
Informatica 30 (2006) 321–324 321

Coloring Weighted Series-Parallel Graphs

Gašper Fijavž
Faculty of Computer and Information Science
E-mail: gasper.fijavz@fri.uni-lj.si

Keywords: graph coloring, circular coloring, weighted graphs

Received: December 31, 2003

Let G be a series-parallel graph with integer edge weights. A p-coloring of G is a mapping of vertices of
G into Zp (ring of integers modulo p) so that the distance between colors of adjacent vertices u and v is at
least the weight of the edge uv. We describe a quadratic time p-coloring algorithm where p is either twice
the maximum edge weight or the largest possible sum of three weights of edges lying on a common cycle.

Povzetek: Opisano je barvanje grafov.

1 Introduction

The motivation of the problem is twofold. An instance of
coloring edge weighted graphs is the channel assignment
problem, cf. [4]. On the other hand, traditional vertex col-
oring of (unweighted) graphs can be viewed as a circu-
lar one—consider the colors to lie in an appropriate ring
of integer residues. Circular colorings of graphs, see [8]
for a comprehensive survey, where we allow the vertices
to be colored by real numbers (modulo p) model several
optimization problems better than traditional colorings of
graphs. Circular chromatic number, the minimum p for
which a circular coloring exists, is a refinement of the chro-
matic number of a graph, and similarly NP-hard to com-
pute.

If the largest complete minor in (an unweighted graph) G
has k vertices and k < 6, then the valid cases of Hadwiger
conjecture imply χ(G) ≤ k, see [7].

Let G = (V, E, w) be a weighted graph (where (V, E)
is the underlying unweighted graph) with edge weights w
(and w : E → [1,∞)). We can, similarly as in the un-
weighted case, define the size of the largest complete mi-
nor, see [5, 6, 3]: the size of the largest weighted K2-minor
in G is twice the maximal edge weight, and for the size
of the largest weighted complete K3 minor we have also to
consider the biggest possible sum of weights of three edges
lying on the common cycle. If G is a series parallel graph
then the largest of the above-mentioned quantities is called
the weighted Hadwiger number of G, which we denote by
h(G).

The weighted case of Hadwiger conjecture is valid only
for graphs satisfying h(G) < 4, i.e., it is true that if h(G) <
4, then the weighted chromatic number of G, which we
denote by χw(G), is at most h(G) [3]. If a weighted graph
G is not series-parallel, then it may occur that χw(G) >
h(G), see [3] for examples.

Hence, for series-parallel weighted graphs h(G) is a nat-
ural upper bound for χw(G). We present an algorithm
for h(G)-coloring weighted series-parallel graphs. As op-

posed to results in [3], the coloring algorithm presented
here successfully colors series-parallel graphs with at most
h(G) colors even if the ratio between maximal and minimal
edge weights exceeds 2.

2 Definitions and preprocessing
Let N denote the set of positive integers and let Zp de-
note the ring of integers modulo p. If x, y ∈ Zp then we
denote the distance between x and y in Zp by |x − y|p.
Let G = (V, E, w) be a weighted series-parallel graph.
Series-paralel graphs are constructed by first pasting trian-
gles along edges (starting with a triangle), and then delet-
ing edges [2]. In order to avoid computational difficulties
concerning real numbers we shall assume that weights are
integers, w : E → N. A p-coloring of G is a mapping
c : V → Zp so that for every edge e = uv the condition

|c(u)− c(v)|p ≥ w(uv)

is satisfied. Given a p-coloring c and an edge e = uv, we
call |c(v) − c(u)|p the span of e, denoted by span(e), and
say that e is tight if its span equals its weight. We shall also
say that p is the size of the color space Zp.

2.1 Tree decomposition

Tree decomposition, see [2] for the theoretical background,
of a series-parallel graph can be computed in linear-
time [1]. Given a tree-decomposition (TG,V) of G we can
by adding edges to G (and setting their weights to 1) as-
sume that G is an edge-maximal series parallel graph. The
parts V of the decomposition are exactly the edges and tri-
angles of G. Two parts are adjacent (in TG) if and only
if one part is a triangle t, the other is an edge e, and e is
incident with t.

Hence, G is 2-connected, and given distinct edges e and
f from G, there exists a cycle containing both. We shall

322 Informatica 30 (2006) 321–324 G. Fijavž

use both G and its tree decomposition (TG, V) for storing
the graph during the course of the coloring algorithm.

Let e = v1v2 be an edge in G. If {v1, v2} is a separator
in G we say that an edge e is a separating edge in G, and e
is called nonseparating otherwise. If e = v1v2 is separat-
ing and G−{v1, v2} consists of k components C1, . . . , Ck,
then Gi (i = 1, . . . , k) denotes the graph (infact its repre-
sentation) induced by vertices of Ci and {v1, v2}. We call
Gi’s (i = 1, . . . , k) the e-splits of G.

