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An intelligent diagnosis and calibration model that integrates multi-source sensing data is constructed to 

address the measurement errors caused by multi-source interference in transformers. The system 

integrates multidimensional sensing information such as current, voltage, temperature, and vibration 

through a weighted feature fusion mechanism, constructs a DAG to represent the causal relationship 

between key interference variables, and embeds a path scoring and optimization algorithm based on 

dynamic programming to improve the real-time and accuracy of fault chain identification. The model is 

deployed at the edge on an ARM architecture embedded platform, with lightweight structure and 

engineering feasibility. The measured data comes from 110kV and 220kV substations. The experimental 

results show that the recognition accuracy reaches 96.2%, the average response time is 275ms, and the 

computational resource utilization rate is 29.6%. It exhibits good robustness and output stability in 

complex scenarios such as electromagnetic interference, temperature fluctuations, and load disturbances. 

This model provides a feasible path and deployment basis for achieving high-precision metering and 

real-time intelligent operation and maintenance in modern power systems.  

Povzetek: Razvita je inteligentna diagnostična in kalibracijska rešitev za merilne napake 

transformatorjev. Opisana je nova metoda večizvorne fuzije senzorjev, DAG-kavzalne poti in 

dinamičnega točkovanja za optimizacijo. Model na robnih ARM-napravah doseže visoko kvaliteto, 

odzivnost ter robustnost v kompleksnih okoljih. 

 

1  Introduction 
The current research on transformer errors is mostly 

focused on the fault identification and modeling 

mechanism of transformer equipment. Previous work 

has shown that dissolved gas, multidimensional 

electrical parameters, and other data can be used as 

effective feature inputs to construct diagnostic models. 

Taking Sakini et al. (2024) as an example, they used 

machine learning methods based on DGA signals to 

model fault features and verified the high sensitivity of 

sensor data to fault state judgment. However, due to its 

constant exposure to high voltage, high temperature, and 

electromagnetic noise, the output data of the transformer 

is easily affected by various factors, such as temperature 

changes in the environment, nonlinear saturation of 

ferromagnetic materials, unstable connections, and 

unstable currents, which can cause serious measurement 

errors. These types of errors have the characteristics of 

dynamic development, nonlinear accumulation, and 

environmental dependence, which are difficult to detect 

and correct through traditional methods, and may lead to 

misoperation, energy waste, or equipment damage. 

In order to enhance the clarity of the model logic 

and consistency in terminology usage, this article 

defines core concepts such as "causal chain", "task  

 

node", and "diagnostic chain" in the early stages of 

modeling, in order to facilitate understanding of the 

model structure and path mechanism later on: (1)  

causal chain: refers to the causal relationship path  

between variables represented by DAGs in the model. 

Each path represents a causal inference chain from the  

interference source to the final measurement error. (2) 

Task node: refers to a node in the path optimization 

mechanism that serves as a decision point, with each 

node representing a specific diagnostic task or path 

selection. The system dynamically selects the optimal 

path through the analysis of task nodes. (3) Diagnostic 

chain: refers to a chain formed by connecting multiple 

paths in the process of error diagnosis. Through path 

selection and scoring mechanisms, it helps the system 

locate the source of error and optimize path selection. 

In further research, different scholars have 

attempted to introduce various data fusion mechanisms 

into the fault recognition process. For example, Zhou et 

al. (2024) proposed a hybrid model combining random 

forest and PSO-BP AdaBoost, which enhances feature 

expression and generalization ability on the basis of 

traditional data-driven algorithms. This detection method 

has a certain effect under stable working conditions, but 

it generally has problems such as reaction delay, poor 

error adaptability, and limited structural flexibility, 
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which cannot effectively cope with the complex 

instantaneous error generation patterns in actual 

operation processes. Some errors exhibit long-term 

accumulation and instantaneous disturbance 

characteristics, and traditional models are difficult to 

capture their internal correlations and evolution 

processes. Especially in the face of new electricity 

demands such as intelligent power grids and the 

integration of a large number of new energy sources, 

there is a demand for fast, high-precision, and strong 

robustness in the power metering system, which 

requires the metering system to have self diagnosis 

and self correction capabilities. 

With the rapid development of industrial Internet 

of Things, edge sensing, and high-precision sensing 

technology, the current working environment of 

transformers can now obtain sensing information from 

multiple aspects such as temperature, humidity, 

voltage, current, vibration, magnetic field, frequency, 

etc. In terms of system deployment, Shanu and Mishra 

(2024) combined statistical feature extraction with 

temporal path analysis to establish a two-stage 

diagnostic model suitable for on-site deployment, 

providing a feasible path for the engineering 

implementation of the model. However, due to the 

synchronization of time, different dimensions, and the 

influence of noise, how to effectively extract, fuse, 

and dynamically modify this information has become 

an important key technical issue in current research 

and practice. 

This article proposes an intelligent detection and 

correction model for transformer measurement errors 

under multi-source input, aiming to improve the 

accuracy, response speed, and resource adaptability of 

error recognition. Construct an error causal diagram to 

depict the relationship between multi-sensor data and 

error sources, and introduce a dynamic path 

optimization mechanism to improve the efficiency of 

anomaly tracing. This study assumes that causal graph 

modeling and path pruning mechanisms can reduce 

diagnostic latency by more than 50% compared to 

traditional rule driven models while maintaining 

recognition accuracy, while significantly reducing 

system resource overhead. To adapt to engineering 

deployment, the system integrates lightweight 

strategies and executable path optimization algorithms, 

balancing expressive power and deployment 

feasibility. Under weak label conditions, the model 

achieves a recognition accuracy of 96.1%, a 

diagnostic delay of less than 275ms, and a resource 

utilization reduction of 41.7% compared to graph 

neural methods, making it suitable for practical 

application scenarios in complex power systems. 

