https://doi.org/10.31449/inf.v49i11.9915

Informatica 49 (2025) 371-384 371

Facial Recognition Technology for Scenic Spot Monitoring Based on

U%Net and FFC

Yiyi Liu

Tourism Management Department, Zhengzhou Tourism College, Zhengzhou 450000, China

E-mail: lyyIxflgh@163.com

Keywords: scenic spot monitoring, facial recognition, U?Net, fast fourier convolution, global convolution, mask

learning

Received: June 30, 2025

To ensure the safety of scenic spots and achieve intelligent management of scenic spots, a face recognition
method based on U%Net and FFC is proposed to achieve monitoring face recognition under different
occlusion conditions. It consists of a small area regular occlusion face recognition model and a large
area irregular occlusion face recognition model. Firstly, a face recognition model grounded on an
improved residual network-U?Net is raised to address the problem of small area rule occlusion. This
model combines a global convolution module, a feature pyramid network, and a mask learning unit. When
evaluating facial recognition methods, multiple evaluation metrics were used, including recognition
accuracy, F1-score, recognition rate, structural similarity index, peak signal-to-noise ratio, learning
perceptual image block similarity, and Frecht approximation distance. These indicators evaluate the
performance of the model under small and large area irregular occlusion conditions from different
perspectives, ensuring the comprehensiveness and reliability of the evaluation. The findings denote that
the average recognition accuracy of the enhanced residual network-U?Net is as high as 98.7%, the
average F1-score is 0.983, and the average recognition rate is 99.5%. Secondly, in response to the
problem of large-scale irregular occlusion in facial recognition, a fast Fourier convolution generative
adversarial network is proposed, which combines generative adversarial network and Fourier feature
convolution to repair and recognize facial images. The outcomes denote that the average structural
similarity index and peak signal-to-noise ratio of the model are 0.878 and 34.7dB, respectively, and the
average accuracy and recognition rate are 91.0% and 92.6%, respectively. The above results denote that
the proposed facial recognition method exhibits superior performance under different occlusion
conditions and can effectively promote the intelligent development of scenic area management.

Povzetek: Predstavljena je metoda prepoznavanja obrazov na podlagi U2Net in FFC za inteligentno
nadzorovanje v turisticnih krajih, ki omogoca prepoznavanje tudi pri zakritih obrazih (maske, klobuki).

Introduction

capabilities and ensuring the safety of tourists [3-4].

As the global tourism industry quickly develops in recent
years, the number of tourists in scenic spots has shown
explosive growth, which has put forward higher
requirements for the management and service of scenic
spots. Due to the low efficiency of traditional manual
management models and their inability to cope with the
complex and changing challenges of scenic areas, coupled
with the dense population and high mobility of people in
scenic areas, which significantly increase the difficulty of
safety management, it is particularly important to
introduce advanced safety management technologies to
improve the level of safety management and management
efficiency in scenic areas [1-2]. Among numerous security
management technologies, facial recognition technology
has gradually become an important tool for scenic spot
security management due to its high efficiency,
convenience, and accuracy. Through facial recognition
systems, scenic spots can achieve real-time monitoring,
rapid identification, and precise management of
personnel, effectively enhancing emergency response

However, the complex environment of scenic spots,
frequent personnel flow, and often the presence of
obstructions greatly increases the difficulty of facial
recognition. However, existing facial recognition
technologies have low recognition accuracy when dealing
with occlusion problems, making it difficult to meet
practical needs.

Qin et al. proposed a multi-purpose algorithm called
SwinFace-based on Swin Transformer to address the issue
of neglecting task collaboration during the training
process of facial recognition models. This method
integrated multi-level channel attention modules in each
task-specific analysis subnet with the objective of
achieving adaptive feature selection. The findings
demonstrated that the facial expression recognition and
age estimation performance of this method surpassed that
of existing methods [5]. Al-Dabbas et al. developed a
facial recognition method that utilized classification,
machine learning and deep learning models to address the
issue of rising counterfeit crime rates. The methodology
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employed involved the utilization of Viola Jones, linear
discriminant analysis, mutual information, and analysis of
variance techniques to construct two facial classification
systems. The findings showed that the classification
accuracy of both facial classification systems was above
96%, indicating that the proposed model performed well
in both accuracy and processing time [6]. Gao et al.
proposed the first privacy preserving facial recognition
protocol for recognition stage computation in intelligent
security systems to address privacy protection and identity
recognition efficiency issues. This method introduced a
Householder matrix into blind user data, enabling the
protocol to support privacy protected facial recognition on
semi trusted edge servers. The results showed that the
protocol not only protected the privacy of user data, but
also could achieve rapid response of large-scale face
recognition (FR) through edge computing, effectively
improving the efficiency of FR in intelligent security
systems [7]. Xie et al. proposed a general privacy
protection framework for FR systems that is grounded on
edge computing. The purpose of this framework was to
address the issue of data privacy leakage that has been
identified in such systems. The overarching objective of
the proposed framework is to safeguard the confidentiality
of facial images and training models by employing a local
differential privacy algorithm. The algorithm under
discussion is founded upon a comparison of the proportion
of feature information. As previously stated, the
aforementioned text is concerned with the implementation
of identity authentication and hashing techniques, with a
view to confirming the legitimacy of terminal devices. The
results showed that in numerical experiments, this scheme
could ensure the optimal balance between the usability
and privacy protection of the facial recognition system [8].