Throughout the algorithm we shall keep track whether
an edge e is a separating edge of G. This can be easily
seen from TG, namely, an edge e is nonseparating if it is
adjacent to a single triangle in TG.

Let t = e1e2e3 be a triangle (t contains edges e1, e2,
and e3) in G. Let us further assume that e1 is a separating
edge and let G0, G1 . . . , Gk be all e1-splits of G, so that
G0 contains triangle t as its subgraph. Then the (graph)
union G1 ∪ . . . ∪ Gk is called the (t, e1)-fragment of G
and is denoted by G(t, e1). If e is nonseparating, and there
exists a triangle t containing e (there may be at most one),
then the (t, e)-fragment of G is the graph containing only
e together with its endvertices. We call a graph trivial if it
contains at most two vertices.

2.2 Heavy cycle, heavy triangle
As noted in the introduction h(G), the hadwiger number of
G, equals either twice the weight of the heaviest edge or
the sum of three largest edge weights of edges lying on a
common cycle. It is the latter option that is more appealing
to our problem.

Let t = f1f2f3 be a triangle in G. Define G1 =
G(t, f1), G2 = G(t, f2), and G3 = G(t, f3). If Gi

(i = 1, 2, 3) is trivial, then we say that ei = fi is a re-
alizing edge of t (in Gi). If Gi is not trivial then every
heaviest edge in Gi can be chosen as a realizing edge of t
(in Gi). Weight of a triangle t, w(t), is defined as the sum
of edge weights of edges realizing t. Clearly enough, the
realizing edges of a triangle lie on a common cycle in G.

Let e1 and e2 be distinct edges with largest edge weights
in G. Triangle t is called a heavy triangle if w(t) equals
h(G), and both e1 and e2 are realizing edges of G. It may
occur that no triangle is heavy in G. In this case we can by
increasing weight of a single edge construct a heavy trian-
gle in G while not increasing h(G). This is the essence of
the procedure heavyTriangle described in the next section.

By scanning through the edges of G, we find some heav-
iest edge ea = uava. Next we run

heavyTriangle(G, ea, ea, ea) 7→ h(G); t, fa, fb, fc; eb, ec, P.

Finally, we set p = h(G), c(ua) = 0, c(va) = w(ea) and
run the main coloring procedure

color(G, p, t; fa, fb, fc; ea, eb, ec; P)

using a heavy triangle t = fafbfc with its realizing edges
ea, eb, and ec as arguments.

3 Coloring algorithm
The coloring algorithm is recursive. Given a graph G with
two precolored adjacent vertices ua and va we split G along
a carefully chosen edge(s) into several subgraphs, say G0,
G1, . . . Only one of these, say G0, contains both ua and
va, and it is the first one to get colored. We find colorings
of G1, G2, . . . recursively, taking care that exactly two ver-
tices of Gj are already colored when it is Gj’s turn.

3.1 Looking for a heavy triangle
We shall first describe the routine heavyTriangle. The input
for his routine consists of weighted graph G, edges ea and
eb (ea is heaviest in G, and eb is either second heaviest in
G or ea = eb), and a path P ⊆ TG linking edges ea and eb

(P is trivial in case ea = eb).
The routine heavyTriangle outputs, apart from the possi-

bly new eb and P , also the hadwiger number h(G), a heavy
triangle t = fafbfc, and its third realizing edge ec. We set
the notation so that ea ∈ E(G(t, fa)), eb ∈ E(G(t, fb)),
and ec ∈ E(G(t, fc)), and assume that h(G) = w(ea) +
w(eb) + w(ec).

We use the following shorthand

heavyTriangle(G, ea, eb, P) 7→ h(G); t, fa, fb, fc; eb, ec, P.

The routine runs as follows:
(T1) if ea = eb then

we find some second heaviest edge in G and adjust P so
that P links ea and the newly determined eb. Hence ea 6=
eb.
(T2) For every triangle τ we compute the realizing edges
and its weight w(τ). This can be done by tracing TG start-
ing from ea first. Hence ea is one of the realizing edges in
every triangle τ . By retracing towards ea from the leaves
of TG we compute the other two realizing edges of every
triangle recursively. Finally we set that eb is one of the re-
alizing edges in every triangle lying in P (in the direction
from eb to ea).
(T3) Find the triangle t′ with largest possible w(t′). Set
h(G) = max{w(t′), 2w(ea)}.
(T4) If h(G) > w(t′) or

h(G) = w(t′) and eb is not one of the realizing edges of t′

then do the following:
Let t = fafbfc be an arbitrary triangle from P so that ea ∈
G(t, fa) and eb ∈ G(t, fb). Set ec = fc and increase the
weight of ec = fc by setting w(ec) = h(G) − w(ea) −
w(eb). Note that increasing weight of ec does not increase
h(G), as ea and eb are heaviest edges in G.
(T5) If h(G) = w(t′) and

eb is one of the realizing edges in t′

then :
By (T2) ea is also one of the realizing edges in t′. Set
t = t′. Further, set ec to be the third realizing edge in
t = fafbfc where the notation of edges in t is chosen so
that ea ∈ E(G(t, fa)), etc.

