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With the rapid development of Renewable Energy (RE), traditional layout methods struggle to integrate 

multi-source geographic data and avoid ecological conflicts. To address these issues, this paper proposes 

an intelligent solution combining a Graph Neural Network (GNN) and a multi-objective dynamic 

optimization framework to enhance planning accuracy and layout efficiency. Based on 1 km×1 km grid 

data of wind farms in northwest China (15,600 nodes/156×100 km²) and photovoltaic parks in eastern 

China (12,800 nodes/128×100 km²), a geographic spatial graph is constructed, allowing GNNs to identify 

spatial elements precisely. The framework integrates Genetic Algorithms (GA) with a Double Deep Q-

Network (DDQN) to optimize RE layouts, balancing power generation efficiency, ecological impact, and 

construction costs through multi-objective dynamic optimization. Case studies of wind farms in northwest 

China and photovoltaic parks in eastern China are used to validate robustness and adaptability under 

complex terrains. Results show the proposed method achieves a spatial recognition accuracy of 0.93, 

14.8% higher than traditional Convolutional Neural Networks (CNNs), ecological conflicts reduced by 

29.6%, and cost savings reached 17.2%. This identification-optimization closed-loop framework 

effectively processes non-Euclidean spatial data and performs multi-objective collaborative optimization.  

Povzetek: Kako znanstveno podpreti načrtovanje vetrnih in sončnih polj z večciljno, dinamično 

optimizacijo ob različnih terenih in omejitvah? Okvir GNN+GA-DDQN za prostorsko postavitev OVE iz 

neevklidskih podatkov izboljša prepoznavo elementov, zmanjša ekološke konflikte in stroške. 

 

1 Introduction 
As an essential support for achieving the “dual carbon” 

goals, the deployment of RE is accelerating around the 

world [1], [2], [3], [4]. Wind and solar energy have 

become the focus of development due to their cleanliness 

and broad distribution base, but in the actual layout 

process, they often face multiple constraints such as firm 

heterogeneity of geographical resources, complex 

distribution of ecologically sensitive areas, and variable 

construction costs [5], [6], [7]. Traditional methods have 

difficulty handling non-Euclidean spatial relationships, 

especially in the intelligent identification of spatial 

distribution and layout optimization. They cannot 

dynamically respond to changes in environmental design 

elements, causing the site selection and layout results to 

deviate from the optimal solution. A new intelligent 

method is urgently needed to accurately perceive multi-

source factors at the spatial level and perform 

collaborative optimization to support the scientific site 

selection and environmentally friendly layout of green 

energy projects [8], [9]. 

This paper focuses on the site selection and equipment 

layout optimization of wind farms and PV power stations. 

Such problems require weighing multi-dimensional 

constraints such as resource endowment, land use, grid 

access, and ecological protection in complex geographical  

 

spaces, which directly affect the economic efficiency and 

sustainability of the project throughout its life cycle. The  

core challenge of current RE environmental design is 

accurately identifying spatial elements and multi-

objective coordinated optimization through technical 

means. How to effectively identify the complex 

boundaries between resource-rich and ecologically 

sensitive areas and construct an identification model that 

can express spatial topological relationships has become a 

key technical problem that affects layout accuracy. To 

address this problem, Rane et al. and Gerbo et al. [10], [11] 

adopted a multi-criteria suitability analysis method based 

on Geographic Information System (GIS) to 

comprehensively evaluate the feasibility of building a PV 

power station. However, there were problems such as 

strong subjectivity in weight setting and failure to consider 

dynamic environmental changes fully. Günen, Ajanaku 

and Strager [12], [13] combined GIS with multi-criteria 

decision-making methods to evaluate the optimal location 

of RE sources. However, the model was sensitive to 

weight distribution and did not fully consider geographical 

constraints. Wang Z [14] proposed an adaptive 

convolutional residual network model, which combined 

project risk classification and electricity price regression 

prediction, combined novel preprocessing technology and 

feature optimization, and achieved strong adaptability and 

reliability in renewable energy electricity price prediction, 
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providing an independent high-performance solution for 

energy market planning. Most of these methods focus on 

power generation prediction or static evaluation and lack 

the discussion of the "identification-optimization" closed-

loop mechanism in spatial layout optimization problems. 

Existing research on spatial suitability evaluation is 

divided into two categories: a static evaluation model 

based on GIS and fuzzy decision-making methods, and a 

modeling method that relies on machine learning models. 

For example, Effat and El-Zeiny, and Genç et al. [15], [16] 

used remote sensing data, geospatial models, or GIS to 

delineate and map potential solar and wind energy areas, 

thereby constructing suitable sites. Although these studies 

have promoted the development of the field, they still have 

significant limitations in multi-source data fusion and eco-

efficiency coordinated optimization. In particular, they 

cannot model non-Euclidean adjacency relationships 

between spatial elements, making it difficult to deal with 

the problem of expressing coupled characteristics across 

terrains and resource types in wind power and PV site 

selection [17]. Existing studies have mostly used GIS 

spatial analysis [18], [19], [20], random forest 

classification [21], [22], or CNN algorithms for suitability 

evaluation [23], but they have significant limitations. 

Zheng et al. [24] used an integer GA with an adaptive 

strategy to optimize the layout of wind farms, but there 

were problems of slow convergence or local optimality. Li 

et al. [25] proposed a method that combined federated 

learning with least squares generative adversarial 

networks to generate high-quality RE scenarios. Wang et 

al. and Zuo et al. [26], [27] divided wind farm areas based 

on fuzzy clustering, but the classification results were 

sensitive to the initial parameters. Eroğlu [28] used a 

method that combined GIS with fuzzy hierarchical 

analysis to generate a suitability map and identify optimal 

and restricted areas, thereby improving the accuracy of 

site selection. Deveci et al. [29] used the Full Coordination 

(FUCOM) weighting method based on q-Rung Orthopair 

Fuzzy Sets (q-ROFSs) and the Combined Compromise 

Solution (CoCoSo) decision model to optimize the 

candidate sites for four floating offshore wind farms in 

Norway. The model was verified to be stable through a 

sensitivity analysis. Fu et al. [30] attempted to use 

machine learning to predict resource distribution, but the 

generalization ability of the model was limited by the 

regional representativeness of the training data; Tinsley et 

al., Wang and Li, and Sahoo and Sethi [31], [32], [33], 

proposed that the development of RE cannot be at the 

expense of the ecological environment, resulting in a 

significant reduction in the available areas. Song et al. [34] 

proposed a wind power prediction method that combined 

Graph Convolutional Networks (GCNs) and multi-

resolution CNNs to integrate spatial and temporal features 

to improve prediction accuracy. Although the above 

methods have improved the evaluation capabilities in 

different dimensions, their static structure and single 

objective make them difficult to adapt to the needs of 

highly dynamic and strongly coupled complex 

geographical systems, and they lack a modeling 

mechanism for the trade-off between power generation 

efficiency, ecological interference, and cost constraints.  

