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To ensure the safety of scenic spots and achieve intelligent management of scenic spots, a face recognition 

method based on U2Net and FFC is proposed to achieve monitoring face recognition under different 

occlusion conditions. It consists of a small area regular occlusion face recognition model and a large 

area irregular occlusion face recognition model. Firstly, a face recognition model grounded on an 

improved residual network-U2Net is raised to address the problem of small area rule occlusion. This 

model combines a global convolution module, a feature pyramid network, and a mask learning unit. When 

evaluating facial recognition methods, multiple evaluation metrics were used, including recognition 

accuracy, F1-score, recognition rate, structural similarity index, peak signal-to-noise ratio, learning 

perceptual image block similarity, and Frecht approximation distance. These indicators evaluate the 

performance of the model under small and large area irregular occlusion conditions from different 

perspectives, ensuring the comprehensiveness and reliability of the evaluation. The findings denote that 

the average recognition accuracy of the enhanced residual network-U2Net is as high as 98.7%, the 

average F1-score is 0.983, and the average recognition rate is 99.5%. Secondly, in response to the 

problem of large-scale irregular occlusion in facial recognition, a fast Fourier convolution generative 

adversarial network is proposed, which combines generative adversarial network and Fourier feature 

convolution to repair and recognize facial images. The outcomes denote that the average structural 

similarity index and peak signal-to-noise ratio of the model are 0.878 and 34.7dB, respectively, and the 

average accuracy and recognition rate are 91.0% and 92.6%, respectively. The above results denote that 

the proposed facial recognition method exhibits superior performance under different occlusion 

conditions and can effectively promote the intelligent development of scenic area management. 

Povzetek: Predstavljena je metoda prepoznavanja obrazov na podlagi U2Net in FFC za inteligentno 

nadzorovanje v turističnih krajih, ki omogoča prepoznavanje tudi pri zakritih obrazih (maske, klobuki). 

 

1 Introduction 
As the global tourism industry quickly develops in recent 

years, the number of tourists in scenic spots has shown 

explosive growth, which has put forward higher 

requirements for the management and service of scenic 

spots. Due to the low efficiency of traditional manual 

management models and their inability to cope with the 

complex and changing challenges of scenic areas, coupled 

with the dense population and high mobility of people in 

scenic areas, which significantly increase the difficulty of 

safety management, it is particularly important to 

introduce advanced safety management technologies to 

improve the level of safety management and management 

efficiency in scenic areas [1-2]. Among numerous security 

management technologies, facial recognition technology 

has gradually become an important tool for scenic spot 

security management due to its high efficiency, 

convenience, and accuracy. Through facial recognition 

systems, scenic spots can achieve real-time monitoring, 

rapid identification, and precise management of 

personnel, effectively enhancing emergency response  

capabilities and ensuring the safety of tourists [3-4]. 

However, the complex environment of scenic spots, 

frequent personnel flow, and often the presence of 

obstructions greatly increases the difficulty of facial 

recognition. However, existing facial recognition 

technologies have low recognition accuracy when dealing 

with occlusion problems, making it difficult to meet 

practical needs. 

Qin et al. proposed a multi-purpose algorithm called 

SwinFace-based on Swin Transformer to address the issue 

of neglecting task collaboration during the training 

process of facial recognition models. This method 

integrated multi-level channel attention modules in each 

task-specific analysis subnet with the objective of 

achieving adaptive feature selection. The findings 

demonstrated that the facial expression recognition and 

age estimation performance of this method surpassed that 

of existing methods [5]. Al-Dabbas et al. developed a 

facial recognition method that utilized classification, 

machine learning and deep learning models to address the 

issue of rising counterfeit crime rates. The methodology 
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employed involved the utilization of Viola Jones, linear 

discriminant analysis, mutual information, and analysis of 

variance techniques to construct two facial classification 

systems. The findings showed that the classification 

accuracy of both facial classification systems was above 

96%, indicating that the proposed model performed well 

in both accuracy and processing time [6]. Gao et al. 

proposed the first privacy preserving facial recognition 

protocol for recognition stage computation in intelligent 

security systems to address privacy protection and identity 

recognition efficiency issues. This method introduced a 

Householder matrix into blind user data, enabling the 

protocol to support privacy protected facial recognition on 

semi trusted edge servers. The results showed that the 

protocol not only protected the privacy of user data, but 

also could achieve rapid response of large-scale face 

recognition (FR) through edge computing, effectively 

improving the efficiency of FR in intelligent security 

systems [7]. Xie et al. proposed a general privacy 

protection framework for FR systems that is grounded on 

edge computing. The purpose of this framework was to 

address the issue of data privacy leakage that has been 

identified in such systems. The overarching objective of 

the proposed framework is to safeguard the confidentiality 

of facial images and training models by employing a local 

differential privacy algorithm. The algorithm under 

discussion is founded upon a comparison of the proportion 

of feature information. As previously stated, the 

aforementioned text is concerned with the implementation 

of identity authentication and hashing techniques, with a 

view to confirming the legitimacy of terminal devices. The 

results showed that in numerical experiments, this scheme 

could ensure the optimal balance between the usability 

and privacy protection of the facial recognition system [8]. 

