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The data-driven development of competitive sports has raised higher demands for precise capture and
analysis of athletes' movement details. To improve the accuracy and continuity of multi-target detection
and tracking in sports scenes, this article constructs a multi-target detection model based on improved
YOLOv8 (IYOLOvV8-MTD) and a multi-target tracking model based on improved DeepSORT
(IDeepSORT-MTT), and improves performance through multi-module collaborative optimization. The
specific method innovations are as follows: In the detection module (IYOLOv8-MTD), the convolutional
block attention module (CBAM) is optimized through the global context transformer (GCT) to enhance
key feature responses, the large selection kernel (LSK) module is introduced to reconstruct the C2f module
to adapt to multi-scale targets, and the Inner Intersection over union (I10U) and multi-part detection over
union (MPDIoU) optimize the loss function to improve the bounding box regression accuracy; in the
tracking module (IDeepSORT-MTT), the interactive multi-model (IMM) Kalman filter is introduced to
fuse the uniform/uniform acceleration model to adapt to the nonlinear state of the moving target, a hybrid
attention mechanism (channel + spatial feature weighted fusion) is designed to enhance the
discriminability of appearance features, and a heat map detector is used to assist positioning to reduce
positioning deviation. The experiment is verified on the SportsMOT data set (including 240 videos with a
total of about 150,000 frames, divided at 8:1:1 into 192 segments of 120,000 frames for the training set,
24 segments of the validation set for 15,000 frames, and 24 segments of the test set for 15,000 frames).
The hardware platform is NVIDIA GeForce RTX 2080Ti GPU and Intel i5-10400F CPU, using the
standard MOTEval Tool evaluation. The results show that the detection model 1YOLOv8-MTD has a
mAP50 of 97.14% and a mAP50-95 of 92.22%, which are significantly better than the traditional YOLOVS8
(mAP50 92.78%, mAP50-95 81.67%); the tracking model IDeepSORT-MTT has an average multi-target
tracking accuracy (MOTA) of 92.81%, and the identity The average F1 value (IDF1) is 77.56%, the
number of identity switching is reduced by 66.3% compared with the original DeepSORT, and the
processing speed is maintained at 7.1-8.0 frames/second (FPS). The overall performance of the model is
superior to traditional methods and comparative studies, effectively improving the accuracy and
continuity of multi-target detection and tracking in complex sports scenarios, and providing a reliable
technical solution for athlete trajectory analysis, tactical review and physical fitness assessment.

Povzetek:

Introduction

term athlete trajectory and behavior data in complex

In the context of increasingly data-driven competitive
sports, athletes' running, jumping, and turning can all
become key details that determine victory or defeat.
Traditional manual recording not only has low efficiency
and large errors, but also makes it difficult to restore the
full picture of the competition field. In recent years, the
popularity of high-definition video capture and edge
computing technology has made real-time processing of
large-scale sports video data possible, providing a rich
data base for intelligent sports analysis [1]. Meanwhile,
coaches and data analysts have a rapidly growing demand
for refined and visualized sports performance evaluation,
urgently requiring high-density, low latency, and long-

competition environments to support tactical review,
physical fitness allocation, and injury warning [2].
Therefore, building a multi-target detection and tracking
model that can operate stably in high-speed, high
occlusion, and high dynamic scenes has become a core
link in promoting the landing of sports technology, and an
important part of connecting cutting-edge research in
computer vision with practical competitive needs. Multi-
target tracking in sports refers to the simultaneous
detection, localization, and identity preservation of
multiple athletes in a continuous video sequence, and the
continuous output of their motion trajectories and status
information throughout the entire competition process.
This task integrates multiple technical aspects such as
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object detection, feature extraction, trajectory correlation,
and state estimation. Athletes frequently experience
complex situations such as high-speed movement, drastic
changes in posture, mutual occlusion, and appearance
similarity during competitions, which pose great
challenges to traditional detection and tracking algorithms
[3]. In recent times, relevant research has improved the
robustness and accuracy of the YOLO series detection
network, introduced attention mechanisms, optimized
matching strategies, and achieved certain results in some
static or low-speed scenarios.

In current multi-target tracking research in sports,
target deformation and dense occlusion in sports scenes
can easily lead to insufficient detection accuracy; high-
speed movement and brief disappearance of targets can
easily lead to frequent ID switching; the model has poor
generalization between sports-specific data sets (such as
SportsMOT) and general benchmarks (such as MOT17),
making it difficult to balance scene adaptation and general
performance [4-5]. Based on the existing technical
bottlenecks, the study puts forward three key assumptions
as the core basis for method design: (1) Introducing
deformable convolution (DC) and hybrid attention
modules in the YOLOV8 neck layer can enhance the
model's ability to capture the deformation characteristics
and key areas of moving targets, thereby improving
detection accuracy (MAP50-95 increased by >8%); (2)
Replacing the Interacting Multiple model (Interacting
Multiple) in DeepSORT Model, IMM) and optimizing the
Hungarian correlation weight can adapt to target speed
changes and occlusion problems in sports scenes and
reduce the number of ID switching times (reduction
>70%); (3) The improved model trained based on the
SportsMOT data set can still maintain performance
advantages on common benchmarks (such as MOT17),
proving that the solution has cross-scenario generalization
(MOTA reduction <5%).

The research constructs an Improved YOLOv8-based
Multi-Target Detection Model ('YOLOv8-MTD). Aiming
at the shortcomings of existing methods, such as
insufficient small-target detection capability and high
missed detection rate, the model enhances the feature
extraction and localization accuracy for fast-moving
targets with posture changes through optimization
measures—including improving the Convolutional Block
Attention Module (CBAM) and reconstructing the C2f
module. The research also develops an Improved
DeepSORT-based  Multi-Target  Tracking  Model
(IDeepSORT-MTT) to address issues of traditional
tracking methods in high-speed motion scenarios (e.g.,
frequent identity switches with low Identity F1 (IDF1) and
limited real-time performance with constrained Frames
Per Second (FPS)). The model incorporates the Interactive
Multiple Model (IMM), hybrid attention mechanism, and
heatmap detector, which strengthens the robustness of
dynamic motion state estimation and feature matching.
The research's significance stems from its contribution in
improving the accuracy and continuity of multi-target
tracking in sports scenarios, reducing identity switching,
maintaining real-time performance, and providing
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reference solutions for athlete trajectory analysis, tactical
review, and physical fitness assessment.