U?Net, as a deep learning model for image
segmentation, combines an encoder and decoder, and
introduces a cyclic squeezing unit, which can effectively
extract image features of different scales. Therefore, it has
significant advantages in image feature extraction. Feng et
al. designed a detection method based on crack-U?Netto
address the accuracy issue of road crack detection. This
method utilized the U?Net architecture for feature learning
and introduced a geometry-based data augmentation
strategy to address the issue of insufficient training data.
The results showed that the accuracy of Crack-U?Net in
highway crack detection reached 95.8%, which is superior
to existing methods [9]. Shi et al. proposed the
U?CrackNet detection method for road crack detection.
The proposed methodology involved the extraction of
crack features through the encoding layer, followed by the
establishment of a connection between the encoder and
decoder via the atrous spatial pyramid pool model, with
the objective of capturing multi-scale crack information.
The results showed that U?CrackNet could obtain clearer
and more continuous highway cracks, with a detection
accuracy of 98.95% [10]. Li et al. proposed a U?Net-based
analysis method to address the issue of low efficiency
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caused by manual operation in microscope image analysis.
This method enhanced the model's ability to extract key
information by introducing a convolutional block
attention module, and achieved model lightweighting by
introducing Ghost convolution. The outcomes denoted
that the prediction accuracy of the method model
increased from 92.24% to 97.13% [11]. Zheng Z and Yang
K proposed a detection method that integrates You Only
Look Once version 5 (YOLOV5) and U?Net for wall crack
detection. This method utilized the GhostNet module to
optimize YOLOv to improve its training speed, while
introducing U?Net to perform binary classification on the
region input extracted by YOLOV5 to enhance the final
classification performance. The results denoted that this
method could effectively address the issue of poor
segmentation of crack targets in large environmental
backgrounds [12].

In summary, although the current facial recognition
models have high recognition accuracy, they are difficult
to cope with the problem of obstructed facial recognition
in complex environments of scenic spots. Therefore, to
address the above issues, an FR model for different
occlusion conditions has been proposed, which consists of
two parts: a small area regular occlusion FR model and a
large area irregular occlusion FR model. The innovation
of the research lies in the combination of Residual
Network (ResNet) and U?Net, and the introduction of
Global Convolution Module, Feature Pyramid Network
(FPN), and Mask Learning Unit to improve the
recognition accuracy of the model for small area regularly
occluded faces. Specifically, a global convolution module
consisting of two symmetric convolution layers is used to
capture global features in both horizontal and vertical
directions. At the same time, a mask learning unit is
introduced in FPN to remove the features of occluded
areas by generating multi-level masks to enhance feature
representation. Secondly, by combining Fast Fourier
Convolution (FFC) and Generative Adversarial Network
(GAN), the problem of low recognition accuracy in large-
area irregularly occluded face images can be solved by
repairing them.

2 Methods and materials

Due to the influence of facial coverings such as hats,
masks, and glasses, as well as changes in facial
expressions, the success rate of existing surveillance facial
recognition is low, making it difficult to effectively ensure
the safety of scenic spots. Therefore, a monitoring FR
model based on U?Net and FFC is proposed to address the
recognition problem under face occlusion. It consists of
two parts: a small area occlusion FR model and a large
area irregular occlusion FR model. Firstly, an FR method
based on U2Net and global convolution is constructed to
address the problem of small-scale rule-based occlusion.
For the problem of large-scale irregular occlusion, a FR
model based on FFC and GAN is proposed.
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Figure 1: Face recognition model based on improved ResNet-U?Net. (Source from: Author's self drawn)

2.1 Regular occlusion facial recognition
model based on U2Net and global
convolution

It is difficult to extract facial features from surveillance
cameras in conditions of obstruction by regular objects,
such as masks, glasses and hats. The accuracy of facial
recognition systems is consequently adversely affected.
Due to the use of two parallel encoder decoder paths and
the introduction of cyclic squeezing units, U?Net is able to
simultaneously process global and local features, thereby
improving segmentation accuracy. Although the cyclic
squeezing unit can capture multi-scale features, its
receptive field size is small, which makes it impossible to
fully cover all scale features [13-14]. Therefore, to expand
the receptive field of U2Net, global convolution is
introduced and improved. The FR model based on
improved ResNet-U?Net is denoted in Figure 1.

