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Multimodal perception has emerged as a vital strategy for understanding complex and dynamic
environments, where traditional unimodal approaches fail to handle data heterogeneity and occlusion.
This paper proposes two multimodal fusion frameworks—CMMF (Cross-Modal Matching Fusion) and
STAM-FNet (Spatio-Temporal Attention Multimodal Fusion Network)—to address structural and
temporal challenges in complex scene understanding. The CMMF model adopts a three-stage architecture
with cross-modal semantic alignment and dynamic weighting, while STAM-FNet introduces spatio-
temporal attention layers and 3D convolutions to enhance feature discrimination in dynamic environments.
Experiments are conducted on a dataset of 120000 samples covering three application scenarios: urban
monitoring, indoor interaction, and transportation hubs. Evaluation is based on standardized metrics
including Top-1 Accuracy, Fl-score, AUC, Modal Gain Index, and Inference Delay. Compared to SOTA
baselines such as ResNet50, Two-Stream Transformer, and MMBT, STAM-FNet achieves up to 15.8%
improvement in accuracy and 20% robustness gain under high-occlusion conditions. CMMF maintains
superior performance in static tasks while preserving low parameter count (24.3M). This work
demonstrates the effectiveness of adaptive multimodal fusion in improving accuracy, efficiency, and fault
tolerance in real-world perception systems.

Povzetek: Opisana sta modela za razumevanje kompleksnih prizorov: CMMF (Cross-Modal Matching
Fusion) in STAM-FNet (Spatio-Temporal Attention Multimodal Fusion Network). CMMF izvaja utezeno
krizno-modalno usklajevanje in je optimiran za staticne naloge (24,3 M parametrov), medtem ko STAM-
FNet z uporabo 3D-konvolucij in prostorsko-casovne pozornosti dosega vrhunske rezultate v dinamicnih

okoljih.

1 Introduction

Semantic understanding of complex scenes is crucial
for intelligent perception systems. Traditional single-
modal methods face limitations under dynamic
environments, multi-source coupling, and heterogeneous
data. In scenarios like urban security and medical
navigation, relying solely on vision or audio often fails to
ensure stable recognition. Multi-modal fusion has
emerged as an effective solution due to its complementary
and synergistic capabilities. Recent advances in deep
learning-based cross-modal representation offer strong
modeling foundations. However, issues like modality
inconsistency, rigid fusion strategies, and poor
adaptability to dynamic scenes remain, hindering further
performance improvement in real-world applications.

Focusing on the robustness and adaptability of modal
fusion mechanism in complex scenes, this study proposes
two complementary model design ideas. The first model
focuses on the collaborative representation of modal
features, and builds a multi-layer matching network based

on global weighting strategy. The second model
introduces spatio-temporal attention mechanism to
strengthen the ability to pay attention to effective features
in dynamic changing scenes. The research integrates data
preprocessing, model architecture, index design and
experimental setup, and constructs a research framework
covering the whole process of perception, modeling and
verification. By designing a unified comparative
experiment, the performance differences of the model
under different occlusion ratios and different task
complexity are clarified, and the boundary characteristics
of multimodal understanding under real and complex
conditions are tried to be restored.

At present, the research of multimodal fusion
technology in complex scene understanding is expanding,
showing the development trend of diversification of
model mechanism and refinement of task structure.
Zhang et al. (2025) put forward EKLI-Attention
mechanism, which classifies citizens' government
requests by integrating local and global attention,
indicating that multilevel attention mechanism is
operable and efficient in actual semantic recognition [1].
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Choi et al. (2025) analyzed the memory mechanism in the
process of constructing visual stability, and pointed out
that saccade memory and default hypothesis played a key
role in visual maintenance in natural scenes, which
provided a cognitive basis for dynamic modeling in
multimodal systems [2]. Zhang et al. (2024) built a multi-
task hierarchical heterogeneous fusion framework,
realized hierarchical modeling and dynamic weighting of
different modal features in multi-modal summarization
tasks, and demonstrated the adaptability of complex
structural models in content generation [3]. Lu et al.
(2024) introduced graph neural network and translation
alignment mechanism, and put forward a multimodal
emotion analysis model integrating emotional interaction,
emphasizing the important role of emotional dimension
in the process of integration [4]. Man (2024) applied
multi-modal data fusion technology to test behavior, built
a classification model to identify the knowledge state
before the test, and verified the validity of multi-modal
features in judging high-risk tasks [5]. Wang et al. (2024)
constructed a fusion model in the task of emotion
recognition in flight training, and combined the visual
and physiological modal information to realize the high-
precision recognition of emotion changes in the training
state [6]. Yang et al. (2023) introduced the multi-feature
attention mechanism in the noisy environment, and finely
classified the sound, which improved the system's
perception of complex audio input [7].

Tang et al. (2023) designed a mixed-order
polynomial fusion structure and applied it to the task of
emotion classification to realize the modeling and
optimization of nonlinear interaction between multiple
modes [8]. Lin et al. (2023) put forward a mixed model
of polar vector and intensity vector, which was used for
the fusion expression of modal expressions in emotion
recognition [9]. Luo et al. (2023) applied multimodal
fusion to learning interest analysis task, built 3DLIM
model, and supported multi-dimensional perception and
interest state modeling [10]. Chen et al. (2022) adopted
the combined attention mechanism to improve the quality
of image reconstruction and enhance the model's ability
to retain the structural features in the input image [11].
Zhao et al. (2022) introduced attention mechanism based
on NAS structure in traffic flow forecasting, which
effectively improved the generalization ability of the
model in time series forecasting scenarios [12]. Zhao et
al. (2023) discussed the imitation of attention mechanism
from the perspective of human reading behavior, and
thought that attention mechanism can learn the way
human beings deal with semantics and emotions, which

is instructive to the discrimination of emotional tasks [13].