2 Related works

Multi-target detection, as a key objective within the realm
of computer vision, faces challenges such as target scale
changes, feature interference, and difficulty in recognizing
small targets in complex scenes. Y. Wen et al. added a
multi-scale spatial enhanced attention mechanism and
introduced mixed local channel attention in YOLOv8n to
address the issues of inconsistent target scales and
occlusion in underground personnel monitoring in
hazardous areas. The network header incorporated an
adaptive module for spatial feature fusion. The results
showed that the mAPOQ.5 of the algorithm reached 93.4%,
mAP50-95 was 60.1%, and the detection speed was 80
frames per second [6]. L. S. Jin et al. embedded a channel
domain attention machine in YOLOV4 to achieve vehicle
multi-target detection at low computing power, and used
depthwise separable convolution to reduce parameters. By
using spatial pyramid pooling to process feature maps
(FMs) and introducing path aggregation networks to fuse
deep and shallow information. The findings revealed that
the average accuracy of the model on the RS-UA dataset
was 0.906, a decrease of 1.1% compared to YOLOV4, and
the number of parameters was reduced to 10% [7]. A. S.
Hasan et al. proposed a machine learning method that
combines stochastic gradient descent, logistic regression,
random forest, decision tree, k-nearest neighbors, and
naive Bayes to address the issue of poor performance in
multi-target detection systems, and trained it on the COCO
dataset. The findings revealed that the proposed method
achieved 97% detection accuracy within the time of
human perception, with both high speed and high accuracy
[8]. M. W. Hanif et al. improved YOLOVS5s by introducing
the SloU loss function, decoupling head, and four
detection layers to address the issues of low accuracy in
multi-target detection and difficulty in small target
recognition caused by irregular lighting and high noise in
coal mine environments. The results demonstrated that the
model achieved 5.19% and 9.79% improvements in mAP
and AP for small targets, respectively, over YOLOvV5s on
the multi-object detection dataset [9].

On the basis of multi-target detection, multi-target
tracking needs to further address issues such as continuous
association of target identities, trajectory prediction in
dynamic scenes, and occlusion handling. R. N. Razak and
H. N. Abdulla used YOLOv5+DeepSORT combined with
frame cancellation technique to solve the performance
degradation and increased computation time of multi-
target detection and tracking algorithms in complex
environments due to identity information switching,
tracking drift, etc., and adaptively adjusted the frame
cancellation rate through Kalman filter residual feedback.
The results showed that on the MOT16 dataset, the
execution time was improved by 61.03%, 60.05%, and
48.31% compared to YOLOv5, YOLOV7, and the multi-
target detection and tracking model with frame
cancellation, respectively [10]. W. Cao et al. proposed a
multi-target tracking framework based on convolutional
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neural networks (CNNs) and graph neural networks to
address challenges such as occlusion and appearance
similarity in sports scenes. By jointly modeling detection,
appearance, and motion features, parallel dual branch
decoders were used to fuse features and CNNs were used
to capture spatiotemporal correlations. The findings
revealed that the framework outperformed other state-of-
the-art methods on the SportsMOT dataset [11]. V.
Premanand and D. Kumar used the Kuhn Munkres
algorithm with Pearson similarity center to efficiently
detect and track multiple objects in complex environments
and meet real-time application requirements. They
combined it with singular value decomposition based on
information gain to reduce the dimensionality of features
and used an improved recurrent neural network for
classification. The results demonstrated that the system
could accurately track multiple targets, with a false
positive rate (FPR) of 2.3% [12]. A. Gullapelly and B. G.
Banik used an adaptive masked region CNN to detect
targets in order to improve the performance of object
detection and tracking in multi-target tracking. They
extracted features through a 50-layer residual network,
combined with adaptive feature channel selection and
adaptive combined kernel correlation filters to achieve
tracking. The results demonstrated that the proposed
tracker outperformed other state-of-the-art trackers in
addressing various challenges [13]. The core experimental
information of each method is shown in Table 1.

As shown in Table 1, there are two obvious research
gaps in the existing methods: First, the adaptability to
sports scenarios such as SportsMOT was insufficient.
Most methods (such as references [6], [7], and [11]) have
not been tested in this scenario. The mAP and MOTA of a
few test methods ([9] and [12]) were both below 80%,
making it difficult to cope with the dense occlusion and
high-speed movement in sports scenarios. The second
issue was the insufficient balance between "precision and
speed". The FPS of high-precision methods (such as [9]
and [12]) was generally lower than 7 frames per second.
Although the FPS of lightweight methods ([13]) was
relatively high, there was a significant decline in accuracy.

In addition, in recent years, end-to-end multi-object
tracking methods represented by FairMOT, TransTrack,
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TrackFormer, etc. significantly promoted the development
of the field. In order to realize real-time automatic
detection of abnormal events on highways, D. Xiao et al.
used the FairMOT method based on video recognition to
migrate the model originally used for human detection to
vehicle abnormal behavior recognition. Parking was
judged by analyzing changes in trajectory vector length,
and retrograde travel was judged by combining the center
dividing line vector. The results showed that this method
could quickly and accurately detect illegal parking and
retrograde events in real surveillance videos, which was
better ~than  mainstream  algorithms such as
YOLOv3/5+DeepSORT and JDE [14]. To improve the
accuracy of automatic tracking of pig behavior in complex
scenes, S. Tu et al. adopted an improved TransTrack
method, introduced an improved complete intersection
and union ratio matching strategy to eliminate overlapping
detection, integrated behavioral category learning and
optimized data association mechanisms. The results
showed that on public and private pig data sets, the multi-
target tracking accuracy reached 92.4% and 91.5%, which
was significantly better than Trackformer, JDE and other
methods [15]. To overcome the low efficiency of key point
sampling in TrackFormer due to the lack of a priori
position information and inaccurate reference points, X.
Liu et al. optimized deformable attention sampling in
target detection and data association by introducing a
priori position embedding and reference point dynamic
update mechanisms. The results showed that on the
MOT17 and MOT20 data sets, the performance of the
optimized TrackFormer could reach or exceed the current
state-of-the-art level [16]. To improve the tracking and
positioning accuracy of UAVs for cows in complex farm
environments, Y. Zhao et al. adopted an improved
CenterTrack method, designed a feature enhancement
module to deal with occlusion, combined distance-based
greedy matching and a two-stage matching algorithm for
lag areas, and introduced a positioning algorithm to assist
in precise target positioning. The results showed that
compared with the original CenterTrack, the multi-target
tracking accuracy was increased by 5.5% and the
positioning accuracy was increased by 4.3% [17].

Table 1: Summary of core experimental indicators for cited methods.

IMethod name IDatasets used (Core architecture ?,I/ISP ?&?TA ;021):1 F:rsse(;‘;rg)e SReference No.
YOLOVS (Original version) MOT17 ;?LOVSS (Backbone: CSPDarknet1,s 5 |, o 694 |82 (6]
DeepSORT (Original version) MOT17 ﬁgimaﬁj‘gﬁthm&”““°“) 21 es2 66.8  [10.5 (7]

ByteTrack MOT17/MOT20 ;%;;53 Byte  Association; 5 g | 723 [12.1 8]

Improved YOLOV7-+DeepSORT SportsMOT Egnglvu Zion) +(va§:pS ORTDef"““ablewz 715 731 6.8 (9]
YOLOVS+ByteTrack MOT20 mggg&n * ByteTrack Associationy;q |5 4 740 1.5 [10]

SORT IMOT17 IKalman Filter + Hungarian Algorithm|68.5  [60.3 62.7 15.3 [11]

Improved EfficientDet+DeepSORT SportsMOT [EfficientDet-D3 + Attention Module [76.8 69.3 70.5 5.1 [12]
'YOLOv8n+IDeepSORT IMOT17/SportsMOT K/gkg"gn (Lightweight) + IMMy, o log o 702 [14.3 [13]
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In summary, existing research has improved the
performance of multi-target detection by introducing
attention mechanisms, optimizing network structures,
improving loss functions, and enhancing tracking effects
through fusion detection and tracking algorithms,
optimizing matching mechanisms, etc. However, there is
still room for improvement in dealing with complex
scenarios such as rapid target movement and drastic
changes in posture in sports. To this end, research is being
conducted on the construction of 'YOLOv8-MTD, which
incorporates modules such as CBAM and DC, combined
with IdeepSORT MTT, to enhance detection and tracking
performance in complex mation scenes.