U2Net, as a deep learning model for image 

segmentation, combines an encoder and decoder, and 

introduces a cyclic squeezing unit, which can effectively 

extract image features of different scales. Therefore, it has 

significant advantages in image feature extraction. Feng et 

al. designed a detection method based on crack-U2Netto 

address the accuracy issue of road crack detection. This 

method utilized the U2Net architecture for feature learning 

and introduced a geometry-based data augmentation 

strategy to address the issue of insufficient training data. 

The results showed that the accuracy of Crack-U2Net in 

highway crack detection reached 95.8%, which is superior 

to existing methods [9]. Shi et al. proposed the 

U2CrackNet detection method for road crack detection. 

The proposed methodology involved the extraction of 

crack features through the encoding layer, followed by the 

establishment of a connection between the encoder and 

decoder via the atrous spatial pyramid pool model, with 

the objective of capturing multi-scale crack information. 

The results showed that U2CrackNet could obtain clearer 

and more continuous highway cracks, with a detection 

accuracy of 98.95% [10]. Li et al. proposed a U2Net-based 

analysis method to address the issue of low efficiency 

caused by manual operation in microscope image analysis. 

This method enhanced the model's ability to extract key 

information by introducing a convolutional block 

attention module, and achieved model lightweighting by 

introducing Ghost convolution. The outcomes denoted 

that the prediction accuracy of the method model 

increased from 92.24% to 97.13% [11]. Zheng Z and Yang 

K proposed a detection method that integrates You Only 

Look Once version 5 (YOLOv5) and U2Net for wall crack 

detection. This method utilized the GhostNet module to 

optimize YOLOv to improve its training speed, while 

introducing U2Net to perform binary classification on the 

region input extracted by YOLOv5 to enhance the final 

classification performance. The results denoted that this 

method could effectively address the issue of poor 

segmentation of crack targets in large environmental 

backgrounds [12]. 

In summary, although the current facial recognition 

models have high recognition accuracy, they are difficult 

to cope with the problem of obstructed facial recognition 

in complex environments of scenic spots. Therefore, to 

address the above issues, an FR model for different 

occlusion conditions has been proposed, which consists of 

two parts: a small area regular occlusion FR model and a 

large area irregular occlusion FR model. The innovation 

of the research lies in the combination of Residual 

Network (ResNet) and U2Net, and the introduction of 

Global Convolution Module, Feature Pyramid Network 

(FPN), and Mask Learning Unit to improve the 

recognition accuracy of the model for small area regularly 

occluded faces. Specifically, a global convolution module 

consisting of two symmetric convolution layers is used to 

capture global features in both horizontal and vertical 

directions. At the same time, a mask learning unit is 

introduced in FPN to remove the features of occluded 

areas by generating multi-level masks to enhance feature 

representation. Secondly, by combining Fast Fourier 

Convolution (FFC) and Generative Adversarial Network 

(GAN), the problem of low recognition accuracy in large-

area irregularly occluded face images can be solved by 

repairing them. 

2 Methods and materials 
Due to the influence of facial coverings such as hats, 

masks, and glasses, as well as changes in facial 

expressions, the success rate of existing surveillance facial 

recognition is low, making it difficult to effectively ensure 

the safety of scenic spots. Therefore, a monitoring FR 

model based on U2Net and FFC is proposed to address the 

recognition problem under face occlusion. It consists of 

two parts: a small area occlusion FR model and a large 

area irregular occlusion FR model. Firstly, an FR method 

based on U2Net and global convolution is constructed to 

address the problem of small-scale rule-based occlusion. 

For the problem of large-scale irregular occlusion, a FR 

model based on FFC and GAN is proposed. 
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Figure 1: Face recognition model based on improved ResNet-U2Net. (Source from: Author's self drawn) 

2.1 Regular occlusion facial recognition 

model based on U2Net and global 

convolution 

It is difficult to extract facial features from surveillance 

cameras in conditions of obstruction by regular objects, 

such as masks, glasses and hats. The accuracy of facial 

recognition systems is consequently adversely affected. 

Due to the use of two parallel encoder decoder paths and 

the introduction of cyclic squeezing units, U2Net is able to 

simultaneously process global and local features, thereby 

improving segmentation accuracy. Although the cyclic 

squeezing unit can capture multi-scale features, its 

receptive field size is small, which makes it impossible to 

fully cover all scale features [13-14]. Therefore, to expand 

the receptive field of U2Net, global convolution is 

introduced and improved. The FR model based on 

improved ResNet-U2Net is denoted in Figure 1. 