This paper innovatively proposes a collaborative 

framework based on GNN and multi-objective dynamic 

optimization. Through Gaussian weighted adjacency 

matrix and multi-head attention mechanism, a dynamic 

spatial graph structure is constructed to break through the 

limitations of traditional GIS static weight allocation and 

CNN boundary effect; a GA-reinforcement learning 

hybrid optimizer is designed, and Pareto frontier search is 

used to realize real-time interaction between ecological 

sensitivity weight and resource potential mapping, which 

increases the reduction of environmental conflicts from 

12.0% of CNN to 29.6%. In comparison, the layout 

efficiency is improved by 21.4%. Compared with classic 

multi-objective evolutionary algorithms such as Non-

dominated Sorting Genetic Algorithm II (NSGA-II), this 

method optimizes the convergence speed in cross-regional 

migration scenarios. It maintains a high diversity of 

solution sets, demonstrating global optimization 

capabilities in complex environments. Experiments show 

that the framework has improved accuracy in the cross-

regional migration of wind farms in the northwest plains 

and PV parks in the eastern river network, and its 

convergence speed is faster than NSGA-II. It provides a 

technical path that considers both efficiency and 

ecological protection for the layout of RE in complex 

geographical scenarios. It also solves the core bottlenecks 

of existing models in non-Euclidean data modeling and 

multi-objective collaboration. The relevant comparison is 

shown in Table 1. 

This paper raises the core research question: Can the 

GNN and GA-DDQN collaborative framework 

significantly improve the accuracy, efficiency and 

ecological compatibility of renewable energy layout under 

multiple ecological constraints? Specific hypotheses 

include: Gaussian weighted adjacency matrix and multi-

head attention mechanism can improve the accuracy of 

spatial element recognition; GA-DRL hybrid optimizer 

can accelerate convergence and reduce ecological 

conflicts; dynamic weight mechanism can balance power 

generation efficiency and ecological cost. 
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Table 1: Comparison of optimization methods for spatial layout of renewable energy sources 

Method Category Core Task Main Limitation 

Solution 

Proposed in 

This Paper 

Dataset 

GIS Multi-Criteria 

Decision 

Static suitability 

analysis 

Subjective weighting; 

ignores dynamic changes 

Dynamic graph 

structure 

+adaptive 

weights 

Regional scale 

Random Forest/CNN 
Resource distribution 

prediction 

Lacks spatial topology 

modeling 

GNN with 

multi-head 

attention 

mechanism 

Landsat remote 

sensing imagery 

Integer Genetic 

Algorithm 
Layout optimization 

Slow convergence; prone to 

local optima 

GA-DRL 

hybrid 

optimizer 

Simulated wind 

farm 

Fuzzy Clustering 

Partition 
Wind farm zoning 

Sensitive to initial 

parameters 

Dynamic 

weight 

adjustment 

mechanism 

Offshore wind 

farm 

Method in this paper 

Identification–

optimization 

collaboration 

Overcomes existing 

limitations 

GNN + GA-

DRL dynamic 

framework 

Measured data 

from 

Northwest/Eastern 

China 

 

2 Algorithm design 

2.1 Construction of geospatial graph 

structure 

To realize the spatial distribution modeling of RE 

environmental design elements, the study area is divided 

into regular grid units of 1 km × 1 km, and each unit is 

used as an independent node in the graph structure. The 

grid division adopts an equal-area azimuthal projection to 

eliminate the deformation effect of high-latitude areas. 

The node attribute dimensions include terrain slope, wind 

speed, light intensity, land use type, ecological sensitivity 

index, and traffic accessibility, a total of 6 core indicators. 

All attributes are normalized by Z-score to eliminate 

dimensional differences and input as node feature vectors. 

The adjacency relationship between nodes is 

constructed through the spatial adjacency matrix. A hybrid 

strategy is used to determine the connection rules: for 

plain and hilly areas, an 8-neighborhood connection is 

established based on the Euclidean distance threshold of 2 

km; for mountainous and river-dense areas, the K-nearest 

neighbor algorithm is used to dynamically adjust the 

number of neighbors to avoid false associations caused by 

terrain barriers. The neighbor weights are calculated using 

the Gaussian kernel function: 

𝑤𝑖𝑗 = exp (−
𝑑𝑖𝑗
2

2𝜎2
) (1) 

In Formula (1), 𝑑𝑖𝑗
2  is the geographical distance 

between nodes 𝑖 and 𝑗 (km), and σ is set to 1.5 times the 

average grid spacing of the region. This design strengthens 

the local spatial autocorrelation while weakening the noise 

interference of distant nodes. 

 

To improve the expression ability of ecological spatial 

structure, a composite edge weight design based on the 

connectivity of environmental corridors is introduced: 

based on the original Gaussian weighting, the ecological 

connectivity correction coefficient 𝜆𝑖𝑗  is introduced, and 

the composite edge weight is defined as: 

𝑤𝑖𝑗
∗ = 𝜆𝑖𝑗 ⋅ 𝑤𝑖𝑗  (2) 

In Formula (2), 𝜆𝑖𝑗  assigns a correction weight 

between 0.8 and 1.2 according to whether there is an 

ecological corridor between nodes, which enhances the 

modeling effect of boundary connectivity in ecologically 

sensitive areas.  

The graph structure verification uses a joint 

evaluation of cross-entropy loss and Moran’s index: a 10-

fold cross-validation is performed on wind speed and light 

attributes. 

2.2 Multimodal feature coding and spatial 

element identification 

2.2.1 Environmental element recognition 

Based on the constructed geospatial graph structure, the 

Graph Attention Network (GAT) is used to realize the 

feature encoding of multi-source heterogeneous attributes 

and the propagation of neighborhood information. The 

model adopts a three-level stacked architecture, including 

an input, intermediate propagation, and output layers. The 

propagation layer is configured as a two-layer GAT 
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module, and each layer contains 8 parallel attention heads 

to enhance the robustness of feature extraction. Feature 

encoding maps the original node attributes to a high-

dimensional space through an embedding matrix: 

ℎ𝑖
(0) = 𝑊𝑒𝑚𝑏 ⋅ 𝑥𝑖 (3) 

In Formula (3), 𝑥𝑖 ∈ ℝ
10 is the standardized attribute 

vector of node 𝑖 ; 𝑊𝑒𝑚𝑏 ∈ ℝ
64×10  is the learnable 

embedding matrix; ℎ𝑖
(0) ∈ ℝ64  is the initial feature 

representation. Neighborhood information propagation is 

achieved through a multi-head attention mechanism. The 

calculation process of the L-layer GAT is as follows: 

The attention weight is calculated as follows: 

𝑒𝑖𝑗
(𝑙) = LeakyReLU(𝑎(𝑙)𝑇 

⋅ [𝑊(𝑙)ℎ𝑖
(𝑙−1)

||𝑊(𝑙)ℎ𝑗
(𝑙−1)

]) 
(4) 

𝛼𝑖𝑗
(𝑙)
=

exp(𝑒𝑖𝑗
(𝑙)
)

∑ exp𝑘∈𝒩(𝑖) (𝑒𝑖𝑘
(𝑙)
)
 (5) 

Here, 𝑊(𝑙) ∈ ℝ64×64  is the linear transformation 

matrix; 𝑎(𝑙) ∈ ℝ128  is the attention parameter vector; || 
represents the vector concatenation operation; 𝒩(𝑖) is the 

neighbor set of node 𝑖. 
This step dynamically allocates the contribution 

weights of neighboring nodes through learnable 

parameters, breaking through traditional GCN's fixed 

average aggregation mode. 