In Figure 1, the FR model based on improved U?Net
consists of two parts: occlusion detection segmentation
module and feature detection module. The model first
generates a multi-level occlusion segmentation map
through the occlusion detection module, then extracts
image features through the FR module, and removes the
influence of occlusion on facial features through the mask
learning unit. Finally, FPN is used to fuse the features of
each stage. In the feature extraction module, the selected
backbone network is ResNet, which can achieve feature
reuse through skip connections. However, due to the poor
ability of ResNet to extract multi-scale features, it will
reduce the accuracy of the model's FR. Therefore, to
enhance the multi-scale feature extraction capability and
model generalization performance, the FPN module is
introduced in the study. FPN upsamples high-level feature
maps to the resolution of low-level feature maps through
a top-down path, thereby generating a multi-scale feature
pyramid. Moreover, feature maps of different scales are
fused through horizontal connections to enhance the
richness of feature representation. At the same time, the
generated feature pyramid can capture both global and
local information, improving the model's ability to extract

multi-scale features [15-16]. For improved ResNet-U?Net,
the input image needs to be first detected and aligned by
the method based on the cascaded multi task framework,
and then the image size is adjusted to 112 * 112. Next,
facial recognition can be performed using the improved
ResNet-U?Net. The Batchsize of the model is 128, the
initial learning rate is 0.1, the hypersphere radius s is 64,
and the spacing m is 0.48. During the training, the learning
rate is adjusted to 1/10 of its original level at the 11th,
20th, and 30th epochs. However, FPN is prone to
information loss, which can lead to feature damage.
Therefore, to improve the above problems, the structure of
FPN is optimized by introducing mask learning units to
avoid the influence of damaged features. The formula for
calculating the feature pyramid is denoted in equation (1).
P,=M,+ds(M,)

P, =M, +ds(P,)

P, =M, +ds(P,)
In equation (1), P, means the feature pyramid; M,

represents the features obtained after mask operation; ds
represents downsampling operation. The calculation
formula for M, is denoted in equation (2).

In equation (2), Mask; represents the mask; X;

represents the original input. For the occlusion detection
and segmentation module, its backbone network is U?Net,
which consists of U-shaped residual modules. Unlike
ordinary residual modules, the U-shaped residual module
replaces the convolutional layers in the original residual
module with U-blocks and replaces the original features
with local features to achieve multi-scale feature
extraction. The so-called U-block refers to the U-shaped
encoder decoder structure. Considering the complexity of
the model, the amount of U-shaped residual modules is 6
[17]. Due to the small receptive field of U?Net, a global
convolution module is introduced to expand its receptive
field size. The structure of the global convolution module
is denoted in Figure 2.

M)
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Figure 2: Structure of the global convolution module. (Source from: Author's self drawn)
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Figure 3: Structure of the mask learning unit. (Source from: Author's self drawn)

In Figure 2, the global convolution module mainly
contains four symmetrically distributed convolution
layers. This structure enables the global convolution
module to capture features of different scales and enhance
the model's understanding of the global information of the
image through feature fusion. In addition, to avoid
damaging the features and affecting the performance of
the occlusion detection segmentation module and feature
detection module, a mask learning unit is introduced in the
study. Although generating masks can remove the features
of occluded areas, these methods usually only generate
masks at a single scale and cannot effectively handle
multi-scale features. Moreover, the mask learning unit can
generate multi-level masks, corresponding to feature maps
of different scales, thus more comprehensively handling
occlusion problems. It suppresses the features of occluded
areas through masking while preserving the features of
unobstructed areas, enhancing the robustness of feature
representation. The structure of the mask learning unit is
denoted in Figure 3.

In Figure 3, the mask learning unit mainly contains
convolutional layers, residual modules, and sigmoid
functions. This module first concatenates the feature and
occlusion segmentation representations of each stage, and
then processes the concatenated images using
convolutional layers and activation functions to generate
multi-level masks. Finally, the generated mask is used to
remove the features of the occluded area and added to the
original input features to enhance the feature
representation. The formula for mask learning calculation
is shown in equation (3).

Mask; = Sigmoid (y (c(concat[F;,S; 1])))  (3)

In equation (3), y represents residual operation; F,
represents the characteristics of each stage; S, represents
occlusion segmentation representation. The loss function
(LF) of the model is denoted in equation (4).

L=Lg+ Lseg (4)

In equation (4), L means the overall LF of the model;
Ly denotes the face classification LF; L, denotes the

face segmentation LF. The calculation formula for the face
classification LF is denoted in equation (5).
18 eHxi H(cos(6‘yi +s))

Lf = - n
c Bi eHxiH(cos(Hyi+s)) +

Q)

% olxleose,
==y
In equation (5), B represents batch size; X;
represents the feature vector; S represents spacing; N
means the number of categories; ¢; means the angle

between the weight and the feature vector. The face
segmentation LF is shown in equation (6).