In Figure 1, the FR model based on improved U2Net 

consists of two parts: occlusion detection segmentation 

module and feature detection module. The model first 

generates a multi-level occlusion segmentation map 

through the occlusion detection module, then extracts 

image features through the FR module, and removes the 

influence of occlusion on facial features through the mask 

learning unit. Finally, FPN is used to fuse the features of 

each stage. In the feature extraction module, the selected 

backbone network is ResNet, which can achieve feature 

reuse through skip connections. However, due to the poor 

ability of ResNet to extract multi-scale features, it will 

reduce the accuracy of the model's FR. Therefore, to 

enhance the multi-scale feature extraction capability and 

model generalization performance, the FPN module is 

introduced in the study. FPN upsamples high-level feature 

maps to the resolution of low-level feature maps through 

a top-down path, thereby generating a multi-scale feature 

pyramid. Moreover, feature maps of different scales are 

fused through horizontal connections to enhance the 

richness of feature representation. At the same time, the 

generated feature pyramid can capture both global and 

local information, improving the model's ability to extract  

 

multi-scale features [15-16]. For improved ResNet-U2Net, 

the input image needs to be first detected and aligned by 

the method based on the cascaded multi task framework, 

and then the image size is adjusted to 112 * 112. Next, 

facial recognition can be performed using the improved 

ResNet-U2Net. The Batchsize of the model is 128, the 

initial learning rate is 0.1, the hypersphere radius s is 64, 

and the spacing m is 0.48. During the training, the learning 

rate is adjusted to 1/10 of its original level at the 11th, 

20th, and 30th epochs. However, FPN is prone to 

information loss, which can lead to feature damage. 

Therefore, to improve the above problems, the structure of 

FPN is optimized by introducing mask learning units to 

avoid the influence of damaged features. The formula for 

calculating the feature pyramid is denoted in equation (1). 

( )

( )

( )

3 3 2

4 4 3

5 5 4

P M ds M

P M ds P

P M ds P

= +


= +


= +

                       (1) 

In equation (1), 
iP  means the feature pyramid; 

iM  

represents the features obtained after mask operation; ds  

represents downsampling operation. The calculation 

formula for 
iM  is denoted in equation (2). 

i i i iM X Mask X= +                     (2) 

In equation (2), iMask  represents the mask; iX  

represents the original input. For the occlusion detection 

and segmentation module, its backbone network is U2Net, 

which consists of U-shaped residual modules. Unlike 

ordinary residual modules, the U-shaped residual module 

replaces the convolutional layers in the original residual 

module with U-blocks and replaces the original features 

with local features to achieve multi-scale feature 

extraction. The so-called U-block refers to the U-shaped 

encoder decoder structure. Considering the complexity of 

the model, the amount of U-shaped residual modules is 6 

[17]. Due to the small receptive field of U2Net, a global 

convolution module is introduced to expand its receptive 

field size. The structure of the global convolution module 

is denoted in Figure 2. 



374 Informatica 49 (2025) 371–384 Y. Liu 

w*h*64

Convolution 

7*1*64*64

Convolution 

1*7*64*64

Convolution 

1*7*64*64

Convolution 

7*1*64*64

Sum w*h*64

 

Figure 2: Structure of the global convolution module. (Source from: Author's self drawn) 
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Figure 3: Structure of the mask learning unit. (Source from: Author's self drawn) 

In Figure 2, the global convolution module mainly 

contains four symmetrically distributed convolution 

layers. This structure enables the global convolution 

module to capture features of different scales and enhance 

the model's understanding of the global information of the 

image through feature fusion. In addition, to avoid 

damaging the features and affecting the performance of 

the occlusion detection segmentation module and feature 

detection module, a mask learning unit is introduced in the 

study. Although generating masks can remove the features 

of occluded areas, these methods usually only generate 

masks at a single scale and cannot effectively handle 

multi-scale features. Moreover, the mask learning unit can 

generate multi-level masks, corresponding to feature maps 

of different scales, thus more comprehensively handling 

occlusion problems. It suppresses the features of occluded 

areas through masking while preserving the features of 

unobstructed areas, enhancing the robustness of feature 

representation. The structure of the mask learning unit is 

denoted in Figure 3. 

In Figure 3, the mask learning unit mainly contains 

convolutional layers, residual modules, and sigmoid 

functions. This module first concatenates the feature and 

occlusion segmentation representations of each stage, and 

then processes the concatenated images using 

convolutional layers and activation functions to generate 

multi-level masks. Finally, the generated mask is used to 

remove the features of the occluded area and added to the 

original input features to enhance the feature 

representation. The formula for mask learning calculation 

is shown in equation (3). 

( )( )1Sigmoid ( [ , ])i i iMask c concat F S −=       (3) 

In equation (3),   represents residual operation; iF  

represents the characteristics of each stage; iS  represents 

occlusion segmentation representation. The loss function 

(LF) of the model is denoted in equation (4). 

fc segL L L= +                             (4) 

In equation (4), L  means the overall LF of the model; 

fcL  denotes the face classification LF; segL  denotes the 

face segmentation LF. The calculation formula for the face 

classification LF is denoted in equation (5). 
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In equation (5), B  represents batch size; ix  

represents the feature vector; s  represents spacing; N  

means the number of categories; j  means the angle 

between the weight and the feature vector. The face 

segmentation LF is shown in equation (6). 
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In equation (6),   and   both represent 

hyperparameters; KLD  represents Kullback-Leibler 

divergence; ˆcp  means the probability distribution of 

category c ; ( )p s  represents the probability distribution 

of the category c  of real data. 
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Figure 4: Monitoring face recognition model based on FFC-GAN. (Source from: Author's self drawn) 