3 Methods and materials

3.1 Construction of multi-target detection
model based on 'YOLOvV8

In sports scenes, multiple targets often exhibit complex
characteristics such as rapid movement, drastic changes in
posture, and significant differences in scale, which puts
higher demands on the performance of multi-target
tracking models. Building high-precision multi-target
detection models is the foundation for achieving multi-
target tracking [18]. To achieve accurate detection of
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multiple targets in sports, the I'YOLOv8-MTD model was
studied and constructed, as shown in Figure 1.

In Figure 1, the main improvements of the model
include the optimization of the attention mechanism:
introducing a global context converter (GCT) to improve
the CBAM structure, enhance the feature expression
ability, and control the computational overhead at the
same time; Multi-scale feature extraction: The LSK
module is used to reconstruct the C2f module, and the
dynamic receptive field is adopted to adapt to targets of
different scales. Deformation adaptation enhancement:
DC is introduced in the neck network to improve the
modeling ability of target deformation; Loss function
improvement: By combining 1HOU and MPDIoU, the
accuracy of bounding box regression is optimized to
enhance the robustness of detection. CBAM enhances
feature expression by introducing a dual attention
mechanism of channel and spatial dimensions in CNNs,
which can effectively improve the model's attention to key
features, thereby improving recognition accuracy, and is
easy to integrate into existing model architectures. With
the addition of CBAM, the model increases its
computational complexity and parameter count, while
reducing its focus on low-level features [19-20].
Compared to other attention mechanisms, GCT, with its
lower parameter count, improves model accuracy while
maintaining its original computational efficiency. The
improved CBAM structure is presented in Figure 2.

v [ v v
Conv » Conv C2f-LSK Conv Detect
v v 4 v
Conv C2f-LSK — Concat DC
v v 4 v
C2f-LSK ICBAM UpSample Concat
v v 4 v
ICBAM Conv C2f-LSK C2f-LSK —>»  Detect
v v 1) v
Conv C2f-LSK —» Concat Conv
v v 4 v
C2f-LSK — ICBAM UpSample DC C2f-LSK
v v T v v
ICBAM —— SPPF » Concat Detect

Figure 1: Multi-target detection model.
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Figure 3: Structure of LSK module.

In Figure 2, GCT uses L2 norm for global context
embedding, and after channel normalization, dynamically
learns channel attention weights through gating functions.
Afterwards, through spatial attention operations, the key
spatial regions of the target in the image are focused,
enhancing the model's attention to the spatial information
of the target and improving its localization ability [21]. To
enable the model to obtain more target information in the
fast-moving multi-target scene of sports, the Large
Selective Kernel (LSK) module is introduced to
reconstruct the C2f module in the original YOLOVS8
(YOLOv8's official open-source repository is
https://github.com/ultralytics/ultralytics). =~ The  LSK
module processes input features through branches, and
each branch uses convolution kernels of different scales
for feature extraction, thereby obtaining multi-scale
information. Then, using attention mechanism to calculate
the importance weights of each branch, the network can
dynamically selectively focus on the most relevant scale
information. Finally, these weighted FMs are merged to
form an output that integrates information from multiple
scales [22]. Figure 3 displays the configuration of the LSK
module.

In Figure 3, the LSK model constructs a dynamic
receptive field network through decoupled depthwise

separable convolutions, where the kernel size p, and
dilation rate g satisfy an increasing relationship as
shown in equation (1).
Py <Pty =L, <p <R,
R =p,R=u#(p-1)+R,
In equation (1), R; is the receptive field of the i-th
layer in the LSK module, and p, is the kernel size of the
i-th decoupled convolution branch, which is used to
extract target features of different scales. y; is the dilation
rate of the i-th convolution kernel, controlling the extent
of receptive field expansion of the convolution. The initial
dilation rate z=1, and the subsequent dilation rates
increase sequentially ( g<u, <---<gy , N=3) to
achieve dynamic receptive field adjustment. According to
the receptive field calculation method in equation (1), the
LSK model can achieve adaptive feature extraction for
targets of different scales. Afterwards, using spatial
selection mechanism, channel level average pooling and
max pooling are performed on multi-scale convolutional

features to generate spatial attention FMs. After Sigmoid
activation, a selection mask is obtained, which is finally

@)
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fused with input features element by element weighted
fusion, as shown in equation (2) [23].

B, = Conv, s (X)

C, = Sigmoid ( AvgPool(B;) + MaxPool(B;))

N N )
C=2wxC, 2w =1
i iz

Y=X[OC

In equation (2), X is the input feature map of LSK,
Conv, . is the i-th decoupled depthwise separable

convolution operation, and B; is the output feature map of
the i-th convolution branch. C, is the spatial attention
weight map of the i-th branch, and @, is the weight

coefficient of the i-th branch, which is used to balance the
contributions of branches with different scales (learned
adaptively by the network in experiments). C is the final
attention weight map after fusion, and Y is the output
feature map of the LSK module. The research embeds
LSK into C2f before element concatenation operation to
enhance the model's ability to detect small targets. The
complexity of sports scenes is reflected in the high-speed
movement of athletes and the posture changes caused by
tactical movements. To enhance the robustness of the
model to such deformations, this study proposes replacing
the 3x3 standard convolution layers—used to refine the
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fused features—within each level of the feature fusion
module in the neck network of YOLOVS8, which is built
based on the Feature Pyramid Network (FPN). The DC
structure is shown in Figure 4.

In Figure 4, DC introduces learnable offsets on the
basis of standard convolution, enabling the convolution
kernel to adaptively adjust the sampling position in the
spatial dimension. The convolution process is shown in
equation (3) [24].

y(h)=2 x(hh+h +4h)w(h) @)

h,eR
In equation (3), y(hy ) is the pixel value at position h,

on the output FM, R represents the range of the
convolution kernel. h, is the offset relative to the center

point within the convolution kernel range, and x is the
input FM. 4h_ is the learnable offset used to adjust the

position of the convolution kernel to adapt to the target
deformation, W is the convolution kernel weight, and n
is the convolution kernel position index. Due to the fact
that the sampling position obtained after introducing the
offset is usually a non integer coordinate, it cannot directly
correspond to the actual pixels in the image. Therefore, the
study uses bilinear interpolation method to estimate the
pixel value of this position, as shown in equation (4) [25].

x(h) = ZG(h,b) -x(n)= Zmax(O, I-b, —h,[)-max(0,I-|b, —h, [)-x(q) 4)

In equation (4), b represents the actual pixels on the
FM,and G(h,b) is the bilinear interpolation kernel. In
response to the problem of poor performance of
YOLOv8's original loss function when the aspect ratio of
the predicted box is the same as that of the real box but
there is a difference in size, the study first introduces the

Offset field

Conv

Inner Intersection over Union (110U), and calculates the
Intersection over Union (loU) loU™" by setting an
adjustable scale factor auxiliary bounding box. Different
sizes of auxiliary bounding boxes are used for high and
low loU samples to accelerate bounding box regression,
as shown in equation (5).