The feature updates are as follows: 

ℎ𝑖
(𝑙)
= 𝜎(

1

𝐾
∑ ∑ 𝛼𝑖𝑗

(𝑙,𝑘)
𝑊(𝑙,𝑘)ℎ𝑗

(𝑙−1)

𝑗∈𝒩(𝑖)

𝐾

𝑘=1

) (6) 

In Formula (6), 𝐾 is the number of attention heads; 𝜎 

is the ELU activation function; 𝑊(𝑙,𝑘) ∈ ℝ64×64  is the 

parameter matrix of the 𝑘-th head. This module identifies 

environmental constraints, such as ecologically sensitive 

areas, terrain barrier areas, and high ecological cost areas. 

The final output, a 64-dimensional node vector, is mapped 

into a 32-dimensional heat map vector 𝑍𝑖 ∈ ℝ
32 through a 

fully connected layer, which is used for visual 

identification of spatial element distribution and 

subsequent optimization analysis. The identification 

results are presented as an ecological constraint intensity 

heat map, as shown in Fig. 1. 

The feature fusion strategy uses standard residual 

connections and layer normalization to improve training 

stability: 

ℎ𝑖
(𝑙)

= LayerNorm

(

 
 
ℎ𝑖
(𝑙−1)

+ Dropout (𝜎 ( ∑ 𝛼𝑖𝑗
(𝑙)

𝑗∈𝒩(𝑖)

𝑊(𝑙)ℎ𝑗
(𝑙−1)

))

)

 
 

 

(7) 

This mechanism efficiently characterizes 

heterogeneous ecological areas through the attention 

mechanism, significantly improving the accuracy of 

environmental boundary identification under complex 

terrain. 

Residual connections alleviate the gradient vanishing 

problem; Dropout suppresses overfitting; layer 

normalization ensures feature distribution consistency. 

The final output layer maps the 64-dimensional features to 

the target space through a fully connected layer: 

𝑧𝑖 = 𝑊𝑜𝑢𝑡 ⋅ ℎ𝑖
(2)

 (8) 

In Formula (8), 𝑧𝑖 ∈ ℝ
32  is the high-dimensional 

spatial feature vector of node 𝑖, which serves as the input 

of the multi-objective optimization module.

 

Figure 1: Ecological environment constraints heat map 

The geospatial map structure shown in Fig. 1 

demonstrates the spatial distribution characteristics of RE 

environmental design elements in the study area. Its 

environmental design elements include six indicators, 
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such as slope, soil bearing capacity, and ecological 

sensitivity). The heat map uses Projected coordinate 

system (unit: kilometers) as coordinate axes to map the 

comprehensive environmental constraint intensity of each 

1 km×1 km grid unit. It is the fusion result of multi-source 

heterogeneous data such as ecological sensitivity, slope, 

land use type, and soil carrying capacity, reflecting the 

spatial gradient from low constraints to high constraints, 

and revealing the differences in the suitability of RE 

layout under different terrain and ecological conditions. 

The yellow areas in the heat map correspond to 

ecologically sensitive areas, high-slope mountains, and 

areas with low soil bearing capacity, showing strong 

environmental restrictions, indicating that such areas are 

unsuitable for large-scale wind power or PV equipment 

deployment to avoid ecological conflicts and construction 

risks. Green areas are mostly flat terrain, low 

environmental pressure, and friendly land use, which are 

suitable for the layout of RE facilities and are conducive 

to improving power generation efficiency and reducing 

ecological interference. This heat map effectively reflects 

the results of using GNNs to encode multimodal features 

of spatial elements and propagate neighborhood 

information, and realizes the accurate identification and 

spatial distribution mapping of key design elements in 

complex geographical environments. By integrating a 

comprehensive evaluation of multiple indicators, the heat 

map provides accurate spatial constraint input for 

subsequent multi-objective dynamic optimization based 

on GAs and Deep Reinforcement Learning (DRL), 

supporting the balanced optimization of equipment layout 

between power generation efficiency, ecological 

protection, and construction costs. 

2.2.2 Resource potential assessment module 

Based on identifying environmental constraints, the 

resource potential assessment module uses a parallel 

branch network to model the wind/light resource potential 

and extract the multi-scale characteristic distribution of 

key resource factors such as wind speed and total 

horizontal radiation in the spatial dimension. After being 

superimposed with the ecological constraint heat map, 

dual constraint input is provided for the equipment layout. 

During the evaluation process, the multi-head attention 

mechanism of GAT is used to enhance the ability to 

identify resource-rich areas. The performance of different 

attention head configurations is compared through 

ablation experiments, and the results are shown in Table 

2.

Table 2: Contribution analysis of the multi-head attention mechanism 

Number of 

attention heads 

Feature 

separation 

Calculation 

time(s/epoch) 

Identification of ecologically 

sensitive areas F1-score 

Accuracy of identifying 

resource-rich areas 

4 0.51 4.7 0.71 0.78 

8 0.43 5.5 0.82 0.89 

16 0.41 10.2 0.81 0.88 

 

The 8-head configuration in Table 2 is superior to the 

4-head and 16-head schemes regarding feature separation 

and ecologically sensitive area identification. Compared 

with the 4-head configuration, the calculation time is only 

increased by 17.0%, which verifies its optimal balance in 

complex geographical scenes. Therefore, the 8-head 

configuration is selected in this paper. 

 

Figure 2: GAT feature propagation process 

Fig. 2 shows the entire process from original attribute 

encoding and neighborhood attention calculation to 
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feature fusion, highlighting the multi-head attention 

mechanism's parallel computing characteristics and 

residual connection structure. 

2.3 Design of multi-objective dynamic 

optimization framework 

Taking the node feature vector 𝑧𝑖 ∈ ℝ
32  output by the 

GNN as input, a multi-objective optimization framework 

of a hybrid GA and DRL is constructed. The objective 

function is defined as: 

min𝐅 = [−E(𝒟), S(𝒟), C(𝒟)]𝑇 (9) 

In Formula (9), 𝒟 ⊆ 𝒱 is the equipment layout plan 

(𝑉 is the set of graph nodes); 𝐸 is the power generation 

efficiency (maximization is converted to minimization of 

negative values); 𝑆 is the ecological interference; 𝐶 is the 

construction cost. The three are used to realize the search 

for non-dominated solutions through the Pareto frontier. 

