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Multimodal perception has emerged as a vital strategy for understanding complex and dynamic 

environments, where traditional unimodal approaches fail to handle data heterogeneity and occlusion. 

This paper proposes two multimodal fusion frameworks—CMMF (Cross-Modal Matching Fusion) and 

STAM-FNet (Spatio-Temporal Attention Multimodal Fusion Network)—to address structural and 

temporal challenges in complex scene understanding. The CMMF model adopts a three-stage architecture 

with cross-modal semantic alignment and dynamic weighting, while STAM-FNet introduces spatio-

temporal attention layers and 3D convolutions to enhance feature discrimination in dynamic environments. 

Experiments are conducted on a dataset of 120000 samples covering three application scenarios: urban 

monitoring, indoor interaction, and transportation hubs. Evaluation is based on standardized metrics 

including Top-1 Accuracy, F1-score, AUC, Modal Gain Index, and Inference Delay. Compared to SOTA 

baselines such as ResNet50, Two-Stream Transformer, and MMBT, STAM-FNet achieves up to 15.8% 

improvement in accuracy and 20% robustness gain under high-occlusion conditions. CMMF maintains 

superior performance in static tasks while preserving low parameter count (24.3M). This work 

demonstrates the effectiveness of adaptive multimodal fusion in improving accuracy, efficiency, and fault 

tolerance in real-world perception systems. 

Povzetek: Opisana sta modela za razumevanje kompleksnih prizorov: CMMF (Cross-Modal Matching 

Fusion) in STAM-FNet (Spatio-Temporal Attention Multimodal Fusion Network). CMMF izvaja uteženo 

križno-modalno usklajevanje in je optimiran za statične naloge (24,3 M parametrov), medtem ko STAM-

FNet z uporabo 3D-konvolucij in prostorsko-časovne pozornosti dosega vrhunske rezultate v dinamičnih 

okoljih. 

 

1  Introduction 

Semantic understanding of complex scenes is crucial 

for intelligent perception systems. Traditional single-

modal methods face limitations under dynamic 

environments, multi-source coupling, and heterogeneous 

data. In scenarios like urban security and medical 

navigation, relying solely on vision or audio often fails to 

ensure stable recognition. Multi-modal fusion has 

emerged as an effective solution due to its complementary 

and synergistic capabilities. Recent advances in deep 

learning-based cross-modal representation offer strong 

modeling foundations. However, issues like modality 

inconsistency, rigid fusion strategies, and poor 

adaptability to dynamic scenes remain, hindering further 

performance improvement in real-world applications. 

Focusing on the robustness and adaptability of modal 

fusion mechanism in complex scenes, this study proposes 

two complementary model design ideas. The first model 

focuses on the collaborative representation of modal 

features, and builds a multi-layer matching network based 

on global weighting strategy. The second model 

introduces spatio-temporal attention mechanism to 

strengthen the ability to pay attention to effective features 

in dynamic changing scenes. The research integrates data 

preprocessing, model architecture, index design and 

experimental setup, and constructs a research framework 

covering the whole process of perception, modeling and 

verification. By designing a unified comparative 

experiment, the performance differences of the model 

under different occlusion ratios and different task 

complexity are clarified, and the boundary characteristics 

of multimodal understanding under real and complex 

conditions are tried to be restored. 

At present, the research of multimodal fusion 

technology in complex scene understanding is expanding, 

showing the development trend of diversification of 

model mechanism and refinement of task structure. 

Zhang et al. (2025) put forward EKLI-Attention 

mechanism, which classifies citizens' government 

requests by integrating local and global attention, 

indicating that multilevel attention mechanism is 

operable and efficient in actual semantic recognition [1]. 
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Choi et al. (2025) analyzed the memory mechanism in the 

process of constructing visual stability, and pointed out 

that saccade memory and default hypothesis played a key 

role in visual maintenance in natural scenes, which 

provided a cognitive basis for dynamic modeling in 

multimodal systems [2]. Zhang et al. (2024) built a multi-

task hierarchical heterogeneous fusion framework, 

realized hierarchical modeling and dynamic weighting of 

different modal features in multi-modal summarization 

tasks, and demonstrated the adaptability of complex 

structural models in content generation [3]. Lu et al. 

(2024) introduced graph neural network and translation 

alignment mechanism, and put forward a multimodal 

emotion analysis model integrating emotional interaction, 

emphasizing the important role of emotional dimension 

in the process of integration [4]. Man (2024) applied 

multi-modal data fusion technology to test behavior, built 

a classification model to identify the knowledge state 

before the test, and verified the validity of multi-modal 

features in judging high-risk tasks [5]. Wang et al. (2024) 

constructed a fusion model in the task of emotion 

recognition in flight training, and combined the visual 

and physiological modal information to realize the high-

precision recognition of emotion changes in the training 

state [6]. Yang et al. (2023) introduced the multi-feature 

attention mechanism in the noisy environment, and finely 

classified the sound, which improved the system's 

perception of complex audio input [7]. 

Tang et al. (2023) designed a mixed-order 

polynomial fusion structure and applied it to the task of 

emotion classification to realize the modeling and 

optimization of nonlinear interaction between multiple 

modes [8]. Lin et al. (2023) put forward a mixed model 

of polar vector and intensity vector, which was used for 

the fusion expression of modal expressions in emotion 

recognition [9]. Luo et al. (2023) applied multimodal 

fusion to learning interest analysis task, built 3DLIM 

model, and supported multi-dimensional perception and 

interest state modeling [10]. Chen et al. (2022) adopted 

the combined attention mechanism to improve the quality 

of image reconstruction and enhance the model's ability 

to retain the structural features in the input image [11]. 

Zhao et al. (2022) introduced attention mechanism based 

on NAS structure in traffic flow forecasting, which 

effectively improved the generalization ability of the 

model in time series forecasting scenarios [12]. Zhao et 

al. (2023) discussed the imitation of attention mechanism 

from the perspective of human reading behavior, and 

thought that attention mechanism can learn the way 

human beings deal with semantics and emotions, which 

is instructive to the discrimination of emotional tasks [13]. 