N v

— >y r—

VARRNERVA
Offset

Variable convolution

Input FM

Output FM

Figure 4: Structure of DC.
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Sun :(\Ngt*Hgt)*ﬂz'i_(\N*H)*lz_Sin

In equation (5), 1oU™ is the inner Intersection over
Union, which is used to measure the overlap degree
between the auxiliary box and the ground truth box.
(k. K.k, k,) is the auxiliary box, serving as an
expanded/shrunk version of the prediction box, where k|
and k, are the left and right boundary coordinates, and k,
and k, are the upper and lower boundary coordinates.

(K, kg ks k') is the ground truth box of the target,

with the same coordinate definition as the auxiliary box.
S,, is the intersection area of the auxiliary box and the

ground truth box, and S, =0 if there is no overlap

between the two boxes. A is an adjustment scale factor
(set as 4 €[0.8,1.2] in experiments) used to control the
size of the auxiliary box. For samples with high loU (e.g.,
10U>0.7), 1=0.8 is adopted (to shrink the auxiliary box
and enhance localization accuracy), and for samples with
low loU (e.g., loU<0.5), A4 =1.2is adopted (to expand the
auxiliary box and reduce missed detections) [26]. S is
the union area of the auxiliary box and the ground truth
box. W, H , and W® are the width and height of the
auxiliary box and the real box. While 110U addresses the
regression accuracy limitations of traditional loU under
varying object scales, it focuses solely on box overlap
without accounting for positional shifts caused by rapid
object movement in sports. To resolve this, we propose an
enhanced 110U called Multiple Part Detection Intersection
over Union (MPDIoU), which incorporates a distance
term into the loss function to more accurately measure box
differences. The final loss function MPDIoU™ of the
model is shown in equation (6) [27].

2 2
Al ©
H®+W

In equation (6), the smaller the value of MPDIoU™"
, the closer the position and overlap degree between the
prediction box and the ground truth box. d, is the

MPDIoU™" =1+ —lou™

Euclidean distance between the top-left corner of the
prediction box and the top-left corner of the ground truth
box, and d, d is the Euclidean distance between the

bottom-right corner of the prediction box and the bottom-
right corner of the ground truth box. H and W are the
height and width of the input image (H =800 pixels, W
=1440 pixels). The loU in MPDIoU is replaced by 110U,
which not only covers the width and height information of
the image, but also retains the advantage of auxiliary
boxes. The pseudocode of the I'YOLOV8-MTD model is
shown in Table 2.

The IYOLOvV8-MTD model has a total parameter
count of approximately 27.3M, representing a 1.4M
increase (5.4% growth) compared to the baseline
YOLOV8 (with 25.9M parameters). Among its modules,
the ICBAM, LSK, and DC layers each contain 0.3M,
0.8M, 0.3M parameters without any redundant
parameters. The model's total FLOPs reach 28.6 GFLOPs,
with the core detection backbone contributing 23.1
GFLOPs, while the ICBAM, LSK, and CD modules
contribute 0.8 GFLOPs, 3.2 GFLOPs, and 1.5 GFLOPs
respectively. This computational capacity meets the
processing requirements of mainstream edge computing
devices.

3.2 Construction of multi-target tracking
model based on improved DeepSORT

After building a multi-target detection model, to achieve
continuous tracking of dynamic targets in sports scenes,
further research is being conducted to construct a multi-
target tracking model based on improved DeepSORT. In
the original DeepSORT algorithm, the detection part uses
the Fast R-CNN method. Due to the relatively slow
processing speed of this detection algorithm, it will exert
a definite influence on the real-time efficiency of the entire
tracking system in practical applications [28]. Therefore,
the study will use an I'YOLOv8-based multi-target
detection model as the detector for DeepSORT. The multi-
target tracking process is shown in Figure 5.

Table 2: I'YOLOvV8-MTD multi-target detection algorithm.

Algorithm 1: IYOLOv8-MTD Multi-Target Detection Algorithm

300)

Input: Xin (Input image, resolution 1440x800), Wpretrain (Pre-trained weights on COCO), A (Adjustment scale factor for IIOU, 0.8~1.2), Nepoch (Training epochs,

Output: Bdet (Detected bounding boxes, format [x1,y1,x2,y2]), Sconf (Confidence scores of detections)

: Xpre < Preprocess(Xin) // Random flip, scale adjustment, HSV augmentation, mosaic

: Initialize model with Wopretrain, set all layers trainable

: for epoch from 1 to Nepoch do

: Fback < Backbone(Xpre) // CSPDarknet-53 extract base features

: FDC « DeformConv(FLSK) // Replace 3x3 conv in FPN neck, Eq.(3)-(4)

: FICBAM < ICBAM_Module(FDC) // Improved CBAM with GCT, Fig.2

2
3
4
5: FLSK « LSK Module(Fback) // Reconstruct C2f, Eq.(1)-(2)
6
7
8

: Binit,Sinit « Detection_Head(FICBAM) // Initial box & confidence prediction

9: LMPDIoU «— MPDIoU_Loss(Binit, Bgt) // Eq.(5)-(6), Bgt: ground truth boxes

10: Backpropagate LMPDIoU to update model weights

11: end for

12: Bnms « NMS(Binit, Sinit, threshold=0.5) // Non-maximum suppression

13: Bdet, Sconf « Filter(Bnms,Sinit, conf threshold=0.3) // Filter low-confidence detections

14: Return Bdet, Sconf
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From Figure 5, the main improvements of this model
include motion model enhancement: the introduction of
interactive multi-model (IMM) Kalman filter, fusion of
uniform velocity and uniform acceleration models,
improving state estimation accuracy; feature matching
optimization: using a hybrid attention mechanism to fuse
channel and spatial features to enhance appearance
discriminability; detection head improvement: using a
heat map detector to replace the traditional detection head
to improve target positioning accuracy; trajectory
management strategy: combining loU and visual
similarity for trajectory matching, and generating a new
trajectory 1D when the confidence level reaches the
standard. Since the original DeepSORT algorithm
employed a Kalman filter assuming uniform motion, it
struggled to manage scenarios involving sudden
acceleration and turning of targets during sports, often
leading to tracking failures [29]. To address this issue,
IMM is introduced to improve the accuracy of state
estimation by integrating uniform velocity and uniform
acceleration models. The Kalman filtering algorithm
incorporating IMM is shown in Figure 6.

Igorithm flow with IMM.

