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An intelligent diagnosis and calibration model that integrates multi-source sensing data is constructed to
address the measurement errors caused by multi-source interference in transformers. The system
integrates multidimensional sensing information such as current, voltage, temperature, and vibration
through a weighted feature fusion mechanism, constructs a DAG to represent the causal relationship
between key interference variables, and embeds a path scoring and optimization algorithm based on
dynamic programming to improve the real-time and accuracy of fault chain identification. The model is
deployed at the edge on an ARM architecture embedded platform, with lightweight structure and
engineering feasibility. The measured data comes from 110kV and 220kV substations. The experimental
results show that the recognition accuracy reaches 96.2%, the average response time is 275ms, and the
computational resource utilization rate is 29.6%. It exhibits good robustness and output stability in
complex scenarios such as electromagnetic interference, temperature fluctuations, and load disturbances.
This model provides a feasible path and deployment basis for achieving high-precision metering and
real-time intelligent operation and maintenance in modern power systems.

Povzetek: Razvita je inteligentna diagnosticna in kalibracijska resitev za merilne napake
transformatorjev. Opisana je nova metoda vecizvorne fuzije senzorjev, DAG-kavzalne poti in
dinamicnega tockovanja za optimizacijo. Model na robnih ARM-napravah doseze visoko kvaliteto,
odzivnost ter robustnost v kompleksnih okoljih.

node", and "diagnostic chain" in the early stages of
modeling, in order to facilitate understanding of the
model structure and path mechanism later on: (1)

causal chain: refers to the causal relationship path
between variables represented by DAGs in the model.
Each path represents a causal inference chain from the
interference source to the final measurement error. (2)
Task node: refers to a node in the path optimization
mechanism that serves as a decision point, with each

1 Introduction

The current research on transformer errors is mostly
focused on the fault identification and modeling
mechanism of transformer equipment. Previous work
has shown that dissolved gas, multidimensional
electrical parameters, and other data can be used as
effective feature inputs to construct diagnostic models.
Taking Sakini et al. (2024) as an example, they used

machine learning methods based on DGA signals to
model fault features and verified the high sensitivity of
sensor data to fault state judgment. However, due to its
constant exposure to high voltage, high temperature, and
electromagnetic noise, the output data of the transformer
is easily affected by various factors, such as temperature
changes in the environment, nonlinear saturation of
ferromagnetic materials, unstable connections, and
unstable currents, which can cause serious measurement
errors. These types of errors have the characteristics of
dynamic development, nonlinear accumulation, and
environmental dependence, which are difficult to detect
and correct through traditional methods, and may lead to
misoperation, energy waste, or equipment damage.
In order to enhance the clarity of the model logic

and consistency in terminology usage, this article
defines core concepts such as "causal chain”, "task

node representing a specific diagnostic task or path
selection. The system dynamically selects the optimal
path through the analysis of task nodes. (3) Diagnostic
chain: refers to a chain formed by connecting multiple
paths in the process of error diagnosis. Through path
selection and scoring mechanisms, it helps the system
locate the source of error and optimize path selection.

In further research, different scholars have
attempted to introduce various data fusion mechanisms
into the fault recognition process. For example, Zhou et
al. (2024) proposed a hybrid model combining random
forest and PSO-BP AdaBoost, which enhances feature
expression and generalization ability on the basis of
traditional data-driven algorithms. This detection method
has a certain effect under stable working conditions, but
it generally has problems such as reaction delay, poor
error adaptability, and limited structural flexibility,
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which cannot effectively cope with the complex
instantaneous error generation patterns in actual
operation processes. Some errors exhibit long-term
accumulation  and  instantaneous  disturbance
characteristics, and traditional models are difficult to
capture their internal correlations and evolution
processes. Especially in the face of new electricity
demands such as intelligent power grids and the
integration of a large number of new energy sources,
there is a demand for fast, high-precision, and strong
robustness in the power metering system, which
requires the metering system to have self diagnosis
and self correction capabilities.

With the rapid development of industrial Internet
of Things, edge sensing, and high-precision sensing
technology, the current working environment of
transformers can now obtain sensing information from
multiple aspects such as temperature, humidity,
voltage, current, vibration, magnetic field, frequency,
etc. In terms of system deployment, Shanu and Mishra
(2024) combined statistical feature extraction with
temporal path analysis to establish a two-stage
diagnostic model suitable for on-site deployment,
providing a feasible path for the engineering
implementation of the model. However, due to the
synchronization of time, different dimensions, and the
influence of noise, how to effectively extract, fuse,
and dynamically modify this information has become
an important key technical issue in current research
and practice.

This article proposes an intelligent detection and
correction model for transformer measurement errors
under multi-source input, aiming to improve the
accuracy, response speed, and resource adaptability of
error recognition. Construct an error causal diagram to
depict the relationship between multi-sensor data and
error sources, and introduce a dynamic path
optimization mechanism to improve the efficiency of
anomaly tracing. This study assumes that causal graph
modeling and path pruning mechanisms can reduce
diagnostic latency by more than 50% compared to
traditional rule driven models while maintaining
recognition accuracy, while significantly reducing
system resource overhead. To adapt to engineering
deployment, the system integrates lightweight
strategies and executable path optimization algorithms,
balancing expressive power and deployment
feasibility. Under weak label conditions, the model
achieves a recognition accuracy of 96.1%, a
diagnostic delay of less than 275ms, and a resource
utilization reduction of 41.7% compared to graph
neural methods, making it suitable for practical
application scenarios in complex power systems.

This study has strong operability both in theory
and for real-world problems, providing necessary
technical support for high-precision measurement and
maintenance of intelligent power equipment, and has
good prospects for engineering promotion.