Leroy et al. (2021) analyzed the process of semantic and 

emotional understanding in complex visual scenes from a 

psychological perspective, and revealed the adjustment 

path of cognitive factors to visual information processing 

strategies [14]. Zhang et al. (2021) studied the gaze 

pattern in real scenes and pointed out that mental drift 

would significantly affect the accuracy of scene 

perception, which provided an explanatory framework 

for the dynamic visual understanding model [15]. In 

summary, the current research has made rich 

achievements in attention mechanism modeling, modal 

heterogeneous integration, task-oriented structure 

optimization and so on. The fusion structure is no longer 

limited to simple splicing, but tends to more adaptive 

dynamic and interpretable mechanism design, which 

provides more robust technical support for the perception 

system in complex scenes. 

In recent studies published in Informatica have also 

highlighted the relevance of multimodal fusion 

techniques in complex perception tasks. For example, Shi 

(2025) introduced the MMF‑TSP network for time series 

prediction, combining BERT, TCN, global attention, and 

skip connections to reduce RMSE by 4.8%–6.3% across 

diverse multimodal environments [16]. Similarly, Zhao 

(2024) applied an attention-based BiLSTM fusion model 

to integrate gait, facial, and speech features for emotion 

recognition, achieving an F1 score of 0.8125 [17]. These 

works underscore the efficacy of attention-guided and 

adaptive multimodal structures and support the design 

choices of CMMF and STAM-FNet. 

The research has made targeted innovations in model 

architecture, fusion mechanism and evaluation dimension, 

showing strong performance stability and resource 

adaptability in practical tasks. Especially in occlusion 

testing and jamming tasks, the proposed STAM-FNet 

structure shows better generalization ability than the 

traditional CNN fusion model. Nevertheless, the 

migration ability of the model in high-dimensional modal 

alignment and unsupervised scenes is still limited. In 

addition, the processing mechanism of low-quality modal 

information still needs to be optimized. The following 

work will consider introducing interpretable mechanism, 

confrontation training framework and lightweight 

modeling strategy to further enhance the applicability and 

elastic boundary of multimodal understanding 

technology in practical deployment. 

To better position the proposed models within the 

current state of the art, Table 1 summarizes recent 

representative multimodal fusion methods applied to 

complex scene understanding tasks. This comparison 

focuses on key performance metrics including Top-1 

Accuracy, robustness under occlusion, and computational 

cost (model parameters or inference delay). The table 

reveals that while prior models such as MMBT and Two-

Stream Transformer perform reasonably in static tasks, 

they exhibit performance degradation in highly dynamic 

or occluded environments. Moreover, these models often 

carry high computational overhead, limiting their 

deployment in real-time or resource-constrained 

scenarios. In contrast, the proposed CMMF and STAM-

FNet frameworks not only deliver superior recognition 

accuracy in complex environments but also demonstrate 

improved fault tolerance and efficiency, addressing 

significant limitations of prior work.
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Table 1: Performance comparison of representative multimodal models in complex scene understanding 

Model 

Top-1 

Accuracy 

(%) 

Occlusion 

Robustness (Drop @ 

75%) 

Params 

(M) 

Inference 

Delay (ms) 
Notable Features 

ResNet50 

(Image-only) 
78.4 -28.9 25.6 11.2 

Baseline single-modal 

CNN 

MMBT 84.3 -17.1 72.4 16.5 
Early-fusion 

Transformer 

Two-Stream 

Transformer 
86.7 -13.9 88.1 18.3 

Dual-modal attention 

mechanism 

CMMF 

(Proposed) 
91.3 -10.2 24.3 9.6 

Cross-modal weighted 

feature fusion 

STAM-FNet 

(Proposed) 
93.2 -6.1 31.5 7.8 

Spatio-temporal 

attention+3D conv 

To guide this research, two core questions are posed: 

(RQ1) Can a spatio-temporal attention mechanism 

significantly enhance the effectiveness of multimodal 

fusion in dynamic and occluded environments? 

(RQ2) Can the proposed models—CMMF and STAM-

FNet—achieve at least a 10% improvement in 

recognition robustness under severe occlusion conditions 

compared to established SOTA baselines such as MMBT 

and Two-Stream Transformer? 

These questions aim to quantify the benefit of 

architectural innovations and validate the models’ 

practical contributions. The study is designed to evaluate 

these hypotheses across diverse real-world scenes, using 

standardized evaluation protocols and performance 

benchmarks. Addressing these questions allows for 

targeted analysis of model strengths and shortcomings 

and frames the empirical work in a hypothesis-driven 

structure. 

2  Materials and methods 

2.1 Multi-modal data acquisition and 

preprocessing 

2.1.1 Data source composition and sampling 

strategy 

The research uses data sets including image, voice and 

text, covering three typical application fields: traffic 

scene, indoor identification and public safety monitoring. 

The image data comes from a multi-view camera with a 

unified resolution of 640×480. The audio clip is taken 

from the real sound pickup device, the frequency is 

16kHz, and the length is controlled within 8 seconds. Text 

data is encoded in UTF-8 format based on phonetic 

transcription or user interaction information, and Chinese 

sentence breaking and English punctuation are adopted. 

The sampling process is distributed hierarchically 

according to hours, scenes and task types to avoid sample 

deviation and redundant collection [18]. All modes are 

marked with time stamps to ensure the accuracy of cross-

modal semantic alignment and reconstruction. The whole 

data acquisition process introduces task classification 

index identification, which is used for task grouping and 

label scheduling in the later model training. The sampling 

strategy emphasizes the balance between 

representativeness and complexity, preserves the 

continuous fragments in highly dynamic scenes, and 

improves the generalization ability of subsequent models 

in real tasks. 

 

2.1.2 Normalization of images, texts and audio. 

In preprocessing, original images are uniformly resized, 

pixel-normalized, and color channels reordered. 

Adaptive histogram equalization is applied under varying 

lighting to enhance contrast and edge clarity. Audio 

signals are processed using short-time Fourier transform, 

with abnormal-length samples padded or truncated, and 

normalized to reduce background noise. Phonetic text is 

processed via Chinese word segmentation, stop-word 

removal, and word vector encoding, forming semantic 

tensors for fusion input. All modal data are batch-

processed to optimize pipeline efficiency and reduce 

latency. Text segmentation respects natural sentence 

structure to minimize semantic errors. A unified format 

and parameter standard is adopted for cross-modal data, 

ensuring comparability at the distribution level. This 
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preprocessing chain establishes consistency across 

modalities, supporting effective feature extraction and 

alignment in downstream tasks. 