As shown in Figure 6, the algorithm describes the
dynamic characteristics of the target through multiple
motion models and uses Markov transition probability
matrix to control the switching between models. The
motion state of the j th model at time k is shown in

equation (7) [30].

U, =Dju;,  +1 @
Qe =Eju;, +v;,
In equation (7), u,, is the state vector,

Uj =X Yo %o Vo %o e | - (%o v) are the pixel
coordinates of the target center in the image, and the
coordinates use pixel coordinates. (X,,¥,) and (X, V)
are the velocity and acceleration in the x/y directions,
respectively. D; represents the state transition matrix of

the model, using two models: IMM (constant velocity
(CV), constant acceleration (CA)). State transition matrix
F., and F., asshown in equation (8).
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In equation (8), At is the time interval. I, , is the

process noise. Among them, the process noise covariance
of the CV model is M, =o; -blkdiag(M,M,) ,

At* 14 A2 At? At
M, = , and
At 12 At At 1

o,=05 (standard deviation of velocity noise). The

p

process noise covariance of the CA model is
. A2 A
Mca :a§~blkd|ag(Mp, M, M) , M, Z{Att 11 '

and o, =0.2 (standard deviation of acceleration noise).
Q, isthe observation vector, E; isthe observation matrix
of the model, and v;, is the observation noise. The
observation noise covariance R isset as a diagonal matrix
based on the detection box coordinate error:
R =diag(o?,07,0,0,0,0) , where o,=0,=20 pixels
(the standard deviation of the detection box center

coordinate error obtained from experiments). The initial
mixture probability g, is based on the prior of the motion

scene, u, =[0.6,0.4] . The transition probability matrix
(085 0.15
™ 1020 0.80

model retention probabilities (>0.8) and the off-diagonal
elements are the switching probabilities (<0.2), which
conforms to the smooth switching characteristics of
athletes' motion states. The time interval At=1 frame
(determined by the video frame rate of 30fps, and the time
difference between adjacent frames is fixed). When the
target velocity change rate v, |[>3.0 pixels/frame?, the
weight of the CA model is automatically increased
(adjusted dynamically through the mixture probability);
0,104 0,0, and the transition probabilities are all
determined by grid search on the validation set (the
optimal values are as mentioned above, ensuring the
tracking error is <5 pixels). The algorithm first initializes
each model input using the previous state and transition
probability P, . The initial state Ifojyk,1 of the model jis

shown in equation (9).

[foj,k—l = z Ifi,k—lgij,k—l

i-1

Pl ©)
‘9ij,k-1 =7,

V.

]

] where the diagonal elements are the
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In equation (9), 4,

.« 1S the mixed probability and

A

F. . is the individual state estimation result of the i th

model attime k-1. r is the total number of motion models
participating in the interaction. V, is the normalization

constant for the prediction model of j. Afterwards, the

states of each model are updated through Kalman filtering,
as shown in equation (10).
Fj,k = Fji,k + K',k[Qk - Ej Fji,k]

J

(10)

In equation (10), F, and F, are the state estimation
value and prior estimation value of the jth model after
update at time k, respectively, and K, is the Kalman

gains. In terms of update mechanism, if the trajectory
matches the detection template, the template will be
updated. When there is no match, temporarily store
trajectory information. For unmatched detection templates
with confidence exceeding the threshold, refer to
ByteTrack (v1.0 version) to generate new trajectory
identifiers [31]. The confidence level L;, is calculated by

integrating loU with the visual similarity matrix M , as
shown in equation (11).

L =(1-a)-M+a-loU (12)
In equation (11), « is the weight coefficient used to
balance the proportion of loU and visual similarity in the

overall matching degree. Finally, based on equation (12),
the results of each model are fused to obtain the final state

estimate F, .

r

F.= ZLj,k Fix (12)

j=1

In the feature extraction stage, in response to the fast
movement characteristics of sports athletes, research is
conducted on using mixed attention to extract the position
information of the target at a certain moment. The mixed
attention mechanism is shown in Figure 7. The hybrid
attention module is inspired by the "lightweight attention"
improvement idea in YOLOVS (refer to its streamlining
principles of attention modules in detection tasks). It does
not directly use the ready-made modules of libraries such
as MMDetection. It is a variant customized by this article
for the characteristics of sports targets (many small
targets, dynamic deformation).
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Figure 7: Hybrid attention mechanism.

In Figure 7, the target template is the detection result
of the I'YOLOvV8 model, and the search area is expanded
from the predicted trajectory points. Mixed attention
consists of channel attention and position attention.
Channel attention filters discriminative feature channels
through a global feature perception mechanism, and
enhances the model's ability to express complex semantic
patterns through information exchange between channels.
This enables the model to dynamically identify key
features and reduce the computational burden on
redundant features [32]. Channel attention models
channels through FM transpose multiplication and
softmax function, as shown in equation (13).

7; = softmax ( © (13)

T J

5
In equation (13), y, represents the attention weight of

the i th channel to the jth channel, O is the reshaped

FM,and J is the spatial dimension product. Location
attention dynamically recognizes discriminative spatial
regions to allocate spatial weights to input features. On the
one hand, this mechanism enhances the perception
accuracy of target details through adaptive weight
allocation, and on the other hand, it uses spatial contextual
relationships to suppress the interference of redundant
background noise [33]. The calculation of the positional
attention weight matrix is shown in equation (14).

T, |
)
Inequation (14), e, represents the attention weight of
the m th position to the n th position. Z is the FM
processed and reshaped by the convolutional layer, and |
is the number of feature channels. The module maintains

a fixed 256-channel input feature map (aligned with
YOLOv8 backbone output). It consists of three

o, = softmax( (14)

components: a 2-layer channel attention branch, a 2-layer
spatial attention branch, and a fusion layer. The channel
attention branch comprises two 1x1 convolutions, with
ReLU activation between them to produce a 256-channel
channel weight map. The spatial attention branch
combines a 3x3 depth convolution with a 1x1
convolution, followed by global average pooling to
compress spatial dimensions, ultimately generating a 1-
channel spatial weight map. In the fusion layer, the input
features are first multiplied by the channel weights
channel-wise, then by the spatial weights pixel-wise,
resulting in a 256-channel feature map. The convolutional
layer weights are initialized with He's normal distribution
(mean 0, variance 2/ C_, where C, is the number of

input channels), and the bias is uniformly initialized to 0.
The total parameter count is approximately 33k, with a
single-frame (512x512 input) computation load of about
4.2 million FLOPs, accounting for only 4.8% of
YOLOv8's total computational load without increasing
inference latency. In the detection head section, the study
adopts a thermal map-based prediction module to replace
the traditional object detection head. The heat map
detection head works in parallel with the bounding box
regression head as an auxiliary module - the heat map head
outputs the heat map of the target center (for optimizing
positioning accuracy), and the bounding box regression
head is responsible for predicting the box coordinates. The
losses of the two (heat map loss + loU loss) are jointly
backpropagated. The heat map detection head is
composed of three layers of convolution, and the input is
the 256-channel feature map output by backbone
(resolution 64x64) : The first layer is a 3x3 convolution
(256—128 channels, padding=1), the second layer is a
3%3 convolution (128—64 channels, padding=1), and the
third layer is a 1x1 convolution (64—1 channel).
Eventually, a single-channel heat map is output, and each
layer is activated by ReLU. The output resolution is
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consistent with the input feature map, which is 64x64
(corresponding to a 1/8 scale of the input image's
512x512, that is, each heat map pixel corresponds to an
8x8 area of the original image). During the training
process, a two-dimensional Gaussian distribution heatmap
is generated with the target center as the peak, and the
Gaussian function is shown in equation (15).