2 Related work
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As an important bridge connecting the primary and
secondary power grids, the measurement error of
transformers directly affects the system operation
monitoring, protection action reliability, and fairness of
electricity billing. In the context of multi-source
disturbances and complex working conditions,
traditional single variable and static parameter diagnostic
methods are no longer able to meet the increasing
demand for measurement accuracy. In recent years, the
method of identifying transformer errors by integrating
multi-source sensor data has gradually become a research
hotspot, mainly presenting three evolutionary paths: first,
low-power sensor detection methods designed based on
physical characteristics; The second is the intelligent
recognition path that integrates multi model optimization
and adversarial learning; The third is the multi-source
data fusion and quality enhancement modeling method
for edge working conditions. This article summarizes the
current mainstream paths from the three directions
mentioned above, and analyzes their advantages,
disadvantages, and applicable boundaries based on this.

Firstly, in terms of optimizing the sensing layer, Mei
et al. (2024) proposed a transformer fault identification
method based on a low-power gas sensing resistor array.
This method monitors key gases (such as H2, CO, C2H )
in real-time by setting specific material sensitive
components, and uses miniaturized electrochemical
modules to achieve multi-channel detection of fault gases,
thereby assisting in inferring the electrical path of
transformer abnormalities. The experiment shows that
the sensing array can still maintain stable output in
low-temperature drift and high interference scenarios,
with an error variation range controlled within + 1.7%,
and has good adaptability for field deployment. However,
this method still relies on the indirect correlation between
gas concentration and fault type, and is limited by
external factors such as ambient temperature and oil
aging. Its response capability under complex load
switching and dynamic nonlinear disturbance conditions
is still insufficient.

Secondly, in terms of integrating intelligent models,
Guan et al. (2024) constructed a transformer error
diagnosis model based on the joint modeling of
Generative Adversarial Networks (ACGAN) and Grey
Wolf  Optimized  Support  Vector  Machines
(CGWS-LSSVM). This method utilizes ACGAN to
synthesize high-quality feature samples, effectively
solving the problem of insufficient fault samples;
Meanwhile, the CGWO algorithm is used to optimize the
parameters of the support vector machine to enhance the
model's generalization ability. Experimental results have
shown that under four typical operating conditions, the
diagnostic accuracy of this method has been improved by
an average of 6.3%, especially with strong robustness
under low-frequency harmonic interference and system
disturbance changes. However, this type of method has
significant disadvantages in terms of model structure
complexity, and requires higher adaptability between
computing resources and device platforms. Deploying it
at the edge of the power grid still faces a trade-off
between real-time performance and stability.
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Thirdly, in order to improve the overall quality of
multi-sensor data fusion, Tiziana and Roberto (2022)
conducted a study on data quality assessment of
multi-sensor  fusion processes. It proposes a
combination of supervised learning and weighted
strategies to dynamically score the quality of data
collection, missing value imputation, noise
interference, and other factors, and uses an ensemble
learning framework to achieve reliable extraction of
fault information. Research has shown that fusion
models have good robustness to outliers, time drift,
and repeated measurement data, and can construct
more stable input feature sets in high-frequency
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perception tasks. However, this study mainly focuses on
the data preprocessing stage, and the modeling ability of
the source of transformer errors is relatively weak. It still
needs to be used in conjunction with physical models or
task driven mechanisms.

Based on the above analysis, in order to
comprehensively compare the capability structure of
current mainstream research paths, this paper extracts
representative studies and constructs a structured method
comparison table (see Table 1), clarifying their
advantages and disadvantages from dimensions such as
diagnostic accuracy, robustness, model interpretability,
and deployment performance.

Table 1 : Comparative analysis of mainstream transformer error identification methods

. . Deploym
Method Representative (I?lagnostl robustn Mt()e?(zmlret ent Applicable Citing
Type model accuracy ess ability ﬁggforma scenarios Sources
Static
Physical Low power gas working
A sensing resistor ; 1N
modeling model (Mei et al medium weak strong centre condition [4]
method 2024) N error
detection
i Error
Fusion ACGAN+CGWO o
Perceptio LSSVM (Guan et higher centre centre centre recognition in (5]
n Method | al., 2024) disturbed
" scenarios
Data Data Quality _ (%“nfilrg}’ and
Elrjmshlggce I\D/Ir(;\égl]ir':gsjs(llgigiana higher strong strong {\gelgwm inference of [6]
ment etal., 2022) multi-source
’ sensor data
Real time
This identification This
DAG+Path Scoring of dynamic article
rrﬁgsﬁggh Fusion Model tall strong strong tall errors at the propose
edge of the S
power grid

From the table, it can be seen that a single physical
model has good explanatory power in specific
scenarios but lacks flexibility. The fusion of
intelligent methods improves recognition ability but is
constrained by computational resources in actual
deployment. The data augmentation path improves
stability but lacks structural awareness. Current
research mainly focuses on optimizing model
structures or training mechanisms, and lacks
collaborative design for sensing chains, causal
relationship construction, and deployment
availability.

In summary, in order to break through the
existing technological bottlenecks, this paper designs
an intelligent error recognition system that integrates
DAG causal modeling and dynamic path scoring
mechanism. It not only focuses on the collection and
discrimination of error characteristics, but also pays
more attention to the traceability and real-time
deployment of error generation paths, aiming to
provide a comprehensive technical path for accurate
modeling and practical deployment of transformer
errors in high-voltage scenarios.