Power generation efficiency modeling is based on 

resource synergy and interference constraints between 

devices: 

𝐸(𝒟) =∑(𝜇𝑖 ⋅ ∏ (1 −
𝜅

𝑑𝑖𝑗
𝛾 )

𝑗∈𝒩(𝑖)∩𝒟

)

𝑖∈𝒟

 (10) 

In Formula (10), 𝜇𝑖 is the resource potential of node 𝑖 
(generated by mapping the first 16 dimensions of 𝑧𝑖 
through the multi-layer perceptron 𝑃 ); 𝜅  is the 

interference attenuation coefficient; 𝛾  is the distance 

index; 𝑑𝑖𝑗  is the geographical distance between devices 𝑖 

and 𝑗 (km). The model quantifies the wind turbine wake 

effect and PV shadowing loss, ensuring that the device 

spacing is greater than 3D (𝐷 is the device diameter). 

Ecological disturbance constraints are modeled 

through the superposition and cumulative effects of 

sensitive areas: 

𝑆(𝒟) =∑(𝑠𝑖 ⋅ 𝑒
−𝜆⋅𝑡𝑖)

𝑖∈𝒟

+ 𝜂 ⋅∑
1

𝑑𝑖𝑗
𝜃

𝑖,𝑗∈𝒟

 (11) 

In Formula (11), 𝑠𝑖 ∈ [0,1]  is the ecological 

sensitivity of node 𝑖; 𝑡𝑖  is the buffer time to the nearest 

protected area (years); 𝜆 is the protection time decay rate; 

𝜂 is the regional cumulative interference coefficient; 𝜃 is 

the neighboring penalty index. The design forces the 

layout to avoid highly sensitive areas and disperse 

ecological pressure. 

Cost constraints cover the comprehensive 

construction, operation, and maintenance expenses: 

𝐶(𝒟) =∑(𝑐𝑖 + 𝜉 ⋅ 𝑑𝑖,grid)

𝑖∈𝒟

+ 𝜁 ⋅ MST(𝒟) 
(12) 

In Formula (12), 𝑐𝑖  is the unit construction cost of 

node 𝑖; 𝑑𝑖,grid is the Euclidean distance to the grid access 

point (km); 𝜉 is the transmission cost coefficient; 𝜁 is the 

Minimum Spanning Tree (MST) weight, which reflects 

the cost of laying internal roads and cables. 

In this multi-objective dynamic optimization 

framework, the node feature vector output by GNN is not 

only used to generate resource potential parameter 𝜇𝑖, but 

also the ecological sensitivity 𝑠𝑖 is explicitly extracted and 

directly input into the optimizer as an ecological 

interference penalty term, ensuring that during the 

iterative process of GA and reinforcement learning, the 

layout plan can take environmental constraints into 

account in real-time and achieve a dynamic balance 

between power generation efficiency and ecological 

protection. 

The optimization process is iteratively executed in 

three stages: 

A. GA global search: 

Population initialization: randomly generating 500 

feasible solutions; fitness calculation: for each solution 

𝒟𝑝, calculating 𝐅𝑝 = [−𝐸𝑝, 𝑆𝑝, 𝐶𝑝];  

Non-dominated sorting: using the NSGA-II fast 

sorting algorithm to divide the Pareto hierarchy;  

Genetic operation: roulette wheel selection + 

simulated binary crossover + polynomial mutation. 

B. Reinforcement learning local optimization: 

State space: current layout and remaining optional 

node set; 

Action space: selecting one node from 𝒱 ∖ 𝒟𝑡  to 

replace one node in 𝒟𝑡; 
The reward function is as follows: 

𝑅𝑡 = −𝛼 ⋅ Δ𝐸 − 𝛽 ⋅ Δ𝑆 − 𝛾 ⋅ Δ𝐶 (13) 

In Formula (13), Δ𝐸 = 𝐸𝑡+1 − 𝐸𝑡 , 𝛼 , 𝛽 , and 𝛾  are 

weight coefficients; 

Policy network: Dual Deep Q Network (DDQN), 

input is node feature concatenation matrix 𝑍concat ∈
ℝ(𝐾+1)×32, and output action value is 𝑄(𝑠, 𝑎; 𝜃).  

C. Dynamic weight adjustment: 

The objective function weight is dynamically updated 

according to the Pareto frontier distribution: 

𝑤(𝑡) =
∇𝐅(𝑡)

∥ ∇𝐅(𝑡) ∥2
, ∇𝐅(𝑡) = 𝐅(𝑡) − 𝐅(𝑡−1) (14) 

The gradient direction guides the search towards the 

balance area between convergence and diversity. 

The termination condition is that the Pareto front 

change rate is 𝛿 < 10−3 for five consecutive generations 

(𝛿 =
∥PF(𝑡)△PF(𝑡−1)∥

|PF(𝑡)|
, and △ is a symmetric difference set). 

Finally, the non-dominated solution set PF∗ is output for 

decision makers to choose implementation plans 

according to their preferences. 

In the selection of reinforcement learning algorithms, 

this paper adopts dual deep Q networks instead of other 

deep reinforcement learning methods such as PPO or 

A3C, mainly based on the following three considerations. 

Adaptability to discrete action space: in the optimization 

problem of renewable energy layout, the action space is a 

discrete node selection and replacement operation, and 

DDQN shows higher sample efficiency and stability in the 

policy optimization of discrete action space, avoiding the 

high variance problem of PPO and other policy gradient-

based methods in discrete action space. Q-value 

decomposition of multi-objective trade-offs: DDQN can 

directly model the trade-off relationship between power 

generation efficiency, ecological conflict, and cost 

through a multi-objective Q-value network. Its dual 

network structure and target separation mechanism are 
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more suitable for dynamic weight adjustment strategies, 

while asynchronous methods such as A3C need to design 

additional complex value function decomposition 

mechanisms in multi-objective collaborative 

optimization. Collaborative efficiency with GA: DDQN's 

offline experience replay mechanism complements GA's 

global search. 

The architecture diagram in Fig. 3 shows the GNN 

feature input, GA global search, DRL local optimization, 

and dynamic weight interaction process hierarchically, 

highlighting the multi-objective collaborative 

optimization mechanism.

 

Figure 3: Multi-objective optimization framework architecture 

2.4 Model training and parameter tuning 

This study uses a joint transfer learning and cross-

validation strategy to optimize model parameters. It 

performs the training process in three stages: pre-training, 

domain adaptation, and end-to-end fine-tuning. Global 

offshore wind turbine analysis includes offshore wind 

turbines, including the number of turbines, installed 

capacity, and site specifications. Solar Power Generation 

& Energy Consumption provides photovoltaic power 

station location data, providing photovoltaic power station 

coordinates and basic properties. The positive samples in 

comparative learning are 118 wind farms and 42 

photovoltaic power station layout plans selected from the 

above datasets; negative samples are generated by random 

grid sampling. There are 160 invalid layout plans. The 

validation set is divided into regional stratified sampling: 

the total sample is divided into training set (70%), 

validation set (15%), and test set (15%) according to 

geographical blocks to ensure that different terrain types 

are evenly distributed. All model parameters are updated 

through the Adam optimizer, with the initial learning rate 

set to 3 × 10−4  and the weight decay coefficient 𝜆 =
10−4 , and the early stopping method (patience=20) is 

introduced to prevent overfitting. 