Although the above method can achieve FR with 

small area regular occlusion, due to the large flow of 

people and complex environment in scenic spots, there are 

cases where faces are obstructed by large irregular objects, 

which further increases the difficulty of FR. Therefore, to 

effectively ensure the safety of scenic spots, a large-scale 

irregular occlusion FR model based on FFC and GAN is 

proposed. Compared to other convolution methods, FFC 

can effectively accelerate the training and inference 

process of networks when processing large image or video 

data [18-19]. GAN can generate high-quality synthetic 

data to achieve the restoration of large areas of irregularly 

occluded faces. The monitoring FR model based on FFC-

GAN is denoted in Figure 4. 

As shown in Figure 4, the model first uses GAN to 

repair irregularly occluded facial images, and generates 

facial image structures using encoding and hidden layer 

noise vectors. Then FFC is utilized to generate texture 

details of the image to raise the quality of facial image 

restoration. Finally, the model is jointly trained using an 

identity preservation LF to raise the accuracy of FR. For 

GANs, the input is a random noise vector. This is mapped 

to the data space through a series of neural network layers 

to generate fake data. The required style parameters are 

then generated based on affine changes. The formula for 

generating style parameters is shown in equation (7). 

( )( )s A M h=                              (7) 

In equation (7), s  represents the style parameter; A  

represents affine transformation; M  stands for Mapping 

Network; h  stands for hidden layer vector. Although the 

above method can achieve the restoration of occluded 

images, it may result in inconsistency between the restored 

image and the original image. Therefore, to solve the 

above problems, collaborative modulation methods are 

introduced in the research. The formula for generating 

style parameters for collaborative modulation is shown in 

equation (8). 

( ) ( )( ),s A E x M h=                       (8) 

In equation (8), E  represents the image conditional 

encoder; x  represents the input image. It is worth noting 

that the generator and discriminator of GAN need to be 

trained alternately. The goal of the generator is to generate 

restored images that are as close to the real image as 

possible, while the goal of the discriminator is to 

distinguish between the generated image and the real 

image. Therefore, in each iteration, the generator and 

discriminator update their parameters separately to 

minimize the adversarial LF. The Batch size of GAN is 

24, with an initial learning rate of 0.002, and the learning 

rate is adjusted to 0.001 after 650000 iterations. The 

weight of reconstruction loss is 10, and the weight of 

identity preservation loss is 10. The above method can 

achieve the restoration of large-area occluded images, but 

due to the loss of texture details in the restored images, it 

seriously affects the success rate of FR. Therefore, to 

achieve the restoration of image texture details, the FFC 

module is introduced in the study. Although existing 

texture restoration methods, such as convolution-based 

restoration methods, can generate certain texture details, 

they have low efficiency in processing large-scale images 

and are difficult to effectively capture global features. 

FFC, through the fusion of global and local features, can 

generate higher quality texture details and improve the 

quality of restored images. The structure of FFC is shown 

in Figure 5. 

As shown in Figure 5, FFC consists of global 

branches and local branches. FFC first splits the input 

features into global features and local features, where 

global features are processed through convolutional layers 

and Spectral Transformers, and local features are 

processed using two convolutional layers [20-21]. Next, 

the processed local features and global features are fused, 

and after batch normalization and ReLU processing, the 

output features can be obtained. The formula for 

calculating the local output features of FFC is denoted in 

equation (9). 

( ) ( )X Xl l l g l l g
l g lY Y Fou FouY → →

→= + = +  (9) 
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Figure 5: Structure of FFC. (Source from: Author's self drawn) 

In equation (9), 
lY  represents the output 

characteristics of local branches; 
l lY →

 represents small-

scale feature components of local branches; 
g lY →

 

represents the multi-scale receptive field components 

exchanged from global branches to local branches; lFou  

and g lFou   both represent fast Fourier transform (FFT); 

lX  and 
gX  represent the input features of local and 

global branches, respectively. The formula for calculating 

the global output characteristics of FCC is shown in 

equation (10). 

( ) ( )X Xg g l g
l g

g g l
gY Y Fou FouY → →

→= + = +   (10) 

In equation (10), 
gY  represents the output feature of 

the global branch; 
g gY →

 represents the small-scale 

feature components of the global branch; 
g gY →

 

represents the multi-scale receptive field components 

exchanged from local branches to global branches; gFou  

and l gFou   both represent FFT. The structure of the 

Spectral Transformer in FCC is shown in Figure 6. 

