g., Decision Tree, SVM, 

or XGBoost). 

𝐿𝑐𝑙𝑠 = − ∑ 𝑦𝑖
𝑛
𝑖=1 log(𝑦̂𝑖)                                     (9) 

𝐿𝑟𝑒𝑔 =
1

𝑛
∑ (𝑦𝑖 − 𝑦̂𝑖)

𝑛
𝑖=1                                        (10) 

In equation 9 and 10, the Regression Loss penalises 

incorrect predictions by measuring the class probability 

match with genuine class labels. It emphasises severe 

errors by measuring the average squared difference 

between projected values and actual continuous values 

using the Mean Squared Error (MSE). Both losses are 

minimised during training to increase model performance. 

 

Figure 3: Core processing engine 

 

The Core Processing Engine is a crucial component of 

the Graph-Based Intelligent Cloud Framework for Student 

Fitness (GICF-SF). It consists of five stages that transform 

raw fitness data into personalized feedback. The first stage 

involves collecting preprocessed fitness features from 

various sources, such as wearables, PE records, and tests. 

This ensures consistency, handles missing values, and 

normalizes measurements for comparable analysis. 
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The second stage involves building a similarity graph 

based on student data, representing student fitness profiles 

as nodes in an interconnected graph structure. This graph 

representation captures complex relationships between 

different fitness parameters, enabling the system to identify 

patterns and connections that traditional tabular analysis 

would miss. 

The third stage involves generating latent embeddings 

for each student, processed by Graph Neural Network 

algorithms. These embeddings capture essential fitness 

characteristics and relationships. The fourth stage uses 

these embeddings to create ML models, categorizing 

students into fitness groups or predicting future 

performance or optimal training parameters. The final 

stage is the output, which translates analytical results into 

tailored recommendations. This engine generates 

individualized training programs based on a student's 

unique fitness profile, provides specific guidance for 

physical education instructors, and delivers personalized 

student progress tracking and goal setting. The pipeline 

demonstrates how graph-based machine learning can 

transform fitness data analysis from simple statistical 

models to a comprehensive understanding of 

interconnected fitness parameters. 

3.5 Intelligent recommendation system 
The Intelligent Recommendation System uses GNN 

outputs and ML models to predict recommended training 

focus areas. It uses Python to preprocess a Student DataSet, 

initialize GNN parameters, and perform features extraction, 

embedding, and recommendation embedding for each 

student. The system then appends the recommended 

recommendations to the PersonalizedRecommendations 

output. 

 

Pseudocode 1: GICF-SF recommendation engine 

Input: 

- Student dataset D = {d₁, d₂, ..., dₙ}, where each dᵢ contains features: Wᵢ (Wearable data), Pᵢ (Physical test scores), Fᵢ (Fitness logs), Hᵢ (Health records), Aᵢ (Activity 

patterns) 

- Target labels Y = {y₁, y₂, ..., yₙ}, representing desired fitness categories or outcomes 

Output: 

- Personalized recommendations R = {r₁, r₂, ..., rₙ} 

Step 1: Preprocessing 

    For each student dᵢ in D: 

        - Normalize features: Wᵢ, Pᵢ, Fᵢ, Hᵢ, Aᵢ 

        - Concatenate features: Xᵢ ← [Wᵢ, Pᵢ, Fᵢ, Hᵢ, Aᵢ] 

Step 2: Graph Construction 

    - Nodes V ← {X₁, X₂, ..., Xₙ} 

    - Edges E based on similarity (e.g., cosine similarity) 

    - Construct graph G = (V, E) 

Step 3: GNN Training 

    - Initialize GNN parameters Θ 

    For epoch = 1 to N: 

        - H ← GNN_Forward(G, X, Θ)     // Node embeddings 

        - loss ← CrossEntropyLoss(H, Y) 

        - Θ ← UpdateParameters(loss, Θ) 

Step 4: Recommendation Inference 

    For each student dᵢ in D: 

        - Concatenate features: xᵢ ← [Wᵢ, Pᵢ, Fᵢ, Hᵢ, Aᵢ] 

        - Generate embedding: hᵢ ← GNN_Forward(G, xᵢ, Θ) 

        - Predict: rᵢ ← ML_Classifier.predict(hᵢ) 

        - R.append(rᵢ) 

Return: R
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Pseudocode 1 outlines the core workflow of the GICF-SF 

recommendation engine, covering data preprocessing, 

graph construction, GNN-based training, and inference. It 

explicitly defines input features, label usage, embedding 

updates, and prediction logic. The structure ensures clarity, 

reproducibility, and highlights how graph-based reasoning 

enhances personalized fitness recommendations. 