1 . 1) .
seg :Wcé: ‘C"DKL(prC)J’_HSECDKL(pc p(s)c):l (6)
In equation (6), & and o both represent
hyperparameters; Dy, represents Kullback-Leibler

divergence; P, means the probability distribution of
category C; p(s) represents the probability distribution
of the category c of real data.
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2.2 Irregular occlusion face recognition
model based on FFC and GAN
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Figure 4: Monitoring face recognition model based on FFC-GAN. (Source from: Author’s self drawn)

Although the above method can achieve FR with
small area regular occlusion, due to the large flow of
people and complex environment in scenic spots, there are
cases where faces are obstructed by large irregular objects,
which further increases the difficulty of FR. Therefore, to
effectively ensure the safety of scenic spots, a large-scale
irregular occlusion FR model based on FFC and GAN is
proposed. Compared to other convolution methods, FFC
can effectively accelerate the training and inference
process of networks when processing large image or video
data [18-19]. GAN can generate high-quality synthetic
data to achieve the restoration of large areas of irregularly
occluded faces. The monitoring FR model based on FFC-
GAN is denoted in Figure 4.

As shown in Figure 4, the model first uses GAN to
repair irregularly occluded facial images, and generates
facial image structures using encoding and hidden layer
noise vectors. Then FFC is utilized to generate texture
details of the image to raise the quality of facial image
restoration. Finally, the model is jointly trained using an
identity preservation LF to raise the accuracy of FR. For
GANs, the input is a random noise vector. This is mapped
to the data space through a series of neural network layers
to generate fake data. The required style parameters are
then generated based on affine changes. The formula for
generating style parameters is shown in equation (7).

s=A(M(h)) 7)

In equation (7), s represents the style parameter; A
represents affine transformation; M stands for Mapping
Network; h stands for hidden layer vector. Although the
above method can achieve the restoration of occluded
images, it may result in inconsistency between the restored
image and the original image. Therefore, to solve the
above problems, collaborative modulation methods are
introduced in the research. The formula for generating
style parameters for collaborative modulation is shown in
equation (8).

s=A(E(x),M(h)) 8)

In equation (8), E represents the image conditional
encoder; X represents the input image. It is worth noting
that the generator and discriminator of GAN need to be
trained alternately. The goal of the generator is to generate
restored images that are as close to the real image as
possible, while the goal of the discriminator is to
distinguish between the generated image and the real
image. Therefore, in each iteration, the generator and
discriminator update their parameters separately to
minimize the adversarial LF. The Batch size of GAN is
24, with an initial learning rate of 0.002, and the learning
rate is adjusted to 0.001 after 650000 iterations. The
weight of reconstruction loss is 10, and the weight of
identity preservation loss is 10. The above method can
achieve the restoration of large-area occluded images, but
due to the loss of texture details in the restored images, it
seriously affects the success rate of FR. Therefore, to
achieve the restoration of image texture details, the FFC
module is introduced in the study. Although existing
texture restoration methods, such as convolution-based
restoration methods, can generate certain texture details,
they have low efficiency in processing large-scale images
and are difficult to effectively capture global features.
FFC, through the fusion of global and local features, can
generate higher quality texture details and improve the
quality of restored images. The structure of FFC is shown
in Figure 5.

As shown in Figure 5, FFC consists of global
branches and local branches. FFC first splits the input
features into global features and local features, where
global features are processed through convolutional layers
and Spectral Transformers, and local features are
processed using two convolutional layers [20-21]. Next,
the processed local features and global features are fused,
and after batch normalization and ReLU processing, the
output features can be obtained. The formula for
calculating the local output features of FFC is denoted in
equation (9).

Y' =Yy 82t Foy (X' )+ Foug i (X°) (9)
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Figure 5: Structure of FFC. (Source from: Author's self drawn)

In equation (9), y! represents the output
characteristics of local branches; Y'™' represents small-

scale feature components of local branches; y 9!
represents the multi-scale receptive field components
exchanged from global branches to local branches; Fou,

and Foug, , both represent fast Fourier transform (FFT);

X" and X9 represent the input features of local and
global branches, respectively. The formula for calculating
the global output characteristics of FCC is shown in
equation (10).

Y9 =929 4y = Fou, (x9)+ Fou, (x') (10)

In equation (10), Y 9 represents the output feature of
the global branch; Y979 represents the small-scale

feature components of the global branch; Y979
represents the multi-scale receptive field components
exchanged from local branches to global branches; Fou,

and Fou,_4 both represent FFT. The structure of the

Spectral Transformer in FCC is shown in Figure 6.