 

2.1.3 Multimodal time alignment mechanism and 

redundancy elimination 

In order to ensure the accuracy of multimodal fusion, the 

data alignment strategy is based on the global timestamp 

unification mechanism. Image frames and audio frames 

are aligned at the frame level through linear interpolation 

and synchronous sampling. For the delay between speech 

transcription and image events, a dynamic window 

mechanism is set to carry out semantic matching and time 

slip compensation. The inter-modal time offset rate is 

controlled within ±150ms, which meets the real-time 

requirements of most sensing tasks [19]. The redundant 

fragments that can't be synchronized are silently 

discarded, and the key frames before and after are 

reserved to maintain the context integrity. Information 

redundancy in text data is mainly manifested as logical 

repetition or structural repetition, which is uniformly 

filtered after being judged by the editing distance 

threshold. The final preserved data set is consistent in 

both time axis and semantic layer. Alignment mechanism 

can adapt to irregular event flow and dynamic scenes, and 

maintain stable performance under high-density 

sampling conditions, which is a key pre-step to ensure the 

quality of model time series modeling. 

 

2.1.4 Noise filtering and high-dimensional noise 

reduction methods 

The data collected in complex environment is often 

accompanied by strong noise interference. In this study, a 

multi-stage noise reduction mechanism is introduced in 

the pretreatment stage. In image mode, random pixel 

noise is processed by Gaussian filtering, and then texture 

anomalies are removed by edge preserving filtering. The 

audio mode uses spectral subtraction and voice activity 

detection methods to remove background noise and mute 

segments [20]. In text mode, low-information or non-

task-related sentences are filtered by word frequency and 

TF-IDF index. On the feature space level, PCA and self-

encoder are introduced to reduce the dimension of high-

dimensional features of each mode, while retaining the 

principal components of semantic information. The data 

after dimensionality reduction will be normalized again 

before entering the main model to avoid abnormal 

numerical amplification error. The noise control strategy 

can effectively improve the model processing efficiency 

and enhance the adaptability to abnormal data 

distribution on the premise of ensuring information 

integrity. 

To clarify the terminology, the study involves five core 

multimodal perception tasks: object recognition, action 

recognition, intent detection, semantic segmentation, and 

cross-modal matching. These tasks are performed across 

five representative complex scene categories: urban 

street, medical room, traffic platform, campus 

environment, and industrial workshop. Each task is not 

tied exclusively to a single scene but is instead evaluated 

under multiple environments to test generalization. For 

example, semantic segmentation and cross-modal 

matching are applied in the campus and traffic scenes, 

while action recognition and intent detection are 

emphasized in the medical and workshop contexts. This 

task–scene mapping ensures diverse multimodal 

challenges under real-world variability. 

 

2.2 Multi-modal fusion model construction 

2.2.1 CMMF structure and feature weighting 

mechanism 

The CMMF model takes cross-modal matching as the 

core to build a fusion path, and strengthens the depth of 

information interaction by extracting the shared semantic 

subspace of each modal. The model is divided into three 

layers. The bottom layer completes modal self-coding, 

the middle layer realizes feature interaction between 

modes, and the high layer outputs fusion results. Image, 

text and audio modes are respectively input into three 

parallel convolution or Transformer coding channels, and 

then enter the weighted fusion module after unified 

mapping dimensions [21]. Feature weighting assigns 

dynamic weights based on modal reliability, and 

automatically adjusts participation according to 

information effectiveness and response strength. The 

output characteristics after fusion are as follows (1): 

1

N

fusion i i

i

F F
=

= 
（1） 

The output characteristics after fusion are defined

 as: iF
 represents the feature vector of the i-th moda

lity, and i  denotes its corresponding weight coeffici

ent. These weights satisfy the normalization constrain

t:
1i = , with 𝜔𝑖 ≥ 0 for all i. 

This ensures that the fused representation maintai

ns a probabilistic interpretation over modality contrib

utions. 

For CMMF, each modality input passes through a 

dedicated encoder: a 4-layer CNN for image data (kernel 

size: 3×3, ReLU activation, max pooling every two 

layers), a 2-layer BiLSTM for text (hidden size: 256), and 

a 3-layer 1D-CNN for audio (kernel size: 5, dropout rate: 

0.3). All encoded features are mapped to a shared 

embedding space of 512 dimensions. The dynamic 
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feature weighting module uses softmax normalization 

over learned reliability scores. The output layer applies a 

fully connected layer followed by softmax for 

classification. Training uses Adam optimizer (lr=0.001), 

dropout=0.5, and batch size=64. 

2.2.2 spatio-temporal attention mechanism in 

STAM-FNET 

STAM-FNet aims to solve the problem that the fusion 

model does not respond to dynamic scenes in time, and 

uses the spatio-temporal attention mechanism to 

dynamically weight multimodal signals. Three-

dimensional convolution and attention distribution 

modules are added to the model, and the spatial salience 

and temporal evolution characteristics are also learned 

[22]. After the feature flows through the local attention 

layer and the global gating layer, the region of interest is 

determined according to the temporal context [23]. This 

mechanism is especially suitable for scenes such as 

occlusion changes and sudden environmental changes, 

and can dynamically focus on key modal frames. The 

attention output is expressed by the following formula (2): 

( ) ( )
( , ) softmax ( )

T

k

Q x K t
A x t V t

d

 
=  

 
  （2） 

Here, Q(x) denotes the spatial query, K(t) the 

temporal key, V(t) the value vector, and kd
  the 

dimension of the key vectors used for scaling. This 

formulation ensures that the attention weights are 

normalized before being applied to the value 

representation, enhancing stability during training and 

interpretability in dynamic sequences. The original 

formulation has been revised to align with established 

attention mechanisms such as those used in Transformer 

architectures. 

In STAM-FNet, each input is passed through a 3D-

CNN backbone (3 layers, channels: 64-128-256, ReLU, 

batch normalization), followed by local and global 

attention modules. The spatio-temporal attention block 

includes 2 Transformer layers (hidden size: 512, 8 heads, 

GELU activation, dropout=0.1). The total loss is 

composed of classification loss (weight: 1.0), modal 

matching loss (weight: 0.6), and regularization (weight: 

0.01). Early stopping is used if validation loss does not 

improve after 5 epochs. 