In the pre-training phase, source domain data is 

constructed based on historical site selection data, and 

self-supervised tasks are used to align feature space: 

1) Node attribute reconstruction: a 20% random mask 

is applied to the input feature matrix 𝑋 ∈ ℝ𝑁×10, and the 

missing attributes are reconstructed by stacking the GAT 

encoder (3 layers). The loss function is defined as: 

ℒrecon =
1

|ℳ|
∑ ∥ 𝑥

^

𝑖 − 𝑥𝑖 ∥2
2

𝑖∈ℳ

 (15) 

In Formula (15), ℳ is the mask node set, and 𝑥
^

𝑖 is the 

reconstructed value. 

2) Layout pattern contrast learning: for known layout 

scheme 𝒟+ and randomly generated negative sample 𝒟−, 

the similarity difference between positive and negative 

pairs is calculated by maximizing the contrast loss: 

ℒcont = −log
exp(sim(𝒟+, 𝒟+)/𝜏)

∑ exp𝒟− (sim(𝒟+, 𝒟−)/𝜏)
 (16) 

In Formula (16), sim(⋅) is the cosine similarity, and 𝜏 
is the temperature coefficient.  

Domain adaptation stage: parameter migration is 

performed based on the geographical characteristics of the 

target area, using a freeze-thaw strategy: 

1) Feature encoder freezing: the parameters of the first 

three layers of GAT are fixed, and only the output layer 

mapping matrix 𝑊out  is trained to make the feature space 

adapt to the data distribution of the target area; 

2) Dynamic feature normalization: domain-specific 

statistics are introduced to adjust the BN (Batch 

Normalization) layer parameters, and the formula is: 

ℎ
^

𝑖
(𝑙)
= 𝛾(𝑙) ⋅

ℎ𝑖
(𝑙)
− 𝜇target

(𝑙)

√𝜎target
(𝑙)2

+ 𝜖

+ 𝛽(𝑙) (17) 
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In Formula (17), 𝜇target
(𝑙)

 and 𝜎target
(𝑙)

 are the mean and 

variance of the 𝑙-th layer features in the target domain, and 

𝛾 and 𝛽 are learnable scaling and translation parameters. 

Table 3: Parameter tuning comparison table 

Parameter Name Value Range 
Optimal 

Configuration 
Impact on Performance 

SBX Crossover Index 5 / 15 / 30 15 Convergence speed improved 

DDQN Learning Rate 
1×10-4 / 3×10-4 / 

10-3 
3×10-4 Reward stability increased 

Dynamic Weight Update Frequency 1 / 3 / 5 5 HV metric improved 

Reinforcement Learning Discount 

Factor 𝛾 
0.8 / 0.9 / 0.95 0.9 

The cumulative reward 

increased 

 

Table 3 shows the key hyperparameters' tuning 

process and performance impact on model training. The 

horizontal dimensions include parameter name, value 

range, optimal configuration, and quantization effect. A 

vertical comparison shows that the optimal value of the 

SBX (Simulated Binary Crossover) crossover index 

(5/15/30) is 15, which reduces the number of Pareto front 

convergence steps and increases the convergence speed. 

The DDQN learning rate is 3×10-4. The dynamic weight 

update frequency (1/3/5) is optimized to update every five 

generations. The HV (Hyper Volume) is improved, and 

the low-frequency update effectively suppresses local 

disturbances. The cumulative return is the highest when 

the discount factor γ (0.8/0.9/0.95) is selected to be 0.9, 

which reflects the balance between long-term benefits and 

immediate optimization. 

3 Experiment and verification 

3.1 Experimental design 

To verify the effectiveness of GNN and multi-objective 

optimization methods in RE environment design, the 

experiment selects a wind farm in northwest China and a 

PV park in the east as the research area, obtains multi-

source geographic data including topography, land use, 

meteorology, transportation, and ecological protection 

areas, and uniformly rasterizes them into a spatial dataset 

with a resolution of 1km×1km. The Northwest Wind Farm 

Experimental Area contains 15,600 grid nodes (covering 

156×100 km²), and the Eastern PV Park contains 12,800 

nodes (covering 128×100 km²). The data sampling 

frequency is daily meteorological station observations and 

quarterly remote sensing image updates. After spatial 

alignment and normalization of the raw data, a geospatial 

graph structure is constructed, with each grid cell as a 

graph node and adjacency relations generated by 

weighting spatial distance and ecological relevance. In the 

spatial element recognition stage, the proposed GNN 

model is used to encode the multimodal features of the 

nodes, integrating attributes such as terrain slope, light 

intensity, mean wind speed, and land type, while 

propagating neighborhood information to capture local 

spatial dependency characteristics. In the training phase, 

the expert-annotated regions are used as supervisory 

information, and a stable model is obtained through cross-

validation. Three experts in the field independently 

annotate the data according to the unified standard, and the 

mode value is taken after the consistency is verified by 

Kendall's harmony coefficient. Under the same data input 

conditions, the performance is compared with three 

comparison methods: traditional CNN, multi-grained 

attention-based spatial-temporal GCN+Deep 

Deterministic Policy Gradient (MG-ASTGCN+DDPG), 

GNN+Variable Neighborhood Search (VNS); all models 

are run under the same training/validation division to 

ensure the comparability of the results. 

The layout optimization stage adopts a dynamic 

optimization framework combining the GA used in this 

paper and reinforcement learning. The objective function 

simultaneously considers maximizing power generation 

efficiency, minimizing ecological conflicts, and 

controlling construction costs. GAs is used to generate the 

initial solution set and perform global search. 

Reinforcement learning (based on the policy gradient 

method) dynamically learns and optimizes the local 

adjustment strategy of the solution space, so that the layout 

process can adjust the environment feedback. The 

optimization process sets the maximum number of 

iterations and the convergence threshold to ensure each 

method completes the optimization process under the 

same resource constraints.  

3.2 Spatial element recognition accuracy 

evaluation 

To verify the accuracy of the proposed model in 

identifying spatial environmental design elements, this 

section conducts comparative experiments on the task of 

identifying suitable areas in wind power and PV sites. The 

experiment uses expert-annotated areas as accurate labels 

to evaluate the accuracy and stability of the proposed 

model and three comparison methods in spatial 

recognition. In the specific implementation, all 1km×1km 

grids in the two selected areas (wind farm and PV park) 

are divided into training set, validation set, and test set in 

a ratio of 8:1:1. The model input includes six types of 

spatial characteristics: terrain slope, annual average wind 

speed, light intensity, land use type, ecological sensitivity 

score, and traffic accessibility. The model proposed in this 
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paper is based on the constructed spatial graph structure, 

integrating GNNs for feature encoding and spatial context 

modeling, supporting cross-regional and cross-scale 

neighborhood information propagation, and improving the 

model's perception of regional complexity and 

heterogeneity. All models use the same training strategy 

and hyperparameter tuning process. The maximum 

number of training rounds is 200, and the early stopping 

mechanism is used to avoid overfitting (terminated when 

validation loss does not improve for 20 consecutive 

rounds). The recognition results are compared and 

evaluated through three core indicators: Accuracy 

measures the overall correct proportion of classification; 

Kappa coefficient evaluates the classification consistency 

of the model; F1-score, a classification performance 

indicator, comprehensively considers precision and recall. 