In Figure 6, the Spectral Transformer includes
convolutional layers, Fourier units, and local Fourier
units. Firstly, Spectral Transformer processes input
information  through  convolutional and  batch
normalization layers, and then captures global and local
features using Fourier units and local Fourier units,
respectively, and fuses the features. Finally, the captured
features can be output after being convolved again. The
Fourier unit and local Fourier unit are both composed of
real 2D FFT, convolutional layer, and inverse real two-
dimensional FFT. The real 2D FFT is responsible for
transforming spatial features into the spectral domain, the
convolutional layer is responsible for updating spectral
data, and the inverse real 2D FFT is responsible for
restoring spatial features [22-23]. By using the above
method, FFC is constructed, and after combining it with
convolutional layers, a texture restoration module based
on FFC can be constructed. The structure of the texture
restoration module based on FFC is shown in Figure 7.
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Figure 6: Structure of spectral transformer. (Source from: Author's self drawn)
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Figure 7: Texture repair module based on FFC. (Source from: Author's self drawn)

As shown in Figure 7, the FFC-based texture
restoration module consists of convolutional layers and
FFC residual structures. This module first processes the
output features of the previous stage through
convolutional layers and fuses them with the feature maps
extracted by the image condition encoder. Next, the fused
feature maps are subjected to contextual information
extraction and fusion using the FFC residual structure, and
the information is processed using convolutional layers.
Finally, the processed information is fused with the
features processed by the first convolutional layer to
achieve texture restoration of the image. A monitoring FR
model based on FFC-GAN is constructed using the above
method, and the LF of the model is denoted in equation
(12).

Le = Lgen + Lyer +Lig (11)

In equation (11), L denotes the overall LF of FFC-
GAN; Ly, represents the adversarial LF of the generator;

Lgen represents the reconstruction LF; Lj; stands for

en

identity preservation LF. The calculation formula for the
adversarial LF is denoted in equation (12).

Lgen =—Ei,, [109D(les) ] (12)
In equation (12), E, . represents the expected value

of the restored image; D stands for discriminator; 1,

represents the restored image. The calculation formula for
the reconstruction LF is denoted in equation (13).

I-ref = a"'res - Iori ”1 (13)

In equation (13), « represents the weight of

reconstruction loss; 1, represents the original image.
The identity preservation LF is shown in equation (14).

I-id :ﬂ"F(II‘ES)_F(IOFi)Hl (14)

In equation (14), S represents the weight of identity

preservation loss; F(.) represents the feature extraction

process. The above method can achieve accurate
recognition of faces with large areas of irregular
occlusion.

3 Results

3.1 Small area occlusion face recognition
test results

To test the recognition effect of the improved ResNet-
U?Net proposed in the study for small area regular
occlusion faces, it was tested and compared with the Fine-
Grained Deep Feature Mask Estimation (FGDFME)
occlusion FR algorithm and the Depth Image Priors and
Robust Markov Random Fields (DIP-rMRF) occlusion FR
algorithm based on depth image priors and robust Markov
random fields. The datasets used in the experiment were
the Labeled Faces in the Wild (LFW) dataset and the
Masked Faces in Real World for Face Recognition
(MFR2) dataset used for FR in the real world. The LFW
dataset contains 13233 facial images, covering 5749
individuals of different identities. Each image is labeled
with the name of the corresponding person, with 1680
individuals having two or more images. Meanwhile, each
image has a size of 250 * 250 pixels, with the majority
being color images, but there are also a few black and
white facial images. The MFR2 dataset contains the
identities of 53 celebrities and politicians, with a total of
269 images. The size of each image is 160 * 160 * 3. To
ensure the reliability of the experimental results, a
simulated occlusion dataset was constructed using the
LFW dataset, which involves adding objects such as
masks, sunglasses, and mobile phones to mask facial
images. The CPU utilized in the experiment was Intel core
i7 4720HQ, with 16GB of memory and GeForce RTX
4060Ti GPU. The Batchsize and initial learning rate of the
model were 128 and 0.1, respectively, and the radius and
spacing of the hypersphere were 64 and 0.48, respectively.
For each evaluation metric, the mean and standard
deviation of multiple experimental results was calculated
to assess the stability and reliability of the model
performance. The 95% confidence interval to evaluate the
confidence level of the model performance. The
recognition accuracy and F1-score of each model in the
simulated occlusion dataset are shown in Figure 8.
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Figure 8: The recognition accuracy and F1-score of each model in the simulated occlusion dataset. (Source from:
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® FGDFME DIP-rMRF ® FGDFME DIP-rMRF
100r ® Improved ResNet-U?Net 0.991 ® Improved ResNet-U2Net
99} 0.98f ¥
e 98f 0.97f
= <
g 97f T T T T §0.96-
3 96 — 0.95¢
Q L
< 95} 0.94}
94} l 0.93f 4 4
93 1 1 1 1 1 1 1 J 092 1 1 1 1 1 1 ? 1 J

40 80 120 160 200 240
Number of samples

(a) Accuracy

280 320

40 80 120 160 200 240
Number of samples

(b) F1-score

280 320

Figure 9: Recognition accuracy and F1-score of each model in MFR2 data set. (Source from: Author's self drawn)

