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With the rapid development of Renewable Energy (RE), traditional layout methods struggle to integrate
multi-source geographic data and avoid ecological conflicts. To address these issues, this paper proposes
an intelligent solution combining a Graph Neural Network (GNN) and a multi-objective dynamic
optimization framework to enhance planning accuracy and layout efficiency. Based on 1 kmx1 km grid
data of wind farms in northwest China (15,600 nodes/156=100 km?) and photovoltaic parks in eastern
China (12,800 nodes/128x100 km?), a geographic spatial graph is constructed, allowing GNNSs to identify
spatial elements precisely. The framework integrates Genetic Algorithms (GA) with a Double Deep Q-
Network (DDQN) to optimize RE layouts, balancing power generation efficiency, ecological impact, and
construction costs through multi-objective dynamic optimization. Case studies of wind farms in northwest
China and photovoltaic parks in eastern China are used to validate robustness and adaptability under
complex terrains. Results show the proposed method achieves a spatial recognition accuracy of 0.93,
14.8% higher than traditional Convolutional Neural Networks (CNNs), ecological conflicts reduced by
29.6%, and cost savings reached 17.2%. This identification-optimization closed-loop framework
effectively processes non-Euclidean spatial data and performs multi-objective collaborative optimization.

Povzetek: Kako znanstveno podpreti nacrtovanje vetrnih in soncnih polj z vecciljno, dinamicno
optimizacijo ob razli¢nih terenih in omejitvah? Okvir GNN+GA-DDQN za prostorsko postavitev OVE iz

neevklidskih podatkov izboljsa prepoznavo elementov, zmanjsa ekoloske konflikte in stroske.

1 Introduction

As an essential support for achieving the “dual carbon”
goals, the deployment of RE is accelerating around the
world [1], [2], [3], [4]. Wind and solar energy have
become the focus of development due to their cleanliness
and broad distribution base, but in the actual layout
process, they often face multiple constraints such as firm
heterogeneity of geographical resources, complex
distribution of ecologically sensitive areas, and variable
construction costs [5], [6], [7]. Traditional methods have
difficulty handling non-Euclidean spatial relationships,
especially in the intelligent identification of spatial
distribution and layout optimization. They cannot
dynamically respond to changes in environmental design
elements, causing the site selection and layout results to
deviate from the optimal solution. A new intelligent
method is urgently needed to accurately perceive multi-
source factors at the spatial level and perform
collaborative optimization to support the scientific site
selection and environmentally friendly layout of green
energy projects [8], [9].

This paper focuses on the site selection and equipment
layout optimization of wind farms and PV power stations.
Such problems require weighing multi-dimensional
constraints such as resource endowment, land use, grid
access, and ecological protection in complex geographical

spaces, which directly affect the economic efficiency and
sustainability of the project throughout its life cycle. The
core challenge of current RE environmental design is
accurately identifying spatial elements and multi-
objective coordinated optimization through technical
means. How to effectively identify the complex
boundaries between resource-rich and ecologically
sensitive areas and construct an identification model that
can express spatial topological relationships has become a
key technical problem that affects layout accuracy. To
address this problem, Rane et al. and Gerbo et al. [10], [11]
adopted a multi-criteria suitability analysis method based
on Geographic Information System (GIS) to
comprehensively evaluate the feasibility of building a PV
power station. However, there were problems such as
strong subjectivity in weight setting and failure to consider
dynamic environmental changes fully. Giinen, Ajanaku
and Strager [12], [13] combined GIS with multi-criteria
decision-making methods to evaluate the optimal location
of RE sources. However, the model was sensitive to
weight distribution and did not fully consider geographical
constraints. Wang Z [14] proposed an adaptive
convolutional residual network model, which combined
project risk classification and electricity price regression
prediction, combined novel preprocessing technology and
feature optimization, and achieved strong adaptability and
reliability in renewable energy electricity price prediction,
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providing an independent high-performance solution for
energy market planning. Most of these methods focus on
power generation prediction or static evaluation and lack
the discussion of the "identification-optimization" closed-
loop mechanism in spatial layout optimization problems.
Existing research on spatial suitability evaluation is
divided into two categories: a static evaluation model
based on GIS and fuzzy decision-making methods, and a
modeling method that relies on machine learning models.
For example, Effat and EI-Zeiny, and Geng et al. [15], [16]
used remote sensing data, geospatial models, or GIS to
delineate and map potential solar and wind energy areas,
thereby constructing suitable sites. Although these studies
have promoted the development of the field, they still have
significant limitations in multi-source data fusion and eco-
efficiency coordinated optimization. In particular, they
cannot model non-Euclidean adjacency relationships
between spatial elements, making it difficult to deal with
the problem of expressing coupled characteristics across
terrains and resource types in wind power and PV site
selection [17]. Existing studies have mostly used GIS
spatial analysis [18], [19], [20], random forest
classification [21], [22], or CNN algorithms for suitability
evaluation [23], but they have significant limitations.
Zheng et al. [24] used an integer GA with an adaptive
strategy to optimize the layout of wind farms, but there
were problems of slow convergence or local optimality. Li
et al. [25] proposed a method that combined federated
learning with least squares generative adversarial
networks to generate high-quality RE scenarios. Wang et
al. and Zuo et al. [26], [27] divided wind farm areas based
on fuzzy clustering, but the classification results were
sensitive to the initial parameters. Eroglu [28] used a
method that combined GIS with fuzzy hierarchical
analysis to generate a suitability map and identify optimal
and restricted areas, thereby improving the accuracy of
site selection. Deveci et al. [29] used the Full Coordination
(FUCOM) weighting method based on g-Rung Orthopair
Fuzzy Sets (q-ROFSs) and the Combined Compromise
Solution (CoCoSo) decision model to optimize the
candidate sites for four floating offshore wind farms in
Norway. The model was verified to be stable through a
sensitivity analysis. Fu et al. [30] attempted to use
machine learning to predict resource distribution, but the
generalization ability of the model was limited by the
regional representativeness of the training data; Tinsley et
al., Wang and Li, and Sahoo and Sethi [31], [32], [33],
proposed that the development of RE cannot be at the
expense of the ecological environment, resulting in a
significant reduction in the available areas. Song et al. [34]
proposed a wind power prediction method that combined
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Graph Convolutional Networks (GCNs) and multi-
resolution CNNSs to integrate spatial and temporal features
to improve prediction accuracy. Although the above
methods have improved the evaluation capabilities in
different dimensions, their static structure and single
objective make them difficult to adapt to the needs of
highly dynamic and strongly coupled complex
geographical systems, and they lack a modeling
mechanism for the trade-off between power generation
efficiency, ecological interference, and cost constraints.