2.2.3 Training optimization and loss construction 

of double models 

To improve the overall synergy and generalization ability 

of the model, CMMF and STAM-FNet adopt a joint 

training mechanism. The training process adopts end-to-

end strategy, and the objective function introduces multi-

task structure, giving consideration to classification 

accuracy, modal alignment and time sequence stability. 

The total loss function of fusion training is designed as 

the following formula (3): 

regtotal cls cls align align reg  =  +  + L L L L
     

(3) 

Here, λcls, λalign, and λregare scalar hyperparam

eters that control the contribution of the classification,

 alignment, and regularization losses, respectively. Th

ese coefficients are tuned using grid search on the val

idation set to ensure balanced learning across sub-task

s. This formulation ensures consistency across the ma

thematical definition and explanatory text, facilitating 

clearer interpretation and reproducibility. 

During training, the weight coefficients λcls, λalig

n, and λreg are dynamically adjusted every five epoc

hs based on the relative convergence rate of each sub

-loss. Specifically, if the moving average of a sub-los

s stagnates or decreases slower than others, its associ

ated 𝜆  value is increased proportionally to prioritize l

earning on that sub-task. A normalization step is appl

ied to ensure that the sum λcls+λalign+λreg =1holds 

at every update. This adaptive scheme enables the mo

del to shift learning focus across modalities and task 

objectives depending on training dynamics, improving

 convergence and generalization in heterogeneous env

ironments 

2.2.4 Model difference design and integration 

strategy 

CMMF is good at structural alignment, and STAM-FNet 

is better than time series modeling. In order to give full 

play to their complementary advantages, an integration 

strategy based on probability fusion is designed. In the 

reasoning stage, two models are called to output 

probability distribution, and the final prediction result is 

output by weighted average. This integration method 

takes into account the response characteristics of the two 

structures and adapts to the discrimination requirements 

in the changeable environment. The fusion strategy is 

expressed by the following formula (4): 

(1 )final CMMF STAMP P P =  + − 
        （4） 

Where CMMFP
  and STAMP

  are the prediction 

probabilities of the two models respectively, and


 is the 

integration balance factor. The optimal 


 value is 

obtained by using verification set to adjust parameters in 

the test set.  
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This strategy enhances the robustness and overall 

performance of the model and improves the consistency 

and reliability of the final task output. 

To prevent overfitting and ensure robust integration, 

the balance factor β in equation (4) was tuned using a 

separate validation set that was not involved in model 

training. A grid search was performed within the range 

β∈[0.0,1.0] at 0.05 intervals. For each candidate 


, the 

ensemble prediction performance was evaluated on the 

validation set based on the average F1 score across all 

five task categories. The optimal 


 value (β=0.65) was 

selected based on its ability to maximize the validation 

score without increasing variance in test performance. 

This parameter tuning approach ensures that the final 

integration strategy generalizes well and avoids model 

overfitting, especially in highly imbalanced or occlusion-

heavy scenarios. 

2.3 Index system construction and 

evaluation logic 

2.3.1 scene recognition accuracy and recall rate 

The model performance evaluation focuses on accuracy 

and recall, and measures the accuracy and integrity of 

recognition respectively. The accuracy reflects the 

reliability of the system in discriminating the target scene 

under multi-category conditions, and the recall rate 

evaluates the risk of missed detection. For complex scene 

tasks, both are indispensable. Accuracy calculation is 

based on the consistency between the prediction and the 

actual label, and is often used to measure the discriminant 

boundary of the fusion model. The recall rate focuses on 

the recognition coverage of all effective targets, 

especially for small sample recognition tasks in 

heterogeneous data. Considering the nature of multi-task, 

the weighted average method is introduced to deal with 

the category imbalance in different scenarios to improve 

the fairness of evaluation. Top-1 accuracy is used as the 

main index in the classification task, and the area under 

recall curve (AUC) is used to compare the stability of the 

model under different confidence thresholds. The two 

kinds of indicators jointly construct the basic 

performance evaluation benchmark, which provides the 

data basis for the subsequent analysis of fusion gain and 

error sources. 

 

2.3.2 Synergistic gain between modes and fusion 

efficiency 

In multi-modal systems, the key to measure the fusion 

quality is the information gain and cooperation between 

modes. Modal Synergy Gain Ratio (MGI) and Fusion 

Efficiency Ratio (FER) are introduced as core indicators 

to reflect the performance improvement after fusion and 

the resource cost performance ratio of fusion strategy 

respectively. MGI describes that the multi-modal 

combination exceeds the gain range of single-modal 

performance and is suitable for measuring the 

cooperative learning ability of the model. FER analyzes 

the performance improvement per unit of computing 

resources from the perspective of computing 

consumption. During the experiment, the combination of 

the two indicators is used to evaluate the effectiveness of 

the fusion mechanism under different model architectures. 

Modal gain index The modal contribution is calculated 

by the following formula (5): 

i

i

i

fusion mod

mod

mod

Acc Acc
G

Acc

−
=

         （5） 

Among them, fusionAcc
  is the accuracy of fusion 

model, and imodAcc
  is the i the modal accuracy. This 

index can accurately quantify the marginal contribution 

of each mode in the multi-modal system and assist the 

adjustment of fusion strategy and the elimination of 

redundant modes. 

2.3.3 Calculation performance and model delay 

evaluation 

Performance evaluation considers not only accuracy but 

also computational load and operational efficiency. In 

real-world deployment, latency, frame rate, and GPU 

usage are key indicators. This study uses average 

inference time (ms), frames per second (FPS), and peak 

memory usage to assess computational overhead. To 

simulate practical conditions, both models were tested 

under varying resolutions and batch sizes, with 

performance trends recorded. Inference delay indicates 

the model’s responsiveness, critical for real-time systems. 

FPS combined with resolution reflects the model’s ability 

to handle continuous input. Memory usage assesses 

hardware adaptability for deployment. Together, these 

indicators form a performance triangle that supports 

comprehensive evaluation across edge devices and server 

clusters. The results offer a quantitative basis for 

optimizing lightweight design and integrated deployment 

strategies. 

 

2.3.4 Robustness and fault tolerance in occlusion 

scenes 

Multimodal systems in complex environments need to 

have strong robustness and exception tolerance. 