3 Suggested solutions
3.1 Multi source data fusion

The measurement error of transformers is affected by
various factors such as temperature and humidity, current,
magnetic field, and iron core saturation. Traditional
models often ignore these interferences, resulting in
inaccurate diagnosis. Liu et al. (2024) proposed a method
based on causal graph neural network, which can more
effectively identify the causes of errors and enhance the
ability to trace features. To improve the accuracy and
practicality of diagnostic systems, it is urgent to establish
a hierarchical and responsive multi-source data fusion
mechanism.

In this study, modular multi-channel information
acquisition technology was used, and a terminal
equipped with various sensors such as voltage, current,
temperature, and humidity was constructed to monitor
the parameters of the entire equipment body, power
supply operation, and environmental impact. Due to the
different sampling frequencies and accuracies of various
types of information, simply mixing them together may
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inevitably result in chaotic input. Therefore, the
system first uses temporal synchronization technology
to achieve sample matching, and standardizes the
conversion of each type of information separately, in
order to make the data format have a unified
representation in the model.

Considering  the  computational  resource
limitations of model deployment and engineering
feasibility, the fusion strategy adopts a weighted
feature integration approach. This study selected four
basic variables that are most sensitive to error

: I .
response: effective current value ™S | ambient
temperature T mean vibration acceleration & and

mean primary voltage U . After normalization, fused
feature quantities were constructed:
F =W 'ims+W2'T+W3 (’i+W4 ﬁ (1)

I _ ~
Among them, ™S | T, a, and U are the
normalized current values of various sensor data, and

Wy Wy are the weight coefficients. The initial setting

of weights is based on empirical statistics and
engineering measurement analysis, and can be
adaptively adjusted by model parameters in the

subsequent training process. Fusion feature F
maintains low dimension in structure, but can cover
multi-dimensional disturbance information, which is
easy to deploy in edge computing nodes or low-power
embedded chips in engineering applications.

In order to further improve the recognition and
anti-interference ability of the fused features, noise
filtering and dynamic outlier detection mechanisms
are introduced in the data processing stage, and local
sliding window smoothing is applied to the mutation
points. At the same time, a simplified regularization
module is introduced in the input layer to compress the
unstable features caused by the input with severe
fluctuations.

In terms of data format, the model adopts a fixed
window sliding strategy to construct time series
samples, and each fused feature point is composed of
data from several consecutive time points, thus
forming a dynamic expression of the error trend. This
method preserves the evolutionary information during
the error formation process, which helps to extract the
upstream and downstream causal relationships during
subsequent error chain modeling.

Overall, this fusion solution effectively avoids
the problem of expansion when dealing with
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multi-dimensional inputs in deep learning models by
accurately capturing key on-site information. It has good
physical interpretability and implementability, and does
not rely on a single device or route. It has flexible
deployment capabilities and can adapt to different
transformer types and installation environments,
providing a universal, efficient, and quantifiable data
input interface for subsequent error causal structure
construction and route optimization.

3.2 Error chain modeling

The fusion feature F forms the basis for all input
variables in the subsequent modeling process, serving as
one of the upstream dependent variables of node N5 in
the causal path. This article maintains the structural
dimension of fusion feature F consistent with the original
normalized variables, ensuring the integrity and
consistency of the input structure and avoiding the
problem of inconsistency between path variable selection
and model structure.

Abdelmoumene et al. (2023) pointed out that the
measurement error of transformers is often the result of
multiple disturbance factors acting together in the time
and logical domains, rather than being caused by a single
variable. For example, in practical scenarios,
environmental temperature may indirectly affect current
changes by affecting coil resistance, while mechanical
vibration may indirectly affect magnetic field stability by
affecting the magnetic gap of the iron core. In order to
establish trends that describe the interrelationships
between multivariate variables and enhance the ability to
trace errors in reverse, this paper introduces an error
chain modeling strategy. By constructing a network
structure diagram of causal logic relationships between
variables, a systematic modeling of error formation paths
is carried out.

This method is based on directed acyclic graph
design, treating each key sensing variable as a node in the
graph, and representing the influence relationship
between different variables as edges in the graph. Each
edge contains directionality and edge weight, which are
used to represent the order of causal effects and the
strength of influence, respectively. The graph structure
can be manually initialized and constructed, or trained
and updated through mutual information, delay
correlation, or Bayesian network learning supported by
engineering data. In practical modeling, this article
summarizes five types of sensors input variables into five
primary nodes and designs a causal chain structure basic
model as shown in Table 2.

Table 2 : Key node design and variable description for error chain modeling

Node Corresponding
node name data sources Explanation of Engineering Mechanism
number path function
Affects the degree of magnetic saturation, which in turn
N1 RMS current sensor N1 — N5

affects the output waveform
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Temperature changes affect conductor resistance and

ambient temperature N2 — N1, N2 — interference current (N1); High temperature may also
N2
temperature sensor cause equipment drift, directly affecting the residual value
(N5)
Structural vibration changes the gap between the iron
N3 — N4,N3 —
N3 Vibration intensity | Accelerometer cores (N3 — N4), which can also lead to poor contact and

signal mutations (N3 — N5)

Magnetic flux
Magnetic flux
N4 acquisition
fluctuation rate

N4 — N5

Directly affecting the magnetic flux induced voltage and

triggering measurement deviation

module
Compare
Residual value of Performance of measurement errors in transformers as
N5 measurement Output node
difference training targets for the model
values

According to the above structure, the error chain
model can be represented as a typical shallow directed
acyclic graph, with the residual value (N5) as the final
output node, and the upstream path forming a
conduction structure from multiple sources of
disturbances converging to the error expression. To
achieve accurate prediction of N5, this paper adopts
the MLP model for modeling. The input is the fused
features of all upstream variables pointing to N5 in the
causal graph. The model includes two hidden layers,
with 64 and 32 nodes respectively, an activation
function of ReLU, and an output layer of single node
linear regression units. MSE is used as the loss
function during model training, and edge weight
initialization is based on mutual information
estimation. During the training process, it is
dynamically updated together with MLP weights
through backpropagation mechanism to achieve the
unity of structural interpretability and predictive
performance. During the model training process, a
total of 200 training rounds were set, using the Adam
optimizer with an initial learning rate of 0.001 and a
Batch Size of 32. All feature inputs are standardized
before training, and the training set and validation set
are divided in an 8:2 ratio. The validation loss is
monitored after each round of training to prevent
overfitting.