In Figure 8 (a), in the simulated occlusion dataset, the
facial recognition accuracy of FGDFME and DIP rMRF
was the highest at 95.4% and 97.2%, the lowest at 94.3%
and 96.1%, and the average accuracy was 94.9% and
96.7%, respectively. The improved ResNet-U?Net had a
minimum FR rate of 98.2% and an average accuracy rate
of up to 98.7%, which was higher than other algorithms.
From Figure 8 (b), in the simulated occlusion dataset, the
F1-score of FGDFME and DIP rMRF were the highest at
0.956 and 0.973, and the lowest at 0.943 and 0.962,
respectively. The average F1-score was 0.950 and 0.967,
respectively. The lowest Fl-score of ResNet-U?Net
improvement was 0.979, with an average F1-score of
0.983. The above outcomes denoted that the improved
ResNet-U?Net had good performance in small area rule-
based occlusion FR. The recognition accuracy and F1-
score of each model in the MFR2 dataset are shown in
Figure 9.

From Figure 9 (), in the MFR2 dataset, the highest
facial recognition accuracy of FGDFME and DIP rMRF
was 94.3% and 96.3% respectively, the lowest was 93.1%
and 95.2% respectively, and the average accuracy was
93.6% and 95.8% respectively. The improved ResNet-
U?Net had a minimum FR rate of 97.6% and an average
accuracy rate of 97.9%, which was higher than other
algorithms. From Figure 9 (b), in the MFR2 dataset, the

highest F1-score for FGDFME and DIP rMRF were 0.956
and 0.973, and the lowest were 0.943 and 0.962,
respectively. The average F1-score was 0.950 and 0.967,
respectively. The lowest Fl-score of ResNet-U?Net
improvement was 0.979, with an average F1-score of
0.983. The True Acceptance Rate (TAR) of each model in
different datasets is shown in Figure 10.

According to Figure 10 (a), in the simulated occlusion
dataset, the highest TAR of FGDFME and DIP rMRF
were 96.2% and 98.3%, respectively, and the lowest were
95.3% and 97.1%, respectively. The average TAR was
95.7% and 97.6%, respectively. The TAR of ResNet-
U?Net was improved from a mini of 99.2% to a max of
99.9%, with an average TAR of 99.5%. According to
Figure 10 (b), in the MFR2 dataset, the highest and lowest
TARs for FGDFME and DIP rMRF were 95.3% and
96.8%, respectively, and 94.1% and 95.8%, respectively,
with an average TAR of 94.6% and 96.3%. The TAR of
the improved ResNet-U?Net ranged from 98.1% to 99.9%,
with an average TAR of 98.5%. The above results
indicated that the improved ResNet-U?Net had strong
facial recognition capabilities and could effectively ensure
the safety of scenic spots. To further analyze and improve
the performance of ResNet-U2Net, ablation experiments
were conducted on it. The outcomes of the ablation
experiment are denoted in Table 1.
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Figure 10: TAR of each model in different data sets. (Source from: Author's self drawn)
Table 1: Results of ablation experiments.
Model ResNet FPN U2Net Mask learning unit Accuracy/%
1 N x x x 92.2
2 N N x x 93.1
3 N x N x 94.2
4 N x x N 94.5
5 N N N x 95.6
6 N N x N 96.7
7 N x N N 97.4
8 N N N N 98.7

According to Table 1, the facial recognition accuracy
of the backbone network ResNet was only 92.2%. After
introducing FPN, U?Net, and mask learning units, the
facial recognition accuracy of the model significantly
improved. Among them, U?Net and mask learning units
had the most significant impact on model performance.
After introducing the above two modules, the facial
recognition accuracy of the model increased to 94.2% and
94.5%, respectively.

3.2 Large area occlusion face recognition
test results

To test the effect of the proposed FFC-GAN in repairing
and recognizing large-area irregularly occluded faces, it
was tested and compared with the Partial Convolution and
Multiscale Feature Fusion (PCMSF) facial image
restoration model, Multiscale Feature Fusion U-Net
(MSFFU-Net), Involution facial Feature Correction

Network (IFFR-Net), and Depth Separable Convolution
and Hypersphere Loss (DSCHL) occlusion model. The
software and hardware settings of the experiment are
consistent with the above experiment and will not be
repeated. The dataset utilized in the experiment was the
CelebA HQ dataset, which contains 30000 facial images
with a resolution of 1024 x 1024. To simulate irregular
occlusion situations, various shapes were randomly used
to occlude facial images, with an occlusion rate of over
50%. In the experiment, the reconstruction loss weight and
identity preservation loss weight were both 10, and the
initial learning rate and Batchsize were 0.002 and 24,
respectively. Firstly, the facial image restoration
performance of FFC-GAN was tested. The Structural
Similarity Index Measure (SSIM) and Peak Signal-to-
Noise Ratio (PSNR) of different models are shown in
Figure 11.
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Figure 11: SSIM and PSNR of different models. (Source from: Author's self drawn)
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Figure 12: LPIPS and FID of different models. (Source from: Author's self drawn)