In Figure 6, the Spectral Transformer includes 

convolutional layers, Fourier units, and local Fourier 

units. Firstly, Spectral Transformer processes input 

information through convolutional and batch 

normalization layers, and then captures global and local 

features using Fourier units and local Fourier units, 

respectively, and fuses the features. Finally, the captured 

features can be output after being convolved again. The 

Fourier unit and local Fourier unit are both composed of 

real 2D FFT, convolutional layer, and inverse real two-

dimensional FFT. The real 2D FFT is responsible for 

transforming spatial features into the spectral domain, the 

convolutional layer is responsible for updating spectral 

data, and the inverse real 2D FFT is responsible for 

restoring spatial features [22-23]. By using the above 

method, FFC is constructed, and after combining it with 

convolutional layers, a texture restoration module based 

on FFC can be constructed. The structure of the texture 

restoration module based on FFC is shown in Figure 7. 
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Figure 6: Structure of spectral transformer. (Source from: Author's self drawn) 
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Figure 7: Texture repair module based on FFC. (Source from: Author's self drawn) 

 

As shown in Figure 7, the FFC-based texture 

restoration module consists of convolutional layers and 

FFC residual structures. This module first processes the 

output features of the previous stage through 

convolutional layers and fuses them with the feature maps 

extracted by the image condition encoder. Next, the fused 

feature maps are subjected to contextual information 

extraction and fusion using the FFC residual structure, and 

the information is processed using convolutional layers. 

Finally, the processed information is fused with the 

features processed by the first convolutional layer to 

achieve texture restoration of the image. A monitoring FR 

model based on FFC-GAN is constructed using the above 

method, and the LF of the model is denoted in equation 

(11). 

gen eG r f idL L L L= + +                     (11) 

In equation (11), GL  denotes the overall LF of FFC-

GAN; genL  represents the adversarial LF of the generator; 

genL  represents the reconstruction LF; idL  stands for 

identity preservation LF. The calculation formula for the 

adversarial LF is denoted in equation (12). 

( )E log D
resgen I resL I = −                 (12) 

In equation (12), 
resIE  represents the expected value 

of the restored image; D  stands for discriminator; resI  

represents the restored image. The calculation formula for 

the reconstruction LF is denoted in equation (13). 

1ref res oriL I I= −                      (13) 

In equation (13),   represents the weight of 

reconstruction loss; oriI  represents the original image. 

The identity preservation LF is shown in equation (14). 

( ) ( )
1id res oriL F I F I= −            (14) 

In equation (14),   represents the weight of identity 

preservation loss; ( ).F  represents the feature extraction 

process. The above method can achieve accurate 

recognition of faces with large areas of irregular 

occlusion. 

3 Results 

3.1 Small area occlusion face recognition 

test results 

To test the recognition effect of the improved ResNet-

U2Net proposed in the study for small area regular 

occlusion faces, it was tested and compared with the Fine-

Grained Deep Feature Mask Estimation (FGDFME) 

occlusion FR algorithm and the Depth Image Priors and 

Robust Markov Random Fields (DIP-rMRF) occlusion FR 

algorithm based on depth image priors and robust Markov 

random fields. The datasets used in the experiment were 

the Labeled Faces in the Wild (LFW) dataset and the 

Masked Faces in Real World for Face Recognition 

(MFR2) dataset used for FR in the real world. The LFW 

dataset contains 13233 facial images, covering 5749 

individuals of different identities. Each image is labeled 

with the name of the corresponding person, with 1680 

individuals having two or more images. Meanwhile, each 

image has a size of 250 * 250 pixels, with the majority 

being color images, but there are also a few black and 

white facial images. The MFR2 dataset contains the 

identities of 53 celebrities and politicians, with a total of 

269 images. The size of each image is 160 * 160 * 3. To 

ensure the reliability of the experimental results, a 

simulated occlusion dataset was constructed using the 

LFW dataset, which involves adding objects such as 

masks, sunglasses, and mobile phones to mask facial 

images. The CPU utilized in the experiment was Intel core 

i7 4720HQ, with 16GB of memory and GeForce RTX 

4060Ti GPU. The Batchsize and initial learning rate of the 

model were 128 and 0.1, respectively, and the radius and 

spacing of the hypersphere were 64 and 0.48, respectively. 

For each evaluation metric, the mean and standard 

deviation of multiple experimental results was calculated 

to assess the stability and reliability of the model 

performance. The 95% confidence interval to evaluate the 

confidence level of the model performance. The 

recognition accuracy and F1-score of each model in the 

simulated occlusion dataset are shown in Figure 8. 
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Figure 8: The recognition accuracy and F1-score of each model in the simulated occlusion dataset. (Source from: 

Author's self drawn) 
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Figure 9: Recognition accuracy and F1-score of each model in MFR2 data set. (Source from: Author's self drawn) 

In Figure 8 (a), in the simulated occlusion dataset, the 

facial recognition accuracy of FGDFME and DIP rMRF 

was the highest at 95.4% and 97.2%, the lowest at 94.3% 

and 96.1%, and the average accuracy was 94.9% and 

96.7%, respectively. The improved ResNet-U2Net had a 

minimum FR rate of 98.2% and an average accuracy rate 

of up to 98.7%, which was higher than other algorithms. 