Occlusion, interference, frame loss and other problems 

widely exist in real tasks, so it is necessary to construct 

corresponding index system to reflect the response level 

of the model to these disturbances. This paper studies 

setting the scene of occlusion ratio change, simulating the 

conditions of different modal interruption and 

information loss, and recording the decline of model 



An Adaptive Recursive Attention Network for Medical Equipment… Informatica 49 (2025) 231–246 237 

 

recognition accuracy and recovery ability. Fault tolerance 

rate is defined as the ratio of performance degradation 

degree to initial performance, and the lower it is, the more 

stable the system is. In the experiment, combined with the 

incomplete modal information before and after fusion, 

the changing trend of model output is dynamically 

observed. The model with strong fault-tolerant ability 

should still maintain the basic discriminant function 

when the key modes are missing, reflecting its inherent 

redundancy mechanism and weight adaptation ability. 

The index system can finally be used for modal 

importance ranking and fault-tolerant mechanism 

optimization, which provides robustness guarantee for 

system deployment under uncertain conditions. 

 

2.4 System experimental setup and 

operating environment 

2.4.1 Hardware configuration and operation 

platform 

The experiment is deployed in a local server farm with 

high-performance graphics computing capability. The 

core node is equipped with Intel Xeon Gold 6226R 

processor, clocked at 2.9GHz, equipped with 256GB of 

memory and 4 NVIDIA RTX A6000 graphics cards, each 

with 48GB of memory. The operating system is Ubuntu 

20.04 LTS, and the deep learning framework is PyTorch 

2.0.1, with CUDA version 11.8 and cuDNN version 8.6. 

Multi-thread parallel scheduling combined with NCCL 

communication protocol improves the efficiency of data 

loading and model synchronization. The experimental 

process relies on local SSD high-speed storage to ensure 

that data preprocessing and intermediate result caching 

are not affected by bottlenecks. Python 3.9 and related 

dependency libraries are configured in the running 

environment, which are isolated and managed in the 

virtual environment to ensure the consistency of the 

software environment. In order to simulate the 

performance of edge devices, some lightweight models 

are tested on Jetson Xavier and TX2 platforms for delay 

evaluation and deployment adaptability analysis. 

To enhance recognition under low-light, occluded, and 

blurry conditions, targeted augmentations were applied. 

These included brightness and contrast jittering (±30%), 

Gaussian blur (σ=1.2), motion blur, Cutout (20% 

masking), and Mixup (α=0.4). Augmentations were 

applied probabilistically each epoch to increase 

robustness. 

Inference tests were conducted on NVIDIA RTX A6000, 

Jetson Xavier NX, and Jetson TX2. Key specs include 

48GB VRAM and 768 GB/s bandwidth (A6000), and 

51.2/59.7 GB/s bandwidths on Xavier/TX2 respectively. 

Thermal limits were monitored to ensure latency and FPS 

readings were unaffected by throttling. 

2.4.2 Data division and training strategy 

The experimental data is sourced from a multimodal 

scene dataset containing approximately 120,000 samples 

across three modalities: image, audio, and text. It spans 

three typical scenarios—urban monitoring, indoor 

interaction, and transportation hubs. The dataset is split 

into training, validation, and test sets in an 8:1:1 ratio 

using random stratified sampling to maintain task balance. 

Data augmentation is applied to the training set to 

improve performance under low-light, occlusion, and 

blur. Training uses mini-batch SGD with a batch size of 

64, an initial learning rate of 0.001, and 50 epochs. The 

learning rate decays via Cosine Annealing to enhance 

convergence stability. Xavier initialization and gradient 

clipping are used to prevent gradient explosion. All 

experiments are repeated three times with fixed random 

seeds, and average results are reported to ensure 

reproducibility. 

To improve interpretability and result robustness, all 

training experiments were repeated three times under 

different random seeds, as initially stated. For each model 

and task configuration, the final reported accuracy and F1 

scores represent the mean across runs. Standard deviation 

(±σ) is also reported, and all line charts in the result 

section (e.g., convergence curves, loss plots) include 

error bars indicating the variability range. For example, 

in semantic segmentation, STAM-FNet achieved an 

average accuracy of 90.5% ±1.2%, while CMMF 

recorded 87.9% ±1.4%. This reporting approach ensures 

transparency in the performance evaluation and 

demonstrates the consistency of the models under 

different initialization conditions. 

 

2.4.3 Comparison algorithm and model 

configuration 

To validate the proposed model, several mainstream 

comparison models were selected as benchmarks. Three 

representative methods were used as control groups: a 

single-modal CNN (ResNet50), a two-stream attention 

network (Two-Stream Transformer), and a classic fusion 

model (MMBT). All models were reproduced based on 

their original implementations using the same dataset and 

training pipeline. Parameter settings were aligned to 

ensure fair comparison. While CMMF and STAM-FNet 

adopt unique fusion modules, all other hyperparameters 

remain consistent. To evaluate the impact of fusion 

mechanisms, modality ablation experiments were 

conducted by removing single-modal inputs to simulate 

missing information. A unified evaluation metric system 

was applied across experiments. Accuracy, frame rate, 

and memory usage were recorded for all models, 

providing a comprehensive basis for performance 

analysis. 

The modality ablation experiment in Figure 2 reflects two 

distinct evaluation setups. First, to simulate information 

absence during inference, the trained multimodal model 

was tested by masking one modality at a time (setting the 

input vector to zero) without retraining; these results 

assess model resilience to missing data. Second, 

standalone unimodal baselines were trained from scratch 
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using only one input modality (image, audio, or text), 

with model architectures adapted accordingly (CNN for 

image, BiLSTM for text). The accuracy results labeled as 

"modality-specific" in Figure 2 correspond to these 

unimodal models. Each baseline was trained using the 

same optimizer, batch size, and epochs as the multimodal 

setup to ensure fair comparison. 

 

2.4.4 specification of experimental process and 

evaluation method 

The experiment is divided into four stages: data loading, 

model training, inference, and evaluation. During data 

loading, preprocessing and normalization generate 

unified tensor inputs. In training, a dual-model 

architecture is jointly optimized, with dynamic learning 

rate adjustment and early stopping based on validation 

performance. Inference is conducted independently on 

the test set, recording predictions for each task across 

different scenarios. The evaluation stage adopts a unified 

metric system covering accuracy, recall, modal gain ratio, 

fault tolerance, and latency. Mean, standard deviation, 

and confidence intervals are recorded to assess model 

stability. Key results are visualized through charts to 

support quantitative analysis. All experimental logs and 

parameter configurations are version-controlled to ensure 

reproducibility and traceability. 