 

4  Result analysis 
4.1 Experiment setup 
The GICF-SF framework was tested on a student physical 

education performance dataset[26], consisting of 10,421 

records with 24 fitness-related features. The GNN 

architecture was implemented in PyTorch, consisting of 

three graph convolutional layers and a readout layer. The 

model was qualified using Adam optimizer and early 

stopping. A containerized architecture on AWS was used, 

with Kubernetes for orchestration. The infrastructure 

included 3 instances for application servers, 2 instances 

for database services, and variable compute resources for 

the ML inference pipeline. Performance was assessed 

using MAE, RMSE, precision, recall, as well as F1-score 

metrics for recommendation quality, while system 

performance was measured through response time, 

throughput, and resource utilization. A controlled pilot 

deployment involving 312 students from 5 educational 

institutions was conducted over 8 weeks, with weekly 

fitness tracking and training program adjustments. 

The dataset comprising 10,421 records was partitioned 

using a stratified 70:15:15 split for training, validation, 

and testing, respectively. To ensure model robustness, 

five-fold cross-validation was applied during training. 

Hyperparameter tuning was conducted using grid search 

across the validation set, optimizing parameters such as 

learning rate (0.0005–0.01), dropout rate (0.2–0.5), and 

hidden layer dimensions ([64, 128, 256]). 

The dataset includes records from multiple institutions 

across urban and semi-urban regions, with balanced 

representation of genders and students aged 14–22.  

However, limited inclusion of rural populations and 

cultural diversity may affect generalizability. These 

limitations are acknowledged, and future work will 

involve expanding the dataset for broader demographic 

and geographic coverage. 

 

4.2 Comparative study 
The GICF-SF was compared to three recommendation 

models: CFRS [16], NLP-EAR [17], and MLFR [22]. 

User-item similarity guides CFRS recommendations, but 

limited fitness data lowers Precision (P) and Recall (R). 

The NLP-EAR's text-based emotion analysis works well 

for medication but not for organized physical fitness data, 

resulting in inconsistent F1-Score and Recommendation 

Accuracy. The MLFR uses classic classifiers like SVM 

and DT, which are stable but inadequate at capturing 

complicated feature interactions, resulting in greater 

MAE and RMSE. GICF-SF models complex fitness 

indicator dependencies using Graph Neural Networks 

(GNNs) and Cloud Computing (CC) for scalable, real-

time processing. GICF-SF enhances RA 12.8%, F1-Score 

14.5%, MAE 11.6%, and training adaption time 17.3%. 

Since cloud infrastructure increases throughput by 21.6%, 

GICF-SF is ideal for individualized student fitness 

recommendations. 

 

4.3 Recommendation accuracy (RA) 
Recommendation Accuracy (RA) is a system's ability to 

accurately recommend personalized fitness programs 

based on a student's health and performance features. 

𝑅𝐴 =
1

𝑚
∑ (

1

𝑛𝑗
∑ 𝛿(𝑟𝑖𝑗 , 𝑟̂𝑖𝑗) ∙ 𝑤𝑖𝑗

𝑛𝑗

𝑖=1
)𝑚

𝑗=1                            

(11) 

In equation 11, 𝑚  is the total number of fitness 

features (e.g., HR, VO2, BMI), 𝑛𝑗  is the number of 

students for feature 𝑗 , 𝑟𝑖𝑗   is the actual class/score for 

student 𝑖 on feature 𝑗,𝑟̂𝑖𝑗  is the predicted recommendation, 

𝛿 is the indicator function = 1 if correct, 0 otherwise. 𝑤𝑖𝑗 

is the weight based on feature importance or sensitivity. 