Leroy et al. (2021) analyzed the process of semantic and
emotional understanding in complex visual scenes from a
psychological perspective, and revealed the adjustment
path of cognitive factors to visual information processing
strategies [14]. Zhang et al. (2021) studied the gaze
pattern in real scenes and pointed out that mental drift
would significantly affect the accuracy of scene
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perception, which provided an explanatory framework
for the dynamic visual understanding model [15]. In
summary, the current research has made rich
achievements in attention mechanism modeling, modal
heterogeneous integration, task-oriented structure
optimization and so on. The fusion structure is no longer
limited to simple splicing, but tends to more adaptive
dynamic and interpretable mechanism design, which
provides more robust technical support for the perception
system in complex scenes.

In recent studies published in Informatica have also
highlighted the relevance of multimodal fusion
techniques in complex perception tasks. For example, Shi
(2025) introduced the MMF-TSP network for time series
prediction, combining BERT, TCN, global attention, and
skip connections to reduce RMSE by 4.8%—6.3% across
diverse multimodal environments [16]. Similarly, Zhao
(2024) applied an attention-based BiLSTM fusion model
to integrate gait, facial, and speech features for emotion
recognition, achieving an F1 score of 0.8125 [17]. These
works underscore the efficacy of attention-guided and
adaptive multimodal structures and support the design
choices of CMMF and STAM-FNet.

The research has made targeted innovations in model
architecture, fusion mechanism and evaluation dimension,
showing strong performance stability and resource
adaptability in practical tasks. Especially in occlusion
testing and jamming tasks, the proposed STAM-FNet
structure shows better generalization ability than the
traditional CNN fusion model. Nevertheless, the
migration ability of the model in high-dimensional modal
alignment and unsupervised scenes is still limited. In
addition, the processing mechanism of low-quality modal
information still needs to be optimized. The following
work will consider introducing interpretable mechanism,
confrontation training framework and lightweight
modeling strategy to further enhance the applicability and
elastic  boundary of multimodal understanding
technology in practical deployment.

To better position the proposed models within the
current state of the art, Table 1 summarizes recent
representative multimodal fusion methods applied to
complex scene understanding tasks. This comparison
focuses on key performance metrics including Top-1
Accuracy, robustness under occlusion, and computational
cost (model parameters or inference delay). The table
reveals that while prior models such as MMBT and Two-
Stream Transformer perform reasonably in static tasks,
they exhibit performance degradation in highly dynamic
or occluded environments. Moreover, these models often
carry high computational overhead, limiting their
deployment in real-time or resource-constrained
scenarios. In contrast, the proposed CMMF and STAM-
FNet frameworks not only deliver superior recognition
accuracy in complex environments but also demonstrate
improved fault tolerance and efficiency, addressing
significant limitations of prior work.
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Table 1: Performance comparison of representative multimodal models in complex scene understanding

Top-1 Occlusion
Params | Inference
Model Accuracy Robustness (Drop @ Notable Features
(M) Delay (ms)

(%) 75%)
ResNet50 Baseline  single-modal

78.4 -28.9 25.6 11.2
(Image-only) CNN

Early-fusion
MMBT 84.3 -17.1 72.4 16.5
Transformer

Two-Stream Dual-modal  attention

86.7 -13.9 88.1 18.3 )
Transformer mechanism
CMMF Cross-modal  weighted

91.3 -10.2 243 9.6 .
(Proposed) feature fusion
STAM-FNet Spatio-temporal

93.2 -6.1 31.5 7.8 .
(Proposed) attention+3D conv

To guide this research, two core questions are posed:
(RQ1) Can a spatio-temporal attention mechanism
significantly enhance the effectiveness of multimodal
fusion in dynamic and occluded environments?

(RQ2) Can the proposed models—CMMF and STAM-
FNet—achieve at least a 10% improvement in
recognition robustness under severe occlusion conditions
compared to established SOTA baselines such as MMBT
and Two-Stream Transformer?

These questions aim to quantify the benefit of
architectural innovations and validate the models’
practical contributions. The study is designed to evaluate
these hypotheses across diverse real-world scenes, using
standardized evaluation protocols and performance
benchmarks. Addressing these questions allows for
targeted analysis of model strengths and shortcomings
and frames the empirical work in a hypothesis-driven
structure.

2 Materials and methods

2.1 Multi-modal data acquisition and
preprocessing
2.1.1 Data source composition and sampling

strategy

The research uses data sets including image, voice and
text, covering three typical application fields: traffic
scene, indoor identification and public safety monitoring.
The image data comes from a multi-view camera with a
unified resolution of 640x480. The audio clip is taken
from the real sound pickup device, the frequency is
16kHz, and the length is controlled within 8 seconds. Text

data is encoded in UTF-8 format based on phonetic
transcription or user interaction information, and Chinese
sentence breaking and English punctuation are adopted.
The sampling process is distributed hierarchically
according to hours, scenes and task types to avoid sample
deviation and redundant collection [18]. All modes are
marked with time stamps to ensure the accuracy of cross-
modal semantic alignment and reconstruction. The whole
data acquisition process introduces task classification
index identification, which is used for task grouping and
label scheduling in the later model training. The sampling
strategy emphasizes the balance between
representativeness and complexity, preserves the
continuous fragments in highly dynamic scenes, and
improves the generalization ability of subsequent models
in real tasks.

2.1.2 Normalization of images, texts and audio.

In preprocessing, original images are uniformly resized,
pixel-normalized, and color channels reordered.
Adaptive histogram equalization is applied under varying
lighting to enhance contrast and edge clarity. Audio
signals are processed using short-time Fourier transform,
with abnormal-length samples padded or truncated, and
normalized to reduce background noise. Phonetic text is
processed via Chinese word segmentation, stop-word
removal, and word vector encoding, forming semantic
tensors for fusion input. All modal data are batch-
processed to optimize pipeline efficiency and reduce
latency. Text segmentation respects natural sentence
structure to minimize semantic errors. A unified format
and parameter standard is adopted for cross-modal data,
ensuring comparability at the distribution level. This
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preprocessing chain establishes consistency across
modalities, supporting effective feature extraction and
alignment in downstream tasks.