In the graph structure construction scheme, the
author investigated Bayesian network structure
learning algorithms including PC and GES. However,
considering the requirements for computational

complexity, model response time, and structural
controllability in engineering deployment, this type of
algorithm was ultimately not adopted. Instead, a
lightweight mapping strategy based on mutual
information was chosen to improve the overall system
deployment efficiency and real-time performance. To
enhance the logical interpretability and path tracing
ability of the model, this paper further summarizes the
typical error propagation paths in the DAG structure, as
follows: Path 1 is "ambient temperature (N2) — effective
current value (N1) — residual difference value (N5)",
which reflects the indirect chain effect of temperature
fluctuations  affecting conductor resistance and
interfering with current measurement; Path two is
"vibration intensity (N3) — magnetic flux fluctuation
rate (N4) — residual value of ratio difference (N5)",
which reveals the induction deviation caused by
magnetic flux instability caused by mechanical
disturbance; Path three is "vibration intensity (N3) —
residual value of ratio difference (N5)", which reflects
the direct impact of structural disturbance on errors.
These paths can serve as dynamic diagnostic links during
model operation, coupled with path scoring and selection
mechanisms, to achieve efficient and accurate anomaly
localization and response. The error causal network
structure constructed in this article is shown in Figure 1.
The nodes in the figure represent key sensing variables,
the edges represent causal paths between variables, the
arrow direction represents the direction of causal
propagation, and the edge weights are used to reflect the
strength of the influence between variables.
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Figure 1: Error causal DAG structure diagram composed of multiple sensor variables

This causal structure has two important functions:
firstly, to improve the interpretability of the error
diagnosis model, so that the error results no longer
rely solely on "black box prediction”, but can be
clearly traced back to disturbances in a certain sensing
variable chain; The second is to provide path priority
clues in the subsequent correction mechanism, that is,
nodes at the top of the error chain and with high
weights should be given priority as intervention entry
points to improve the response efficiency and resource
utilization efficiency of error correction.

In the experimental stage, compared with
traditional unstructured modeling methods, the causal
chain structure model has stronger diagnostic stability
when multiple disturbances occur simultaneously. The
average error recognition accuracy improved by 12.6%
in 20 sets of measured data, and the average response
time for error localization was shortened by 0.47
seconds. The overall results indicate that error chain
modeling not only improves the logical integrity of the
model structure, but also provides a stable basis for
subsequent path optimization and dynamic correction.

3.3 Path algorithm optimization

After the construction of the error causal chain is
completed, it is necessary to deal with complex
situations caused by multiple factors. The interference
source does not always come from the same location
and may not necessarily affect the error in the same
path. XIAOQIANG WANG (2024) proposed that
when the processing resources of a system cannot be
concentrated on a few important factors in a short
period of time, it is easy to cause diagnostic delays,
resource waste, and judgment errors. In order to
improve the timeliness and accuracy of the diagnostic
model during actual operation, adaptive path
arrangement rules are added to the diagnostic model to
dynamically adjust the internal path order.

LEIMING MA et al. (2024) proposed that the
optimization process of error paths can be based on the
correlation weights between variable nodes in the

error chain. Based on the current trend of input signal
changes and stable patterns in historical samples, the
priority order of the influence path can be dynamically
determined. When traversing the structure, the system
first identifies the variable node with the most obvious
abnormal fluctuations and determines whether it has a
defined upstream propagation path. If it exists, the path
will be included in the candidate path set; If it does not
exist, the path extension operation will not be executed
temporarily. All candidate paths will be calculated under
the same scoring model, and the system will prioritize
selecting the path with the highest interference impact,
shortest propagation chain, and strongest variable
correlation as the main diagnostic chain for execution.
The model continuously receives updated signals during
operation, adjusts the path score in real-time, and ensures
that the current judgment chain always maintains the
optimal state.

The scoring criteria in path judgment include the
number of variables in the path, historical correlation
levels between variables, and diagnostic validity records
in the transmission chain. The fewer nodes in the
transmission chain, the shorter the diagnostic response
time; The higher the relevance, the clearer the
communication logic; The higher the diagnostic
effectiveness, the more targeted the intervention
operation. Taking into account these three parameters,
the system can quickly identify suspicious intervention
sources at the beginning of error occurrence and use them
as input basis for subsequent correction steps.

On the basis of constructing the diagnostic path
structure, the system needs to achieve real-time scoring
and dynamic reconstruction of the path between
interference variables and error results. Path filtering,
priority judgment, and chain conversion require multiple
modules to work together, forming a complete closed
loop from signal acquisition, candidate path generation,
weight update, diagnostic output to model feedback. The
structural embedding relationship of this path
optimization mechanism in the system is shown in Figure
2.
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Figure 2 : Structural embedding diagram of path algorithm optimization in error diagnosis system

The diagram represents signal triggered input, path
recognition and scoring mechanism, dynamic path
switching strategy, and diagnostic execution feedback
module from top to bottom. The data transfer between
each layer is completed through standard interface
protocols, and a bidirectional update structure is
formed between the scoring module and the database,
achieving adaptive path selection based on actual
operating status. The modules support each other,
ensuring the integrity, real-time performance, and
stability of path optimization logic in actual
deployment.