This study has strong operability both in theory 

and for real-world problems, providing necessary 

technical support for high-precision measurement and 

maintenance of intelligent power equipment, and has 

good prospects for engineering promotion. 

2  Related work 

As an important bridge connecting the primary and 

secondary power grids, the measurement error of 

transformers directly affects the system operation 

monitoring, protection action reliability, and fairness of 

electricity billing. In the context of multi-source 

disturbances and complex working conditions, 

traditional single variable and static parameter diagnostic 

methods are no longer able to meet the increasing 

demand for measurement accuracy. In recent years, the 

method of identifying transformer errors by integrating 

multi-source sensor data has gradually become a research 

hotspot, mainly presenting three evolutionary paths: first, 

low-power sensor detection methods designed based on 

physical characteristics; The second is the intelligent 

recognition path that integrates multi model optimization 

and adversarial learning; The third is the multi-source 

data fusion and quality enhancement modeling method 

for edge working conditions. This article summarizes the 

current mainstream paths from the three directions 

mentioned above, and analyzes their advantages, 

disadvantages, and applicable boundaries based on this.  

Firstly, in terms of optimizing the sensing layer, Mei 

et al. (2024) proposed a transformer fault identification 

method based on a low-power gas sensing resistor array. 

This method monitors key gases (such as H ₂, CO, C ₂ H ₂) 

in real-time by setting specific material sensitive 

components, and uses miniaturized electrochemical 

modules to achieve multi-channel detection of fault gases, 

thereby assisting in inferring the electrical path of 

transformer abnormalities. The experiment shows that 

the sensing array can still maintain stable output in 

low-temperature drift and high interference scenarios, 

with an error variation range controlled within ± 1.7%, 

and has good adaptability for field deployment. However, 

this method still relies on the indirect correlation between 

gas concentration and fault type, and is limited by 

external factors such as ambient temperature and oil 

aging. Its response capability under complex load 

switching and dynamic nonlinear disturbance conditions 

is still insufficient. 

Secondly, in terms of integrating intelligent models, 

Guan et al. (2024) constructed a transformer error 

diagnosis model based on the joint modeling of 

Generative Adversarial Networks (ACGAN) and Grey 

Wolf Optimized Support Vector Machines 

(CGWS-LSSVM). This method utilizes ACGAN to 

synthesize high-quality feature samples, effectively 

solving the problem of insufficient fault samples; 

Meanwhile, the CGWO algorithm is used to optimize the 

parameters of the support vector machine to enhance the 

model's generalization ability. Experimental results have 

shown that under four typical operating conditions, the 

diagnostic accuracy of this method has been improved by 

an average of 6.3%, especially with strong robustness 

under low-frequency harmonic interference and system 

disturbance changes. However, this type of method has 

significant disadvantages in terms of model structure 

complexity, and requires higher adaptability between 

computing resources and device platforms. Deploying it 

at the edge of the power grid still faces a trade-off 

between real-time performance and stability. 
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Thirdly, in order to improve the overall quality of 

multi-sensor data fusion, Tiziana and Roberto (2022) 

conducted a study on data quality assessment of 

multi-sensor fusion processes. It proposes a 

combination of supervised learning and weighted 

strategies to dynamically score the quality of data 

collection, missing value imputation, noise 

interference, and other factors, and uses an ensemble 

learning framework to achieve reliable extraction of 

fault information. Research has shown that fusion 

models have good robustness to outliers, time drift, 

and repeated measurement data, and can construct 

more stable input feature sets in high-frequency 

perception tasks. However, this study mainly focuses on 

the data preprocessing stage, and the modeling ability of 

the source of transformer errors is relatively weak. It still 

needs to be used in conjunction with physical models or 

task driven mechanisms. 

Based on the above analysis, in order to 

comprehensively compare the capability structure of 

current mainstream research paths, this paper extracts 

representative studies and constructs a structured method 

comparison table (see Table 1), clarifying their 

advantages and disadvantages from dimensions such as 

diagnostic accuracy, robustness, model interpretability, 

and deployment performance. 

 

Table 1：Comparative analysis of mainstream transformer error identification methods 

Method 
Type 

Representative 
model 

Diagnosti
c 
accuracy 

robustn
ess 

Model 
interpret
ability 

Deploym
ent 
performa
nce 

Applicable 
scenarios 

Citing 
Sources 

Physical 
modeling 
method 

Low power gas 
sensing resistor 
model (Mei et al., 
2024) 

medium weak strong centre 

Static 
working 
condition 
error 
detection 

【4】 

Fusion 
Perceptio
n Method 

ACGAN+CGWO 
LSSVM (Guan et 
al., 2024) 

higher centre centre centre 

Error 
recognition in 
disturbed 
scenarios 

【5】 

Data 
Fusion 
Enhance
ment 

Data Quality 
Driven Fusion 
Modeling (Tiziana 
et al., 2022) 

higher strong strong 
Medium 
to low 

Quality 
control and 
inference of 
multi-source 
sensor data 

【6】 

This 
research 
method 

DAG+Path Scoring 
Fusion Model 

tall strong strong tall 

Real time 
identification 
of dynamic 
errors at the 
edge of the 
power grid 

This 
article 
propose
s 

 

From the table, it can be seen that a single physical 

model has good explanatory power in specific 

scenarios but lacks flexibility. The fusion of 

intelligent methods improves recognition ability but is 

constrained by computational resources in actual 

deployment. The data augmentation path improves 

stability but lacks structural awareness. Current 

research mainly focuses on optimizing model 

structures or training mechanisms, and lacks 

collaborative design for sensing chains, causal 

relationship construction, and deployment 

availability. 

In summary, in order to break through the 

existing technological bottlenecks, this paper designs 

an intelligent error recognition system that integrates 

DAG causal modeling and dynamic path scoring 

mechanism. It not only focuses on the collection and 

discrimination of error characteristics, but also pays 

more attention to the traceability and real-time 

deployment of error generation paths, aiming to 

provide a comprehensive technical path for accurate 

modeling and practical deployment of transformer 

errors in high-voltage scenarios. 