COLORING WEIGHTED SERIES-PARALLEL GRAPHS Informatica 30 (2006) 321–324 323

(T6) output h(G); t, fa, fb, fc; eb, ec;P .
It is not difficult to see that heavyTriangle runs in linear

time.

3.2 Recursion

We shall first describe a routine for coloring a graph with
small edge weights. Let e = uv be the heaviest edge in G,
and assume that p ≥ 3w(e), where p denotes the size of the
color space. Let us also assume that colors c(u) and c(v)
are already determined so that the span(e) is at most p −
2w(e). Procedure colorCgraph with G, p, and e as its input
(satisfying the above conditions) extends the coloring c to
the remaining vertices of G. This can be done by tracing
along TG starting at e, and taking care that every edge f ∈
G satisfies span(f) ≤ p − 2w(e) (as w(f) ≤ w(e)). It is
easy to implement colorCgraph to run in linear time.

We turn our attention to coloring the graph in case its
edge weights (at least some of them) are large when com-
pared to h(G). Let G be a weighted graph, p an upper
bound for h(G), t = fafbfc a heavy triangle, and ea, eb,
and ec its realizing edges (so that ea ∈ E(G(t, fa)), etc.).
Let P be a path in TG joining ea and eb, and suppose that
a coloring of endvertices of ea is given so that ea is tight.
Then
COLORING PRINCIPLE. With the assumptions as above
the procedure color extends the coloring c to the rest of G
so that

(i) apart from ea the edge eb is also tight, and
(ii) span(ec) ≤ p− w(ea)− w(eb).
The call

color(G, p, t; fa, fb, fc; ea, eb, ec; P)

splits into three cases, and exactly one of them applies.
These three cases will also serve as a recursive proof that
a graph can indeed be colored according to the principle.
The first case (C1) serves as the recursion basis, the last
two cases (C2) and (C3) serve as recursion steps.
(C1) if G contains a single triangle t then.
In this case ea = fa, eb = fb, and ec = fc. Let u and v be
the (colored) endvertices of ea, and let w be the common
endvertex of eb and ec. There exists a unique color c(w) so
that eb is tight and span(ec) = p−w(ea)−w(eb). Hence,
we can extend the coloring to G according to the coloring
principle.
exit
(C2) if ea is a separating edge in G then

let G0, G1, . . . , Gk be the ea-splits of G so that G0 contains
eb, ec, fa, fb, fc, t, and P . We first color G0 by calling
color(G0, p, t; fa, fb, fc; ea, eb, ec;P)
and then take care of the other splits:
for i = 1 to k do

heavyTriangle(Gi, p, ea, ea, ea) 7→
h(Gi), ti; fai, fbi, fci; ebi, eci, Pi

for i = 1 to k do

color(Gi, p, ti; fai, fbi, fci; ea, ebi, eci; Pi)
exit

(C3) if ea is nonseparating in G then

we first increase weights of fb and fc by setting w(fc) =
w(ec) and w(fb) = w(eb).

Let Ga be the graph containing G(t, ea) and triangle t.
Observe that either Ga contains at least two triangles or at
least one of G(t, fb), G(t, fc) is not trivial (i.e. at least one
of fb, fc is separating in G). Let Pa be the subpath of P
linking fb and ea. Since w(fb) = w(eb) the edge fb is
second heaviest in Ga.
if ea = fa then

color(Ga, p, t; ea, fb, fc; ea, fb, fc; Pa)
Note that in the above case Ga contains a single triangle t
as ea is not separating in G.
else

Observe that w(fa) ≤ w(eb) = w(fb), as eb is second
heaviest in G and ea 6= fa. Hence, we increase the weight
by setting w(fa) = w(fb), which makes fa second heavi-
est in G(t, fa). Let P ′ be the subpath of Pa linking ea and
fa, let G′ be the graph G(t, fa), and let G′′ be the subgraph
of G induced by triangle t.

heavyTriangle(G′, p, ea, fa, P ′) 7→
h(G′), t′; f ′a, f ′b, f

′
c; fa, e′c, P

′

color(G′, p, t′; f ′a, f ′b, f
′
c; ea, fa, e′c; P

′)
After coloring G′ the edge fa is tight and we also

color(G′′, p, t; fa, fb, fc; fa, fb, fc; fatfb)
end if

Note that at this point endvertices of both fb and fc

are colored. What is more, fb is tight, and by recursion,
span(fc) ≤ p− w(ea)− w(fb) = p− w(ea)− w(eb).