This paper innovatively proposes a collaborative
framework based on GNN and multi-objective dynamic
optimization. Through Gaussian weighted adjacency
matrix and multi-head attention mechanism, a dynamic
spatial graph structure is constructed to break through the
limitations of traditional GIS static weight allocation and
CNN boundary effect; a GA-reinforcement learning
hybrid optimizer is designed, and Pareto frontier search is
used to realize real-time interaction between ecological
sensitivity weight and resource potential mapping, which
increases the reduction of environmental conflicts from
12.0% of CNN to 29.6%. In comparison, the layout
efficiency is improved by 21.4%. Compared with classic
multi-objective evolutionary algorithms such as Non-
dominated Sorting Genetic Algorithm Il (NSGA-I1I), this
method optimizes the convergence speed in cross-regional
migration scenarios. It maintains a high diversity of
solution sets, demonstrating global optimization
capabilities in complex environments. Experiments show
that the framework has improved accuracy in the cross-
regional migration of wind farms in the northwest plains
and PV parks in the eastern river network, and its
convergence speed is faster than NSGA-II. It provides a
technical path that considers both efficiency and
ecological protection for the layout of RE in complex
geographical scenarios. It also solves the core bottlenecks
of existing models in non-Euclidean data modeling and
multi-objective collaboration. The relevant comparison is
shown in Table 1.

This paper raises the core research question: Can the
GNN and GA-DDQN collaborative framework
significantly improve the accuracy, efficiency and
ecological compatibility of renewable energy layout under
multiple ecological constraints? Specific hypotheses
include: Gaussian weighted adjacency matrix and multi-
head attention mechanism can improve the accuracy of
spatial element recognition; GA-DRL hybrid optimizer
can accelerate convergence and reduce ecological
conflicts; dynamic weight mechanism can balance power
generation efficiency and ecological cost.
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Table 1. Comparison of optimization methods for spatial layout of renewable energy sources

Solution
Method Category Core Task Main Limitation Proposed  in | Dataset
This Paper
Dynamic graph
GIS  Multi-Criteria | Static suitability | Subjective weighting; | structure .
.. . : . - Regional scale
Decision analysis ignores dynamic changes +adaptive
weights
GNN with
Random Eorest/CNN Resqur_ce distribution Lacks. spatial  topology multl-_head Lan(-J5at' remote
prediction modeling attention sensing imagery
mechanism
Integer Genetic S Slow convergence; prone to GA'.DRL Simulated  wind
. Layout optimization : hybrid
Algorithm local optima o farm
optimizer
Dynamic
Fuzzy Clustering . . Sensitive to initial | weight Offshore wind
. Wind farm zoning i
Partition parameters adjustment farm
mechanism
Identification— OVercomes existin GNN + GA- :c\:lc()ar?]sured data
Method in this paper | optimization L 9| brRL dynamic
. limitations Northwest/Eastern
collaboration framework China

2 Algorithm design

2.1 Construction of geospatial graph
structure

To realize the spatial distribution modeling of RE
environmental design elements, the study area is divided
into regular grid units of 1 km x 1 km, and each unit is
used as an independent node in the graph structure. The
grid division adopts an equal-area azimuthal projection to
eliminate the deformation effect of high-latitude areas.
The node attribute dimensions include terrain slope, wind
speed, light intensity, land use type, ecological sensitivity
index, and traffic accessibility, a total of 6 core indicators.
All attributes are normalized by Z-score to eliminate
dimensional differences and input as node feature vectors.

The adjacency relationship between nodes is
constructed through the spatial adjacency matrix. A hybrid
strategy is used to determine the connection rules: for
plain and hilly areas, an 8-neighborhood connection is
established based on the Euclidean distance threshold of 2
km; for mountainous and river-dense areas, the K-nearest
neighbor algorithm is used to dynamically adjust the
number of neighbors to avoid false associations caused by
terrain barriers. The neighbor weights are calculated using
the Gaussian kernel function:

@
wij = exp(—>-5 )
In Formula (1), dl?]- is the geographical distance

between nodes i and j (km), and o is set to 1.5 times the
average grid spacing of the region. This design strengthens

the local spatial autocorrelation while weakening the noise
interference of distant nodes.

To improve the expression ability of ecological spatial
structure, a composite edge weight design based on the
connectivity of environmental corridors is introduced:
based on the original Gaussian weighting, the ecological
connectivity correction coefficient 4;; is introduced, and
the composite edge weight is defined as:
wi; = Aij - wyj (2

In Formula (2), 4;; assigns a correction weight
between 0.8 and 1.2 according to whether there is an
ecological corridor between nodes, which enhances the
modeling effect of boundary connectivity in ecologically
sensitive areas.

The graph structure verification uses a joint
evaluation of cross-entropy loss and Moran’s index: a 10-
fold cross-validation is performed on wind speed and light
attributes.

2.2 Multimodal feature coding and spatial
element identification

2.2.1 Environmental element recognition

Based on the constructed geospatial graph structure, the
Graph Attention Network (GAT) is used to realize the
feature encoding of multi-source heterogeneous attributes
and the propagation of neighborhood information. The
model adopts a three-level stacked architecture, including
an input, intermediate propagation, and output layers. The
propagation layer is configured as a two-layer GAT
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module, and each layer contains 8 parallel attention heads
to enhance the robustness of feature extraction. Feature
encoding maps the original node attributes to a high-
dimensional space through an embedding matrix:

h§0) = Wemp - X; 3)
In Formula (3), x; € R is the standardized attribute
vector of node i ; W,pn, € R®*10 is the learnable
embedding matrix; h{” € R%* is the initial feature
representation. Neighborhood information propagation is
achieved through a multi-head attention mechanism. The

calculation process of the L-layer GAT is as follows:
The attention weight is calculated as follows:

ei(;) = LeakyReLU(a®T

_ _ 4
AWORSV W ORI ®
O]
exp(e;;’)
ai(;) = » @) (5)
Zke]\f(i) exp (el.k )

Here, W® € R®**¢* js the linear transformation
matrix; a®® € R?2 is the attention parameter vector; ||
represents the vector concatenation operation; V(i) is the
neighbor set of node i.