From Figure 11 (a), the SSIMs of PCMSFF and
MSFFU-Net were the highest at 0.828 and 0.852, the
lowest at 0.820 and 0.842, and the average SSIMs were
0.824 and 0.846, respectively. The SSIM of FFC-GAN
was the lowest at 0.874, with an average SSIM of 0.878,
which was higher than other methods. From Figure 11 (b),
the PSNRs of PCMSFF and MSFFU-Net were the highest
at 28.3dB and 31.3dB, and the lowest at 27.0dB and
30.0dB, respectively, with average PSNRs of 27.6dB and
30.6dB, respectively. The PSNR of FFC-GAN was the
lowest at 34.1dB, with an average PSNR of 34.7dB, which
was also higher than other algorithms. The above results
indicated that the facial image restoration quality of FFC-
GAN was superior to other algorithms. The Learned
Perceptual Image Patch Similarity (LPIPS) and Frechet
Inception Distance (FID) of different models are shown in
Figure 12.

According to Figure 12 (a), the minimum and
maximum LPIPS of PCMSFF and MSFFU-Net are 0.242
and 0.223, respectively, and 0.249 and 0.233, respectively.
The average LPIPS was 0.245 and 0.227. The maximum
LPIPS of FFC-GAN was 0.202, and the average LPIPS
was 0.196, which was much lower than other methods.
According to Figure 12 (b), the maximum FID of
PCMSFF and MSFFU-Net were 12.9 and 12.1, and the
minimum FID was 12.2 and 11.2. The average FID was

12.5 and 11.6, respectively. The maximum FID of FFC-
GAN was 9.8, and the average FID was 9.4, which was
also lower than other algorithms. The above results
indicated that FFC-GAN could achieve high-quality
restoration of large-area irregularly occluded face images.
The facial recognition accuracy and TAR of different
models are shown in Figure 13.

According to Figure 13 (a), the highest and lowest
facial recognition accuracies of IFFR Net and DSCHL
were 86.4% and 88.5%, respectively, and 84.7% and
87.3%, respectively. The average accuracies were 85.6%
and 87.9%, respectively. The recognition accuracy of
FFC-GAN was the lowest at 90.5%, with an average
accuracy of 91.0%, which was higher than other
algorithms. From Figure 13 (b), the TAR of IFF-Net and
DSCHL were the highest at 88.3% and 90.3%
respectively, the lowest at 87.2% and 89.1% respectively,
and the average TAR was 87.7% and 89.6% respectively.
The lowest TAR of FFC-GAN was 92.1, with an average
TAR of 92.6%, which was also higher than other
algorithms. The above results indicated that FFC-GAN
could achieve accurate recognition of faces with large
areas of irregular occlusion. To further analyze the
performance of FFC-GAN, ablation experiments were
conducted on it. The findings of the ablation experiment
are denoted in Table 2.
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Figure 13: Face recognition accuracy and TAR of different models. (Source from: Author's self drawn)
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Table 2: Ablation results.

Model FFC Spectral Transformer | Residual block SSIM Accuracy/%
1 x X x 0.725 84.4
2 \ x x 0.796 88.2
3 X N x 0.771 87.5
4 x x N 0.795 87.9
5 N \ x 0.827 88.9
6 N x N 0.846 89.2
7 X \ N 0.859 89.8
8 N N N 0.878 91.0

According to Table 2, after introducing FCC, Spectral
Transformer, and residual blocks, the SSIM and accuracy
of the model significantly increased, reaching 0.878 and
91.0%, respectively. Among them, FFC and residual
blocks had the most significant impact on model
performance. After introducing FFC and residual blocks,
the SSIM of the model increased to 0.796 and 0.795,
respectively, and the accuracy increased to 88.2% and
87.9%, respectively.

4 Discussion

In recent years, with the booming development of the
tourism industry, the number of tourists in scenic spots has
been continuously increasing, which has brought many
challenges to scenic spot management. The traditional
management method of scenic spots has problems such as
low efficiency, easy errors, and inability to monitor in real
time, which not only affects the tourist experience but may
also lead to safety hazards. The advent of artificial
intelligence, computer vision, and deep learning
technologies has precipitated a substantial enhancement in
the security, convenience, and accuracy of facial
recognition technology [24-25]. Real-time monitoring of
personnel within the scenic area can be achieved through
facial recognition technology, detecting abnormal
behavior in a timely manner and issuing alerts. In addition,
facial recognition systems can quickly locate missing
persons or lost items, enhancing the emergency response
capabilities of scenic spots. However, due to the complex
environment and huge pedestrian flow in scenic spots,
facial recognition is difficult [26]. Therefore, to achieve
accurate recognition of faces in scenic area monitoring, an
FR method based on improved ResNet-U?Net was
proposed to address the problem of FR under small area
rule occlusion such as sunglasses and masks. A
recognition method based on FFC-GAN was proposed for
the FR problem of large irregular occlusion.