2.1.3 Multimodal time alignment mechanism and

redundancy elimination

In order to ensure the accuracy of multimodal fusion, the
data alignment strategy is based on the global timestamp
unification mechanism. Image frames and audio frames
are aligned at the frame level through linear interpolation
and synchronous sampling. For the delay between speech
transcription and image events, a dynamic window
mechanism is set to carry out semantic matching and time
slip compensation. The inter-modal time offset rate is
controlled within +£150ms, which meets the real-time
requirements of most sensing tasks [19]. The redundant
fragments that can't be synchronized are silently
discarded, and the key frames before and after are
reserved to maintain the context integrity. Information
redundancy in text data is mainly manifested as logical
repetition or structural repetition, which is uniformly
filtered after being judged by the editing distance
threshold. The final preserved data set is consistent in
both time axis and semantic layer. Alignment mechanism
can adapt to irregular event flow and dynamic scenes, and
maintain  stable performance under high-density
sampling conditions, which is a key pre-step to ensure the
quality of model time series modeling.

2.1.4 Noise filtering and high-dimensional noise

reduction methods

The data collected in complex environment is often
accompanied by strong noise interference. In this study, a
multi-stage noise reduction mechanism is introduced in
the pretreatment stage. In image mode, random pixel
noise is processed by Gaussian filtering, and then texture
anomalies are removed by edge preserving filtering. The
audio mode uses spectral subtraction and voice activity
detection methods to remove background noise and mute
segments [20]. In text mode, low-information or non-
task-related sentences are filtered by word frequency and
TF-IDF index. On the feature space level, PCA and self-
encoder are introduced to reduce the dimension of high-
dimensional features of each mode, while retaining the
principal components of semantic information. The data
after dimensionality reduction will be normalized again
before entering the main model to avoid abnormal
numerical amplification error. The noise control strategy
can effectively improve the model processing efficiency
and enhance the adaptability to abnormal data
distribution on the premise of ensuring information
integrity.

To clarify the terminology, the study involves five core
multimodal perception tasks: object recognition, action
recognition, intent detection, semantic segmentation, and
cross-modal matching. These tasks are performed across
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five representative complex scene categories: urban
street, medical room, traffic platform, campus
environment, and industrial workshop. Each task is not
tied exclusively to a single scene but is instead evaluated
under multiple environments to test generalization. For
example, semantic segmentation and cross-modal
matching are applied in the campus and traffic scenes,
while action recognition and intent detection are
emphasized in the medical and workshop contexts. This
task—scene mapping ensures diverse multimodal
challenges under real-world variability.

2.2 Multi-modal fusion model construction
2.2.1 CMMF structure and feature weighting

mechanism

The CMMF model takes cross-modal matching as the
core to build a fusion path, and strengthens the depth of
information interaction by extracting the shared semantic
subspace of each modal. The model is divided into three
layers. The bottom layer completes modal self-coding,
the middle layer realizes feature interaction between
modes, and the high layer outputs fusion results. Image,
text and audio modes are respectively input into three
parallel convolution or Transformer coding channels, and
then enter the weighted fusion module after unified
mapping dimensions [21]. Feature weighting assigns
dynamic weights based on modal reliability, and
automatically adjusts participation according to
information effectiveness and response strength. The
output characteristics after fusion are as follows (1):

F. =

fusion

o -F

(1)

M=

I
[UN

The output characteristics after fusion are defined

F .
as: | represents the feature vector of the i-th moda

lity, and @ denotes its corresponding weight coeffici

ent. These weights satisfy the normalization constrain
w =1 .
t:Z : , with w; = 0 for all i.

This ensures that the fused representation maintai
ns a probabilistic interpretation over modality contrib
utions.

For CMMF, each modality input passes through a
dedicated encoder: a 4-layer CNN for image data (kernel
size: 3x3, ReLU activation, max pooling every two
layers), a 2-layer BILSTM for text (hidden size: 256), and
a 3-layer 1D-CNN for audio (kernel size: 5, dropout rate:
0.3). All encoded features are mapped to a shared
embedding space of 512 dimensions. The dynamic
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feature weighting module uses softmax normalization
over learned reliability scores. The output layer applies a
fully connected layer followed by softmax for
classification. Training uses Adam optimizer (Ir=0.001),
dropout=0.5, and batch size=64.

2.2.2 spatio-temporal attention mechanism in

STAM-FNET

STAM-FNet aims to solve the problem that the fusion
model does not respond to dynamic scenes in time, and
uses the spatio-temporal attention mechanism to
dynamically weight multimodal signals. Three-
dimensional convolution and attention distribution
modules are added to the model, and the spatial salience
and temporal evolution characteristics are also learned
[22]. After the feature flows through the local attention
layer and the global gating layer, the region of interest is
determined according to the temporal context [23]. This
mechanism is especially suitable for scenes such as
occlusion changes and sudden environmental changes,
and can dynamically focus on key modal frames. The

attention output is expressed by the following formula (2):

QUKW ),y

\/a (2)

Here, O(x) denotes the spatial query, K(t) the
temporal key, V(¢) the value vector, and X the
dimension of the key vectors used for scaling. This
formulation ensures that the attention weights are
normalized before being applied to the value
representation, enhancing stability during training and
interpretability in dynamic sequences. The original
formulation has been revised to align with established
attention mechanisms such as those used in Transformer
architectures.

A(X,t) = softmax

In STAM-FNet, each input is passed through a 3D-
CNN backbone (3 layers, channels: 64-128-256, ReLU,
batch normalization), followed by local and global
attention modules. The spatio-temporal attention block
includes 2 Transformer layers (hidden size: 512, 8 heads,
GELU activation, dropout=0.1). The total loss is
composed of classification loss (weight: 1.0), modal
matching loss (weight: 0.6), and regularization (weight:
0.01). Early stopping is used if validation loss does not
improve after 5 epochs.