 

 

Figure 4: Normalized recommendation accuracy (RA) for physical performance features  
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Figure 4 presents the normalized Recommendation 

Accuracy (RA) values for five physical performance 

features across four models: CFRS, MLFR, NLP-EAR, 

and GICF-SF. Each bar reflects the average accuracy 

obtained via five-fold cross-validation, adhering to 

Formula (11), where δ is a binary correctness indicator and 

final RA values are bounded within [0, 1]. Unlike earlier 

stacked interpretations, this figure uses grouped bars to 

represent per-feature accuracies individually, ensuring 

clarity and consistency. GICF-SF outperforms other 

models across all metrics, particularly in AGI and MS, 

indicating its superior ability to personalize 

recommendations across varied physical performance 

parameters in a reproducible manner. 

4.4 Precision 
Precision measures the proportion of accurate and relevant 

recommendations among all recommendations made. 

                                                𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑓 =
𝑇𝑃𝑓

𝑇𝑃𝑓+𝐹𝑃𝑓
                                   (12) 

In equation 12, 𝑓 is the feature (e.g., HR, FLEX), 𝑇𝑃𝑓 

is the true positives for feature 𝑓,𝐹𝑃𝑓 is the false positives 

for feature 𝑓. 

 

 

 

(a)Cardiovascular Features: Y-axis shows 

precision (%) 

(b) Individual Precision Scores for Physical Performance Features. 

Figure 5: Precision scores of  features by different models 

Figure 5(a) and 5(b) compare the precision 

performance of the ratio of true positives to the sum of true 

and erroneous positives in four recommendation systems. 

Figure 5 compares CFRS, MLFR, NLP-EAR, and GICF-

SF models in two feature areas. Figure 5(a) uses bar charts 

to show cardiovascular features (HR, VO2, RHR, BP, PR). 

GICF-SF  has the highest precision (0.85) across all 

cardiovascular measures, while CFRS (purple) has the 

lowest (0.7). Intermediate findings for MLFR and NLP-

EAR are 0.7-0.75. Figure 5(b) presents individual 

precision scores for five physical performance features: 

AGI, MS, BMI, FLEX, and END across four models, 

namely CFRS, MLFR, NLP EAR, and GICF SF. Each bar 

indicates the average precision for a specific model and 

feature, constrained within the standard range from zero to 

one. GICF SF shows consistently higher precision across 

all features. 

4.5 Recall score 
The percentage of real instances relevant to the problem 

that the model was able to recover is referred to as the 

recall. 

                                                𝑅𝑒𝑐𝑎𝑙𝑙𝑓 =
𝑇𝑃𝑓

𝑇𝑃𝑓+𝐹𝑃𝑓
                                   

(13) 

In equation 13, 𝑓 is the feature (e.g., HR, FLEX), 𝑇𝑃𝑓 

is the true positives for feature 𝑓, 𝐹𝑁𝑓 is the false negative 

for feature 𝑓. 
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Figure 6: Recall Scores of cardiovascular features by different models 

Figure 6 shows a heatmap visualization that compares 

recall scores of four recommendation algorithms (CFRS, 

NLP-EAR, MLFR, and the proposed GICF-SF) across five 

key cardiovascular features. The heatmap uses a color 

gradient from light yellow to dark blue for precise 

comparison. The proposed GICF-SF model consistently 

shows superior recall performance across all 

cardiovascular parameters, achieving scores between 0.80-

0.83. The CFRS model shows the lowest recall values, 

while NLP-EAR and MLFR show progressive 

improvements. The most notable performance difference is 

with the VO2 feature, where GICF-SF achieves a recall of 

0.83 compared to CFRS's 0.67, representing a 23.9% 

improvement. This consistent superiority suggests that the 

graph-based approach is effective at minimizing false 

negatives in cardiovascular fitness recommendations, 

capturing a higher proportion of relevant cases requiring 

specific training interventions. 

4.6 F1-Score 
F1-Score is a crucial tool in fitness data analysis, ensuring 

precision and recall by utilizing the harmonic mean, 

thereby mitigating health risks associated with false 

positives and false negatives. 

                               𝐹1 − 𝑆𝑐𝑜𝑟𝑒𝑓 = 2 ×
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑓×𝑅𝑒𝑐𝑎𝑙𝑙𝑓

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑓+𝑅𝑒𝑐𝑎𝑙𝑙𝑓
                                     (14) 

In equation 14, the F1-Score (↑) indicates a better 

balance between precision and recall, useful in imbalanced 

datasets where focusing solely on accuracy may be 

misleading.