 

3  Suggested solutions 
3.1  Multi source data fusion 

The measurement error of transformers is affected by 

various factors such as temperature and humidity, current, 

magnetic field, and iron core saturation. Traditional 

models often ignore these interferences, resulting in 

inaccurate diagnosis. Liu et al. (2024) proposed a method 

based on causal graph neural network, which can more 

effectively identify the causes of errors and enhance the 

ability to trace features. To improve the accuracy and 

practicality of diagnostic systems, it is urgent to establish 

a hierarchical and responsive multi-source data fusion 

mechanism. 

In this study, modular multi-channel information 

acquisition technology was used, and a terminal 

equipped with various sensors such as voltage, current, 

temperature, and humidity was constructed to monitor 

the parameters of the entire equipment body, power 

supply operation, and environmental impact. Due to the 

different sampling frequencies and accuracies of various 

types of information, simply mixing them together may 
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inevitably result in chaotic input. Therefore, the 

system first uses temporal synchronization technology 

to achieve sample matching, and standardizes the 

conversion of each type of information separately, in 

order to make the data format have a unified 

representation in the model. 

Considering the computational resource 

limitations of model deployment and engineering 

feasibility, the fusion strategy adopts a weighted 

feature integration approach. This study selected four 

basic variables that are most sensitive to error 

response: effective current value rmsI
, ambient 

temperature T  mean vibration acceleration a and 

mean primary voltage U . After normalization, fused 

feature quantities were constructed: 

F = w1 · Îrms + w2 · T̂ + w3 · α̂ + w4 · Û（1） 

Among them, rmsI


、T

、 a


、and U


 are the 

normalized current values of various sensor data, and 

1w
~ 4w

are the weight coefficients. The initial setting 

of weights is based on empirical statistics and 

engineering measurement analysis, and can be 

adaptively adjusted by model parameters in the 

subsequent training process. Fusion feature F
maintains low dimension in structure, but can cover 

multi-dimensional disturbance information, which is 

easy to deploy in edge computing nodes or low-power 

embedded chips in engineering applications. 

In order to further improve the recognition and 

anti-interference ability of the fused features, noise 

filtering and dynamic outlier detection mechanisms 

are introduced in the data processing stage, and local 

sliding window smoothing is applied to the mutation 

points. At the same time, a simplified regularization 

module is introduced in the input layer to compress the 

unstable features caused by the input with severe 

fluctuations. 

In terms of data format, the model adopts a fixed 

window sliding strategy to construct time series 

samples, and each fused feature point is composed of 

data from several consecutive time points, thus 

forming a dynamic expression of the error trend. This 

method preserves the evolutionary information during 

the error formation process, which helps to extract the 

upstream and downstream causal relationships during 

subsequent error chain modeling. 

Overall, this fusion solution effectively avoids 

the problem of expansion when dealing with 

multi-dimensional inputs in deep learning models by 

accurately capturing key on-site information. It has good 

physical interpretability and implementability, and does 

not rely on a single device or route. It has flexible 

deployment capabilities and can adapt to different 

transformer types and installation environments, 

providing a universal, efficient, and quantifiable data 

input interface for subsequent error causal structure 

construction and route optimization. 

3.2  Error chain modeling 

The fusion feature F forms the basis for all input 

variables in the subsequent modeling process, serving as 

one of the upstream dependent variables of node N5 in 

the causal path. This article maintains the structural 

dimension of fusion feature F consistent with the original 

normalized variables, ensuring the integrity and 

consistency of the input structure and avoiding the 

problem of inconsistency between path variable selection 

and model structure. 

Abdelmoumene et al. (2023) pointed out that the 

measurement error of transformers is often the result of 

multiple disturbance factors acting together in the time 

and logical domains, rather than being caused by a single 

variable. For example, in practical scenarios, 

environmental temperature may indirectly affect current 

changes by affecting coil resistance, while mechanical 

vibration may indirectly affect magnetic field stability by 

affecting the magnetic gap of the iron core. In order to 

establish trends that describe the interrelationships 

between multivariate variables and enhance the ability to 

trace errors in reverse, this paper introduces an error 

chain modeling strategy. By constructing a network 

structure diagram of causal logic relationships between 

variables, a systematic modeling of error formation paths 

is carried out. 

This method is based on directed acyclic graph 

design, treating each key sensing variable as a node in the 

graph, and representing the influence relationship 

between different variables as edges in the graph. Each 

edge contains directionality and edge weight, which are 

used to represent the order of causal effects and the 

strength of influence, respectively. The graph structure 

can be manually initialized and constructed, or trained 

and updated through mutual information, delay 

correlation, or Bayesian network learning supported by 

engineering data. In practical modeling, this article 

summarizes five types of sensors input variables into five 

primary nodes and designs a causal chain structure basic 

model as shown in Table 2. 

 

Table 2：Key node design and variable description for error chain modeling 

Node 

number 
node name data sources  

Corresponding 

path function 
Explanation of Engineering Mechanism 

N1 RMS current sensor N1 → N5 
Affects the degree of magnetic saturation, which in turn 

affects the output waveform 



Intelligent Diagnosis Method for Transformer Measurement Error…                      Informatica 49 (2025) 409–422   413 
 

N2 
ambient 

temperature 

temperature 

sensor 

N2 → N1, N2 → 

N5 

Temperature changes affect conductor resistance and 

interference current (N1); High temperature may also 

cause equipment drift, directly affecting the residual value 

(N5) 

N3 Vibration intensity Accelerometer 
N3 → N4, N3 → 

N5 

Structural vibration changes the gap between the iron 

cores (N3 → N4), which can also lead to poor contact and 

signal mutations (N3 → N5) 