In the engineering testing scenario, the system is
deployed in a certain type of high-voltage measuring
mutual inductance device and records the error
response path under different environmental
disturbances and working conditions for a long period
of time. It is found that when the structure has

dynamic path adjustment function, the error recognition
response time is significantly shortened and the
diagnostic accuracy is significantly improved. When the
error signal undergoes a sudden change, the model
quickly jumps to the path segment dominated by the
influencing factors to perform analysis, avoiding a large
number of invalid or redundant judgment processes.

Through path algorithm optimization mechanism,
error diagnosis no longer relies on fixed processes or
static structures. Under different operating conditions,
the system can automatically switch to a more targeted
diagnostic path, thereby improving system sensitivity,
saving resources, and enhancing the interpretability of
diagnostic logic. The diagnostic process is more in line
with the on-site operation status of the transformer, with
engineering practicality and deployability, which can
stably support the subsequent error correction model
work and provide structural constraints and input support
for it.
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AlgorithmName:PathOptimizationBasedOnDynamicScoringlnput:

Input:DAG graph structure GWV.E), Sensor input vector X(1), path scoring

record table P

Output:Current optimal diagnostic path Path_optimal

Pseudocode:

(1) Initialize candidate path setC <@

(2) For each variable nodeV =¥V

a. If X(¢)[v] shows abnormal fluctuation:

1. Traverse all upstream paths Path v

ii. AddPath v to setC

(3) Foreach pathe C
a. Compute path

score: Scorel path)= o x correlatian + B x effectiveness — y x pathlength

(4) Select the highest scored path:

patch_ potimal < arg max|Score| path:]:]. pathe C

(5) ReturnPath_optimal

3.4 Model integration operation

The construction of error identification and correction
models must have integrability in order to form a
stable and efficient deployment mechanism in the
actual operation scenario of transformers. To meet
engineering  requirements such as real-time
performance, accuracy, and resource constraints, this
study proposes a lightweight integrated operation
framework for edge deployment, which integrates
multi-source data fusion, error causal chain modeling,
path scoring optimization, and correction feedback
modules into a unified package, and achieves overall
scheduling control and dynamic iterative model
updates.

The model integration operation framework
mainly includes four core levels: input perception
layer, structural modeling layer, path scheduling layer,
and control execution layer. The input perception
layer is responsible for collecting and preprocessing
on-site sensing data; The structural modeling layer
constructs an error causal diagram structure and
dynamically updates the corner coefficients between
each node; The path scheduling layer completes the
execution of path scoring, judgment, and jump logic;
The control execution layer transmits the diagnostic
results to downstream controllers or operation and
maintenance systems to achieve error correction
closed-loop. Each layer is connected through a unified
interface standard, and all computing tasks can be
deployed and executed in embedded edge nodes or
on-site control units, meeting the conditions for
engineering implementation.

During the operation of the model, the state update
mechanism needs to dynamically adjust the model
structure parameters and judgment conditions based on

time series data. Assuming the current time is t, the
previous model calculation output is S and the sensor

, . F .. .
fusion result is ", the model state transition function
can be expressed as:

& = S E(t=1) + (1 - 6) . \P(Ft) (2)

Among them, & represents the estimated error
value at the current time, and l//(Ft)is the predicted

output value of the fused feature vector Ft processed by

the mapping function. The Y tunction is a single-layer
feedforward neural network structure, consisting of one
hidden layer and ReLU activation unit, used to extract

error signal trends from the current fused features. The
!

. . . . ko4
output is an estimated value in scalar form, with ~t.

o€ [0’ ]as the smoothing coefficient, used to adjust the
weight relationship between the current output and the
historical state. The network parameters are jointly
trained by the causal chain modeling and path

N F
optimization module to ensure that l//( t) can
accurately reflect the error causal relationships and
evolutionary paths hidden in the fused features.

The error correction control strategy is integrated
into the control execution layer, which automatically
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matches the corresponding correction scheme based
on the current error level and path node weights. It is
divided into three types of strategies: limit adjustment,
sensitivity correction, and bypass switching. The
control interface is connected to the on-site
measurement unit through a protocol adapter, with
functions such as instruction issuance, parameter
replication, and historical tracking, ensuring that the
calibration strategy is implemented in the actual
operation of the transformer.

In order to ensure the stability and sustainable
operation capability of the integrated model, the
system also designed anomaly detection and fault
tolerance mechanisms. When the perception layer
detects input data breakpoints, model drift in the
structural layer, or response lag in the execution layer,
the system will trigger the backup model loading
program, call the standard error diagnostic template
for temporary replacement, and retain the current state
for subsequent model parameter correction.

The integrated operating architecture is deployed
and tested in an engineering verification environment,
and the on-site platform is built on domestically
produced embedded main control hardware, using
ARM architecture chips for actual inference
calculations. The test results show that, without
relying on external cloud resources, the model can
stably complete the tasks of fusion, scoring, path
judgment, and correction execution in each round of
data refresh cycle, with an average response delay
controlled within 300ms, meeting the requirements of
actual  transformer dynamic  monitoring and
correction.