From Figure 8 (b), in the simulated occlusion dataset, the 

F1-score of FGDFME and DIP rMRF were the highest at 

0.956 and 0.973, and the lowest at 0.943 and 0.962, 

respectively. The average F1-score was 0.950 and 0.967, 

respectively. The lowest F1-score of ResNet-U2Net 

improvement was 0.979, with an average F1-score of 

0.983. The above outcomes denoted that the improved 

ResNet-U2Net had good performance in small area rule-

based occlusion FR. The recognition accuracy and F1-

score of each model in the MFR2 dataset are shown in 

Figure 9. 

From Figure 9 (a), in the MFR2 dataset, the highest 

facial recognition accuracy of FGDFME and DIP rMRF 

was 94.3% and 96.3% respectively, the lowest was 93.1% 

and 95.2% respectively, and the average accuracy was 

93.6% and 95.8% respectively. The improved ResNet-

U2Net had a minimum FR rate of 97.6% and an average 

accuracy rate of 97.9%, which was higher than other 

algorithms. From Figure 9 (b), in the MFR2 dataset, the 

highest F1-score for FGDFME and DIP rMRF were 0.956 

and 0.973, and the lowest were 0.943 and 0.962, 

respectively. The average F1-score was 0.950 and 0.967, 

respectively. The lowest F1-score of ResNet-U2Net 

improvement was 0.979, with an average F1-score of 

0.983. The True Acceptance Rate (TAR) of each model in 

different datasets is shown in Figure 10. 

According to Figure 10 (a), in the simulated occlusion 

dataset, the highest TAR of FGDFME and DIP rMRF 

were 96.2% and 98.3%, respectively, and the lowest were 

95.3% and 97.1%, respectively. The average TAR was 

95.7% and 97.6%, respectively. The TAR of ResNet-

U2Net was improved from a mini of 99.2% to a max of 

99.9%, with an average TAR of 99.5%. According to 

Figure 10 (b), in the MFR2 dataset, the highest and lowest 

TARs for FGDFME and DIP rMRF were 95.3% and 

96.8%, respectively, and 94.1% and 95.8%, respectively, 

with an average TAR of 94.6% and 96.3%. The TAR of 

the improved ResNet-U2Net ranged from 98.1% to 99.9%, 

with an average TAR of 98.5%. The above results 

indicated that the improved ResNet-U2Net had strong 

facial recognition capabilities and could effectively ensure 

the safety of scenic spots. To further analyze and improve 

the performance of ResNet-U2Net, ablation experiments 

were conducted on it. The outcomes of the ablation 

experiment are denoted in Table 1. 
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Figure 10: TAR of each model in different data sets. (Source from: Author's self drawn) 

Table 1: Results of ablation experiments. 

Model ResNet FPN U2Net Mask learning unit Accuracy/% 

1 √ × × × 92.2 

2 √ √ × × 93.1 

3 √ × √ × 94.2 

4 √ × × √ 94.5 

5 √ √ √ × 95.6 

6 √ √ × √ 96.7 

7 √ × √ √ 97.4 

8 √ √ √ √ 98.7 

 

According to Table 1, the facial recognition accuracy 

of the backbone network ResNet was only 92.2%. After 

introducing FPN, U2Net, and mask learning units, the 

facial recognition accuracy of the model significantly 

improved. Among them, U2Net and mask learning units 

had the most significant impact on model performance. 

After introducing the above two modules, the facial 

recognition accuracy of the model increased to 94.2% and 

94.5%, respectively. 

3.2 Large area occlusion face recognition 

test results 

To test the effect of the proposed FFC-GAN in repairing 

and recognizing large-area irregularly occluded faces, it 

was tested and compared with the Partial Convolution and 

Multiscale Feature Fusion (PCMSF) facial image 

restoration model, Multiscale Feature Fusion U-Net 

(MSFFU-Net), Involution facial Feature Correction 

Network (IFFR-Net), and Depth Separable Convolution 

and Hypersphere Loss (DSCHL) occlusion model. The 

software and hardware settings of the experiment are 

consistent with the above experiment and will not be 

repeated. The dataset utilized in the experiment was the 

CelebA HQ dataset, which contains 30000 facial images 

with a resolution of 1024 × 1024. To simulate irregular 

occlusion situations, various shapes were randomly used 

to occlude facial images, with an occlusion rate of over 

50%. In the experiment, the reconstruction loss weight and 

identity preservation loss weight were both 10, and the 

initial learning rate and Batchsize were 0.002 and 24, 

respectively. Firstly, the facial image restoration 

performance of FFC-GAN was tested. The Structural 

Similarity Index Measure (SSIM) and Peak Signal-to-

Noise Ratio (PSNR) of different models are shown in 

Figure 11. 
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Figure 11: SSIM and PSNR of different models. (Source from: Author's self drawn) 
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Figure 12: LPIPS and FID of different models. (Source from: Author's self drawn) 

From Figure 11 (a), the SSIMs of PCMSFF and 

MSFFU-Net were the highest at 0.828 and 0.852, the 

lowest at 0.820 and 0.842, and the average SSIMs were 

0.824 and 0.846, respectively. The SSIM of FFC-GAN 

was the lowest at 0.874, with an average SSIM of 0.878, 

which was higher than other methods. From Figure 11 (b), 

the PSNRs of PCMSFF and MSFFU-Net were the highest 

at 28.3dB and 31.3dB, and the lowest at 27.0dB and 

30.0dB, respectively, with average PSNRs of 27.6dB and 

30.6dB, respectively. The PSNR of FFC-GAN was the 

lowest at 34.1dB, with an average PSNR of 34.7dB, which 

was also higher than other algorithms. The above results 

indicated that the facial image restoration quality of FFC-

GAN was superior to other algorithms. The Learned 

Perceptual Image Patch Similarity (LPIPS) and Frechet 

Inception Distance (FID) of different models are shown in 

Figure 12. 