The recognition results in the test set are compared pixel 

by pixel with the expert annotations, and the above 

indicators are calculated after the confusion matrix is 

generated. To further verify the model's ability to 

determine the spatial boundaries of key ecological 

functional areas, this paper introduces the IoU 

(Intersection over Union) indicator to evaluate the 

accuracy of the identification results of ecologically 

sensitive areas. Taking the ecological red line boundary 

drawn by experts as the reference standard, the 

intersection and union ratio performance of the prediction 

results of each model within the environmental zone is 

compared. The comparison of relevant indicators is shown 

in Fig. 4.

 

 

 

Figure 4: Comparison of relevant indicators of each model 

Figure 4(a): Comparison of performance indicators of each model 

Figure 4(b): Accuracy of identifying the boundary of ecologically sensitive areas 

Fig. 4(a) compares the core indicators of the four 

models in identifying suitable areas for wind farms and PV 

parks. The CNN model is improved from 0.81 to 0.93 

(+14.8%); the Kappa coefficient increases from 0.74 to 

0.91 (+23.0%); the F1-score increases from 0.76 to 0.92 

(+21.1%). Fig. 4(b) focuses on the accuracy of boundary 

recognition of ecologically sensitive areas (IoU index), 

and compares the intersection-over-union ratio of wind 

farms (Wind Farm IoU) and PV parks (PV Park IoU). The 

IoU of the proposed model in the wind farm reaches 0.87, 

an increase of 18.5% compared with CNN; the IoU of the 

PV park is 0.84, an increase of 19.7%, verifying the 

enhanced effect of the Gaussian weighted adjacency 

matrix and multi-head attention mechanism on ecological 

boundary modeling under complex terrain. The advantage 

of this model comes from its ability to deeply couple 

multi-source heterogeneous data. By constructing a 

geospatial graph structure, the Gaussian weighted 

adjacency matrix and dynamic adjacency strategy 

effectively solve the limitations of traditional GIS 

methods in modeling non-Euclidean data. At the same 

time, the multi-head attention mechanism significantly 

improves feature discriminability and weighted 

expression of neighborhood information. The multi-

objective dynamic optimization framework further 

enhances the feature decoding capability. At the same 

time, to verify the actual contribution of the multi-head 

attention structure in the graph attention mechanism to the 

model performance, this paper designs an ablation 

experiment to compare the performance differences 

between the complete model in this paper and the 

simplified model with "removing the attention 

mechanism" in terms of Kappa coefficient and other 

coefficients.
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Table 4: Comparison of ablation experiment results of the multi-head attention mechanism 

Metric With Multi-Head Attention Without Attention Δ (Performance Drop) Relative Decrease (%) 

Accuracy 0.93 0.89 -0.04 -4.30% 

Kappa 0.91 0.86 -0.05 -5.49% 

F1-score 0.92 0.87 -0.05 -5.43% 

 

Table 4 shows the performance comparison of the 

model after introducing and removing the multi-head 

attention mechanism in suitable areas of wind farms and 

PV parks. From the results, Accuracy drops from 0.93 to 

0.89, a decrease of 0.04, or 4.30%; Kappa drops from 0.91 

to 0.86, a reduction of 0.05, corresponding to the 

maximum relative decline of 5.49%; F1-score drops from 

0.92 to 0.87, also a decrease of 0.05, or 5.43%. All three 

indicators show a significant decline, indicating that the 

multi-head attention mechanism has substantially 

contributed to the overall accuracy, classification 

consistency, and comprehensive performance of spatial 

element recognition.  

3.3 Layout efficiency and ecological conflict 

evaluation 

To verify the actual effectiveness of the method in 

equipment layout and its ability to control ecological 

interference, this section uses wind farms and PV parks as 

experimental scenarios to compare and evaluate the 

performance of the proposed model with other three 

methods (CNN, MG-ASTGCN+DDPG, GNN+VNS) in 

terms of layout efficiency and ecological conflict. Each 

model performs independent layout optimization under 

the same basic constraints based on the results of spatial 

element identification. The objective function includes 

three goals: maximizing unit power generation efficiency, 

minimizing ecological interference, and controlling 

construction costs. The optimization results of all models 

are uniformly sampled in 50 independent runs, and the 

statistical average is used for comparative analysis. The 

relevant comparison is shown in Fig. 5.

 

Figure 5: Performance comparison of each model in terms of layout efficiency, ecological conflict control, and cost 

savings 

Figure 5 (a): Comparison of each model in terms of the layout efficiency improvement rate 

Figure 5 (b): Comparison of each model in terms of ecological conflict reduction rate 

Figure 5 (c): Cost savings rate 

Fig. 5 shows the comprehensive performance 

comparison of the four models in the wind farm and PV 

park layout tasks, including three core indicators: 

efficiency improvement rate (a), ecological conflict 

reduction rate (b), and cost saving rate (c). The proposed 

model is significantly ahead in all dimensions: the 

efficiency is improved by 12.9 percentage points 

compared with the baseline CNN; the ecological conflict 

is reduced by 29.6% (6.5% higher than GNN+VNS); the 

cost is saved by 17.2% (0.6% higher than GNN+VNS). 

Compared with the traditional CNN method, the model in 

this paper effectively captures the consistency of wind 

speed gradient and PV illumination through spatial 

correlation modeling of GNN, which improves the layout 
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efficiency by 21.4%; the multi-objective dynamic 

optimization framework achieves 29.6% conflict 

reduction in avoidance strategy in ecologically sensitive 

areas through Pareto frontier search, which is better than 

the GNN+VNS model (23.1%) that only relies on static 

weights. The balanced performance of the cost-saving rate 

(17.2%) verifies the effective integration of the MST 

weights and the grid access distance constraint, especially 

in areas with complex terrain. 

3.4 Computational efficiency and 

convergence evaluation 

To comprehensively evaluate the performance of each 

method in terms of computing resource usage and 

optimization stability, this section compares the efficiency 

performance and convergence characteristics of the four 

models during training and inference in a unified hardware 

environment (Intel Xeon E5-2690 CPU, 64GB memory, 

NVIDIA RTX A5000 GPU). The experiment uses the 

same data input, loss function, and early stopping 

mechanism. Each model is run independently for five 

rounds, and the mean and variance are statistically 

analyzed.