In summary, the integrated operation mechanism
of the model not only completes the integration of
error identification and correction functions, but also
ensures the feasibility of the model structure in
engineering environments. Through mechanisms such
as hierarchical deployment, parameter updates,
instruction control, and fault-tolerant protection, the
model can be stably embedded in the measurement
and control process of the power system, achieving
error closed-loop diagnosis and accurate correction
driven by fusion perception.

4 Results
4.1 Dataset

This study selected three groups of voltage and current
transformers under a certain 110kV substation as the
main experimental objects, deployed multi-source
sensor modules, including temperature and humidity
sensors, vibration accelerometers, conductor surface
current sensors, and fiber optic temperature array
devices, to form a multi-channel data acquisition
system. The data recording period covers all seasons
of spring, summer, autumn, winter, with a sampling
frequency of 1Hz. A total of about 2900 hours of
time-series data were obtained, covering three typical
operating conditions: normal operation, slight
disturbance, and abnormal fluctuations.
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At the same time, the daily maintenance data of the
joint substation and the factory calibration records
provided by the equipment manufacturer are used to
construct error labels, including key indicators such as
ratio difference and phase angle offset. To train and test
the model, the original samples were divided into stages
using a 7:3 ratio to ensure balanced coverage of each
working condition. All data are processed through
unified denoising and normalization standardization to
facilitate model structure recognition. This dataset can
truly reflect the changes in transformer errors under the
interaction of multiple factors during on-site operation,
and has good engineering representativeness and
repeatability, providing a reliable basis for subsequent
error diagnosis and correction models.

4.2 Data preprocessing

To improve the generalization ability and convergence
efficiency of the diagnostic model, this study
implemented a systematic preprocessing process before
multi-source sensor data entered the training phase.
Firstly, the high-frequency noise signal is smoothed
using the sliding window mean method to enhance the
trend of key features; Secondly, z-score normalization is
used to deal with the data scale differences of different
sensing channels, unify the distribution of variables, and
improve the sensitivity of the model to abnormal
deviation. The normalization formula is as follows:

Xz% (3)

Among them, X represents the original sample, and

H and O are the mean and standard deviation of the
variable, respectively. For time period data with
short-term  loss, adjacent temporal interpolation
algorithm is used to fill in and ensure sequence integrity.

In addition, for the nonlinear distribution
characteristics of ratio difference and phase angle in
labeled data, segmented scaling and logarithmic mapping
are performed to improve the fitting stability of the error
regression model. The final preprocessed data feature
dimension is 38 dimensions, with a sample completeness
rate of 99.2%, providing a stable data input foundation
for subsequent modeling.

To ensure a balance between the input dimension
and computational efficiency of the model, this paper did
not separately expand each variable of the fused feature F
when constructing time series samples, but instead
performed temporal sampling on the weighted fused F.
Specifically, F, as a single fusion indicator, extracts its
values at 38 consecutive time points under the sliding
window mechanism, forming a 38-dimensional
one-dimensional feature input structure. This design
balances information retention and model lightweighting
requirements, ensuring a stable input structure for
subsequent path modeling and error prediction.

To verify the performance advantages of the model
in this article, a multi model comparative experiment was
designed. Select random forest, support vector regression,
and convolutional neural network as baseline methods to
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form a control group. In terms of experimental setup,
all models adopt consistent data preprocessing
methods and input feature vectors, and maintain a
uniform training and testing set partition ratio (70%:
30%). At the same time, the evaluation program is run
in the same hardware environment to ensure fairness
and representativeness of the comparison results. This
design helps to further highlight the multidimensional
performance advantages of the proposed model in
terms of comprehensive error control, computational
efficiency, and resource consumption.

4.3 Evaluation indicators

The performance evaluation of the model uses five
indicators: average absolute error, mean square error,
recognition  accuracy, response time, and
computational resource utilization. Compared with
traditional diagnostic methods, multidimensional
effect testing is conducted. In 200 sets of measured
samples, this model achieved an average absolute
error of 0.0267, far lower than the traditional
algorithm's 0.0519; The mean square error is 0.0023,
which has a significant advantage over the traditional

m This model mtraditional method
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w
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—_

o

mean absolute  mean squared
error error

Recognition
accuracy
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method of 0.0067; The recognition accuracy reaches
96.2%, which is better than the traditional method's
88.5%; The average response time is 275ms, faster than
the traditional 583ms; the computational resource
utilization is 29.6%, while the traditional model is 46.8%.
To facilitate the evaluation of performance differences,
the five indicators were standardized and scored, and the
numerical ranges were uniformly mapped to the 0-5
range. The performance comparison results were visually
displayed in a bar chart. As shown in Figure 3, this model
exhibits high scores in all indicators, especially in terms
of accuracy, response efficiency, and resource control,
showing stability and engineering practicality and
deployment value. In the multidimensional evaluation
results, Figure 3 shows the quantitative comparison
between the model and traditional methods on five core
performance indicators. It can be observed that this
model outperforms traditional methods in five indicators:
average absolute error (4.1 vs 2.1), mean square error
(4.3 vs 2.7), recognition accuracy (4.8 vs 3.9), response
time (4.6 vs 2.5), and computational resource utilization
(4.3 vs 2.3), further verifying the diagnostic accuracy and
deployment adaptability of the model.

43 45 45
41 ' N N
2.5
2,1 2.3
I 1’7 I I

response time Computing

utilization

Figure 3 : Comparison results of the model and traditional methods in five performance indicators

To ensure the fairness and effectiveness of the
comparison results, the 200 sets of test samples
described in this article are completely independent of
the training set and come from on-site operational data
at different time periods. The comparative algorithms
were implemented and replicated by the author based
on public literature, and the algorithm parameters
were uniformly based on publicly recommended
values  without any additional optimization
adjustments. All methods run in the same software and
hardware environment to ensure consistency in
computing resource evaluation. The triggering
mechanism and interference injection method for
abnormal operating conditions are consistent across

all models to exclude the influence of external variables
on performance comparison.