Table 5(a): Cardiovascular features 

 

Model HR VO₂ Max RHR BP PR 

CFRS 0.73 0.71 0.72 0.74 0.70 

MLFR 0.76 0.75 0.77 0.76 0.74 

NLP-EAR 0.79 0.78 0.78 0.80 0.77 

GICF-SF 0.83 0.84 0.82 0.84 0.81 

Table 5(a) compares CFRS, NLP-EAR, MLFR, and the 

planned GICF-SF for predicting cardiovascular health 

indicators in student fitness data. Table 5(a). F1-scores for 

cardiovascular features across all models. GICF-SF 

consistently outperforms the baselines, achieving the 

highest scores for all metrics. 



Graph Neural Network and Cloud-Based Intelligent Recommendation… Informatica 49 (2025) 371–388 385 

 

The GICF-SF model outperforms all cardiovascular 

characteristics with F1-scores of 0.81–0.84. VO2 

prediction has the highest F1-score (0.84) for oxygen 

consumption measurements. GICF-SF surpasses CFRS by 

16% in BP analysis, the biggest performance gap. This 

improved cardiovascular feature analysis implies that 

GICF-SF's graph-based approach better captures student 

fitness data's complicated cardiovascular indicator 

interrelationships. 

 

Table 5b: Physical performance features 

Model AGI MS BMI FLEX END 

CFRS 0.72 0.70 0.69 0.68 0.67 

MLFR 0.75 0.73 0.72 0.71 0.70 

NLP-EAR 0.78 0.77 0.76 0.75 0.73 

GICF-SF 0.84 0.83 0.82 0.81 0.80 

 
Table 5(b) compares four models (CFRS, NLP-EAR, 

MLFR, and GICF-SF) to predict student performance 

using physical fitness parameters.Table 5(b). F1-scores for 

physical performance features. GICF-SF demonstrates 

superior performance across all categories compared to 

baseline models. 

 The GICF-SF model consistently outperforms the 

others with F1-scores of 0.83–0.86. FLEX prediction has 

the highest F1-score (0.86), suggesting flexibility metrics 

analysis. The study also shows that GICF-SF's graph 

neural network and cloud computing methods may 

capture complex fitness indicator linkages. 

Table 6: Performance comparison of GICF-SF vs. baselines with confidence intervals and statistical significance 

Model Precision (%) ±CI Recall (%) ±CI F1-Score (%) ±CI p-value (F1 vs. GICF-SF) 

CFRS 72.6 ± 1.3 70.2 ± 1.6 71.3 ± 1.4 0.0012 

MLFR 75.8 ± 1.1 73.9 ± 1.4 74.8 ± 1.2 0.0007 

NLP-EAR 76.3 ± 1.2 74.5 ± 1.3 75.4 ± 1.3 0.0005 

DeepFitNet 78.9 ± 1.0 77.2 ± 1.2 78.0 ± 1.1 0.0021 

GICF-SF 88.4 ± 0.9 86.7 ± 1.0 87.5 ± 0.9 Nil 

Table 6 presents a comparative evaluation of GICF-

SF against four baseline models using Precision, Recall, 

and F1-score with 95% confidence intervals. Paired t-tests 

confirm that GICF-SF significantly outperforms all other 

methods, including the deep learning-based DeepFitNet, 

highlighting its accuracy and statistical robustness in 

fitness recommendation tasks. 

 

Table 7: Ablation study: impact of GNN and cloud components on GICF-SF performance 
Model Variant GNN Component Cloud 

Component 

Recommendation Accuracy (RA 

%) 

F1-Score 

(%) 

Training Time 

(sec) 

GICF-SF (Full Model) ✓ ✓ 88.4 87.5 235.4 

GICF-SF without GNN ✗ (Replaced with 

MLP) 

✓ 80.2 78.7 241.8 

GICF-SF without Cloud 

Deployment 
✓ ✗ (Local Only) 84.6 82.9 284.6 

Baseline (No GNN, No Cloud) ✗ ✗ 76.4 74.8 298.3 

Table 7 presents an ablation study evaluating the 

individual contributions of GNN and cloud components. 

Results show both significantly enhance accuracy and 

efficiency compared to baseline configurations. 