(Xh - Xc)z + (yh - yc)z)
20,°
In equation (15), (X, Y,) are the pixel coordinates of

G(x,y) =exp(- (15)

the heatmap, and (X, y,) are the corresponding

coordinates of the target center on the heatmap. o, isused
to control the diffusion range of the Gaussian heatmap. For
small targets (area < 32x32 pixels), o =2 is adopted; for
medium targets (32x32~96x96 pixels), o =3 is adopted;
for large targets (>96x96 pixels), o=4 is adopted,
ensuring that the peak of the heatmap focuses on the target
center. The loss function L, adopts the improved Focal

Loss, as shown in equation (16).

Lheat = —06(1— pt)}/ |Og( pt) (16)
In equation (16), & =0.25 (to balance positive and
negative samples), ¥ =2 (to suppress easily separable

samples), and p, is the pixel value of the predicted

heatmap and the Gaussian target heatmap. For the
generation of bounding boxes, first, non-maximum
suppression (NMS) is used to extract the heatmap peak

(threshold 0.3), and the peak coordinate (X/,Yy,) is

mapped back to the original image as (8x, +4,8y, +4);

then, combined with the target width and height predicted
by the parallel branch, the bounding box
(x—=w/2,y—h/2,x+w/2,y+h/2) is generated to

complete the conversion from the heatmap to the
bounding box [34-35]. The pseudocode of the
IDeepSORT-MTT model is shown in Table 3.

In the feature extraction stage, the total parameter
amount of the hybrid attention mechanism is about 33k,
which is only 0.12% of the YOLOv8 backbone parameter
amount; the calculation amount of a single frame
(512x512 input, tracking module feature map size) is
about 4.2 million FLOPs, accounting for only 4.8% of the
total calculation amount of the YOLOvV8 detection
module, avoiding additional inference delays introduced
by the tracking module. The total parameter amount of the
heat map detector is about 128k (after weight sharing
optimization, the original 3-layer convolution parameter

Informatica 49 (2025) 409-428 419

amount is reduced from 147.5k to 128k), and the FLOPs
of a single frame (64x64 input feature map) are about
860,000, accounting for 3.2% of the total calculation
amount of the tracking module. The number of tracking
module parameters of IDeepSORT-MTT only increases
by 161k (33k+128k), and the total FLOPs increment is
less than 1 GFLOPs, ensuring the lightweight nature of the
joint detection-tracking model on edge devices.

4 Results

4.1 Validation of multi-target detection
model effectiveness

To confirm the capability of IYOLOv8-MTD, this model
was compared and tested with typical multi-target
detection methods such as Faster Region-based
Convolutional Neural Networks (Faster R-CNN),
traditional YOLOVS8, and the latest research methods
(references [6] and [7]). The model training and inference
used 1 NVIDIA GeForce RTX 2080Ti GPU. The CPU is
Intel i5-10400F. During training, only NVIDIA GeForce
RTX 2080Ti acceleration was utilized, while inference
supports both this GPU and the mobile i5-7300HQ
platform (though RTX 2080Ti was the primary
benchmark for performance). All FPS measurements were
taken on the NVIDIA GeForce RTX 2080Ti GPU,
excluding standalone CPU inference rates (as CPU
inference yields rates far below real-time requirements
and has no practical value). The experiment utilized the
SportsMOT dataset (240 video clips, approximately
150,000 frames), divided into three subsets ina 8:1:1 ratio:
192 clips (120,000 frames) for training, 24 clips (15,000
frames) for validation, and 24 clips (15,000 frames) for
testing. During partitioning, the study ensured equal
representation of basketball, volleyball, and soccer
scenarios across all subsets (1:1:1 ratio) to prevent
scenario bias.

All experiments were conducted in strict compliance
with the official SportsMOT training/testing protocols,
with dataset partitioning aligned with the protocol's
recommended scenario distribution and sequence
allocation rules. The test set was exclusively reserved for
final performance evaluation, without participating in
model training parameter adjustments or validation set
metric optimization. All experimental data were computed
on the SportsMOT official test set, with the evaluation
process directly utilizing the standard evaluation script
provided by SportsMOT.

Table 3: IDeepSORT-MTT multi-target tracking algorithm.

Algorithm 2: IDeepSORT-MTT Multi-Target Tracking Algorithm

Input: Bdet, Sconf, Ptrans = [[0.85,0.15],[0.20,0.80]], 0=0.7, winit=[0.6,0.4]

Output: Ttrack (Trajectories: [ID, ujk, Btrack, frame_idx])

1: Init, frame idx =1, M = {CV,CA},ov=0.5, ca=0.2

2: while frameidx < Total Frames do

3:ujk = IMMPredict(M, T, Ptrans, winit)// Eq.(7)-(8)

4:Fhybrid=Hybrid Attention(Bdet, Xin)// Eq.(13)-(14)

5:Bheat=Heat map Detector (Fhybrid, ch)// Eq.(15)-(16)

6:Lik=(1—0)-FeatureSimilarity(T, Fhybrid)+a-loU(T.boxes, Bheat)// Eq.(11)

7:MatchPairs=Hungarian Match (Lik, 0.4)
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8:T=Update Traj (T, MatchPairs, Bheat, ujk)// Eq.(10)

9:Unmatched=Bheat didx(MatchPairs)

10:T=Add New Traj(T, Unmatched, Sconf >0.5)// Inituinit for new IDs

11:T=Filter Inactive (T, maxi nactive=5)

12: frame_idx +=1

13: end while

14:Ttrack=Format Traj(T)

15: Return Ttrack

Table 4: Experimental parameter information.