This step dynamically allocates the contribution
weights of neighboring nodes through learnable
parameters, breaking through traditional GCN's fixed
average aggregation mode.

The feature updates are as follows:

K

=0 Y Y alPweorty )
JEN (D)
k=1
In Formula (6), K is the number of attention heads; o
is the ELU activation function; W %) g R®4*64 js the
parameter matrix of the k-th head. This module identifies

environmental constraints, such as ecologically sensitive

94
Longitude (°)
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areas, terrain barrier areas, and high ecological cost areas.
The final output, a 64-dimensional node vector, is mapped
into a 32-dimensional heat map vector Z; € R32 through a
fully connected layer, which is wused for visual
identification of spatial element distribution and
subsequent optimization analysis. The identification
results are presented as an ecological constraint intensity
heat map, as shown in Fig. 1.

The feature fusion strategy uses standard residual
connections and layer normalization to improve training
stability:

h{"

= LayerNorm hgl_l)

U]

+ Dropout| o Z al} wOR!™Y w
JEN ()

This mechanism efficiently characterizes
heterogeneous ecological areas through the attention
mechanism, significantly improving the accuracy of
environmental boundary identification under complex
terrain.

Residual connections alleviate the gradient vanishing
problem; Dropout suppresses overfitting; layer
normalization ensures feature distribution consistency.
The final output layer maps the 64-dimensional features to
the target space through a fully connected layer:

zi = Woye - hi(Z) (8)
In Formula (8), z; € R3? is the high-dimensional

spatial feature vector of node i, which serves as the input
of the multi-objective optimization module.

Figure 1: Ecological environment constraints heat map

The geospatial map structure shown in Fig. 1
demonstrates the spatial distribution characteristics of RE

environmental design elements in the study area. Its
environmental design elements include six indicators,
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such as slope, soil bearing capacity, and ecological
sensitivity). The heat map uses Projected coordinate
system (unit: kilometers) as coordinate axes to map the
comprehensive environmental constraint intensity of each
1 kmx1 km grid unit. It is the fusion result of multi-source
heterogeneous data such as ecological sensitivity, slope,
land use type, and soil carrying capacity, reflecting the
spatial gradient from low constraints to high constraints,
and revealing the differences in the suitability of RE
layout under different terrain and ecological conditions.
The vyellow areas in the heat map correspond to
ecologically sensitive areas, high-slope mountains, and
areas with low soil bearing capacity, showing strong
environmental restrictions, indicating that such areas are
unsuitable for large-scale wind power or PV equipment
deployment to avoid ecological conflicts and construction
risks. Green areas are mostly flat terrain, low
environmental pressure, and friendly land use, which are
suitable for the layout of RE facilities and are conducive
to improving power generation efficiency and reducing
ecological interference. This heat map effectively reflects
the results of using GNNs to encode multimodal features
of spatial elements and propagate neighborhood
information, and realizes the accurate identification and
spatial distribution mapping of key design elements in
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complex geographical environments. By integrating a
comprehensive evaluation of multiple indicators, the heat
map provides accurate spatial constraint input for
subsequent multi-objective dynamic optimization based
on GAs and Deep Reinforcement Learning (DRL),
supporting the balanced optimization of equipment layout
between power generation efficiency, ecological
protection, and construction costs.

2.2.2 Resource potential assessment module

Based on identifying environmental constraints, the
resource potential assessment module uses a parallel
branch network to model the wind/light resource potential
and extract the multi-scale characteristic distribution of
key resource factors such as wind speed and total
horizontal radiation in the spatial dimension. After being
superimposed with the ecological constraint heat map,
dual constraint input is provided for the equipment layout.
During the evaluation process, the multi-head attention
mechanism of GAT is used to enhance the ability to
identify resource-rich areas. The performance of different
attention head configurations is compared through
ablation experiments, and the results are shown in Table
2.

Table 2: Contribution analysis of the multi-head attention mechanism

Number of | Feature Calculation Identification of ecologically | Accuracy of identifying
attention heads | separation | time(s/epoch) sensitive areas F1-score resource-rich areas

4 0.51 4.7 0.71 0.78

8 0.43 5.5 0.82 0.89

16 0.41 10.2 0.81 0.88

The 8-head configuration in Table 2 is superior to the
4-head and 16-head schemes regarding feature separation
and ecologically sensitive area identification. Compared
with the 4-head configuration, the calculation time is only

Feature Encoding

Input Layer

Feature Projection

Output Layer

-

lterative Propagation

increased by 17.0%, which verifies its optimal balance in
complex geographical scenes. Therefore, the 8-head
configuration is selected in this paper.

Multi-head Attention Calculation

8-Head Parallel Computation

/|

g

Residual Cdnnection &
Layer Normalization

Figure 2: GAT feature propagation process

Fig. 2 shows the entire process from original attribute
encoding and neighborhood attention calculation to
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feature fusion, highlighting the multi-head attention
mechanism's parallel computing characteristics and
residual connection structure.

2.3 Design of multi-objective dynamic
optimization framework

Taking the node feature vector z; € R3? output by the
GNN as input, a multi-objective optimization framework
of a hybrid GA and DRL is constructed. The objective
function is defined as:

minF = [—E(D), S(D), C(D)]” 9)

In Formula (9), D < V is the equipment layout plan
(V is the set of graph nodes); E is the power generation
efficiency (maximization is converted to minimization of
negative values); S is the ecological interference; C is the
construction cost. The three are used to realize the search
for non-dominated solutions through the Pareto frontier.

Power generation efficiency modeling is based on
resource synergy and interference constraints between
devices:

E(D) =

(i 1_[ -5 (10)

— JEN(D)ND
L

In Formula (10), y; is the resource potential of node i
(generated by mapping the first 16 dimensions of z;
through the multi-layer perceptron P ); k is the
interference attenuation coefficient; y is the distance
index; d;; is the geographical distance between devices i
and j (km). The model quantifies the wind turbine wake
effect and PV shadowing loss, ensuring that the device
spacing is greater than 3D (D is the device diameter).