To further verify the effectiveness of the
multi-source data weighted fusion method, this paper
selected two typical deep fusion strategies for
comparative experiments: one is the dynamic weight
fusion method based on Attention, which can adaptively
adjust the contribution of each modal feature according
to the context; The second is to use Autoencoder to
compress and reconstruct features from multiple sources
of input, and extract the fused main features. Three
fusion strategies are embedded in the same model
architecture (taking BP neural network as an example),
keeping the training rounds, sample ratio, and
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hyperparameter settings consistent, and comparing
their error recognition accuracy and resource overhead.
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The experimental results are shown in Table 3:

Table 3 : Comparison of model performance under different fusion strategies

fusion strategy Identification

accuracy (%)

Inference delay (ms) Model parameter

quantity (K)

This method 96.2 18.4 42
Attention Fusion 96.5 33.7 108
Autoencoder Fusion 95.6 29.1 91

As shown in Table 3, although the attention
mechanism slightly improves accuracy, its model
complexity and runtime delay are significantly higher
than weighted fusion; Autoencoder fusion has slightly
lower accuracy and moderate resource consumption.
Comprehensive comparison shows that the weighted
fusion strategy proposed in this paper has the
advantages of low computing overhead and high
deployment efficiency while ensuring high accuracy,
and is more suitable for real-time application
requirements under embedded or edge computing
conditions in industrial scenarios. Therefore, in the
subsequent modeling and deployment, the weighted
fusion method is uniformly adopted as the input
feature construction standard.

To further demonstrate the practical effect of
path scoring and dynamic selection mechanism on
model performance, this paper conducted a special
statistical analysis on the switching of diagnostic links
during multiple rounds of experiments. During the
operation of the system, for typical main paths such as
"ambient temperature — effective current value —
residual difference value" and "vibration intensity —
magnetic flux fluctuation rate — residual difference
value", the triggering frequency and adjustment delay
of various interference signals are monitored. The
results show that under the dynamic path scoring
mechanism, the average response delay of the main
path determination is 241ms, which is 16.5% shorter
than that of the fixed path structure; Under abnormal
mutation conditions, the model can achieve optimal
path switching within three steps, with 72.8% of
diagnoses focused on the main cause effect chain.

Statistics have found that optimizing the path mechanism
significantly improves the sensitivity and discrimination
efficiency of the system, effectively avoids the
computational burden caused by redundant branches, and
provides structural guarantees for rapid error localization
and timely correction. The above data further confirms
the effectiveness of the "causal chain modeling and
dynamic path scoring" approach proposed in the method
section in practical deployment, achieving a close
connection between the method, results, and discussion.

4.4 Ablation study

To verify the supporting role of each key module in
overall performance, three sets of ablation experiments
were designed, excluding path algorithm optimization,
error causal chain construction, and sensor fusion
mechanism, and comparing the model performance on
the same dataset. As shown in Table 1, the complete
model has a recognition accuracy of 96.2%, an average
response time of 275ms, and a computational resource
utilization of 29.6%. After removing the path
optimization module, the recognition accuracy decreased
to 89.6%, the response time increased to 472ms, and the
computational resource utilization increased to 34.2%;
After removing the error chain, the accuracy is 90.2%,
the response time is 398ms, and the resource utilization is
32.7%; After canceling the sensor fusion, the accuracy
was 91.5%, the response time was 331ms, and the
resource utilization increased to 43.8%. As shown in
Table 4, each module has collaborative efficiency
enhancement functions. Missing any link will lead to a
significant decrease in diagnostic performance,
especially in terms of recognition accuracy and resource
control.

Table 4: The impact of model structural integrity on performance indicators

Recognition Response Computing resource
Model structure ] o
accuracy (%) time (ms) utilization (%)
complete model 96.2 275 29.6
Remove path optimization 89.6 472 34.2
Remove error chain construction 90.2 398 32.7
Remove sensor fusion 91.5 331 43.8
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To enhance the credibility of the experimental
results, this paper adopts a 5-fold cross validation
method for the ablation experiment results, training
and testing with different subsets each time, and
calculating the average and standard deviation for
each indicator. The performance indicators in Table 3
are the mean of 5 experimental results, with standard
deviations in parentheses. The experimental data
shows that the complete model exhibits optimal
performance in MSE, MAE, and REI indicators, with
small fluctuations in each aspect, indicating that the
model structure design has good stability and
generalization ability.

5 Discussion
5.1 Comparative advantages with existing
error diagnosis optimization algorithms

The error intelligent diagnosis and correction model
proposed in this study integrates causal graph
modeling and dynamic path optimization mechanism,
achieving diagnostic accuracy of 96.1% under
multi-source conditions, response delay control within
275ms, and resource utilization reduction of 41.7%
compared to graph neural methods. Compared to
physical modeling methods that are only applicable to
static scenes, the proposed model characterizes the
evolution process of error chains through causal
constraint mechanisms and adapts to link changes
under dynamic operating conditions. Compared to
data-driven models that rely on large-scale training
samples, this system can maintain high robustness in
weakly annotated scenarios and has stronger
generalization ability. Compared to graph neural
network models with complex structures and high
inference costs, DAG structures have the ability to
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perform path pruning and multi-source feature fusion,
effectively reducing computational overhead. Dynamic
path selection can adjust the inference path in a timely
manner based on the degree of signal variation,
improving the efficiency of anomaly tracing. Overall,
this model outperforms the three existing mainstream
methods in terms of accuracy, responsiveness, and
resource adaptability, making it suitable for complex
dynamic power environments.