According to Figure 12 (a), the minimum and 

maximum LPIPS of PCMSFF and MSFFU-Net are 0.242 

and 0.223, respectively, and 0.249 and 0.233, respectively. 

The average LPIPS was 0.245 and 0.227. The maximum 

LPIPS of FFC-GAN was 0.202, and the average LPIPS 

was 0.196, which was much lower than other methods. 

According to Figure 12 (b), the maximum FID of 

PCMSFF and MSFFU-Net were 12.9 and 12.1, and the 

minimum FID was 12.2 and 11.2. The average FID was 

12.5 and 11.6, respectively. The maximum FID of FFC-

GAN was 9.8, and the average FID was 9.4, which was 

also lower than other algorithms. The above results 

indicated that FFC-GAN could achieve high-quality 

restoration of large-area irregularly occluded face images. 

The facial recognition accuracy and TAR of different 

models are shown in Figure 13. 

According to Figure 13 (a), the highest and lowest 

facial recognition accuracies of IFFR Net and DSCHL 

were 86.4% and 88.5%, respectively, and 84.7% and 

87.3%, respectively. The average accuracies were 85.6% 

and 87.9%, respectively. The recognition accuracy of 

FFC-GAN was the lowest at 90.5%, with an average 

accuracy of 91.0%, which was higher than other 

algorithms. From Figure 13 (b), the TAR of IFF-Net and 

DSCHL were the highest at 88.3% and 90.3% 

respectively, the lowest at 87.2% and 89.1% respectively, 

and the average TAR was 87.7% and 89.6% respectively. 

The lowest TAR of FFC-GAN was 92.1, with an average 

TAR of 92.6%, which was also higher than other 

algorithms. The above results indicated that FFC-GAN 

could achieve accurate recognition of faces with large 

areas of irregular occlusion. To further analyze the 

performance of FFC-GAN, ablation experiments were 

conducted on it. The findings of the ablation experiment 

are denoted in Table 2. 
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Figure 13: Face recognition accuracy and TAR of different models. (Source from: Author's self drawn) 
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Table 2: Ablation results. 

Model FFC Spectral Transformer Residual block SSIM Accuracy/% 

1 × × × 0.725 84.4 

2 √ × × 0.796 88.2 

3 × √ × 0.771 87.5 

4 × × √ 0.795 87.9 

5 √ √ × 0.827 88.9 

6 √ × √ 0.846 89.2 

7 × √ √ 0.859 89.8 

8 √ √ √ 0.878 91.0 

 

According to Table 2, after introducing FCC, Spectral 

Transformer, and residual blocks, the SSIM and accuracy 

of the model significantly increased, reaching 0.878 and 

91.0%, respectively. Among them, FFC and residual 

blocks had the most significant impact on model 

performance. After introducing FFC and residual blocks, 

the SSIM of the model increased to 0.796 and 0.795, 

respectively, and the accuracy increased to 88.2% and 

87.9%, respectively. 

4 Discussion 
In recent years, with the booming development of the 

tourism industry, the number of tourists in scenic spots has 

been continuously increasing, which has brought many 

challenges to scenic spot management. The traditional 

management method of scenic spots has problems such as 

low efficiency, easy errors, and inability to monitor in real 

time, which not only affects the tourist experience but may 

also lead to safety hazards. The advent of artificial 

intelligence, computer vision, and deep learning 

technologies has precipitated a substantial enhancement in 

the security, convenience, and accuracy of facial 

recognition technology [24-25]. Real-time monitoring of 

personnel within the scenic area can be achieved through 

facial recognition technology, detecting abnormal 

behavior in a timely manner and issuing alerts. In addition, 

facial recognition systems can quickly locate missing 

persons or lost items, enhancing the emergency response 

capabilities of scenic spots. However, due to the complex 

environment and huge pedestrian flow in scenic spots, 

facial recognition is difficult [26]. Therefore, to achieve 

accurate recognition of faces in scenic area monitoring, an 

FR method based on improved ResNet-U2Net was 

proposed to address the problem of FR under small area 

rule occlusion such as sunglasses and masks. A 

recognition method based on FFC-GAN was proposed for 

the FR problem of large irregular occlusion. 