Ecological disturbance constraints are modeled
through the superposition and cumulative effects of
sensitive areas:

1
S)= ) (s e ) +7- E —
ij

i€d i,jeD

In Formula (11), s; €[0,1] is the ecological
sensitivity of node i; t; is the buffer time to the nearest
protected area (years); A is the protection time decay rate;
n is the regional cumulative interference coefficient; 8 is
the neighboring penalty index. The design forces the
layout to avoid highly sensitive areas and disperse
ecological pressure.

Cost constraints cover the comprehensive
construction, operation, and maintenance expenses:

C(D) = ) (i +§ - digria) + ¢ - MST(D)
ieD
In Formula (12), ¢; is the unit construction cost of
node i; d; griq is the Euclidean distance to the grid access
point (km); & is the transmission cost coefficient; ¢ is the
Minimum Spanning Tree (MST) weight, which reflects
the cost of laying internal roads and cables.
In this multi-objective dynamic optimization
framework, the node feature vector output by GNN is not
only used to generate resource potential parameter y;, but

(11)

(12)
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also the ecological sensitivity s; is explicitly extracted and
directly input into the optimizer as an ecological
interference penalty term, ensuring that during the
iterative process of GA and reinforcement learning, the
layout plan can take environmental constraints into
account in real-time and achieve a dynamic balance
between power generation efficiency and ecological
protection.

The optimization process is iteratively executed in
three stages:

A. GA global search:

Population initialization: randomly generating 500
feasible solutions; fitness calculation: for each solution
D, calculating F, = [—E}, S, Cp];

Non-dominated sorting: using the NSGA-II fast
sorting algorithm to divide the Pareto hierarchy;

Genetic operation: roulette wheel selection +
simulated binary crossover + polynomial mutation.

B. Reinforcement learning local optimization:

State space: current layout and remaining optional
node set;

Action space: selecting one node from V \ D; to
replace one node in Dy;

The reward function is as follows:

R,=—a-AE—B-AS—y-AC (13)

In Formula (13), AE = E;,; —E;, a, B, and y are
weight coefficients;

Policy network: Dual Deep Q Network (DDQN),
input is node feature concatenation matriX Z.,pcar €
RE+D*32 and output action value is Q(s, a; 6).

C. Dynamic weight adjustment:

The objective function weight is dynamically updated
according to the Pareto frontier distribution:

VF®
T VFO |,

The gradient direction guides the search towards the
balance area between convergence and diversity.

The termination condition is that the Pareto front
change rate is § < 1073 for five consecutive generations

__IPF®OAPFE-D)|
(0= "5y
Finally, the non-dominated solution set PF* is output for
decision makers to choose implementation plans
according to their preferences.

In the selection of reinforcement learning algorithms,
this paper adopts dual deep Q networks instead of other
deep reinforcement learning methods such as PPO or
A3C, mainly based on the following three considerations.
Adaptability to discrete action space: in the optimization
problem of renewable energy layout, the action space is a
discrete node selection and replacement operation, and
DDQN shows higher sample efficiency and stability in the
policy optimization of discrete action space, avoiding the
high variance problem of PPO and other policy gradient-
based methods in discrete action space. Q-value
decomposition of multi-objective trade-offs: DDQN can
directly model the trade-off relationship between power
generation efficiency, ecological conflict, and cost
through a multi-objective Q-value network. Its dual
network structure and target separation mechanism are

w® JVF® = F®O _ pt-1 (14)

, and A is a symmetric difference set).
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more suitable for dynamic weight adjustment strategies,
while asynchronous methods such as A3C need to design
additional complex value function decomposition
mechanisms in multi-objective collaborative
optimization. Collaborative efficiency with GA: DDQN's
offline experience replay mechanism complements GA's
global search.

.........
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The architecture diagram in Fig. 3 shows the GNN
feature input, GA global search, DRL local optimization,
and dynamic weight interaction process hierarchically,
highlighting the multi-objective collaborative
optimization mechanism.

Multi-Objective Optimization

Mutation & Crossaover
- Global Search(GA)

Population Initialization

Reward Feedback
Local Refinement{DRL}

7

Pareto Front Update ‘ |

NSGA-Il Framework | |

I

DDQN Agent

tion Learning

Fitness Evaluation

Dynamic Weight Adjusiment

Q
g
g
Q
=3
@
3
=
a

]

Optimal Layout Qutput

Figure 3: Multi-objective optimization framework architecture

2.4 Model training and parameter tuning

This study uses a joint transfer learning and cross-
validation strategy to optimize model parameters. It
performs the training process in three stages: pre-training,
domain adaptation, and end-to-end fine-tuning. Global
offshore wind turbine analysis includes offshore wind
turbines, including the number of turbines, installed
capacity, and site specifications. Solar Power Generation
& Energy Consumption provides photovoltaic power
station location data, providing photovoltaic power station
coordinates and basic properties. The positive samples in
comparative learning are 118 wind farms and 42
photovoltaic power station layout plans selected from the
above datasets; negative samples are generated by random
grid sampling. There are 160 invalid layout plans. The
validation set is divided into regional stratified sampling:
the total sample is divided into training set (70%),
validation set (15%), and test set (15%) according to
geographical blocks to ensure that different terrain types
are evenly distributed. All model parameters are updated
through the Adam optimizer, with the initial learning rate
set to 3 x 10™* and the weight decay coefficient 1 =
10™*, and the early stopping method (patience=20) is
introduced to prevent overfitting.

In the pre-training phase, source domain data is
constructed based on historical site selection data, and
self-supervised tasks are used to align feature space:

1) Node attribute reconstruction: a 20% random mask
is applied to the input feature matrix X € RV*1%, and the

missing attributes are reconstructed by stacking the GAT
encoder (3 layers). The loss function is defined as:

1 A ,
Lrecon = |M| Z I Xi — X "2

IEM

(15)

In Formula (15), M is the mask node set, and x; is the
reconstructed value.

2) Layout pattern contrast learning: for known layout
scheme D* and randomly generated negative sample D™,
the similarity difference between positive and negative
pairs is calculated by maximizing the contrast loss:

exp(sim(D*,D1) /1)
&S - exp (sim(D*, D) /1)

In Formula (16), sim(+) is the cosine similarity, and T
is the temperature coefficient.