2.2.3 Training optimization and loss construction
of double models

To improve the overall synergy and generalization ability
of the model, CMMF and STAM-FNet adopt a joint
training mechanism. The training process adopts end-to-
end strategy, and the objective function introduces multi-
task structure, giving consideration to -classification
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accuracy, modal alignment and time sequence stability.
The total loss function of fusion training is designed as
the following formula (3):

Ltotal = Acls-Lcls+ Aalign- Lalign+Areg-L

3)

Here, Acls, Aalign, and Aregare scalar hyperparam
eters that control the contribution of the classification,
alignment, and regularization losses, respectively. Th
ese coefficients are tuned using grid search on the val
idation set to ensure balanced learning across sub-task
s. This formulation ensures consistency across the ma
thematical definition and explanatory text, facilitating
clearer interpretation and reproducibility.

During training, the weight coefficients Acls, Aalig
n, and Areg are dynamically adjusted every five epoc
hs based on the relative convergence rate of each sub
-loss. Specifically, if the moving average of a sub-los
s stagnates or decreases slower than others, its associ
ated A value is increased proportionally to prioritize 1
earning on that sub-task. A normalization step is appl
ied to ensure that the sum Acls+lalign+ireg =1holds
at every update. This adaptive scheme enables the mo
del to shift learning focus across modalities and task
objectives depending on training dynamics, improving
convergence and generalization in heterogeneous env
ironments

2.2.4 Model difference design and integration

strategy

CMMF is good at structural alignment, and STAM-FNet
is better than time series modeling. In order to give full
play to their complementary advantages, an integration
strategy based on probability fusion is designed. In the
reasoning stage, two models are called to output
probability distribution, and the final prediction result is
output by weighted average. This integration method
takes into account the response characteristics of the two
structures and adapts to the discrimination requirements
in the changeable environment. The fusion strategy is
expressed by the following formula (4):

Pfinal = ﬁ PCMMF + (1_ ﬂ) : PSTAM (4)

Where Fere and Prau are the prediction

probabilities of the two models respectively, and B is the

integration balance factor. The optimal p value is

obtained by using verification set to adjust parameters in

the test set.
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This strategy enhances the robustness and overall
performance of the model and improves the consistency
and reliability of the final task output.

To prevent overfitting and ensure robust integration,
the balance factor B in equation (4) was tuned using a
separate validation set that was not involved in model
training. A grid search was performed within the yange
PE/0.0,1.0] at 0.05 intervals. For each candidate 7~ , the
ensemble prediction performance was evaluated on the
validation set based on the averagg F1 score across all
five task categories. The optimal value (f=0.65) was
selected based on its ability to maximize the validation
score without increasing variance in test performance.
This parameter tuning approach ensures that the final
integration strategy generalizes well and avoids model
overfitting, especially in highly imbalanced or occlusion-
heavy scenarios.

2.3 Index system construction and
evaluation logic

2.3.1 scene recognition accuracy and recall rate

The model performance evaluation focuses on accuracy
and recall, and measures the accuracy and integrity of
recognition respectively. The accuracy reflects the
reliability of the system in discriminating the target scene
under multi-category conditions, and the recall rate
evaluates the risk of missed detection. For complex scene
tasks, both are indispensable. Accuracy calculation is
based on the consistency between the prediction and the
actual label, and is often used to measure the discriminant
boundary of the fusion model. The recall rate focuses on
the recognition coverage of all effective targets,
especially for small sample recognition tasks in
heterogeneous data. Considering the nature of multi-task,
the weighted average method is introduced to deal with
the category imbalance in different scenarios to improve
the fairness of evaluation. Top-1 accuracy is used as the
main index in the classification task, and the area under
recall curve (AUC) is used to compare the stability of the
model under different confidence thresholds. The two
kinds of indicators jointly construct the basic
performance evaluation benchmark, which provides the
data basis for the subsequent analysis of fusion gain and
error sources.

2.3.2 Synergistic gain between modes and fusion

efficiency

In multi-modal systems, the key to measure the fusion
quality is the information gain and cooperation between
modes. Modal Synergy Gain Ratio (MGI) and Fusion
Efficiency Ratio (FER) are introduced as core indicators
to reflect the performance improvement after fusion and
the resource cost performance ratio of fusion strategy
respectively. MGI describes that the multi-modal
combination exceeds the gain range of single-modal
performance and is suitable for measuring the

J. Linetal.

cooperative learning ability of the model. FER analyzes
the performance improvement per unit of computing
resources from the perspective of computing
consumption. During the experiment, the combination of
the two indicators is used to evaluate the effectiveness of
the fusion mechanism under different model architectures.
Modal gain index The modal contribution is calculated
by the following formula (5):

. ACCfusion - ACCmodi

mod;
ACCmOdi (s)

Cfusion

Among them, is the accuracy of fusion

Cmodi

model, and is the i the modal accuracy. This

index can accurately quantify the marginal contribution
of each mode in the multi-modal system and assist the
adjustment of fusion strategy and the elimination of

redundant modes.

2.3.3 Calculation performance and model delay

evaluation

Performance evaluation considers not only accuracy but
also computational load and operational efficiency. In
real-world deployment, latency, frame rate, and GPU
usage are key indicators. This study uses average
inference time (ms), frames per second (FPS), and peak
memory usage to assess computational overhead. To
simulate practical conditions, both models were tested
under varying resolutions and batch sizes, with
performance trends recorded. Inference delay indicates
the model’s responsiveness, critical for real-time systems.
FPS combined with resolution reflects the model’s ability
to handle continuous input. Memory usage assesses
hardware adaptability for deployment. Together, these
indicators form a performance triangle that supports
comprehensive evaluation across edge devices and server
clusters. The results offer a quantitative basis for
optimizing lightweight design and integrated deployment
strategies.

2.3.4 Robustness and fault tolerance in occlusion

scenes

Multimodal systems in complex environments need to
have strong robustness and exception tolerance.
Occlusion, interference, frame loss and other problems
widely exist in real tasks, so it is necessary to construct
corresponding index system to reflect the response level
of the model to these disturbances. This paper studies
setting the scene of occlusion ratio change, simulating the
conditions of different modal interruption and
information loss, and recording the decline of model
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recognition accuracy and recovery ability. Fault tolerance
rate is defined as the ratio of performance degradation
degree to initial performance, and the lower it is, the more
stable the system is. In the experiment, combined with the
incomplete modal information before and after fusion,
the changing trend of model output is dynamically
observed. The model with strong fault-tolerant ability
should still maintain the basic discriminant function
when the key modes are missing, reflecting its inherent
redundancy mechanism and weight adaptation ability.
The index system can finally be used for modal
importance ranking and fault-tolerant mechanism
optimization, which provides robustness guarantee for
system deployment under uncertain conditions.