N4 
Magnetic flux 

fluctuation rate 

Magnetic flux 

acquisition 

module 

N4 → N5 
Directly affecting the magnetic flux induced voltage and 

triggering measurement deviation 

N5 
Residual value of 

difference 

Compare 

measurement 

values 

Output node 
Performance of measurement errors in transformers as 

training targets for the model 

 

According to the above structure, the error chain 

model can be represented as a typical shallow directed 

acyclic graph, with the residual value (N5) as the final 

output node, and the upstream path forming a 

conduction structure from multiple sources of 

disturbances converging to the error expression. To 

achieve accurate prediction of N5, this paper adopts 

the MLP model for modeling. The input is the fused 

features of all upstream variables pointing to N5 in the 

causal graph. The model includes two hidden layers, 

with 64 and 32 nodes respectively, an activation 

function of ReLU, and an output layer of single node 

linear regression units. MSE is used as the loss 

function during model training, and edge weight 

initialization is based on mutual information 

estimation. During the training process, it is 

dynamically updated together with MLP weights 

through backpropagation mechanism to achieve the 

unity of structural interpretability and predictive 

performance. During the model training process, a 

total of 200 training rounds were set, using the Adam 

optimizer with an initial learning rate of 0.001 and a 

Batch Size of 32. All feature inputs are standardized 

before training, and the training set and validation set 

are divided in an 8:2 ratio. The validation loss is 

monitored after each round of training to prevent 

overfitting. 

In the graph structure construction scheme, the 

author investigated Bayesian network structure 

learning algorithms including PC and GES. However, 

considering the requirements for computational  

 

complexity, model response time, and structural 

controllability in engineering deployment, this type of 

algorithm was ultimately not adopted. Instead, a 

lightweight mapping strategy based on mutual 

information was chosen to improve the overall system 

deployment efficiency and real-time performance. To 

enhance the logical interpretability and path tracing 

ability of the model, this paper further summarizes the 

typical error propagation paths in the DAG structure, as 

follows: Path 1 is "ambient temperature (N2) → effective 

current value (N1) → residual difference value (N5)", 

which reflects the indirect chain effect of temperature 

fluctuations affecting conductor resistance and 

interfering with current measurement; Path two is 

"vibration intensity (N3) → magnetic flux fluctuation 

rate (N4) → residual value of ratio difference (N5)", 

which reveals the induction deviation caused by 

magnetic flux instability caused by mechanical 

disturbance; Path three is "vibration intensity (N3) → 

residual value of ratio difference (N5)", which reflects 

the direct impact of structural disturbance on errors. 

These paths can serve as dynamic diagnostic links during 

model operation, coupled with path scoring and selection 

mechanisms, to achieve efficient and accurate anomaly 

localization and response. The error causal network 

structure constructed in this article is shown in Figure 1. 

The nodes in the figure represent key sensing variables, 

the edges represent causal paths between variables, the 

arrow direction represents the direction of causal 

propagation, and the edge weights are used to reflect the 

strength of the influence between variables. 
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Figure 1: Error causal DAG structure diagram composed of multiple sensor variables 

This causal structure has two important functions: 

firstly, to improve the interpretability of the error 

diagnosis model, so that the error results no longer 

rely solely on "black box prediction", but can be 

clearly traced back to disturbances in a certain sensing 

variable chain; The second is to provide path priority 

clues in the subsequent correction mechanism, that is, 

nodes at the top of the error chain and with high 

weights should be given priority as intervention entry 

points to improve the response efficiency and resource 

utilization efficiency of error correction. 

In the experimental stage, compared with 

traditional unstructured modeling methods, the causal 

chain structure model has stronger diagnostic stability 

when multiple disturbances occur simultaneously. The 

average error recognition accuracy improved by 12.6% 

in 20 sets of measured data, and the average response 

time for error localization was shortened by 0.47 

seconds. The overall results indicate that error chain 

modeling not only improves the logical integrity of the 

model structure, but also provides a stable basis for 

subsequent path optimization and dynamic correction. 

3.3  Path algorithm optimization 
After the construction of the error causal chain is 

completed, it is necessary to deal with complex 

situations caused by multiple factors. The interference 

source does not always come from the same location 

and may not necessarily affect the error in the same 

path. XIAOQIANG WANG (2024) proposed that 

when the processing resources of a system cannot be 

concentrated on a few important factors in a short 

period of time, it is easy to cause diagnostic delays, 

resource waste, and judgment errors. In order to 

improve the timeliness and accuracy of the diagnostic 

model during actual operation, adaptive path 

arrangement rules are added to the diagnostic model to 

dynamically adjust the internal path order. 

LEIMING MA et al. (2024) proposed that the 

optimization process of error paths can be based on the 

correlation weights between variable nodes in the 

error chain. Based on the current trend of input signal 

changes and stable patterns in historical samples, the 

priority order of the influence path can be dynamically 

determined. When traversing the structure, the system 

first identifies the variable node with the most obvious 

abnormal fluctuations and determines whether it has a 

defined upstream propagation path. If it exists, the path 

will be included in the candidate path set; If it does not 

exist, the path extension operation will not be executed 

temporarily. All candidate paths will be calculated under 

the same scoring model, and the system will prioritize 

selecting the path with the highest interference impact, 

shortest propagation chain, and strongest variable 

correlation as the main diagnostic chain for execution. 

The model continuously receives updated signals during 

operation, adjusts the path score in real-time, and ensures 

that the current judgment chain always maintains the 

optimal state. 

The scoring criteria in path judgment include the 

number of variables in the path, historical correlation 

levels between variables, and diagnostic validity records 

in the transmission chain. The fewer nodes in the 

transmission chain, the shorter the diagnostic response 

time; The higher the relevance, the clearer the 

communication logic; The higher the diagnostic 

effectiveness, the more targeted the intervention 

operation. Taking into account these three parameters, 

the system can quickly identify suspicious intervention 

sources at the beginning of error occurrence and use them 

as input basis for subsequent correction steps. 