Domain adaptation stage: parameter migration is
performed based on the geographical characteristics of the
target area, using a freeze-thaw strategy:

1) Feature encoder freezing: the parameters of the first
three layers of GAT are fixed, and only the output layer
mapping matrix W, is trained to make the feature space
adapt to the data distribution of the target area;

2) Dynamic feature normalization: domain-specific
statistics are introduced to adjust the BN (Batch

Normalization) layer parameters, and the formula is:

Q] Q]

;l-(l) _ V(l) i ~ Hiarget
i

(16)

Leont = —1

(O]
— t8 17)
Utarget te
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In Formula (17), dol h d
s Hearger AN Opyroq, are the mean an
variance of the [-th layer features in the target domain, and
y and B are learnable scaling and translation parameters.
Table 3: Parameter tuning comparison table
Parameter Name Value Range Opt'mal . Impact on Performance
Configuration
SBX Crossover Index 5/15/30 15 Convergence speed improved
-4 -4
DDOQN Learning Rate 18%0 [13x10% / 3x10* Reward stability increased
Dynamic Weight Update Frequency 1/3/5 5 HV metric improved
Reinforcement Learning Discount 0.8/0.9/0.95 0.9 The cumulative  reward
Factor y increased

Table 3 shows the key hyperparameters' tuning
process and performance impact on model training. The
horizontal dimensions include parameter name, value
range, optimal configuration, and quantization effect. A
vertical comparison shows that the optimal value of the
SBX (Simulated Binary Crossover) crossover index
(5/15/30) is 15, which reduces the number of Pareto front
convergence steps and increases the convergence speed.
The DDQN learning rate is 3x10*. The dynamic weight
update frequency (1/3/5) is optimized to update every five
generations. The HV (Hyper Volume) is improved, and
the low-frequency update effectively suppresses local
disturbances. The cumulative return is the highest when
the discount factor y (0.8/0.9/0.95) is selected to be 0.9,
which reflects the balance between long-term benefits and
immediate optimization.

3 Experiment and verification

3.1 Experimental design

To verify the effectiveness of GNN and multi-objective
optimization methods in RE environment design, the
experiment selects a wind farm in northwest China and a
PV park in the east as the research area, obtains multi-
source geographic data including topography, land use,
meteorology, transportation, and ecological protection
areas, and uniformly rasterizes them into a spatial dataset
with a resolution of Ikmx1km. The Northwest Wind Farm
Experimental Area contains 15,600 grid nodes (covering
156x100 km?2), and the Eastern PV Park contains 12,800
nodes (covering 128x100 km32). The data sampling
frequency is daily meteorological station observations and
quarterly remote sensing image updates. After spatial
alignment and normalization of the raw data, a geospatial
graph structure is constructed, with each grid cell as a
graph node and adjacency relations generated by
weighting spatial distance and ecological relevance. In the
spatial element recognition stage, the proposed GNN
model is used to encode the multimodal features of the
nodes, integrating attributes such as terrain slope, light
intensity, mean wind speed, and land type, while
propagating neighborhood information to capture local
spatial dependency characteristics. In the training phase,
the expert-annotated regions are used as supervisory

information, and a stable model is obtained through cross-
validation. Three experts in the field independently
annotate the data according to the unified standard, and the
mode value is taken after the consistency is verified by
Kendall's harmony coefficient. Under the same data input
conditions, the performance is compared with three
comparison methods: traditional CNN, multi-grained
attention-based spatial-temporal GCN+Deep
Deterministic Policy Gradient (MG-ASTGCN+DDPG),
GNN+Variable Neighborhood Search (VNS); all models
are run under the same training/validation division to
ensure the comparability of the results.

The layout optimization stage adopts a dynamic
optimization framework combining the GA used in this
paper and reinforcement learning. The objective function
simultaneously considers maximizing power generation
efficiency, minimizing ecological conflicts, and
controlling construction costs. GAs is used to generate the
initial solution set and perform global search.
Reinforcement learning (based on the policy gradient
method) dynamically learns and optimizes the local
adjustment strategy of the solution space, so that the layout
process can adjust the environment feedback. The
optimization process sets the maximum number of
iterations and the convergence threshold to ensure each
method completes the optimization process under the
same resource constraints.

3.2 Spatial element recognition accuracy
evaluation

To verify the accuracy of the proposed model in
identifying spatial environmental design elements, this
section conducts comparative experiments on the task of
identifying suitable areas in wind power and PV sites. The
experiment uses expert-annotated areas as accurate labels
to evaluate the accuracy and stability of the proposed
model and three comparison methods in spatial
recognition. In the specific implementation, all 1kmx1km
grids in the two selected areas (wind farm and PV park)
are divided into training set, validation set, and test set in
a ratio of 8:1:1. The model input includes six types of
spatial characteristics: terrain slope, annual average wind
speed, light intensity, land use type, ecological sensitivity
score, and traffic accessibility. The model proposed in this
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paper is based on the constructed spatial graph structure,
integrating GNNs for feature encoding and spatial context
modeling, supporting cross-regional and cross-scale
neighborhood information propagation, and improving the
model's perception of regional complexity and
heterogeneity. All models use the same training strategy
and hyperparameter tuning process. The maximum
number of training rounds is 200, and the early stopping
mechanism is used to avoid overfitting (terminated when
validation loss does not improve for 20 consecutive
rounds). The recognition results are compared and
evaluated through three core indicators: Accuracy
measures the overall correct proportion of classification;
Kappa coefficient evaluates the classification consistency
of the model; Fl1-score, a classification performance
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indicator, comprehensively considers precision and recall.
The recognition results in the test set are compared pixel
by pixel with the expert annotations, and the above
indicators are calculated after the confusion matrix is
generated. To further verify the model's ability to
determine the spatial boundaries of key ecological
functional areas, this paper introduces the loU
(Intersection over Union) indicator to evaluate the
accuracy of the identification results of ecologically
sensitive areas. Taking the ecological red line boundary
drawn by experts as the reference standard, the
intersection and union ratio performance of the prediction
results of each model within the environmental zone is
compared. The comparison of relevant indicators is shown
in Fig. 4.