386 Informatica 49 (2025) 371–388 B. Gao 

 

Table 8: Evaluation of coverage, novelty, and diversity for GICF-SF and baselines 

Model Coverage (%) Novelty (0–1) Diversity (0–1) 

CFRS 42.3 0.41 0.48 

MLFR 46.7 0.45 0.50 

DeepFitNet 52.1 0.52 0.57 

GICF-SF 65.4 0.64 0.72 

Table 8 presents coverage, novelty, and diversity metrics 

for all models. GICF-SF achieves the highest scores, 

indicating broader, more unique, and varied 

recommendations for students.The higher scores in 

coverage, novelty, and diversity highlight GICF-SF’s 

strength in delivering personalized and engaging fitness 

recommendations, addressing key needs in educational 

contexts beyond pure accuracy. 

In addition to the percentage improvement, absolute 

latency values were recorded. Baseline model training 

time was 284.6 seconds, while GICF-SF achieved a 

reduced training time of 235.4 seconds, marking a 17.3% 

improvement. Inference latency per instance also 

improved, decreasing from 42 milliseconds (baseline) to 

33 milliseconds with GICF-SF. These values highlight the 

practical efficiency of the proposed architecture for large-

scale deployment. 

4.7 Discussion 
The experimental results confirm that GICF-SF 

outperforms SOTA methods across key metrics including 

Recommendation Accuracy (↑12.8%), F1-score 

(↑14.5%), and training time reduction (↓17.3%). CFRS, 

which depends on static user-item similarity, shows 

limited adaptability to complex physiological data, 

resulting in lower precision and recall. NLP-EAR, though 

effective for unstructured text, underperforms in 

structured, multi-modal physical fitness datasets. MLFR 

exhibits stable behavior but fails to capture non-linear 

dependencies among fitness indicators, leading to higher 

MAE and RMSE. GICF-SF’s integration of Graph Neural 

Networks enables robust modeling of feature 

interdependencies, while cloud deployment ensures real-

time scalability. These advantages position GICF-SF as a 

superior alternative for personalized student fitness 

recommendations in dynamic and large-scale 

environments. 
Although GICF-SF demonstrates strong 

performance within the evaluated dataset, its 

generalizability across different regions, institutions, and 

age groups may be influenced by population-specific 

characteristics. Variations in fitness norms, activity 

patterns, and demographic features can impact model 

performance. The GNN-based architecture is adaptable 

and can be retrained on new data; however, performance 

may degrade without domain-specific tuning. Future 

work will explore transfer learning and domain 

adaptation to extend the framework's robustness across 

diverse student populations. 

 

4.8 Limitations and failure modes 
Several limitations and failure modes affect the 

performance of GICF-SF. The model may produce 

inaccurate results when handling noisy, incomplete, or 

imbalanced fitness data. Deeper layers of the GNN may 

lead to over-smoothing, reducing the distinction between 

node embeddings. The use of a static graph structure 

limits adaptability to real-time changes in student 

behavior or health status. Under high user load, 

performance may degrade if cloud resources are 

insufficient. Additionally, the model’s complexity makes 

it difficult to interpret, which can reduce transparency. 

Future work will address these issues through dynamic 

graph updates and explainable AI components 

 

5  Conclusion and future work  
This research presented the GICF-SF model, a graph-based 

and cloud-enabled framework for generating personalized 

physical fitness recommendations. The results demonstrate 

that the framework achieves notable improvements in 

recommendation accuracy, computational efficiency, and 

scalability when compared to conventional baselines. 

These advancements position GICF-SF as a promising 

solution within its current experimental context.At the 

same time, it is important to acknowledge several existing 

constraints. These include limited representation across 

population groups, inconsistencies in data collection, and 

the absence of long-term validation. Additionally, 

technical challenges such as integration complexity, 

privacy considerations, and the need for domain-specific 

adaptation remain. While these limitations may restrict 

immediate real-world deployment, they also serve as clear 

indicators of future development priorities.Moving 

forward, the framework will be extended through methods 

such as transfer learning, enhanced explainability, and 

broader dataset integration. These enhancements aim to 
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improve adaptability, generalizability, and practical impact, 

ultimately making GICF-SF more robust and widely 

applicable in real-world educational and health monitoring 

scenarios..While GICF-SF integrates security mechanisms 

such as AES encryption and role-based access control, no 

formal evaluation (e.g., breach simulation or overhead 

analysis) was conducted in this phase. Similarly, although 

explainability is supported through model reasoning and 

attention weights, no formal user studies were performed. 

Future work will include systematic security testing and 

user-based evaluation to assess transparency and 

trustworthiness. 
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