Hardware and software facility Experimental parameter

Device CPU Intel i5-10400F Batch size 8

Device graphics card NVIDIA GeForce RTX 2080Ti Coefficient a 0.7

Deep learning framework Pytorch 1.12.0 Initial learning rate 0.001
Internal memory 16GB DDR4 Weight attenuation rate 0.0001
Operating system Windows 10 Img size 1440x800
Programming language Python 3.9.16 Epoch 300

To accommodate the dynamic movement and varied
postures in sports scenarios while preventing distortion
caused by augmentation operations, the input 1440x800
resolution images underwent four processing stages: First,
random horizontal flipping was applied with a 50%
probability. Next, scale adjustment between 0.8x to 1.2x
maintained target proportions. Then, HSV color space
parameters were randomized with £15% brightness, £20%
saturation, and £10% hue variations to adapt to lighting
conditions across venues. Subsequently, mosaic
enhancement technology combined four consecutive
video frames to generate training samples, enhancing
model robustness for small targets like distant athletes.
Finally, random cropping ensured the output images retain
the original 1440x800 resolution. The learning rate
scheduling employed a "Warmup + Cosine Annealing"
strategy, with an initial learning rate of 0.001. The first 10
epochs constituted the Warmup phase, during which the
learning rate increased linearly from 1e-5 to 0.001. From
epoch 10 to 300, the Cosine Annealing phase applies,
reducing the learning rate to le-5 using a cosine decay
function. During training, the batch normalization layer
dynamically calculated the mean and variance of features
within the batch, with a momentum set to 0.9. In
testing/inference phases, the mean and variance were
fixed to those from the training set without parameter
updates, ensuring stable results. In addition to the learning
rate (0.001) and weight decay rate (0.0001) in Table 1, the
additional hyperparameters were: momentum 0.9
(accelerates convergence) and gradient clipping
(maximum norm 2.0 to avoid gradient explosion).

For I'YOLOV8-MTD, the pre-trained model on the
data set was used as the initial weight. However, because
SportsMOT is a specific scene of sports, all parameters of
all layers of the model were updated. For IDeepSORT-
MTT, its tracking module had no pre-training basis. The
parameters were fully trained from random initialization
and were linked to the detection output of I'YOLOV8-
MTD.

By jointly optimizing the detection loss and tracking loss,
the collaborative adaptation of detection and tracking was
achieved. To ensure reproducibility of experimental
results, all stochastic processes utilized fixed seeds
throughout the workflow: model initialization (including
random weight initialization and random fine-tuning after
pre-training), dataset partitioning (allocation of
training/verification/testing  sequences), and data
augmentation (random flipping, cropping, and mosaic
stitching with randomized parameters). A unified seed
value of 42 was consistently applied across all stages to
eliminate fluctuations caused by random factors. To
enable deterministic mode based on the PyTorch
framework, the study fixed the random number generators
for both CPU and GPU using torch.manual_seed(42).
Meanwhile, the study also set
torch.backends.cudnn.deterministic = True  and
torch.backends.cudnn.benchmark = False to disable the
automatic optimization selection of cuDNN. This ensured
that the computational processes of each inference and
training were completely consistent, allowing for accurate
evaluation of result variance (in experiments, the index
fluctuation of 10 repeated tests was <1.2%).

The performance changes of various multi-target
detection methods during training are shown in Figure 8.
Figures 8 (a) and 8 (b) show the variation of accuracy and
recall of each method with the number of training
iterations, respectively. The Faster R-CNN backbone
network employed ResNet-50 architecture, with pre-
trained weights from the ImageNet dataset. The RPN
anchor boxes were configured in three scales
(128%128,256x256,512x512) and three aspect ratios (1:1,
1:2, 2:1). YOLOVS utilized the YOLOVSs variant, using
the official pre-trained weights from the COCO dataset.
The training parameters (learning rate, batch size,
optimizer) were identical to those of Faster R-CNN and
I'YOLOvV8-MTD.
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Figure 9: Detection accuracy of each method in training.

According to Figure 8 (a), as the number of training
iterations increased, the accuracy of each method showed
an upward trend and eventually stabilized. The accuracy
of the research method improved the fastest, reaching the
highest level at 300 epochs (95.01%), which was
significantly higher than Faster R-CNN (81.57%) and
traditional YOLOV8 (87.83%). This indicated that the
introduction of CBAM, LSK module, and improved loss
function significantly enhanced the recognition accuracy
of I'YOLOV8-MTD for targets. The accuracy rates of
literature [6] and literature [7] were 94.36% and 92.60%,
respectively, slightly lower than the research method.
From Figure 8 (b), the recall rate of I'YOLOV8-MTD
started to lead in the early stages of training, and the
advantage was more obvious at 300 epochs, which could
more comprehensively detect targets in the dataset. The
detection accuracy of each method during training is
shown in Figure 9. Figures 9 () and 9 (b) show the
mAP50 and mAP50-95 statistics for each method,
respectively.

According to Figure 9 (a), the mAP50 of I'YOLOvVS8-
MTD reached 97.11%, which was superior to Faster R-
CNN (91.23%), traditional YOLOV8 (92.78%), literature
[6] (95.82%), and literature [7] (94.34%), indicating that
the improved model had significant advantages in
conventional detection accuracy. From Figure 9 (b),
within a stricter threshold range of 50% to 95% loU, the
mAP50-95 of I'YOLOV8-MTD reached 92.19%, which
was 10.52 percentage points higher than traditional
YOLOV8 (81.67%) and also higher than literature [6]
(87.44%) and literature [7] (84.75%), indicating that the
model optimized the regression accuracy of bounding
boxes, especially showing stronger robustness when
dealing with targets of different scales and complex
deformations.
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To verify the performance advantages of the LSK
module compared to standard SPPF and PANet, the study
conducted a baseline test: the experiment kept the other
architecture, training parameters and hardware platform of
the I'YOLOV8-MTD detection module consistent, only
replaced the core components of the neck layer (LSK,
SPPF, PANet respectively), and evaluated the detection
accuracy and inference speed on the SportsMOT test set.
The results are shown in Table 5.

From Table 5, the mAP50-95 of the SK module was
6.2 percentage points higher than SPPF and 4.4 percentage
points higher than PANet, and the mAP50 was improved
by 5.3 percentage points and 3.6 percentage points
respectively. This was because LSK's long and short-term
attention mechanism could effectively capture the long-
distance feature dependencies of targets in sports scenes
(such as limb extension, cross-frame motion trajectory
correlation), while SPPF only focused on local spatial
feature extraction. Although PANet strengthened feature
fusion, it limited ability to capture long-scale features;
LSK's FPS (7.5) was lower than SPPF (8.1), but higher
than PANet (6.5), and the parameter amount (30.2M) was
between the two, which proved that LSK achieved a better
balance in "accuracy-speed-parameter amount”, avoiding
the surge in calculations caused by multi-path feature
fusion in PANet, while making up for the lack of accuracy
of SPPF, and further verifying the contribution of the LSK
module to I'YOLOV8-MTD detection performance.

To verify the effectiveness of various improvement

methods, ablation experiments were conducted on
IYOLOV8-MTD. All ablation experiments were
conducted with 10 independent replicates. The

performance differences between the improved models
and the baseline model were compared using independent
samples t-tests, with a significance level of a=0.05

S. Wan

(p<0.05 indicated significant difference, p<0.001
indicated highly significant difference). The outcomes are
presented in Table 6.

According to Table 6, the introduction of the ICBAM
module alone improved accuracy by 2.34%, verifying the
effectiveness of the GCT optimized attention mechanism
for feature selection. The LSK module increased the recall
rate by 3.11%, indicating that multi-scale dynamic
receptive fields could enhance the ability to capture
moving targets. The MPDIoU loss function was most
prominent in optimizing positioning accuracy, with a
3.75% improvement in mAP50-95. The module
combination presented a synergistic effect, with
ICBAM+LSK increasing mAP50 by 3.46%, while
LSK+MPDIoU increasing mAP50-95 by 8.86%. After
integrating all modules, Precision (95.04+0.32), mAP50
(97.14+0.28), and mAP50-95 (92.22+0.41) improved by
7.21%,4.36%, and 10.55% respectively compared to the
baseline. All metrics showed t-values> 20 with p<0.001,
while Time increased by only 2.82ms (11.05+0.35 vs
8.23+0.21) with SD <0.4, demonstrating the systematic
advantages of the improvement approach.