0.95 T T
I wind Farm loU
[ Photovaltaic Park loU

d Farm loU

Figure 4: Comparison of relevant indicators of each model

Figure 4(a): Comparison of performance indicators of each model

Figure 4(b): Accuracy of identifying the boundary of ecologically sensitive areas

Fig. 4(a) compares the core indicators of the four
models in identifying suitable areas for wind farms and PV
parks. The CNN model is improved from 0.81 to 0.93
(+14.8%); the Kappa coefficient increases from 0.74 to
0.91 (+23.0%); the F1-score increases from 0.76 to 0.92
(+21.1%). Fig. 4(b) focuses on the accuracy of boundary
recognition of ecologically sensitive areas (loU index),
and compares the intersection-over-union ratio of wind
farms (Wind Farm loU) and PV parks (PV Park loU). The
loU of the proposed model in the wind farm reaches 0.87,
an increase of 18.5% compared with CNN; the loU of the
PV park is 0.84, an increase of 19.7%, verifying the
enhanced effect of the Gaussian weighted adjacency
matrix and multi-head attention mechanism on ecological
boundary modeling under complex terrain. The advantage
of this model comes from its ability to deeply couple
multi-source heterogeneous data. By constructing a

geospatial graph structure, the Gaussian weighted
adjacency matrix and dynamic adjacency strategy
effectively solve the limitations of traditional GIS
methods in modeling non-Euclidean data. At the same
time, the multi-head attention mechanism significantly
improves feature discriminability and weighted
expression of neighborhood information. The multi-
objective dynamic optimization framework further
enhances the feature decoding capability. At the same
time, to verify the actual contribution of the multi-head
attention structure in the graph attention mechanism to the
model performance, this paper designs an ablation
experiment to compare the performance differences
between the complete model in this paper and the
simplified model with "removing the attention
mechanism" in terms of Kappa coefficient and other
coefficients.
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Table 4: Comparison of ablation experiment results of the multi-head attention mechanism

Metric With Multi-Head Attention | Without Attention A (Performance Drop) | Relative Decrease (%)
Accuracy 0.93 0.89 -0.04 -4.30%
Kappa 0.91 0.86 -0.05 -5.49%
F1-score 0.92 0.87 -0.05 -5.43%

Table 4 shows the performance comparison of the
model after introducing and removing the multi-head
attention mechanism in suitable areas of wind farms and
PV parks. From the results, Accuracy drops from 0.93 to
0.89, a decrease of 0.04, or 4.30%; Kappa drops from 0.91
to 0.86, a reduction of 0.05, corresponding to the
maximum relative decline of 5.49%; F1-score drops from
0.92 to 0.87, also a decrease of 0.05, or 5.43%. All three
indicators show a significant decline, indicating that the
multi-head attention mechanism has substantially
contributed to the overall accuracy, classification
consistency, and comprehensive performance of spatial
element recognition.

3.3 Layout efficiency and ecological conflict
evaluation

To verify the actual effectiveness of the method in
equipment layout and its ability to control ecological

interference, this section uses wind farms and PV parks as
experimental scenarios to compare and evaluate the
performance of the proposed model with other three
methods (CNN, MG-ASTGCN+DDPG, GNN+VNS) in
terms of layout efficiency and ecological conflict. Each
model performs independent layout optimization under
the same basic constraints based on the results of spatial
element identification. The objective function includes
three goals: maximizing unit power generation efficiency,
minimizing ecological interference, and controlling
construction costs. The optimization results of all models
are uniformly sampled in 50 independent runs, and the
statistical average is used for comparative analysis. The
relevant comparison is shown in Fig. 5.
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Figure 5: Performance comparison of each model in terms of layout efficiency, ecological conflict control, and cost
savings

Figure 5 (a): Comparison of each model in terms of the layout efficiency improvement rate

Figure 5 (b): Comparison of each model in terms of ecological conflict reduction rate

Figure 5 (c): Cost savings rate

Fig. 5 shows the comprehensive performance
comparison of the four models in the wind farm and PV
park layout tasks, including three core indicators:
efficiency improvement rate (a), ecological conflict
reduction rate (b), and cost saving rate (c). The proposed
model is significantly ahead in all dimensions: the
efficiency is improved by 12.9 percentage points

compared with the baseline CNN; the ecological conflict
is reduced by 29.6% (6.5% higher than GNN+VNS); the
cost is saved by 17.2% (0.6% higher than GNN+VNS).
Compared with the traditional CNN method, the model in
this paper effectively captures the consistency of wind
speed gradient and PV illumination through spatial
correlation modeling of GNN, which improves the layout
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efficiency by 21.4%; the multi-objective dynamic
optimization framework achieves 29.6% conflict
reduction in avoidance strategy in ecologically sensitive
areas through Pareto frontier search, which is better than
the GNN+VNS model (23.1%) that only relies on static
weights. The balanced performance of the cost-saving rate
(17.2%) verifies the effective integration of the MST
weights and the grid access distance constraint, especially
in areas with complex terrain.
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3.4 Computational efficiency and
convergence evaluation

To comprehensively evaluate the performance of each
method in terms of computing resource usage and
optimization stability, this section compares the efficiency
performance and convergence characteristics of the four
models during training and inference in a unified hardware
environment (Intel Xeon E5-2690 CPU, 64GB memory,
NVIDIA RTX A5000 GPU). The experiment uses the
same data input, loss function, and early stopping
mechanism. Each model is run independently for five
rounds, and the mean and variance are statistically
analyzed.
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Figure 6: Optimization iteration curve

Figure 6(a): CNN optimization iteration curve

Figure 6(b): MG-ASTGCN+DDPG optimization iteration curve

Figure 6(c): GNN+VNS optimization iteration curve

Figure 6(d): Optimization iteration curve of this method

Fig. 6 shows the changing trend of the objective
function value of four models with the number of
iterations during the optimization process. The horizontal
axis represents the number of optimization iterations, and
the vertical axis represents the objective function value,
reflecting the comprehensive performance evaluation of
the layout solution. In contrast, the objective function of
the CNN model decreases slowly, showing a low
optimization efficiency, and the speed of the bracelet
gradually slows down in the later iterations; the initial

decrease speed of the MG-ASTGCN+DDPG model is
slightly better than that of CNN, indicating that the model
combining time series modeling and reinforcement
learning slightly improves the optimization speed, but still
lags in spatial structure processing; the GNN+VNS curve
fluctuates more than the proposed model, indicating that
there are specific local oscillations in the neighborhood
search stage; while the proposed model converges and
stabilizes in about 40 steps, with the fastest convergence
speed and lower function value, which fully reflects its
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significant advantages in optimization capabilities. This
shows that introducing GNNs for feature modeling and
genetic enhancement joint optimizer effectively improves
the overall convergence efficiency and search accuracy.