Finally we settle the uncolored parts.
if fb is separating in G then

heavyTriangle(G(t, fb), fb, eb, ebPfb) 7→
h(G(t, fb)), t1; fa1, fb1, fc1; eb1, ec1, P1

color(G(t, fb), p, t1; fa1, fb1, fc1; fb, eb1, ec1; P1)
if fc is separating in G then

colorCgraph(G(t, fc), p, fc)
exit

4 Time complexity

The last section is devoted to estimating the speed of the
coloring algorithm.
TIME COMPLEXITY. There exists a constant C so that for
every weighed series parallel graph G of order n, the run-
ning time of the described coloring algorithm is bounded
above by Cn2. In other words, we can h(G)-color a
weighted series parallel graph G in quadratic time.

As already mentioned, the preprocessing takes linear
amount of time. After preprocessing G is an edge maxi-
mal series parallel graph. If G contains n + 3 vertices then
G contains n triangles, 2n + 1 edges, and 3n lines (edge–

324 Informatica 30 (2006) 321–324 G. Fijavž

triangle incidencies). All these quantities are equally ap-
propriate for measuring the size of the problem.

Let T (n) denote the maximal running time for the color
procedure taking a graph G with n triangles as an input. We
have to show that T (n) ≤ Cn2 assuming T (m) ≤ Cm2

for every m < n.
Let D0n be the upper bound for the running times of

both heavyTriangle and colorCgraph if they take a graph G
containing n triangles as input.

A call of color with G as its argument takes one of the
three possible options: (C1), (C2), or (C3). The running
time of (C1) is bounded above by a constant, say D1.

If (C2) applies let G0, G1, . . . , Gk be the splits. Observe
that k ≥ 1. Since Gi’s together contain exactly n trian-
gles, the recursively called procedures heavyTriangle cu-
mulatively take no more than D0n running time.

Let (n0, n1, n2, . . . , nk) be a proper (integer) partition
of n, i.e. n0, n1, n2, . . . , nk ≥ 1, k ≥ 1, and n0 + n1 +
· · ·+ nk = n. Then

n2
0 +n2

1 + · · ·+n2
k ≤ n2

0 +(n1 + · · ·+nk)2 ≤ (n−1)2 +1
(1)

Now (1) implies that the cumulative running time of recur-
sive calls of procedure color in (C2) is bounded from above
by C(n− 1)2 + C. Summing it all up, the running time of
(C2) is bounded from above by C(n−1)2+C+D0n+D2n
if we use at most D2n time for running the loops (exclud-
ing time for recursive calls of heavyTriangle and color).

The case when (C3) applies is settled similarly as above.
Assume that the base running time of (C3) (i.e. the running
time excluding running times of recursive calls of color,
colorCgraph, and heavyTriangle) is bounded by constant
D3. Recursive color-ing and colorCgraph-ing takes at most
C(n−1)2+C, and heavyTriangle-s take at most D0n time.

Combining all three possibilities yields
T (n) ≤ max{D1, C(n− 1)2 + C + D0n + D2n,

C(n− 1)2 + C + D0n + D3}
≤ max{D1, Cn2 + (−2Cn + 2C + D0n + D2n),

Cn2 + (−2Cn + C + D0n + D3)},
which is, if C is large enough, at most Cn2. This proves
the assertion on time complexity.

Acknowledgment
The author’s research was conducted while visiting Uni-
versity of Hannover under sponsorship of Alexander von
Humboldt Foundation. Both hospitality of the university
and help of the foundation are greatly acknowledged.

References
[1] H. L. Bodlaender. A linear-time algorithm for finding

tree-decompositions of small treewidth. SIAM J. Com-
put., 25(6):1305–1317, 1996.

[2] R. Diestel. Graph theory. Springer, New York, 1997.

[3] G. Fijavž. Hadwiger’s conjecture for circular colorings
of edge-weighted graphs. Discrete Math., to appear.

[4] C. McDiarmid. Discrete mathematics and radio
channel assignment. In Recent advances in algo-
rithms and combinatorics, volume 11 of CMS Books
Math./Ouvrages Math. SMC, pages 27–63. Springer,
New York, 2003.

[5] B. Mohar. Circular colorings of edge-weighted graphs.
J. Graph Theory, 43:107–116, 2003.

[6] B. Mohar. Hajós theorem for colorings of edge-
weighted graphs. Combinatorica, 25:65-76, 2004.

[7] B. Toft. A survey of Hadwiger’s conjecture. Congr.
Numer., 115:249–283, 1996. Surveys in graph theory
(San Francisco, CA, 1995).

[8] X. Zhu. Circular chromatic number: a survey. Discrete
Math., 229(1-3):371–410, 2001. Combinatorics, graph
theory, algorithms and applications.