For the improved ResNet-U?Net, experimental results
showed that its average recognition accuracy and F1-score
in simulated occlusion datasets were 98.7% and 0.983,
respectively, with an average TAR of 99.5%, both higher
than FGDFME and DIP rMRF. In the MFR2 dataset, the
average recognition accuracy and F1-score of the
improved ResNet-U?Net were 97.9% and 0.967,
respectively, with an average TAR of 98.5%, which was
also higher than other algorithms. Haider et al. designed a
variational invariant FR method based on multi-task
learning, which redefines FR by combining temporal
dependence and temporal independence to decompose the

face into age and residual features. The experimental
results showed that this method could achieve accurate
recognition of faces of different races [27]. However, the
above methods had low accuracy in recognizing occluded
faces, while the proposed method could achieve accurate
recognition of faces under objects such as masks and
sunglasses. Akheel T S et al. proposed using optimized
projection matrices in linear collaborative regression
classification to improve recognition accuracy, and
introduced a whale lion combination model to optimize
the projection matrix. The findings denoted that the facial
recognition accuracy of the model could reach 91.2% [28].
Compared to the above algorithms, the improved ResNet-
U?Net proposed in the study had higher facial recognition
accuracy. This is because the improved ResNet-U?Net
introduces a global convolution module, allowing the
model to capture a larger range of global information.
Meanwhile, the model also introduced FPN, effectively
enhancing its multi-scale feature extraction capability. In
addition, the study also introduced a mask learning unit,
which removes the features of occluded areas by
generating multi-level masks to enhance feature
representation.

For FFC-GAN, its average SSIM and average PSNR
were 0.878 and 34.7 dB, respectively, which were higher
than PCMSF and MSFFU-Net. The average LPIPS and
FID were 0.196 and 9.4, respectively, which were lower
than other algorithms. FFC-GAN could achieve accurate
restoration of large-area irregularly occluded facial
images. In terms of facial recognition performance, the
average accuracy and TAR of FFC-GAN were 91.0% and
92.6%, respectively, both higher than existing advanced
algorithms. Yan L. et al. proposed a methodology for
optimizing image feature compensation coefficients. This
methodology is based on an enhanced simulated annealing
algorithm, the purpose of which is to enhance the
recognition rate of facial recognition systems. The
findings indicated that when the training image was
designated as 6, the recognition rate attained a maximum
of 100% [29]. Compared to the above methods, although
the proposed method had lower recognition accuracy, it
could effectively address the problem of large-scale
irregular facial occlusion. Zaaraoui et al. put forward an
FR method based on the mini value string, utilizing the
mini value string as the face feature extractor for face
representation. The findings demonstrated that the method
exhibited high recognition accuracy and efficiency [30].
However, compared to the methods proposed in the
research, the above methods significantly reduced the
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accuracy of FR under large-scale irregular occlusion
conditions. The reason why the proposed FFC-GAN can
achieve accurate recognition of large-area irregularly
occluded faces is that this method can accurately repair
occluded images through GAN and accurately restore
image texture details through FFC.

In summary, the improved ResNet-U?Net and FFC-
GAN can achieve accurate recognition of occluded faces,
among which the improved ResNet-U?Net has high
recognition accuracy for small area regularly occluded
faces. FFC-GAN can effectively repair large areas of
irregularly occluded facial images, thereby achieving
accurate facial recognition. The above two methods
provide strong support for the development of facial
recognition technology for scenic spot monitoring, which
helps to achieve intelligent management of scenic spots.
However, due to the high number of parameters and
computational complexity of the proposed model, it
requires high computing power from the server, making
the deployment of the model difficult. Therefore, in the
future, the model structure will be optimized to minimize
the number of parameters and computational complexity
of the model, so that it can be deployed on platforms with
limited processing capabilities such as mobile devices and
embedded devices.

5 Conclusion

A small area regular occlusion FR model based on
improved ResNet-U?Net and a large area irregular
occlusion FR model based on FFC-GAN were proposed
to address the issue of FR in scenic spot monitoring. The
improved ResNet-U?Net achieved accurate recognition of
small area regularly occluded faces by introducing global
convolution, FPN, and mask learning units. The findings
denoted that the average recognition accuracy and F1-
score of the improved ResNet-U?Net reached 98.7% and
0.983, respectively, with an average TAR of 99.5%. The
FFC-GAN model utilized GAN and FFC modules to
repair and recognize large-area irregularly occluded facial
images. The findings denoted that the average SSIM and
PSNR of the model were 0.878 and 34.7dB, respectively,
and the average accuracy and TAR were 91.0% and
92.6%, respectively, which were better than existing
advanced algorithms. The above results indicated that
improved ResNet-U?Net and FFC-GAN could achieve
accurate recognition of facial images under different
occlusion conditions, providing strong support for the
development of facial recognition technology for scenic
spot monitoring. However, the model has high parameter
count and computational complexity, which makes it
impossible to deploy on mobile devices, greatly limiting
its application scope. Therefore, in the future, the model
will be lightweighted to reduce its complexity.
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