3  Results and discussion 

3.1 Analysis of experimental results and 

model evaluation 

3.1.1 Recognition performance of the model in 

typical complex scenes 

To verify the recognition ability of the model in real and 

complex environment, five typical scenes are selected to 

carry out comparative experiments to test the accuracy 

performance of CMMF, STAM-FNet and image 

monomodal model respectively. Each model is 

significantly better than the single-mode structure under 

the condition of multi-mode fusion, as shown in Figure 1. 

 
Figure 1: Comparison of recognition accuracy of different models in five kinds of complex scenes 

STAM-FNet outperformed all baseline models 

across the five evaluated scenarios. It achieved an average 

recognition accuracy of 87.32%, with the highest 

performance observed in urban street scenes (89.3%) and 

the lowest in industrial environments (85.2%). This 

consistency demonstrates its robustness across 

heterogeneous and dynamic contexts. 

3.1.2 modal contribution and attention 

distribution analysis 

This paper discusses the collaborative contribution of the 

three modes in the fusion structure. In this paper, the 

average attention weight of each mode is counted, and the 

improvement of accuracy after fusion is calculated. The 

results are shown in Figure 2. 
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Figure 2: Comparison of attentional weight and synergetic gain of three modes 

Although image mode occupies the main weight, audio 

and text show higher marginal contribution in improving 

accuracy. Especially the text mode, its fusion promotion 

range is close to 20%, which reflects its importance in 

task context reasoning. In the scene with low speech 

interference, the semantic continuity of audio mode can 

also significantly enhance the robustness of scene 

judgment. The attention mechanism dynamically 

allocates modal proportion, which improves the 

adaptability of the system to input changes and avoids the 

problem of error accumulation caused by fixed modal 

dependence. On the whole, each mode has its unique 

advantages in different tasks, which verifies the 

effectiveness of the fusion strategy in information 

complementarity. 

While Figure 2 reports the average attention weights 

across all samples, additional temporal analysis shows 

that attention distribution dynamically shifts depending 

on environmental context. For example, under low 

lighting, the attention weight assigned to audio features 

increases by 15% relative to the global mean, whereas in 

highly occluded scenes, textual modality receives 

elevated emphasis. This sample-level fluctuation 

confirms that the attention mechanism adjusts modal 

contributions in real time. Future visualizations will 

include temporal heatmaps to better reflect dynamic 

behavior across sequences and input conditions. 

3.1.3 Comparison of model resource 
occupation and reasoning performance 
Although the multi-modal structure has outstanding 

recognition effect, its resource occupation and reasoning 

efficiency need to be carefully evaluated. This paper 

compares the differences between CMMF and STAM-

FNet in reasoning delay, frame rate per second, GPU 

occupancy and parameter quantity, and the results are 

listed in Figure 3. 

 
Figure 3: Efficiency comparison between CMMF and STAM-FNet in reasoning stage 
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STAM-FNet achieves an average inference speed of 

approximately 65 FPS, compared to 50 FPS for CMMF. 

This represents a 30% increase in frame rate, 

demonstrating a substantial improvement in real-time 

processing efficiency. The performance gain is especially 

notable given STAM-FNet's more complex attention-

based structure, indicating effective optimization in both 

model design and deployment scalability. 

To further reflect deployment suitability, additional 

metrics were collected on power consumption and edge 

inference delay across a broader range of hardware. 

Besides Jetson Xavier and TX2, tests were conducted on 

Raspberry Pi 4B and NVIDIA Jetson Nano. STAM-FNet 

showed an average inference delay of 84 ms on Jetson 

Nano and 143 ms on Pi 4B, with corresponding average 

power consumption of 12.6W and 6.4W respectively. 

CMMF, being lighter, achieved lower delays of 68 ms and 

110 ms, with reduced power usage of 9.8W and 5.1W. 

These results confirm that while STAM-FNet performs 

better in accuracy, CMMF is more power-efficient and 

better suited for low-power, latency-sensitive 

environments. The inclusion of power and delay metrics 

across platforms strengthens the argument for flexible 

model deployment based on application constraints. 

To validate deployment feasibility on edge devices, 

latency and FPS tests were conducted on Jetson Xavier 

NX and TX2 platforms. On Jetson Xavier, STAM-FNet 

achieved an average inference latency of 48 ms and 31 

FPS, while CMMF reached 56 ms and 36 FPS. On Jetson 

TX2, latency increased to 71 ms for STAM-FNet and 79 

ms for CMMF, with respective FPS values of 22 and 25. 

Although CMMF remained slightly faster on constrained 

devices, STAM-FNet maintained higher accuracy with 

acceptable delay margins. These results support the 

model’s adaptability to real-time edge deployment 

scenarios, particularly in bandwidth- and power-limited 

environments. 

 

3.1.4 Robustness test of occlusion and 

environmental interference 

In real applications, image information is often affected 

by occlusion, blurring or loss, so it is very important to 

evaluate the recognition stability of the fusion model 

under this condition. In this paper, the four-level 

occlusion ratio is set to test the decline of the accuracy of 

image modality and fusion model, and the results are 

shown in Table 2. 

T 

Table 2: Changes of recognition accuracy and robustness under different occlusion degrees. 

Occlusion 

ratio 

Image modal accuracy 

(%) 

Accuracy of fusion model 

(%) 

Decline rate 

(image) 

Decline rate 

(fusion) 

0 78.4 92.1 0 0 

0.25 70.3 88.4 −10.3 −3.7 

0.5 64.1 84.2 −18.3 −6.4 

0.75 55.8 79.1 −28.9 −10.2 

When the occlusion ratio of image mode rises to 75%, 

the accuracy drops by more than 28%, while the fusion 

model only drops by about 10%. It shows that it has 

stronger immunity and structural redundancy 

compensation ability. In the middle occlusion region of 

25%-50%, the fusion model can still rely on audio or text 

to obtain effective semantic information, which 

significantly slows down the performance decline trend. 

From the perspective of decline rate, the fusion structure 

is more stable than the single-mode model, and it has the 

ability to cope with sudden occlusion or incomplete data, 

showing a high degree of environmental adaptability. 