J. Xu

Table 5 systematically compares the four methods' single
training time, total computation time, and acceleration
ratio to quantify the specific differences in computational
efficiency among the models.

Table 5: Computational efficiency comparison table

Model Training Time per Epoch (s) Total Computation Time () Speedup
CNN 48.5 960.2 1.01
MG-ASTGCN + DDPG 37.8 742.5 1.29
GNN + VNS 324 638.7 1.5

This Article Model 26.1 521.3 1.84

Table 5 shows the differences in computing efficiency
of the four comparison models in a unified computing
environment. From the results, the CNN model takes an
average of 48.5 seconds to train one round, and the total
computing time reaches 960.2 seconds, the longest among
the four methods. The MG-ASTGCN+DDPG model takes
37.8 seconds per round, with a total duration of 742.5
seconds, and the speedup ratio reaches 1.29, indicating
that its efficiency has been improved after the introduction
of time series modeling and reinforcement learning in the
optimization strategy. The GNN+VNS model further
reduces the training time to 32.4 seconds. The total time is
638.7 seconds, and the speedup ratio is 1.5; the method
proposed in this paper that integrates GNN and joint
optimization strategy performs best in terms of efficiency,
with each round of training time of only 26.1 seconds and

a total calculation time of 521.3 seconds, highlighting its
high efficiency in large-scale layout tasks.

3.5 Ablation study of key components

To verify the effectiveness of the GA-DRL joint
optimization framework, dynamic weight adjustment, and
transfer learning strategy proposed in this paper, this
section designs three sets of ablation experiments:
Experiment A: comparison of pure GA optimization and
GA+DRL joint optimization (DRL local optimization
module removed);

Experiment B: turning off the dynamic weight adjustment
mechanism;

Experiment C: removing the transfer learning strategy.
The experiment uses a wind farm as the scenario and runs
at the same number of iterations. The results are shown in
Table 6.

Table 6: Results of ablation experiments on key components

Ablation Effilc_iae):lc::m Ecological Cost Saving Convergence
Component y Conflict Reduction Rate Iterations
Improvement
Full Model 21.40% 29.60% 17.20% 40
A[ssl‘imo"e 17.80% 24.10% 15.10% 58
B: Fixed 19.20% 25.70% 15.90% 52
Weights
C: No Transfer 16.30% 21.40% 14.20% 67
Learning
From Table 6, it can be found that the local optimization  pre-trained  feature  alignment to  cross-terrain

value of DRL (Experiment A): after removing DRL, the
convergence speed decreases by 45%, and the ecological
conflict reduction rate decreases by 5.5 percentage points,
proving that DRL effectively avoids sensitive areas by
adjusting the device spacing in real-time; the necessity of
dynamic weights (Experiment B): fixed weights lead to a
23% decrease in Pareto front diversity, verifying the key
role of the gradient guidance mechanism in multi-
objective trade-offs; the generalization advantage of
transfer learning (Experiment C): without transfer
learning, the ecological conflict reduction rate decreases
by 8.2 percentage points, highlighting the contribution of

generalization.
3.6 Long-term prediction of power
generation and ecological impact

In this section of the experiment, the primary purpose is to
evaluate the performance of the four models in long-term
power generation prediction and ecological impact
analysis. This paper adopts a time series simulation
method based on geospatial data. Constructing long-term
prediction models for wind farms and PV parks
comprehensively evaluates each model's prediction
accuracy, power generation efficiency, and ecological
impact. All models are trained and tested in the same
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geographical area and period in the experiment to ensure
fairness. In the experiment, each method's total power
generation and ecological impact ratio in multiple
scenarios are statistically analyzed and normalized to
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evaluate each technique comprehensively. Fig. 7
compares the prediction results of the four methods in
various scenarios.
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Figure 7: Comparison of power generation and ecological impact of each model

Figure 7(a): Power generation of each model in different geographical areas

Figure 7(b): Ecological impact of each model in different geographical areas

Figure 7(c): Relationship between the power generation of each model and the ecological impact index

Fig. 7 shows the comprehensive performance of the
four models regarding long-term power generation
efficiency and ecological constraint control, including
three sets of comparative analysis: In Figs. 7 (a) and 7 (b),
the horizontal axis is the geographical scene (plains,
mountains, hills, and river-dense areas); the vertical axis
is the model’s name; the color depth represents the power
generation (MW) and the ecological impact index. The
model in this paper has a power generation of 905 MW in
the plain area (an increase of 10.4% compared with CNN)
and an ecological impact index of 0.19 (a decrease of
32.1% compared with GNN+VNS), which verifies its high
efficiency in resource-rich areas and its ability to avoid
ecologically sensitive areas. In Fig. 7 (c), the horizontal
axis is the power generation (MW); the vertical axis is the
ecological impact index; different colors mark the
corresponding models. The point clusters of the model in
this paper are concentrated in the areas of high-power
generation (880-920 MW) and low ecological impact
(0.16-0.21), forming significantly separated clusters,
reflecting the characteristics of the Pareto optimal
solution; while the point clusters of CNN and MG-
ASTGCN+DDPG are scattered, and the ecological index
is high (0.24-0.36), exposing their limitations in multi-
objective trade-offs. The advantage of this model comes
from its spatial correlation modeling and dynamic
optimization mechanism of geographical elements.
Through the Gaussian weighted adjacency matrix and
multi-head attention mechanism, it dynamically integrates
non-Euclidean data such as wind speed gradient and
terrain  slope, thereby achieving increased power

generation while avoiding the boundaries of ecological
protection areas; GA global search quickly locates the
Pareto frontier, and reinforcement learning fine-tunes the
equipment spacing through the DDQN strategy network to
reduce the overlapping area of ecologically sensitive
areas.