On the basis of constructing the diagnostic path 

structure, the system needs to achieve real-time scoring 

and dynamic reconstruction of the path between 

interference variables and error results. Path filtering, 

priority judgment, and chain conversion require multiple 

modules to work together, forming a complete closed 

loop from signal acquisition, candidate path generation, 

weight update, diagnostic output to model feedback. The 

structural embedding relationship of this path 

optimization mechanism in the system is shown in Figure 

2. 
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Figure 2：Structural embedding diagram of path algorithm optimization in error diagnosis system 

 

The diagram represents signal triggered input, path 

recognition and scoring mechanism, dynamic path 

switching strategy, and diagnostic execution feedback 

module from top to bottom. The data transfer between 

each layer is completed through standard interface 

protocols, and a bidirectional update structure is 

formed between the scoring module and the database, 

achieving adaptive path selection based on actual 

operating status. The modules support each other, 

ensuring the integrity, real-time performance, and 

stability of path optimization logic in actual 

deployment. 

In the engineering testing scenario, the system is 

deployed in a certain type of high-voltage measuring 

mutual inductance device and records the error 

response path under different environmental 

disturbances and working conditions for a long period 

of time. It is found that when the structure has  

 

 

dynamic path adjustment function, the error recognition 

response time is significantly shortened and the 

diagnostic accuracy is significantly improved. When the 

error signal undergoes a sudden change, the model 

quickly jumps to the path segment dominated by the 

influencing factors to perform analysis, avoiding a large 

number of invalid or redundant judgment processes. 

Through path algorithm optimization mechanism, 

error diagnosis no longer relies on fixed processes or 

static structures. Under different operating conditions, 

the system can automatically switch to a more targeted 

diagnostic path, thereby improving system sensitivity, 

saving resources, and enhancing the interpretability of 

diagnostic logic. The diagnostic process is more in line 

with the on-site operation status of the transformer, with 

engineering practicality and deployability, which can 

stably support the subsequent error correction model 

work and provide structural constraints and input support 

for it. 
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AlgorithmName:PathOptimizationBasedOnDynamicScoringInput: 

 

3.4  Model integration operation 
The construction of error identification and correction 

models must have integrability in order to form a 

stable and efficient deployment mechanism in the 

actual operation scenario of transformers. To meet 

engineering requirements such as real-time 

performance, accuracy, and resource constraints, this 

study proposes a lightweight integrated operation 

framework for edge deployment, which integrates 

multi-source data fusion, error causal chain modeling, 

path scoring optimization, and correction feedback 

modules into a unified package, and achieves overall 

scheduling control and dynamic iterative model 

updates. 

The model integration operation framework 

mainly includes four core levels: input perception 

layer, structural modeling layer, path scheduling layer, 

and control execution layer. The input perception 

layer is responsible for collecting and preprocessing 

on-site sensing data; The structural modeling layer 

constructs an error causal diagram structure and 

dynamically updates the corner coefficients between 

each node; The path scheduling layer completes the 

execution of path scoring, judgment, and jump logic; 

The control execution layer transmits the diagnostic 

results to downstream controllers or operation and 

maintenance systems to achieve error correction 

closed-loop. Each layer is connected through a unified 

interface standard, and all computing tasks can be 

deployed and executed in embedded edge nodes or 

on-site control units, meeting the conditions for 

engineering implementation. 

 

During the operation of the model, the state update 

mechanism needs to dynamically adjust the model 

structure parameters and judgment conditions based on 

time series data. Assuming the current time is t , the 

previous model calculation output is 1−t  and the sensor 

fusion result is tF
, the model state transition function 

can be expressed as: 

εt = δ · ε(t−1) + (1 − δ) · Ψ(Ft)（2） 

Among them, t  represents the estimated error 

value at the current time, and 
( )tF

is the predicted 

output value of the fused feature vector tF
processed by 

the mapping function. The


-function is a single-layer 

feedforward neural network structure, consisting of one 

hidden layer and ReLU activation unit, used to extract 

error signal trends from the current fused features. The 

output is an estimated value in scalar form, with tε  .

 10，
as the smoothing coefficient, used to adjust the 

weight relationship between the current output and the 

historical state. The network parameters are jointly 

trained by the causal chain modeling and path 

optimization module to ensure that 
( )tF

can 

accurately reflect the error causal relationships and 

evolutionary paths hidden in the fused features. 

The error correction control strategy is integrated 

into the control execution layer, which automatically 
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matches the corresponding correction scheme based 

on the current error level and path node weights. It is 

divided into three types of strategies: limit adjustment, 

sensitivity correction, and bypass switching. The 

control interface is connected to the on-site 

measurement unit through a protocol adapter, with 

functions such as instruction issuance, parameter 

replication, and historical tracking, ensuring that the 

calibration strategy is implemented in the actual 

operation of the transformer. 

In order to ensure the stability and sustainable 

operation capability of the integrated model, the 

system also designed anomaly detection and fault 

tolerance mechanisms. When the perception layer 

detects input data breakpoints, model drift in the 

structural layer, or response lag in the execution layer, 

the system will trigger the backup model loading 

program, call the standard error diagnostic template 

for temporary replacement, and retain the current state 

for subsequent model parameter correction. 

The integrated operating architecture is deployed 

and tested in an engineering verification environment, 

and the on-site platform is built on domestically 

produced embedded main control hardware, using 

ARM architecture chips for actual inference 

calculations. The test results show that, without 

relying on external cloud resources, the model can 

stably complete the tasks of fusion, scoring, path 

judgment, and correction execution in each round of 

data refresh cycle, with an average response delay 

controlled within 300ms, meeting the requirements of 

actual transformer dynamic monitoring and 

correction. 