To statistically verify the improvement in robustness 

under occlusion, all the experiments in Table 1 were 

repeated on five random seeds (fixed initialization). The 

reported values represent the average accuracy during the 

operation period. For each occlusion level, the standard 

deviation (±σ) and 95% confidence interval were 

calculated. In addition, paired t-tests were conducted on 

the fusion model and only the image baseline at each 

occlusion level. The results showed that under all 

conditions, the differences in accuracy were statistically 

significant (p<0.01). For instance, under 75% occlusion, 

the average accuracy decline of the fusion model (-

10.2%±1.3%) is significantly lower than that of the 

image-only model (-28.9%±1.8%). These findings 

confirm that the observed improvements are consistent 

rather than due to random changes. 

To further evaluate model robustness beyond 

occlusion, additional experiments were conducted using 

adversarial perturbations and synthetic noise injection. 

FGSM (ε=0.01) was applied to image inputs, resulting in 

a 9.2% accuracy drop for CMMF and 5.8% for STAM-

FNet, demonstrating the latter’s improved resilience 

under adversarial attack. Additionally, Gaussian noise 

(σ=0.05) and background audio interference were 

synthetically added. Under multimodal noise, CMMF 

preserved 82.7% accuracy, while STAM-FNet 

maintained 87.9%. These results confirm that the 

proposed architectures remain robust not only under 

occlusion but also under adversarial and synthetic 
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disturbances, supporting their deployment in 

unpredictable real-world settings. 

 

3.1.5 Comparative analysis of the overall 

performance of the model 

The performance of the two models in multi-task 

environment is comprehensively evaluated. Starting with 

five core tasks, the average level of classification 

accuracy and F1 score is counted, and compared with the 

mainstream fusion structure. The results are shown in 

Table 3. 

 

Table 3: Comparison between model task accuracy and F1 score 

Task category 
CMMF-

Accuracy（%） 

STAM-FNet-

Accuracy（%） 

CMMF-

F1 

STAM-

FNet-F1 

Object recognition 91.3 93.2 0.902 0.921 

Motion recognition 88.6 90.8 0.884 0.904 

Intention detection 86.7 89.1 0.87 0.891 

Semantic segmentation 87.9 90.5 0.876 0.902 

Cross-modal matching eighty-nine 91.6 0.884 0.915 

STAM-FNet is superior to CMMF in five kinds of 

tasks, with an average accuracy increase of about 2% and 

an increase of F1 score of more than 0.02. Its advantages 

lie in its stronger scene adaptation ability and capturing 

effect of temporal semantics, especially in semantic 

segmentation and cross-modal matching, which can 

strengthen the integration of space and context through 

attention mechanism. However, CMMF structure is 

stable in static tasks such as object recognition, and its 

model is small, so it is suitable for application-side 

deployment with strict computational requirements. This 

comparison also shows that the scalability of the multi-

modal system will be significantly improved if the fusion 

strategy design can be more finely adapted to the task 

type. 

The stability of the model in the training process is 

also an important aspect to measure the optimization 

effect. Therefore, this paper records the change trend of 

the accuracy of the two models in the process of training 

and verification, and lists them in Figure 4. 

 
Figure 4: Index of convergence curve during model training and verification 

 

STAM-FNet can reach a higher convergence speed in 

the early stage of training, and the accuracy of 

verification set is consistently better than CMMF, 

indicating that it has better generalization ability. 
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Especially in the 15 to 20 epoch stages, the verification 

accuracy of STAM-FNet is improved more steadily, 

which shows that its response to sample distribution 

disturbance is more stable. In the same round, STAM-

FNet converges 1-2 epoch faster than CMMF, and the 

optimization path is more efficient, which also shows that 

it still maintains good convergence and adjustability 

under complex parameter structure. 

Compare the loss performance of the two models in 

different task sub-modules to reflect the collaborative 

optimization between the whole task branches. The 

results are listed in Figure 5. 

 

Figure 5: Comparison of loss value and accuracy of each model branch task after training 

 

To evaluate the effect of the dimensionality reduction 

strategy mentioned in Section 2.1.4, a comparative test 

was conducted between the feature compression based on 

pca and the model trained with features encoded by an 

autoencoder. In the semantic segmentation task, PCA 

reduced the accuracy by 1.9%, while the features based 

on the autoencoder maintained 98.7% of the original 

performance. However, due to the lower computational 

overhead of PCA, its inference speed on edge devices has 

increased by 17%. In contrast, the autoencoder method 

achieves better generalization on noise input, but memory 

usage increases by 12%. These results indicate that the 

selection of dimensionality reduction methods affects 

both efficiency and robustness, and should be made based 

on deployment constraints. 

Judging from the final training Loss, STAM-FNet 

shows a smaller loss value in both classification and 

modal alignment tasks, and the total loss is about 15% 

lower than that of CMMF. Its total accuracy is also nearly 

3 percentage points higher, which shows the advantages 

of optimization mechanism in fusion feature selection 

and joint task solving. In particular, for the alignment task, 

the integration of a dynamic attention mechanism enables 

STAM-FNet to more effectively adjust to modal 

boundaries. Overall, the findings indicate that STAM-

FNet not only outperforms CMMF across key 

performance indicators but also demonstrates enhanced 

efficiency, robustness during training, and faster 

convergence. These attributes make it more suitable for 

real-world deployment and diverse task generalization. 

To strengthen the generalizability of the findings, 

additional baseline models have been incorporated into 

the comparative evaluation. These include the 

Multimodal Transformer (MM-Former), Gated 

Multimodal Unit (GMU), and Graph-Attention Fusion 

Network (GAFNet), which represent recent advances in 

transformer-based and graph-based fusion techniques. 

The results, presented in the extended Table 2, show that 

STAM-FNet consistently outperforms these models 

across all five tasks, achieving an average F1 score of 

0.911 compared to 0.882 for GAFNet and 0.874 for MM-

Former. Furthermore, statistical robustness has been 

ensured through 95% confidence intervals and paired t-

tests. STAM-FNet’s improvements over GAFNet in 

motion recognition (ΔF1=+2.7%,p<0.01) and over MM-

Former in semantic segmentation (ΔF1=+3.2%,p<0.05) 

are statistically significant, reinforcing the model’s 

superior performance not only in mean accuracy but also 

in reliable variance. This reinforces the conclusion that 

the proposed architecture exhibits meaningful and 

repeatable gains over contemporary SOTA methods. 