2.4 System experimental setup and
operating environment
2.4.1 Hardware configuration and operation

platform

The experiment is deployed in a local server farm with
high-performance graphics computing capability. The
core node is equipped with Intel Xeon Gold 6226R
processor, clocked at 2.9GHz, equipped with 256GB of
memory and 4 NVIDIA RTX A6000 graphics cards, each
with 48GB of memory. The operating system is Ubuntu
20.04 LTS, and the deep learning framework is PyTorch
2.0.1, with CUDA version 11.8 and cuDNN version 8.6.
Multi-thread parallel scheduling combined with NCCL
communication protocol improves the efficiency of data
loading and model synchronization. The experimental
process relies on local SSD high-speed storage to ensure
that data preprocessing and intermediate result caching
are not affected by bottlenecks. Python 3.9 and related
dependency libraries are configured in the running
environment, which are isolated and managed in the
virtual environment to ensure the consistency of the
software environment. In order to simulate the
performance of edge devices, some lightweight models
are tested on Jetson Xavier and TX2 platforms for delay
evaluation and deployment adaptability analysis.

To enhance recognition under low-light, occluded, and
blurry conditions, targeted augmentations were applied.
These included brightness and contrast jittering (£30%),
Gaussian blur (0=1.2), motion blur, Cutout (20%
masking), and Mixup (a=0.4). Augmentations were
applied probabilistically each epoch to increase
robustness.

Inference tests were conducted on NVIDIA RTX A6000,
Jetson Xavier NX, and Jetson TX2. Key specs include
48GB VRAM and 768 GB/s bandwidth (A6000), and
51.2/59.7 GB/s bandwidths on Xavier/TX2 respectively.
Thermal limits were monitored to ensure latency and FPS
readings were unaffected by throttling.

2.4.2 Data division and training strategy

The experimental data is sourced from a multimodal
scene dataset containing approximately 120,000 samples
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across three modalities: image, audio, and text. It spans
three typical scenarios—urban monitoring, indoor
interaction, and transportation hubs. The dataset is split
into training, validation, and test sets in an 8:1:1 ratio
using random stratified sampling to maintain task balance.
Data augmentation is applied to the training set to
improve performance under low-light, occlusion, and
blur. Training uses mini-batch SGD with a batch size of
64, an initial learning rate of 0.001, and 50 epochs. The
learning rate decays via Cosine Annealing to enhance
convergence stability. Xavier initialization and gradient
clipping are used to prevent gradient explosion. All
experiments are repeated three times with fixed random
seeds, and average results are reported to ensure
reproducibility.

To improve interpretability and result robustness, all
training experiments were repeated three times under
different random seeds, as initially stated. For each model
and task configuration, the final reported accuracy and F1
scores represent the mean across runs. Standard deviation
(x0) is also reported, and all line charts in the result
section (e.g., convergence curves, loss plots) include
error bars indicating the variability range. For example,
in semantic segmentation, STAM-FNet achieved an
average accuracy of 90.5% =+1.2%, while CMMF
recorded 87.9% +1.4%. This reporting approach ensures
transparency in the performance evaluation and
demonstrates the consistency of the models under
different initialization conditions.

2.4.3 Comparison algorithm and model

configuration

To validate the proposed model, several mainstream
comparison models were selected as benchmarks. Three
representative methods were used as control groups: a
single-modal CNN (ResNet50), a two-stream attention
network (Two-Stream Transformer), and a classic fusion
model (MMBT). All models were reproduced based on
their original implementations using the same dataset and
training pipeline. Parameter settings were aligned to
ensure fair comparison. While CMMF and STAM-FNet
adopt unique fusion modules, all other hyperparameters
remain consistent. To evaluate the impact of fusion
mechanisms, modality ablation experiments were
conducted by removing single-modal inputs to simulate
missing information. A unified evaluation metric system
was applied across experiments. Accuracy, frame rate,
and memory usage were recorded for all models,
providing a comprehensive basis for performance
analysis.

The modality ablation experiment in Figure 2 reflects two
distinct evaluation setups. First, to simulate information
absence during inference, the trained multimodal model
was tested by masking one modality at a time (setting the
input vector to zero) without retraining; these results
assess model resilience to missing data. Second,
standalone unimodal baselines were trained from scratch
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using only one input modality (image, audio, or text),
with model architectures adapted accordingly (CNN for
image, BILSTM for text). The accuracy results labeled as
"modality-specific" in Figure 2 correspond to these
unimodal models. Each baseline was trained using the
same optimizer, batch size, and epochs as the multimodal
setup to ensure fair comparison.

2.4.4 specification of experimental process and

evaluation method

The experiment is divided into four stages: data loading,
model training, inference, and evaluation. During data
loading, preprocessing and normalization generate
unified tensor inputs. In training, a dual-model
architecture is jointly optimized, with dynamic learning
rate adjustment and early stopping based on validation
performance. Inference is conducted independently on
the test set, recording predictions for each task across
different scenarios. The evaluation stage adopts a unified
metric system covering accuracy, recall, modal gain ratio,
fault tolerance, and latency. Mean, standard deviation,
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and confidence intervals are recorded to assess model
stability. Key results are visualized through charts to
support quantitative analysis. All experimental logs and
parameter configurations are version-controlled to ensure
reproducibility and traceability.

3 Results and discussion

3.1 Analysis of experimental results and
model evaluation
3.1.1 Recognition performance of the model in

typical complex scenes

To verify the recognition ability of the model in real and
complex environment, five typical scenes are selected to
carry out comparative experiments to test the accuracy
performance of CMMF, STAM-FNet and image
monomodal model respectively. Each model is
significantly better than the single-mode structure under
the condition of multi-mode fusion, as shown in Figure 1.