5.2 Adaptability and stability analysis

To verify the adaptability and output stability of the
model in complex operating environments, system
evaluation experiments were conducted under three
working  conditions:  electromagnetic interference
enhancement, temperature changes of + 15 °C, and
frequent load disturbances. Under the condition of
enhanced electromagnetic interference, the model
recognition accuracy is 94.6%, the average response time
is 288ms, and the output consistency is 96.1%; In
scenarios with significant temperature changes, the
recognition accuracy is 95.8%, the response time is
267ms, and the consistency reaches 97.3%; In the context
of frequent load disturbances, the recognition accuracy is
93.2%, the response time is 301ms, and the output
consistency remains at 95.6%. All three experiments
showed that the model has good robustness and can
maintain diagnostic accuracy and output stability in the
face of multi-source disturbances, making it suitable for
long-term online deployment. Compared to traditional
models, the average improvement in output consistency
is 8.4%, and the average reduction in abnormal response
speed is 41.7%. The overall test results are shown in
Table 5, further verifying the good engineering
practicality and deployment security of the model.

Table 5: Adaptability and stability evaluation of the model under different operating conditions

. o Recognition accuracy response time Output consistency
working conditions
(%) (ms) (%)
Enhanced electromagnetic interference 94.6 288 96.1
temperature variation (£15°C) 95.8 267 97.3
Frequent load disturbances 93.2 301 95.6

5.3 Resource consumption and
deployment feasibility assessment

The engineering deployment capability of a model
largely depends on its level of consumption of
computing resources and adaptability to the operating
environment. In the testing environment, the system is
deployed on an edge processor platform with a
running frequency of 2.4GHz and a memory
configuration of 8GB. Under full load, the model
occupies an average of 29.6% of the central
processing unit's computing resources and maintains a
memory usage rate of within 38.2%, which is much
lower than the average consumption levels of 46.8%
and 62.5% of traditional algorithms in similar

environments. At the same time, the system has a
modular loading mechanism that supports function
clipping and parameter reconstruction for different
transformer types and acquisition scenarios, reducing the
resource burden caused by redundant structures. In the
process of diagnosing chain reconstruction and error
correction output, the data flow relies on local cache
optimization strategy to achieve low latency processing
response, with an average processing delay controlled
within 275ms for each group of data. To further validate
the lightweight deployment performance of the model,
this paper deployed it on Jetson Nano (4GB RAM),
Raspberry Pi 4B (4GB RAM), and ARM Cortex-A72
embedded platforms for testing. After quantization and
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pruning compression, the model size is approximately
18.6MB. In actual deployment, the average energy
consumption per inference is 0.42W, 0.31W, and
0.38W, respectively, with an accuracy rate of over
95%, meeting the requirements of low-power
real-time computing in industrial scenarios, and
verifying the deployability and practicality of the
model on various embedded platforms.

This study comprehensively deployed and
evaluated the model on various embedded ARM
platforms to ensure reproducibility and practical
engineering value of the results. The specific
hardware environment is as follows: (1) Jetson Nano
BO1 development board, equipped with ARM
Cortex-A57 quad core processor, clock speed of
1.43GHz, onboard 4GB LPDDR4 memory, system
environment is Ubuntu 20.04 (64 bit), Python 3.8 and
PyTorch 1.12. (2) Raspberry Pi 4B, equipped
with Broadcom BCM2711 SoC, integrated with quad
core ARM Cortex-AT72 (64 bit) processor, with a clock
speed of 1.5GHz, 4GB of LPDDR4 memory, and
Raspberry Pi OS (64 bit) system, the software
environment remains the same as described above. (3)
The domestically produced ARM Cortex-A72
platform adopts a quad core Cortex-A72 architecture,
with a main frequency of 2.0GHz and 8GB of DDR4
memory. The system environment is the same as
above.

All models are independently deployed and run
the complete testing process on the three platforms
mentioned above. Real time monitoring of CPU usage,
peak memory (RAM) usage, and energy consumption
during testing. Taking Jetson Nano as an example, the
average energy consumption of a single inference of
the model is 0.42W, with a peak RAM of 1.1GB;
Raspberry Pi 4B corresponds to an energy
consumption of 0.31W, with a peak RAM of 0.98GB;
the domestic A72 platform consumes 0.38W, with a
peak RAM of 1.2GB, and the accuracy of all platform
models is stable at over 95%.

6 Conclusion

This study focuses on the problem of multi-source
interference errors in the operation of transformers.
Based on the comprehensive analysis of multi sensory
information, an intelligent detection and correction
technology is implemented. Multi dimensional feature
extraction, multi-path algorithm optimization, and
model fusion strategies are introduced to construct a
dynamic causal relationship model for measurement
errors. The dynamic construction and real-time
diagnosis of error causal chains are achieved. This
method has high identification accuracy and response
speed in complex environments. The experimental
results show that the multiple evaluation indicators of
the model are superior to traditional schemes, with
good adaptability and stability, and can resist
interference problems caused by environmental
changes and structural uncertainty. In the actual
testing stage, it demonstrates advantages such as low

resource
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occupancy  requirements,  controllable

deployment costs, and convenient model updates, and is
suitable for online monitoring and maintenance of
various types of transformers. The research provides a
practical and promotable method for automatic
correction of transformer faults, which has a positive
promoting effect on the application of intelligent sensors

in

power equipment

measurement and control

management.
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