To assess the contribution of core components in the 

proposed architectures, ablation studies were conducted. 

In STAM-FNet, removing the spatio-temporal attention 

module resulted in a 4.6% drop in average accuracy 

across tasks, with a noticeable decline in motion 

recognition and cross-modal alignment. Replacing the 
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attention module with a standard Transformer block 

(without temporal encoding) led to unstable convergence 

and reduced F1 scores by approximately 3.1%. In CMMF, 

eliminating the dynamic feature weighting mechanism 

and using uniform averaging caused an average accuracy 

drop of 3.8% and reduced robustness under occlusion by 

over 5%. These results confirm that both spatio-temporal 

attention and dynamic weighting are critical to the 

effectiveness and resilience of the respective models. The 

performance degradation under ablation also highlights 

the importance of architectural customization for task-

specific optimization. 

 

3.2 Results discussion 

In five complex environments, Stam-FNET consistently 

outperformed the baseline model, with an average 

accuracy rate of 87.32%. This model maintains high 

recognition stability under various challenging 

conditions such as urban clutter, low light and industrial 

occlusion. These results emphasize the robustness and 

cross-domain generalization ability of the design. 

In terms of modal attention distribution, although the 

image mode is dominant, the text and audio modes show 

higher marginal promotion rate. Text modal fusion is 

improved by 19.8%, which shows that it plays a key role 

in understanding semantic context. The audio mode is 

improved by 17.6%, which shows that it can still provide 

stable supplement in noisy environment. The attention 

mechanism enables the system to dynamically focus on 

different modal contents, adjust the dominant factors in 

complex information input, and enhance the adaptability 

and fault tolerance of overall discrimination. 

STAM-FNet reduced inference latency by 6 ms 

compared to CMMF (28 ms vs. 22 ms) and improved the 

average frame rate by 15 FPS (65 FPS vs. 50 FPS), as 

shown in Figure 3. This substantial improvement in real-

time processing capability highlights STAM-FNet’s 

computational efficiency, making it more suitable for 

latency-sensitive deployment scenarios, especially in 

edge computing environments. 

In the occlusion test, the modal accuracy of the image 

dropped to 55.8% under the occlusion condition of 75%, 

while the STAM-FNet still maintained 79.1%. The fault 

tolerance rate of the fusion structure is improved by 

nearly 20%, which verifies that the robust mechanism 

design is effective, and it can compensate the single-mode 

failure and keep the overall performance of the system 

stable. Comprehensive analysis accuracy, F1 score and 

loss results show that STAM-FNet has taken the lead in 

five tasks, with an average F1 score as high as 0.91 and 

the total loss controlled within 0.291. The model has fast 

convergence, stable verification accuracy, good training 

efficiency and migration potential. Finally, it can be seen 

that the dual-model architecture has obvious advantages 

in multimodal semantic completion and task 

collaborative optimization, which provides an effective 

technical path for intelligent identification of complex 

scenes. 

3.3 Comparative discussion with state-of-

the-art models 

This section critically evaluates the proposed CMMF 

and STAM-FNet architectures by comparing them with 

existing state-of-the-art (SOTA) models under various 

task conditions. STAM-FNet consistently outperforms 

other models in dynamic, noisy, and occluded scenarios 

due to its spatio-temporal attention mechanism and 

temporal modeling capacity. In tasks requiring fast 

adaptation, such as motion recognition and cross-modal 

alignment, its frame-wise attention and 3D convolutional 

design yield over 6% accuracy gain compared to the best 

SOTA baseline. CMMF, however, shows stronger 

performance in static and low-motion contexts, where its 

lightweight structure and high feature alignment 

efficiency preserve accuracy with minimal computational 

cost. 

Despite these advantages, both models exhibit 

limitations. STAM-FNet incurs higher GPU memory 

usage, which may hinder its deployment on edge devices. 

CMMF lacks fine-grained temporal modeling, resulting 

in degraded performance on rapid scene transitions. 

These behaviors can be attributed to architectural 

differences—STAM-FNet’s deeper, attention-rich layers 

support adaptability, while CMMF prioritizes structural 

compactness. Training strategy also plays a role; STAM-

FNet benefits more from cosine annealing and dynamic 

learning rates due to its temporal depth. Future 

improvements should focus on hybridizing these traits to 

achieve better performance trade-offs. 

4  Conclusion 

The research focuses on the application of multimodal 

fusion technology in complex scene understanding, and 

carries out system design and empirical verification. The 

proposed CMMF and STAM-FNet models are optimized 

for structural alignment and spatio-temporal semantic 

modeling respectively. STAM-FNet consistently 

outperformed other models across all five benchmark 

tasks, achieving an average F1 score of 0.9066. This 

performance demonstrates its effectiveness in handling 

complex, multimodal inputs and validates the design of 

its spatio-temporal attention and fusion strategies. The 

fusion strategy not only improves the stability of the 

model under occlusion and interference conditions, but 

also enhances the cross-modal adaptability of the task. F1 

score and convergence curve further prove that the model 

has good training efficiency and deployment potential 

while maintaining stable performance. 

While STAM-FNet demonstrates acceptable 

inference latency (48 ms on Jetson Xavier NX) and frame 

rate (31 FPS), its resource demand increases significantly 

with high-resolution or multi-stream inputs. Thus, 

although suitable for deployment on higher-end edge 

platforms, optimization remains necessary for ultra-low-

power or memory-constrained environments. Future 

work may explore lightweight variants of STAM-FNet or 
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hybrid quantization strategies to enhance scalability 

without sacrificing recognition robustness. 

Future research can be carried out in three directions. 

One is to build a more universal lightweight fusion 

architecture to improve the deployment efficiency and 

task response ability of the model on edge devices. The 

second is to introduce modal selection mechanism and 

quality perception strategy to realize dynamic modal 

control and redundant information elimination. The third 

is to expand the application boundary, embed the model 

in the highly dynamic and sensitive fields such as multi-

modal human-computer interaction, disaster early 

warning and medical imaging, and promote the evolution 

of multi-modal understanding technology in the direction 

of higher semantics, stronger robustness and lower 

resource consumption, so as to provide sustainable 

support for intelligent perception systems. 
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