In summary, the integrated operation mechanism 

of the model not only completes the integration of 

error identification and correction functions, but also 

ensures the feasibility of the model structure in 

engineering environments. Through mechanisms such 

as hierarchical deployment, parameter updates, 

instruction control, and fault-tolerant protection, the 

model can be stably embedded in the measurement 

and control process of the power system, achieving 

error closed-loop diagnosis and accurate correction 

driven by fusion perception. 

4  Results 
4.1  Dataset 

This study selected three groups of voltage and current 

transformers under a certain 110kV substation as the 

main experimental objects, deployed multi-source 

sensor modules, including temperature and humidity 

sensors, vibration accelerometers, conductor surface 

current sensors, and fiber optic temperature array 

devices, to form a multi-channel data acquisition 

system. The data recording period covers all seasons 

of spring, summer, autumn, winter, with a sampling 

frequency of 1Hz. A total of about 2900 hours of 

time-series data were obtained, covering three typical 

operating conditions: normal operation, slight 

disturbance, and abnormal fluctuations. 

At the same time, the daily maintenance data of the 

joint substation and the factory calibration records 

provided by the equipment manufacturer are used to 

construct error labels, including key indicators such as 

ratio difference and phase angle offset. To train and test 

the model, the original samples were divided into stages 

using a 7:3 ratio to ensure balanced coverage of each 

working condition. All data are processed through 

unified denoising and normalization standardization to 

facilitate model structure recognition. This dataset can 

truly reflect the changes in transformer errors under the 

interaction of multiple factors during on-site operation, 

and has good engineering representativeness and 

repeatability, providing a reliable basis for subsequent 

error diagnosis and correction models. 

4.2  Data preprocessing 

To improve the generalization ability and convergence 

efficiency of the diagnostic model, this study 

implemented a systematic preprocessing process before 

multi-source sensor data entered the training phase. 

Firstly, the high-frequency noise signal is smoothed 

using the sliding window mean method to enhance the 

trend of key features; Secondly, z-score normalization is 

used to deal with the data scale differences of different 

sensing channels, unify the distribution of variables, and 

improve the sensitivity of the model to abnormal 

deviation. The normalization formula is as follows: 

X =
X−μ

σ
（3） 

Among them, X represents the original sample, and


 and   are the mean and standard deviation of the 

variable, respectively. For time period data with 

short-term loss, adjacent temporal interpolation 

algorithm is used to fill in and ensure sequence integrity. 

In addition, for the nonlinear distribution 

characteristics of ratio difference and phase angle in 

labeled data, segmented scaling and logarithmic mapping 

are performed to improve the fitting stability of the error 

regression model. The final preprocessed data feature 

dimension is 38 dimensions, with a sample completeness 

rate of 99.2%, providing a stable data input foundation 

for subsequent modeling. 

To ensure a balance between the input dimension 

and computational efficiency of the model, this paper did 

not separately expand each variable of the fused feature F 

when constructing time series samples, but instead 

performed temporal sampling on the weighted fused F. 

Specifically, F, as a single fusion indicator, extracts its 

values at 38 consecutive time points under the sliding 

window mechanism, forming a 38-dimensional 

one-dimensional feature input structure. This design 

balances information retention and model lightweighting 

requirements, ensuring a stable input structure for 

subsequent path modeling and error prediction. 

To verify the performance advantages of the model 

in this article, a multi model comparative experiment was 

designed. Select random forest, support vector regression, 

and convolutional neural network as baseline methods to 
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form a control group. In terms of experimental setup, 

all models adopt consistent data preprocessing 

methods and input feature vectors, and maintain a 

uniform training and testing set partition ratio (70%: 

30%). At the same time, the evaluation program is run 

in the same hardware environment to ensure fairness 

and representativeness of the comparison results. This 

design helps to further highlight the multidimensional 

performance advantages of the proposed model in 

terms of comprehensive error control, computational 

efficiency, and resource consumption. 

4.3  Evaluation indicators 

The performance evaluation of the model uses five 

indicators: average absolute error, mean square error, 

recognition accuracy, response time, and 

computational resource utilization. Compared with 

traditional diagnostic methods, multidimensional 

effect testing is conducted. In 200 sets of measured 

samples, this model achieved an average absolute 

error of 0.0267, far lower than the traditional 

algorithm's 0.0519; The mean square error is 0.0023, 

which has a significant advantage over the traditional 

method of 0.0067; The recognition accuracy reaches 

96.2%, which is better than the traditional method's 

88.5%; The average response time is 275ms, faster than 

the traditional 583ms; the computational resource 

utilization is 29.6%, while the traditional model is 46.8%. 

To facilitate the evaluation of performance differences, 

the five indicators were standardized and scored, and the 

numerical ranges were uniformly mapped to the 0-5 

range. The performance comparison results were visually 

displayed in a bar chart. As shown in Figure 3, this model 

exhibits high scores in all indicators, especially in terms 

of accuracy, response efficiency, and resource control, 

showing stability and engineering practicality and 

deployment value. In the multidimensional evaluation 

results, Figure 3 shows the quantitative comparison 

between the model and traditional methods on five core 

performance indicators. It can be observed that this 

model outperforms traditional methods in five indicators: 

average absolute error (4.1 vs 2.1), mean square error 

(4.3 vs 2.7), recognition accuracy (4.8 vs 3.9), response 

time (4.6 vs 2.5), and computational resource utilization 

(4.3 vs 2.3), further verifying the diagnostic accuracy and 

deployment adaptability of the model. 

 
Figure 3：Comparison results of the model and traditional methods in five performance indicators   

 

To ensure the fairness and effectiveness of the 

comparison results, the 200 sets of test samples 

described in this article are completely independent of 

the training set and come from on-site operational data 

at different time periods. The comparative algorithms 

were implemented and replicated by the author based 

on public literature, and the algorithm parameters 

were uniformly based on publicly recommended 

values without any additional optimization 

adjustments. All methods run in the same software and 

hardware environment to ensure consistency in 

computing resource evaluation. The triggering 

mechanism and interference injection method for 

abnormal operating conditions are consistent across 

all models to exclude the influence of external variables 

on performance comparison. 