Comparison of recognition accuracy of different models
in five kinds of complex scenes

ECMMF (%) = STAM-FNet (%)
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Figure 1: Comparison of recognition accuracy of different models in five kinds of complex scenes

STAM-FNet outperformed all baseline models
across the five evaluated scenarios. It achieved an average
recognition accuracy of 87.32%, with the highest
performance observed in urban street scenes (89.3%) and
the lowest in industrial environments (85.2%). This
consistency demonstrates its robustness across
heterogeneous and dynamic contexts.

3.1.2 modal contribution and attention

distribution analysis

This paper discusses the collaborative contribution of the
three modes in the fusion structure. In this paper, the
average attention weight of each mode is counted, and the
improvement of accuracy after fusion is calculated. The
results are shown in Figure 2.
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Comparison of attentional weight and synergetic gain of three modes

Modal independence accuracy (%)
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Figure 2: Comparison of attentional weight and synergetic gain of three modes

Although image mode occupies the main weight, audio
and text show higher marginal contribution in improving
accuracy. Especially the text mode, its fusion promotion
range is close to 20%, which reflects its importance in
task context reasoning. In the scene with low speech
interference, the semantic continuity of audio mode can
also significantly enhance the robustness of scene
judgment. The attention mechanism dynamically
allocates modal proportion, which improves the
adaptability of the system to input changes and avoids the
problem of error accumulation caused by fixed modal
dependence. On the whole, each mode has its unique
advantages in different tasks, which verifies the
effectiveness of the fusion strategy in information
complementarity.

While Figure 2 reports the average attention weights
across all samples, additional temporal analysis shows
that attention distribution dynamically shifts depending

on environmental context. For example, under low
lighting, the attention weight assigned to audio features
increases by 15% relative to the global mean, whereas in
highly occluded scenes, textual modality receives
elevated emphasis. This sample-level fluctuation
confirms that the attention mechanism adjusts modal
contributions in real time. Future visualizations will
include temporal heatmaps to better reflect dynamic
behavior across sequences and input conditions.

3.1.3 Comparison of model resource
occupation and reasoning performance
Although the multi-modal structure has outstanding
recognition effect, its resource occupation and reasoning
efficiency need to be carefully evaluated. This paper
compares the differences between CMMF and STAM-
FNet in reasoning delay, frame rate per second, GPU
occupancy and parameter quantity, and the results are
listed in Figure 3.

Efficiency comparison between CMMF and STAM-FNet in reasoning

stage
3 STAM-FNet

90
80
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N

GPU utilization (%)
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Parameter quantity (m)

Figure 3: Efficiency comparison between CMMF and STAM-FNet in reasoning stage
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STAM-FNet achieves an average inference speed of
approximately 65 FPS, compared to 50 FPS for CMMEF.
This represents a 30% increase in frame rate,
demonstrating a substantial improvement in real-time
processing efficiency. The performance gain is especially
notable given STAM-FNet's more complex attention-
based structure, indicating effective optimization in both
model design and deployment scalability.

To further reflect deployment suitability, additional
metrics were collected on power consumption and edge
inference delay across a broader range of hardware.
Besides Jetson Xavier and TX2, tests were conducted on
Raspberry Pi 4B and NVIDIA Jetson Nano. STAM-FNet
showed an average inference delay of 84 ms on Jetson
Nano and 143 ms on Pi 4B, with corresponding average
power consumption of 12.6W and 6.4W respectively.
CMMF, being lighter, achieved lower delays of 68 ms and
110 ms, with reduced power usage of 9.8W and 5.1W.
These results confirm that while STAM-FNet performs
better in accuracy, CMMF is more power-efficient and
better suited for low-power, latency-sensitive
environments. The inclusion of power and delay metrics
across platforms strengthens the argument for flexible
model deployment based on application constraints.
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To validate deployment feasibility on edge devices,
latency and FPS tests were conducted on Jetson Xavier
NX and TX2 platforms. On Jetson Xavier, STAM-FNet
achieved an average inference latency of 48 ms and 31
FPS, while CMMF reached 56 ms and 36 FPS. On Jetson
TX2, latency increased to 71 ms for STAM-FNet and 79
ms for CMMF, with respective FPS values of 22 and 25.
Although CMMF remained slightly faster on constrained
devices, STAM-FNet maintained higher accuracy with
acceptable delay margins. These results support the
model’s adaptability to real-time edge deployment
scenarios, particularly in bandwidth- and power-limited
environments.

3.1.4 Robustness test of occlusion and

environmental interference

In real applications, image information is often affected
by occlusion, blurring or loss, so it is very important to
evaluate the recognition stability of the fusion model
under this condition. In this paper, the four-level
occlusion ratio is set to test the decline of the accuracy of
image modality and fusion model, and the results are
shown in Table 2.

Table 2: Changes of recognition accuracy and robustness under different occlusion degrees.

Occlusion Image modal accuracy  Accuracy of fusion model Decline rate Decline rate
ratio (%) (%) (image) (fusion)

0 78.4 92.1 0 0

0.25 70.3 88.4 -10.3 -3.7

0.5 64.1 84.2 —-18.3 -6.4

0.75 55.8 79.1 -28.9 -10.2

When the occlusion ratio of image mode rises to 75%,
the accuracy drops by more than 28%, while the fusion
model only drops by about 10%. It shows that it has
stronger immunity and  structural = redundancy
compensation ability. In the middle occlusion region of
25%-50%, the fusion model can still rely on audio or text
to obtain effective semantic information, which
significantly slows down the performance decline trend.
From the perspective of decline rate, the fusion structure
is more stable than the single-mode model, and it has the
ability to cope with sudden occlusion or incomplete data,
showing a high degree of environmental adaptability.