 

Figure 6: Optimization iteration curve 

Figure 6(a): CNN optimization iteration curve 

Figure 6(b): MG-ASTGCN+DDPG optimization iteration curve 

Figure 6(c): GNN+VNS optimization iteration curve 

Figure 6(d): Optimization iteration curve of this method 

Fig. 6 shows the changing trend of the objective 

function value of four models with the number of 

iterations during the optimization process. The horizontal 

axis represents the number of optimization iterations, and 

the vertical axis represents the objective function value, 

reflecting the comprehensive performance evaluation of 

the layout solution. In contrast, the objective function of 

the CNN model decreases slowly, showing a low 

optimization efficiency, and the speed of the bracelet 

gradually slows down in the later iterations; the initial 

decrease speed of the MG-ASTGCN+DDPG model is 

slightly better than that of CNN, indicating that the model 

combining time series modeling and reinforcement 

learning slightly improves the optimization speed, but still 

lags in spatial structure processing; the GNN+VNS curve 

fluctuates more than the proposed model, indicating that 

there are specific local oscillations in the neighborhood 

search stage; while the proposed model converges and 

stabilizes in about 40 steps, with the fastest convergence 

speed and lower function value, which fully reflects its 
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significant advantages in optimization capabilities. This 

shows that introducing GNNs for feature modeling and 

genetic enhancement joint optimizer effectively improves 

the overall convergence efficiency and search accuracy. 

Table 5 systematically compares the four methods' single 

training time, total computation time, and acceleration 

ratio to quantify the specific differences in computational 

efficiency among the models. 

Table 5: Computational efficiency comparison table 

Model Training Time per Epoch (s) Total Computation Time (s) Speedup 

CNN 48.5 960.2 1.01 

MG-ASTGCN + DDPG 37.8 742.5 1.29 

GNN + VNS 32.4 638.7 1.5 

This Article Model 26.1 521.3 1.84 

 

Table 5 shows the differences in computing efficiency 

of the four comparison models in a unified computing 

environment. From the results, the CNN model takes an 

average of 48.5 seconds to train one round, and the total 

computing time reaches 960.2 seconds, the longest among 

the four methods. The MG-ASTGCN+DDPG model takes 

37.8 seconds per round, with a total duration of 742.5 

seconds, and the speedup ratio reaches 1.29, indicating 

that its efficiency has been improved after the introduction 

of time series modeling and reinforcement learning in the 

optimization strategy. The GNN+VNS model further 

reduces the training time to 32.4 seconds. The total time is 

638.7 seconds, and the speedup ratio is 1.5; the method 

proposed in this paper that integrates GNN and joint 

optimization strategy performs best in terms of efficiency, 

with each round of training time of only 26.1 seconds and 

a total calculation time of 521.3 seconds, highlighting its 

high efficiency in large-scale layout tasks. 

3.5 Ablation study of key components 

To verify the effectiveness of the GA-DRL joint 

optimization framework, dynamic weight adjustment, and 

transfer learning strategy proposed in this paper, this 

section designs three sets of ablation experiments: 

Experiment A: comparison of pure GA optimization and 

GA+DRL joint optimization (DRL local optimization 

module removed); 

Experiment B: turning off the dynamic weight adjustment 

mechanism; 

Experiment C: removing the transfer learning strategy. 

The experiment uses a wind farm as the scenario and runs 

at the same number of iterations. The results are shown in 

Table 6.

Table 6: Results of ablation experiments on key components 

Ablation 

Component 

Layout 

Efficiency 

Improvement 

Ecological 

Conflict Reduction 

Cost Saving 

Rate 

Convergence 

Iterations 

Full Model 21.40% 29.60% 17.20% 40 

A: Remove 

DRL 
17.80% 24.10% 15.10% 58 

B: Fixed 

Weights 
19.20% 25.70% 15.90% 52 

C: No Transfer 

Learning 
16.30% 21.40% 14.20% 67 

From Table 6, it can be found that the local optimization 

value of DRL (Experiment A): after removing DRL, the 

convergence speed decreases by 45%, and the ecological 

conflict reduction rate decreases by 5.5 percentage points, 

proving that DRL effectively avoids sensitive areas by 

adjusting the device spacing in real-time; the necessity of 

dynamic weights (Experiment B): fixed weights lead to a 

23% decrease in Pareto front diversity, verifying the key 

role of the gradient guidance mechanism in multi-

objective trade-offs; the generalization advantage of 

transfer learning (Experiment C): without transfer 

learning, the ecological conflict reduction rate decreases 

by 8.2 percentage points, highlighting the contribution of 

pre-trained feature alignment to cross-terrain 

generalization. 

3.6 Long-term prediction of power 

generation and ecological impact 

In this section of the experiment, the primary purpose is to 

evaluate the performance of the four models in long-term 

power generation prediction and ecological impact 

analysis. This paper adopts a time series simulation 

method based on geospatial data. Constructing long-term 

prediction models for wind farms and PV parks 

comprehensively evaluates each model's prediction 

accuracy, power generation efficiency, and ecological 

impact. All models are trained and tested in the same 
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geographical area and period in the experiment to ensure 

fairness. In the experiment, each method's total power 

generation and ecological impact ratio in multiple 

scenarios are statistically analyzed and normalized to 

evaluate each technique comprehensively. Fig. 7 

compares the prediction results of the four methods in 

various scenarios.

 

Figure 7: Comparison of power generation and ecological impact of each model 

Figure 7(a): Power generation of each model in different geographical areas 

Figure 7(b): Ecological impact of each model in different geographical areas 

Figure 7(c): Relationship between the power generation of each model and the ecological impact index 

Fig. 7 shows the comprehensive performance of the 

four models regarding long-term power generation 

efficiency and ecological constraint control, including 

three sets of comparative analysis: In Figs. 7 (a) and 7 (b), 

the horizontal axis is the geographical scene (plains, 

mountains, hills, and river-dense areas); the vertical axis 

is the model’s name; the color depth represents the power 

generation (MW) and the ecological impact index. The 

model in this paper has a power generation of 905 MW in 

the plain area (an increase of 10.4% compared with CNN) 

and an ecological impact index of 0.19 (a decrease of 

32.1% compared with GNN+VNS), which verifies its high 

efficiency in resource-rich areas and its ability to avoid 

ecologically sensitive areas. In Fig. 7 (c), the horizontal 

axis is the power generation (MW); the vertical axis is the 

ecological impact index; different colors mark the 

corresponding models. The point clusters of the model in 

this paper are concentrated in the areas of high-power 

generation (880-920 MW) and low ecological impact 

(0.16-0.21), forming significantly separated clusters, 

reflecting the characteristics of the Pareto optimal 

solution; while the point clusters of CNN and MG-

ASTGCN+DDPG are scattered, and the ecological index 

is high (0.24-0.36), exposing their limitations in multi-

objective trade-offs. The advantage of this model comes 

from its spatial correlation modeling and dynamic 

optimization mechanism of geographical elements. 

Through the Gaussian weighted adjacency matrix and 

multi-head attention mechanism, it dynamically integrates 

non-Euclidean data such as wind speed gradient and 

terrain slope, thereby achieving increased power 

generation while avoiding the boundaries of ecological 

protection areas; GA global search quickly locates the 

Pareto frontier, and reinforcement learning fine-tunes the 

equipment spacing through the DDQN strategy network to 

reduce the overlapping area of ecologically sensitive 

areas.  