3.7 Verification of the robustness of multi-
objective optimization

Three types of typical terrains (plains, mountains, and
river network-dense areas) are designed for independent
testing to verify the robustness of multi-objective
optimization in different scenarios. In every terrain
environment, 20 groups of geographical sub-regions are
randomly sampled to maintain the heterogeneity of
resource distribution, terrain disturbance, land use, etc.
The proposed method and three comparison models
(CNN, MG-ASTGCN+DDPG, GNN+VNS) are run
separately with the same parameter configuration to
compare their optimization stability under variable input
conditions. The robustness evaluation is carried out from
three aspects: the mean and standard deviation of power
generation, which measure the stability of the energy yield
of the layout results; the variance of the ecological conflict
score, which evaluates the consistency of the ecological
interference control ability under complex terrain
changes; the mean and fluctuation of the multi-objective
convergence times, which reflects the adaptive ability of
the optimization efficiency under dynamic disturbance
conditions.
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Figure 8: Comparison of the robustness of multi-objective optimization of various models under complex terrain
conditions

Figure 8 (a): Robustness of power generation fluctuations

Figure 8 (b): Comparison of ecological conflict variances

Figure 8 (c): Comparison of multi-objective optimization convergence

Figure 8 (d): Relationship between power generation efficiency and environmental conflict score

Fig. 8 compares the robustness of multi-objective
optimization of the four models under three typical terrain
types (plains, mountains, and areas with dense river
networks). The box plot in Fig. 8(a) shows that the
proposed model is significantly better than the benchmark
method in terms of power generation stability: in the plain
area, the average power generation of the proposed model
reaches 842 MW; Fig. 8(b) shows that the ecological
conflict variance of the proposed model is always lower
than that of other methods in the three types of terrain. Fig.
8(c) further verifies the convergence efficiency: the
average convergence iteration number of the model in the
plain area is only 88 times; in complex terrain
(mountainous/river network area), it remains at about 100
times, while CNN and MG-ASTGCN+DDPG require
more than 130 times to converge in the river network area.
Fig. 8(d) shows the changes in the Pareto frontier under
different ecological weights, with the horizontal axis
representing the normalized power generation efficiency
and the vertical axis representing the ecological conflict
score; the color of the scattered points corresponds to five
different ecological weight settings (from 0.1 to 1.0).
Cross-regional tests show that in mountainous areas, the
ecological conflict variance of this method (0.04) is

significantly lower than that of CNN (0.06); in river
network areas, the ecological conflict variance of this
method is lower than that of other methods, and the
convergence efficiency is stable. The robustness
advantage of the model in this paper comes from its deep
modeling and dynamic optimization mechanism for
geographical heterogeneity. Through the Gaussian
weighted adjacency matrix and multi-head attention
mechanism, it dynamically integrates non-Euclidean data
such as terrain slope and wind speed gradient, reduces the
standard deviation of power generation in mountainous
scenarios, and avoids the fuzzy boundary problem of
ecologically sensitive areas; the GA global search quickly
locates the Pareto frontier, which speeds up the
convergence; the dynamic weight adjustment avoids the
local optimal trap caused by traditional static weights.
This closed-loop design of "feature propagation-constraint
feedback" is the core embodiment of the model's
robustness and adaptability, and provides scientific
decision-making support for RE environmental design.
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4 Discussion

Comparison with related methods shows that the
performance advantages of this method mainly come from
the following innovations. Data integration capability: the
geospatial graph structure solves the limitations of
traditional GIS methods in modeling non-Euclidean data
through Gaussian weighted adjacency matrix and
ecological connectivity correction coefficient. For
example, in plain terrain, this method improves the F1
score of ecological sensitive area identification to 0.82
through dynamic adjacency strategy. Multi-head attention
mechanism: the ablation experiment in Table 3 shows that
after removing multi-head attention, the Kappa coefficient
decreases by 5.21% (from 0.91 to 0.86), indicating that
this mechanism significantly improves the classification
consistency of heterogeneous geographic data through
multi-channel feature fusion. Optimization speed
advantage: Table 5 shows that the GA-DRL hybrid
optimizer converges within 40 iterations, while pure GA
optimization requires 58 iterations, proving that
reinforcement learning local optimization accelerates
Pareto frontier search. Terrain type has little effect on
model performance. As shown in Figure 8, in
mountainous areas, the ecological conflict variance of this
method (0.04) is significantly lower than that of CNN
(0.06); in river network areas, the ecological conflict
variance of this method is lower than that of other
methods, indicating that it dynamically integrates non-
Euclidean features such as terrain slope and wind speed
gradient through the multi-head attention mechanism,
effectively alleviating the interference of terrain
heterogeneity on layout accuracy.

Computational complexity and scalability:

Table 4 shows that the single training time (26.1 seconds)
and total calculation time (521.3 seconds) of this method
are better than those of the comparison model. Although
GNN and DRL are resource-intensive, the efficiency is
improved through the following designs: GA global
search: the Pareto frontier is quickly located through non-
dominated sorting to reduce redundant calculations;
dynamic weight adjustment: the weight distribution is
optimized according to the rate of change of the objective
function to avoid local oscillations in multi-objective
optimization.

5 Conclusion

This paper focuses on the spatial distribution identification
and layout optimization of RE environmental design
elements, and proposes a solution that integrates GNN and
a multi-objective dynamic optimization framework. This
paper breaks through the limitations of traditional GIS
methods for modeling non-Euclidean data by constructing
a geographic spatial graph structure. A multi-head
attention mechanism is usesd to realize the dynamic
propagation of multimodal features, significantly
improving the boundary identification accuracy of
ecologically sensitive and resource-rich areas. The
innovatively proposed GA-reinforcement learning hybrid
optimizer achieves the coordinated optimization of power
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generation efficiency, ecological interference, and cost
constraints through Pareto frontier search and dynamic
weight adjustment, effectively solving problems such as
excessive environmental costs caused by single-objective
optimization. The study further verifies the robustness of
the model in complex terrain scenarios, and its cross-
regional migration capability provides technical support
for the coordinated planning of multi-energy systems. The
generalizability of this framework has been verified in
cross-terrain generalization experiments. For applications
outside China, it is only necessary to replace the
geographic data of the target area and adaptively adjust the
feature encoder parameters through transfer learning in the
pre-training phase. The dynamic adjacency strategy and
Gaussian weighting mechanism are compatible with
different projection coordinate systems and spatial scales,
while the ecological-economic  weight adaptive
mechanism in multi-objective optimization can flexibly
adapt to the differences in environmental protection
policies of various countries, ensuring the global
applicability of the framework.
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