To statistically verify the improvement in robustness
under occlusion, all the experiments in Table 1 were
repeated on five random seeds (fixed initialization). The
reported values represent the average accuracy during the
operation period. For each occlusion level, the standard
deviation (£c) and 95% confidence interval were
calculated. In addition, paired t-tests were conducted on
the fusion model and only the image baseline at each
occlusion level. The results showed that under all

conditions, the differences in accuracy were statistically
significant (p<0.01). For instance, under 75% occlusion,
the average accuracy decline of the fusion model (-
10.2%+1.3%) is significantly lower than that of the
image-only model (-28.9%+1.8%). These findings
confirm that the observed improvements are consistent
rather than due to random changes.

To further evaluate model robustness beyond
occlusion, additional experiments were conducted using
adversarial perturbations and synthetic noise injection.
FGSM (¢=0.01) was applied to image inputs, resulting in
a 9.2% accuracy drop for CMMF and 5.8% for STAM-
FNet, demonstrating the latter’s improved resilience
under adversarial attack. Additionally, Gaussian noise
(0=0.05) and background audio interference were
synthetically added. Under multimodal noise, CMMF
preserved 82.7%  accuracy, while STAM-FNet
maintained 87.9%. These results confirm that the
proposed architectures remain robust not only under
occlusion but also under adversarial and synthetic
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disturbances,  supporting their
unpredictable real-world settings.

deployment  in

3.1.5 Comparative analysis of the overall

performance of the model

The performance of the two models in multi-task
environment is comprehensively evaluated. Starting with
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five core tasks, the average level of classification
accuracy and F1 score is counted, and compared with the
mainstream fusion structure. The results are shown in
Table 3.

Table 3: Comparison between model task accuracy and F1 score

CMMF- STAM-FNet- CMMF- STAM-
Task category

Accuracy (%)  Accuracy (%) F1 FNet-F1
Object recognition 91.3 93.2 0.902 0.921
Motion recognition 88.6 90.8 0.884 0.904
Intention detection 86.7 89.1 0.87 0.891
Semantic segmentation §87.9 90.5 0.876 0.902
Cross-modal matching eighty-nine 91.6 0.884 0.915

STAM-FNet is superior to CMMF in five kinds of
tasks, with an average accuracy increase of about 2% and
an increase of F1 score of more than 0.02. Its advantages
lie in its stronger scene adaptation ability and capturing
effect of temporal semantics, especially in semantic
segmentation and cross-modal matching, which can
strengthen the integration of space and context through
attention mechanism. However, CMMF structure is
stable in static tasks such as object recognition, and its
model is small, so it is suitable for application-side

deployment with strict computational requirements. This
comparison also shows that the scalability of the multi-
modal system will be significantly improved if the fusion
strategy design can be more finely adapted to the task
type.

The stability of the model in the training process is
also an important aspect to measure the optimization
effect. Therefore, this paper records the change trend of
the accuracy of the two models in the process of training
and verification, and lists them in Figure 4.

Index of convergence curve during model training and verification
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Figure 4: Index of convergence curve during model training and verification

STAM-FNet can reach a higher convergence speed in
the early stage of training, and the accuracy of

verification set is consistently better than CMMEF,
indicating that it has better generalization ability.
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Especially in the 15 to 20 epoch stages, the verification
accuracy of STAM-FNet is improved more steadily,
which shows that its response to sample distribution
disturbance is more stable. In the same round, STAM-
FNet converges 1-2 epoch faster than CMMF, and the
optimization path is more efficient, which also shows that
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it still maintains good convergence and adjustability
under complex parameter structure.

Compare the loss performance of the two models in
different task sub-modules to reflect the collaborative
optimization between the whole task branches. The
results are listed in Figure 5.

Comparison of loss value and accuracy of each model branch task after

training

Total accuracy (%)

| 0,291

| 0,346

Total Loss

_ 0,094
Alignment task Loss 5 0,115
e . | 0,197
Classification task Loss 0,231

0 0,2 04

| 0,921
| 0,893
BOSTAM-FNet
BCMMF
0,6 0,8 1

Figure 5: Comparison of loss value and accuracy of each model branch task after training

To evaluate the effect of the dimensionality reduction
strategy mentioned in Section 2.1.4, a comparative test
was conducted between the feature compression based on
pca and the model trained with features encoded by an
autoencoder. In the semantic segmentation task, PCA
reduced the accuracy by 1.9%, while the features based
on the autoencoder maintained 98.7% of the original
performance. However, due to the lower computational
overhead of PCA, its inference speed on edge devices has
increased by 17%. In contrast, the autoencoder method
achieves better generalization on noise input, but memory
usage increases by 12%. These results indicate that the
selection of dimensionality reduction methods affects
both efficiency and robustness, and should be made based
on deployment constraints.

Judging from the final training Loss, STAM-FNet
shows a smaller loss value in both classification and
modal alignment tasks, and the total loss is about 15%
lower than that of CMMEF. Its total accuracy is also nearly
3 percentage points higher, which shows the advantages
of optimization mechanism in fusion feature selection
and joint task solving. In particular, for the alignment task,
the integration of a dynamic attention mechanism enables
STAM-FNet to more effectively adjust to modal
boundaries. Overall, the findings indicate that STAM-
FNet not only outperforms CMMF across key
performance indicators but also demonstrates enhanced
efficiency, robustness during training, and faster

convergence. These attributes make it more suitable for
real-world deployment and diverse task generalization.

To strengthen the generalizability of the findings,
additional baseline models have been incorporated into
the comparative evaluation. These include the
Multimodal ~ Transformer  (MM-Former), Gated
Multimodal Unit (GMU), and Graph-Attention Fusion
Network (GAFNet), which represent recent advances in
transformer-based and graph-based fusion techniques.
The results, presented in the extended Table 2, show that
STAM-FNet consistently outperforms these models
across all five tasks, achieving an average F1 score of
0.911 compared to 0.882 for GAFNet and 0.874 for MM-
Former. Furthermore, statistical robustness has been
ensured through 95% confidence intervals and paired t-
tests. STAM-FNet’s improvements over GAFNet in
motion recognition (AF1=+2.7%,p<0.01) and over MM-
Former in semantic segmentation (4F1=+3.2%,p<0.05)
are statistically significant, reinforcing the model’s
superior performance not only in mean accuracy but also
in reliable variance. This reinforces the conclusion that
the proposed architecture exhibits meaningful and
repeatable gains over contemporary SOTA methods.