3.7 Verification of the robustness of multi-

objective optimization 

Three types of typical terrains (plains, mountains, and 

river network-dense areas) are designed for independent 

testing to verify the robustness of multi-objective 

optimization in different scenarios. In every terrain 

environment, 20 groups of geographical sub-regions are 

randomly sampled to maintain the heterogeneity of 

resource distribution, terrain disturbance, land use, etc. 

The proposed method and three comparison models 

(CNN, MG-ASTGCN+DDPG, GNN+VNS) are run 

separately with the same parameter configuration to 

compare their optimization stability under variable input 

conditions. The robustness evaluation is carried out from 

three aspects: the mean and standard deviation of power 

generation, which measure the stability of the energy yield 

of the layout results; the variance of the ecological conflict 

score, which evaluates the consistency of the ecological 

interference control ability under complex terrain 

changes; the mean and fluctuation of the multi-objective 

convergence times, which reflects the adaptive ability of 

the optimization efficiency under dynamic disturbance 

conditions.
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Figure 8: Comparison of the robustness of multi-objective optimization of various models under complex terrain 

conditions 

Figure 8 (a): Robustness of power generation fluctuations 

Figure 8 (b): Comparison of ecological conflict variances 

Figure 8 (c): Comparison of multi-objective optimization convergence 

Figure 8 (d): Relationship between power generation efficiency and environmental conflict score 

Fig. 8 compares the robustness of multi-objective 

optimization of the four models under three typical terrain 

types (plains, mountains, and areas with dense river 

networks). The box plot in Fig. 8(a) shows that the 

proposed model is significantly better than the benchmark 

method in terms of power generation stability: in the plain 

area, the average power generation of the proposed model 

reaches 842 MW; Fig. 8(b) shows that the ecological 

conflict variance of the proposed model is always lower 

than that of other methods in the three types of terrain. Fig. 

8(c) further verifies the convergence efficiency: the 

average convergence iteration number of the model in the 

plain area is only 88 times; in complex terrain 

(mountainous/river network area), it remains at about 100 

times, while CNN and MG-ASTGCN+DDPG require 

more than 130 times to converge in the river network area. 

Fig. 8(d) shows the changes in the Pareto frontier under 

different ecological weights, with the horizontal axis 

representing the normalized power generation efficiency 

and the vertical axis representing the ecological conflict 

score; the color of the scattered points corresponds to five 

different ecological weight settings (from 0.1 to 1.0). 

Cross-regional tests show that in mountainous areas, the 

ecological conflict variance of this method (0.04) is 

significantly lower than that of CNN (0.06); in river 

network areas, the ecological conflict variance of this 

method is lower than that of other methods, and the 

convergence efficiency is stable. The robustness 

advantage of the model in this paper comes from its deep 

modeling and dynamic optimization mechanism for 

geographical heterogeneity. Through the Gaussian 

weighted adjacency matrix and multi-head attention 

mechanism, it dynamically integrates non-Euclidean data 

such as terrain slope and wind speed gradient, reduces the 

standard deviation of power generation in mountainous 

scenarios, and avoids the fuzzy boundary problem of 

ecologically sensitive areas; the GA global search quickly 

locates the Pareto frontier, which speeds up the 

convergence; the dynamic weight adjustment avoids the 

local optimal trap caused by traditional static weights. 

This closed-loop design of "feature propagation-constraint 

feedback" is the core embodiment of the model's 

robustness and adaptability, and provides scientific 

decision-making support for RE environmental design. 
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4 Discussion 
Comparison with related methods shows that the 

performance advantages of this method mainly come from 

the following innovations. Data integration capability: the 

geospatial graph structure solves the limitations of 

traditional GIS methods in modeling non-Euclidean data 

through Gaussian weighted adjacency matrix and 

ecological connectivity correction coefficient. For 

example, in plain terrain, this method improves the F1 

score of ecological sensitive area identification to 0.82 

through dynamic adjacency strategy. Multi-head attention 

mechanism: the ablation experiment in Table 3 shows that 

after removing multi-head attention, the Kappa coefficient 

decreases by 5.21% (from 0.91 to 0.86), indicating that 

this mechanism significantly improves the classification 

consistency of heterogeneous geographic data through 

multi-channel feature fusion. Optimization speed 

advantage: Table 5 shows that the GA-DRL hybrid 

optimizer converges within 40 iterations, while pure GA 

optimization requires 58 iterations, proving that 

reinforcement learning local optimization accelerates 

Pareto frontier search. Terrain type has little effect on 

model performance. As shown in Figure 8, in 

mountainous areas, the ecological conflict variance of this 

method (0.04) is significantly lower than that of CNN 

(0.06); in river network areas, the ecological conflict 

variance of this method is lower than that of other 

methods, indicating that it dynamically integrates non-

Euclidean features such as terrain slope and wind speed 

gradient through the multi-head attention mechanism, 

effectively alleviating the interference of terrain 

heterogeneity on layout accuracy. 

Computational complexity and scalability: 

Table 4 shows that the single training time (26.1 seconds) 

and total calculation time (521.3 seconds) of this method 

are better than those of the comparison model. Although 

GNN and DRL are resource-intensive, the efficiency is 

improved through the following designs: GA global 

search: the Pareto frontier is quickly located through non-

dominated sorting to reduce redundant calculations; 

dynamic weight adjustment: the weight distribution is 

optimized according to the rate of change of the objective 

function to avoid local oscillations in multi-objective 

optimization. 

5 Conclusion 
This paper focuses on the spatial distribution identification 

and layout optimization of RE environmental design 

elements, and proposes a solution that integrates GNN and 

a multi-objective dynamic optimization framework. This 

paper breaks through the limitations of traditional GIS 

methods for modeling non-Euclidean data by constructing 

a geographic spatial graph structure. A multi-head 

attention mechanism is usesd to realize the dynamic 

propagation of multimodal features, significantly 

improving the boundary identification accuracy of 

ecologically sensitive and resource-rich areas. The 

innovatively proposed GA-reinforcement learning hybrid 

optimizer achieves the coordinated optimization of power 

generation efficiency, ecological interference, and cost 

constraints through Pareto frontier search and dynamic 

weight adjustment, effectively solving problems such as 

excessive environmental costs caused by single-objective 

optimization. The study further verifies the robustness of 

the model in complex terrain scenarios, and its cross-

regional migration capability provides technical support 

for the coordinated planning of multi-energy systems. The 

generalizability of this framework has been verified in 

cross-terrain generalization experiments. For applications 

outside China, it is only necessary to replace the 

geographic data of the target area and adaptively adjust the 

feature encoder parameters through transfer learning in the 

pre-training phase. The dynamic adjacency strategy and 

Gaussian weighting mechanism are compatible with 

different projection coordinate systems and spatial scales, 

while the ecological-economic weight adaptive 

mechanism in multi-objective optimization can flexibly 

adapt to the differences in environmental protection 

policies of various countries, ensuring the global 

applicability of the framework. 
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