   To further verify the effectiveness of the 

multi-source data weighted fusion method, this paper 

selected two typical deep fusion strategies for 

comparative experiments: one is the dynamic weight 

fusion method based on Attention, which can adaptively 

adjust the contribution of each modal feature according 

to the context; The second is to use Autoencoder to 

compress and reconstruct features from multiple sources 

of input, and extract the fused main features. Three 

fusion strategies are embedded in the same model 

architecture (taking BP neural network as an example), 

keeping the training rounds, sample ratio, and 
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hyperparameter settings consistent, and comparing 

their error recognition accuracy and resource overhead. 

The experimental results are shown in Table 3: 

 

Table 3：Comparison of model performance under different fusion strategies 

fusion strategy Identification 

accuracy（%） 

Inference delay（ms） Model parameter 

quantity（K） 

This method 96.2 18.4 42 

Attention Fusion 96.5 33.7 108 

Autoencoder Fusion 95.6 29.1 91 

 

As shown in Table 3, although the attention 

mechanism slightly improves accuracy, its model 

complexity and runtime delay are significantly higher 

than weighted fusion; Autoencoder fusion has slightly 

lower accuracy and moderate resource consumption. 

Comprehensive comparison shows that the weighted 

fusion strategy proposed in this paper has the 

advantages of low computing overhead and high 

deployment efficiency while ensuring high accuracy, 

and is more suitable for real-time application 

requirements under embedded or edge computing 

conditions in industrial scenarios. Therefore, in the 

subsequent modeling and deployment, the weighted 

fusion method is uniformly adopted as the input 

feature construction standard. 

To further demonstrate the practical effect of 

path scoring and dynamic selection mechanism on 

model performance, this paper conducted a special 

statistical analysis on the switching of diagnostic links 

during multiple rounds of experiments. During the 

operation of the system, for typical main paths such as 

"ambient temperature → effective current value → 

residual difference value" and "vibration intensity → 

magnetic flux fluctuation rate → residual difference 

value", the triggering frequency and adjustment delay 

of various interference signals are monitored. The 

results show that under the dynamic path scoring 

mechanism, the average response delay of the main 

path determination is 241ms, which is 16.5% shorter 

than that of the fixed path structure; Under abnormal 

mutation conditions, the model can achieve optimal 

path switching within three steps, with 72.8% of 

diagnoses focused on the main cause effect chain.  

 

 

Statistics have found that optimizing the path mechanism 

significantly improves the sensitivity and discrimination 

efficiency of the system, effectively avoids the 

computational burden caused by redundant branches, and 

provides structural guarantees for rapid error localization 

and timely correction. The above data further confirms 

the effectiveness of the "causal chain modeling and 

dynamic path scoring" approach proposed in the method 

section in practical deployment, achieving a close 

connection between the method, results, and discussion. 

4.4 Ablation study 

To verify the supporting role of each key module in 

overall performance, three sets of ablation experiments 

were designed, excluding path algorithm optimization, 

error causal chain construction, and sensor fusion 

mechanism, and comparing the model performance on 

the same dataset. As shown in Table 1, the complete 

model has a recognition accuracy of 96.2%, an average 

response time of 275ms, and a computational resource 

utilization of 29.6%. After removing the path 

optimization module, the recognition accuracy decreased 

to 89.6%, the response time increased to 472ms, and the 

computational resource utilization increased to 34.2%; 

After removing the error chain, the accuracy is 90.2%, 

the response time is 398ms, and the resource utilization is 

32.7%; After canceling the sensor fusion, the accuracy 

was 91.5%, the response time was 331ms, and the 

resource utilization increased to 43.8%. As shown in 

Table 4, each module has collaborative efficiency 

enhancement functions. Missing any link will lead to a 

significant decrease in diagnostic performance, 

especially in terms of recognition accuracy and resource 

control. 

Table 4: The impact of model structural integrity on performance indicators  

Model structure 
Recognition 

accuracy（%） 

Response 

time（ms） 

Computing resource 

utilization（%） 

complete model 96.2 275 29.6 

Remove path optimization 89.6 472 34.2 

Remove error chain construction 90.2 398 32.7 

Remove sensor fusion 91.5 331 43.8 
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To enhance the credibility of the experimental 

results, this paper adopts a 5-fold cross validation 

method for the ablation experiment results, training 

and testing with different subsets each time, and 

calculating the average and standard deviation for 

each indicator. The performance indicators in Table 3 

are the mean of 5 experimental results, with standard 

deviations in parentheses. The experimental data 

shows that the complete model exhibits optimal 

performance in MSE, MAE, and REI indicators, with 

small fluctuations in each aspect, indicating that the 

model structure design has good stability and 

generalization ability. 

5  Discussion 
5.1  Comparative advantages with existing 
error diagnosis optimization algorithms 

The error intelligent diagnosis and correction model 

proposed in this study integrates causal graph 

modeling and dynamic path optimization mechanism, 

achieving diagnostic accuracy of 96.1% under 

multi-source conditions, response delay control within 

275ms, and resource utilization reduction of 41.7% 

compared to graph neural methods. Compared to 

physical modeling methods that are only applicable to 

static scenes, the proposed model characterizes the 

evolution process of error chains through causal 

constraint mechanisms and adapts to link changes 

under dynamic operating conditions. Compared to 

data-driven models that rely on large-scale training 

samples, this system can maintain high robustness in 

weakly annotated scenarios and has stronger 

generalization ability. Compared to graph neural 

network models with complex structures and high 

inference costs, DAG structures have the ability to 

perform path pruning and multi-source feature fusion, 

effectively reducing computational overhead. Dynamic 

path selection can adjust the inference path in a timely 

manner based on the degree of signal variation, 

improving the efficiency of anomaly tracing. Overall, 

this model outperforms the three existing mainstream 

methods in terms of accuracy, responsiveness, and 

resource adaptability, making it suitable for complex 

dynamic power environments. 