To assess the contribution of core components in the
proposed architectures, ablation studies were conducted.
In STAM-FNet, removing the spatio-temporal attention
module resulted in a 4.6% drop in average accuracy
across tasks, with a noticeable decline in motion
recognition and cross-modal alignment. Replacing the
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attention module with a standard Transformer block
(without temporal encoding) led to unstable convergence
and reduced F1 scores by approximately 3.1%. In CMMF,
eliminating the dynamic feature weighting mechanism
and using uniform averaging caused an average accuracy
drop of 3.8% and reduced robustness under occlusion by
over 5%. These results confirm that both spatio-temporal
attention and dynamic weighting are critical to the
effectiveness and resilience of the respective models. The
performance degradation under ablation also highlights
the importance of architectural customization for task-
specific optimization.

3.2 Results discussion

In five complex environments, Stam-FNET consistently
outperformed the baseline model, with an average
accuracy rate of 87.32%. This model maintains high
recognition  stability under various challenging
conditions such as urban clutter, low light and industrial
occlusion. These results emphasize the robustness and
cross-domain generalization ability of the design.

In terms of modal attention distribution, although the
image mode is dominant, the text and audio modes show
higher marginal promotion rate. Text modal fusion is
improved by 19.8%, which shows that it plays a key role
in understanding semantic context. The audio mode is
improved by 17.6%, which shows that it can still provide
stable supplement in noisy environment. The attention
mechanism enables the system to dynamically focus on
different modal contents, adjust the dominant factors in
complex information input, and enhance the adaptability
and fault tolerance of overall discrimination.

STAM-FNet reduced inference latency by 6 ms
compared to CMMF (28 ms vs. 22 ms) and improved the
average frame rate by 15 FPS (65 FPS vs. 50 FPS), as
shown in Figure 3. This substantial improvement in real-
time processing capability highlights STAM-FNet’s
computational efficiency, making it more suitable for
latency-sensitive deployment scenarios, especially in
edge computing environments.

In the occlusion test, the modal accuracy of the image
dropped to 55.8% under the occlusion condition of 75%,
while the STAM-FNet still maintained 79.1%. The fault
tolerance rate of the fusion structure is improved by
nearly 20%, which verifies that the robust mechanism
design is effective, and it can compensate the single-mode
failure and keep the overall performance of the system
stable. Comprehensive analysis accuracy, F1 score and
loss results show that STAM-FNet has taken the lead in
five tasks, with an average F1 score as high as 0.91 and
the total loss controlled within 0.291. The model has fast
convergence, stable verification accuracy, good training
efficiency and migration potential. Finally, it can be seen
that the dual-model architecture has obvious advantages
in  multimodal semantic completion and task
collaborative optimization, which provides an effective
technical path for intelligent identification of complex
scenes.
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3.3 Comparative discussion with state-of-

the-art models

This section critically evaluates the proposed CMMF
and STAM-FNet architectures by comparing them with
existing state-of-the-art (SOTA) models under various
task conditions. STAM-FNet consistently outperforms
other models in dynamic, noisy, and occluded scenarios
due to its spatio-temporal attention mechanism and
temporal modeling capacity. In tasks requiring fast
adaptation, such as motion recognition and cross-modal
alignment, its frame-wise attention and 3D convolutional
design yield over 6% accuracy gain compared to the best
SOTA baseline. CMMF, however, shows stronger
performance in static and low-motion contexts, where its
lightweight structure and high feature alignment
efficiency preserve accuracy with minimal computational
cost.

Despite these advantages, both models exhibit
limitations. STAM-FNet incurs higher GPU memory
usage, which may hinder its deployment on edge devices.
CMMF lacks fine-grained temporal modeling, resulting
in degraded performance on rapid scene transitions.
These behaviors can be attributed to architectural
differences—STAM-FNet’s deeper, attention-rich layers
support adaptability, while CMMF prioritizes structural
compactness. Training strategy also plays a role; STAM-
FNet benefits more from cosine annealing and dynamic
learning rates due to its temporal depth. Future
improvements should focus on hybridizing these traits to
achieve better performance trade-offs.

4 Conclusion

The research focuses on the application of multimodal
fusion technology in complex scene understanding, and
carries out system design and empirical verification. The
proposed CMMF and STAM-FNet models are optimized
for structural alignment and spatio-temporal semantic
modeling  respectively. STAM-FNet consistently
outperformed other models across all five benchmark
tasks, achieving an average F1 score of 0.9066. This
performance demonstrates its effectiveness in handling
complex, multimodal inputs and validates the design of
its spatio-temporal attention and fusion strategies. The
fusion strategy not only improves the stability of the
model under occlusion and interference conditions, but
also enhances the cross-modal adaptability of the task. F1
score and convergence curve further prove that the model
has good training efficiency and deployment potential
while maintaining stable performance.

While STAM-FNet demonstrates acceptable
inference latency (48 ms on Jetson Xavier NX) and frame
rate (31 FPS), its resource demand increases significantly
with high-resolution or multi-stream inputs. Thus,
although suitable for deployment on higher-end edge
platforms, optimization remains necessary for ultra-low-
power or memory-constrained environments. Future
work may explore lightweight variants of STAM-FNet or
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hybrid quantization strategies to enhance scalability
without sacrificing recognition robustness.

Future research can be carried out in three directions.
One is to build a more universal lightweight fusion
architecture to improve the deployment efficiency and
task response ability of the model on edge devices. The
second is to introduce modal selection mechanism and
quality perception strategy to realize dynamic modal
control and redundant information elimination. The third
is to expand the application boundary, embed the model
in the highly dynamic and sensitive fields such as multi-
modal human-computer interaction, disaster early
warning and medical imaging, and promote the evolution
of multi-modal understanding technology in the direction
of higher semantics, stronger robustness and lower
resource consumption, so as to provide sustainable
support for intelligent perception systems.
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