For the improved ResNet-U2Net, experimental results 

showed that its average recognition accuracy and F1-score 

in simulated occlusion datasets were 98.7% and 0.983, 

respectively, with an average TAR of 99.5%, both higher 

than FGDFME and DIP rMRF. In the MFR2 dataset, the 

average recognition accuracy and F1-score of the 

improved ResNet-U2Net were 97.9% and 0.967, 

respectively, with an average TAR of 98.5%, which was 

also higher than other algorithms. Haider et al. designed a 

variational invariant FR method based on multi-task 

learning, which redefines FR by combining temporal 

dependence and temporal independence to decompose the 

face into age and residual features. The experimental 

results showed that this method could achieve accurate 

recognition of faces of different races [27]. However, the 

above methods had low accuracy in recognizing occluded 

faces, while the proposed method could achieve accurate 

recognition of faces under objects such as masks and 

sunglasses. Akheel T S et al. proposed using optimized 

projection matrices in linear collaborative regression 

classification to improve recognition accuracy, and 

introduced a whale lion combination model to optimize 

the projection matrix. The findings denoted that the facial 

recognition accuracy of the model could reach 91.2% [28]. 

Compared to the above algorithms, the improved ResNet-

U2Net proposed in the study had higher facial recognition 

accuracy. This is because the improved ResNet-U2Net 

introduces a global convolution module, allowing the 

model to capture a larger range of global information. 

Meanwhile, the model also introduced FPN, effectively 

enhancing its multi-scale feature extraction capability. In 

addition, the study also introduced a mask learning unit, 

which removes the features of occluded areas by 

generating multi-level masks to enhance feature 

representation. 

For FFC-GAN, its average SSIM and average PSNR 

were 0.878 and 34.7 dB, respectively, which were higher 

than PCMSF and MSFFU-Net. The average LPIPS and 

FID were 0.196 and 9.4, respectively, which were lower 

than other algorithms. FFC-GAN could achieve accurate 

restoration of large-area irregularly occluded facial 

images. In terms of facial recognition performance, the 

average accuracy and TAR of FFC-GAN were 91.0% and 

92.6%, respectively, both higher than existing advanced 

algorithms. Yan L. et al. proposed a methodology for 

optimizing image feature compensation coefficients. This 

methodology is based on an enhanced simulated annealing 

algorithm, the purpose of which is to enhance the 

recognition rate of facial recognition systems. The 

findings indicated that when the training image was 

designated as 6, the recognition rate attained a maximum 

of 100% [29]. Compared to the above methods, although 

the proposed method had lower recognition accuracy, it 

could effectively address the problem of large-scale 

irregular facial occlusion. Zaaraoui et al. put forward an 

FR method based on the mini value string, utilizing the 

mini value string as the face feature extractor for face 

representation. The findings demonstrated that the method 

exhibited high recognition accuracy and efficiency [30]. 

However, compared to the methods proposed in the 

research, the above methods significantly reduced the 
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accuracy of FR under large-scale irregular occlusion 

conditions. The reason why the proposed FFC-GAN can 

achieve accurate recognition of large-area irregularly 

occluded faces is that this method can accurately repair 

occluded images through GAN and accurately restore 

image texture details through FFC. 

In summary, the improved ResNet-U2Net and FFC-

GAN can achieve accurate recognition of occluded faces, 

among which the improved ResNet-U2Net has high 

recognition accuracy for small area regularly occluded 

faces. FFC-GAN can effectively repair large areas of 

irregularly occluded facial images, thereby achieving 

accurate facial recognition. The above two methods 

provide strong support for the development of facial 

recognition technology for scenic spot monitoring, which 

helps to achieve intelligent management of scenic spots. 

However, due to the high number of parameters and 

computational complexity of the proposed model, it 

requires high computing power from the server, making 

the deployment of the model difficult. Therefore, in the 

future, the model structure will be optimized to minimize 

the number of parameters and computational complexity 

of the model, so that it can be deployed on platforms with 

limited processing capabilities such as mobile devices and 

embedded devices. 

5 Conclusion 
A small area regular occlusion FR model based on 

improved ResNet-U2Net and a large area irregular 

occlusion FR model based on FFC-GAN were proposed 

to address the issue of FR in scenic spot monitoring. The 

improved ResNet-U2Net achieved accurate recognition of 

small area regularly occluded faces by introducing global 

convolution, FPN, and mask learning units. The findings 

denoted that the average recognition accuracy and F1-

score of the improved ResNet-U2Net reached 98.7% and 

0.983, respectively, with an average TAR of 99.5%. The 

FFC-GAN model utilized GAN and FFC modules to 

repair and recognize large-area irregularly occluded facial 

images. The findings denoted that the average SSIM and 

PSNR of the model were 0.878 and 34.7dB, respectively, 

and the average accuracy and TAR were 91.0% and 

92.6%, respectively, which were better than existing 

advanced algorithms. The above results indicated that 

improved ResNet-U2Net and FFC-GAN could achieve 

accurate recognition of facial images under different 

occlusion conditions, providing strong support for the 

development of facial recognition technology for scenic 

spot monitoring. However, the model has high parameter 

count and computational complexity, which makes it 

impossible to deploy on mobile devices, greatly limiting 

its application scope. Therefore, in the future, the model 

will be lightweighted to reduce its complexity. 
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