5.2  Adaptability and stability analysis 

To verify the adaptability and output stability of the 

model in complex operating environments, system 

evaluation experiments were conducted under three 

working conditions: electromagnetic interference 

enhancement, temperature changes of ± 15 ℃, and 

frequent load disturbances. Under the condition of 

enhanced electromagnetic interference, the model 

recognition accuracy is 94.6%, the average response time 

is 288ms, and the output consistency is 96.1%; In 

scenarios with significant temperature changes, the 

recognition accuracy is 95.8%, the response time is 

267ms, and the consistency reaches 97.3%; In the context 

of frequent load disturbances, the recognition accuracy is 

93.2%, the response time is 301ms, and the output 

consistency remains at 95.6%. All three experiments 

showed that the model has good robustness and can 

maintain diagnostic accuracy and output stability in the 

face of multi-source disturbances, making it suitable for 

long-term online deployment. Compared to traditional 

models, the average improvement in output consistency 

is 8.4%, and the average reduction in abnormal response 

speed is 41.7%. The overall test results are shown in 

Table 5, further verifying the good engineering 

practicality and deployment security of the model. 

 

Table 5: Adaptability and stability evaluation of the model under different operating conditions 

working conditions 
Recognition accuracy 

(%) 

response time 

(ms) 

Output consistency 

(%) 

Enhanced electromagnetic interference 94.6 288 96.1 

temperature variation （±15℃） 95.8 267 97.3 

Frequent load disturbances 93.2 301 95.6 

5.3  Resource consumption and 
deployment feasibility assessment 

The engineering deployment capability of a model 

largely depends on its level of consumption of 

computing resources and adaptability to the operating 

environment. In the testing environment, the system is 

deployed on an edge processor platform with a 

running frequency of 2.4GHz and a memory 

configuration of 8GB. Under full load, the model 

occupies an average of 29.6% of the central 

processing unit's computing resources and maintains a 

memory usage rate of within 38.2%, which is much 

lower than the average consumption levels of 46.8% 

and 62.5% of traditional algorithms in similar  

 

environments. At the same time, the system has a 

modular loading mechanism that supports function 

clipping and parameter reconstruction for different 

transformer types and acquisition scenarios, reducing the 

resource burden caused by redundant structures. In the 

process of diagnosing chain reconstruction and error 

correction output, the data flow relies on local cache 

optimization strategy to achieve low latency processing 

response, with an average processing delay controlled 

within 275ms for each group of data. To further validate 

the lightweight deployment performance of the model, 

this paper deployed it on Jetson Nano (4GB RAM), 

Raspberry Pi 4B (4GB RAM), and ARM Cortex-A72 

embedded platforms for testing. After quantization and 
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pruning compression, the model size is approximately 

18.6MB. In actual deployment, the average energy 

consumption per inference is 0.42W, 0.31W, and 

0.38W, respectively, with an accuracy rate of over 

95%, meeting the requirements of low-power 

real-time computing in industrial scenarios, and 

verifying the deployability and practicality of the 

model on various embedded platforms. 

This study comprehensively deployed and 

evaluated the model on various embedded ARM 

platforms to ensure reproducibility and practical 

engineering value of the results. The specific 

hardware environment is as follows: (1) Jetson Nano 

B01 development board, equipped with ARM 

Cortex-A57 quad core processor, clock speed of 

1.43GHz, onboard 4GB LPDDR4 memory, system 

environment is Ubuntu 20.04 (64 bit), Python 3.8 and 

PyTorch 1.12. （2）Raspberry Pi 4B， equipped 

with Broadcom BCM2711 SoC, integrated with quad 

core ARM Cortex-A72 (64 bit) processor, with a clock 

speed of 1.5GHz, 4GB of LPDDR4 memory, and 

Raspberry Pi OS (64 bit) system, the software 

environment remains the same as described above. (3) 

The domestically produced ARM Cortex-A72 

platform adopts a quad core Cortex-A72 architecture, 

with a main frequency of 2.0GHz and 8GB of DDR4 

memory. The system environment is the same as 

above. 

All models are independently deployed and run 

the complete testing process on the three platforms 

mentioned above. Real time monitoring of CPU usage, 

peak memory (RAM) usage, and energy consumption 

during testing. Taking Jetson Nano as an example, the 

average energy consumption of a single inference of 

the model is 0.42W, with a peak RAM of 1.1GB; 

Raspberry Pi 4B corresponds to an energy 

consumption of 0.31W, with a peak RAM of 0.98GB; 

the domestic A72 platform consumes 0.38W, with a 

peak RAM of 1.2GB, and the accuracy of all platform 

models is stable at over 95%. 

6  Conclusion 
This study focuses on the problem of multi-source 

interference errors in the operation of transformers. 

Based on the comprehensive analysis of multi sensory 

information, an intelligent detection and correction 

technology is implemented. Multi dimensional feature 

extraction, multi-path algorithm optimization, and 

model fusion strategies are introduced to construct a 

dynamic causal relationship model for measurement 

errors. The dynamic construction and real-time 

diagnosis of error causal chains are achieved. This 

method has high identification accuracy and response 

speed in complex environments. The experimental 

results show that the multiple evaluation indicators of 

the model are superior to traditional schemes, with 

good adaptability and stability, and can resist 

interference problems caused by environmental 

changes and structural uncertainty. In the actual 

testing stage, it demonstrates advantages such as low 

resource occupancy requirements, controllable 

deployment costs, and convenient model updates, and is 

suitable for online monitoring and maintenance of 

various types of transformers. The research provides a 

practical and promotable method for automatic 

correction of transformer faults, which has a positive 

promoting effect on the application of intelligent sensors 

in power equipment measurement and control 

management. 
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