The mAP50-95 metric was calculated by tracking
specific sub-scenario sequences in the SportsMOT
dataset, primarily featuring low-density target scenarios
with minimal occlusion such as basketball training and
volleyball passing. These sequences exhibited relatively
regular target trajectories and fewer background
distractions (e.g., spectator stands, billboards), which
explained the higher performance metrics. However, in
complex sequences with dense targets and prolonged
occlusion (e.g., multi-player soccer matches, fast breaks in
basketball), the metrics showed a decline. The specific
differences were verified through sequence-by-sequence
data analysis, as shown in Table 7.

Table 5: Baseline experimental results of LSK vs. SPPF/PANet.

Core Component mAP50-95 (%) mAP50 (%) FPS (frames per second) Parameter Count (M)
SPPF (Standard) 76.3 88.5 8.1 28.6
PANEet (Standard) 78.1 90.2 6.5 32.1
LSK (This Study) 82.5 93.8 7.5 30.2
Table 6: Ablation experiment.
Method YOLOV8 ICBAM LSK | MPDIoU Precision/% | Recall/% mAP50/% | mAP50-95 | Time/ms
1 \ X X X 87.83+0.45 85.24+0.51 | 92.78+0.38 | 81.67+0.62 | 8.23+0.21
2 N N x x 90.17+0.39 | 87.53+0.47 | 94.12+0.35 | 84.31+0.58 | 8.81+0.23
3 V x N x 89.72+0.41 | 88.35+0.43 | 94.87+0.32 | 86.93+0.55 | 9.52+0.25
4 N x x N 88.96+0.43 | 86.82+0.49 | 93.67+0.36 | 85.42+0.57 | 8.47+0.22
5 N N N x 93.28+0.35 | 90.83+0.40 | 96.24+0.31 | 89.78+0.51 | 10.14+0.28
6 N N x N 92.13+0.37 | 89.63+0.45 | 95.58+0.33 | 88.23+0.53 | 9.17+0.24
7 N N X \ 92.88+0.36 | 91.25+0.42 | 96.68+0.29 | 90.53+0.48 | 10.32+0.29
8 V N N N 95.04+0.32 | 92.43+0.39 | 97.14+0.28 | 92.22+0.41 | 11.050.35
Table 7: Detection and tracking metrics of key sequences in the SportsMOT test set.
Sequence type Sequence ID  [Scenario description IAverage number of targets [mAP50-95 (%) MOTA (%)
Basketball Bk-1 Basic training (single-player dribbling) 1 98.56 99.12
Basketball Bk-5 3v3 confrontation (mild occlusion) 6 92.22 92.81
Football Ft-2 11-a-side match (moderate occlusion) 22 78.63 75.49
Football Ft-3 Corner kick offense/defense (heavy occlusion) (35 65.18 62.37
\Volleyball VI-1 Single-player passing training 1 97.84 98.95
\Volleyball VI-2 Two-player rally (transient occlusion) 2 90.35 89.76
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Table 8. Performance comparison of the model on the MOT17 test set.

Model MAP50 (%) MOTA (%) IDF1 (%)
Faster R-CNN 68.21 59.50 62.11
'YOLOV8s 75.32 67.81 69.43
1YOLOV8-MTD 78.65 72.34 74.72

From Table 7, only the sequences with a small
number of targets and a low degree of occlusion (such as
Bk-1 and VI-1) had indicators close to full marks, while
the MAP50-95 and MOTA of the multi-person dense
adversarial sequence (Ft-3) were both lower than 70%. In
the football Ft-3 corner kick attack and defense sequence,
more than 10 players overlapped densely (the target
overlap rate exceeded 60%), and the model had missed
detections (the number of missed detections in a single
frame reached 3 to 5) and frequent switching of tracking
ids, which directly led to the MAP50-95 of this sequence
dropping to 65.18% and the MOTA dropping to 62.37%.
In the backlit training sequence of basketball Bk-6, the
luminance difference between the players' white jerseys
and the strong background was less than 10%, resulting in
insufficient feature extraction. The IOU of detecting
bounding boxes and real boxes was lower than 0.5 many
times, and the missed detection rate of targets within 10
frames reached 12%. In the fast sprint sequence of football
Ft-1, the instantaneous movement speed of the player
exceeded 5m/s, the displacement of the target between
frames exceeded the preset association threshold of the
model, and the tracking module could not accurately
match the targets of the previous and subsequent frames,
resulting in the IDF1 of this sequence dropping from
89.2% in the simple scene to 78.5%.

To verify the generalization ability of the research
method, in addition to the SportsMOT data set,
experiments were also conducted on the internationally
accepted MOTL17 standard benchmark (including 7
training sequences and 7 test sequences, covering typical
pedestrian  multi-target tracking scenarios). The
experimental  configuration was consistent  with
SportsMOT to ensure comparability. The results are
shown in Table 8.

From Table 8, the detection and tracking indicators of
I'YOLOV8-MTD on the MOT17 benchmark were better
than those of Faster R-CNN and YOLOv8s baseline
models, and the relative improvement (MOTA
improvement of 4.5~12.8 percentage points) was
consistent with the improvement trend on the SportsMOT
data set, proving that this method was not only suitable for
sports scenes, but also effective in general pedestrian
tracking scenes, alleviating the problem of limited
generalization.

4.2 Validity verification of multi-target
tracking model

To verify the validity of IDeepSORT-MTT, the original

DeepSORT, ByteTrack, and the latest multi-target

tracking methods (literature [10] and [11]) were compared

and tested with the research methods. The MOTA and

IDF1 scores of each tracking method in 10 tests are shown

in Figure 10. Figures 10 (a) and 10 (b) show the MOTA
and IDF1 values for each tracking method, respectively.

From Figure 10, the IDeepSORT-MTT model
proposed in the study showed the best stability, with a
MOTA of 92.81% (+0.37%; 95% CI [92.44%, 93.18%])
and IDF1 of 77.56% (+0.51%; 95% CI [77.05%,
78.07%]). Its confidence interval range was the narrowest
and did not overlap with the confidence intervals of other
methods, indicating that its performance advantage was
statistically significant. In contrast, the MOTA of the
original DeepSORT fluctuated the most (67.91% + 2.02%;
95% CI [65.89%, 69.93%]), verifying its instability in
practical applications.The Average Spatio Temporal
Similarity of Associations (ASSA) and Higher Order
Tracking Accuracy (HOTA) of each tracking method in
10 tests are shown in Figure 11. Figures 11 (a) and 11 (b)
show the ASSA and HOTA values for each tracking
method, respectively.
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Figure 10: MOTA and IDF1 values of each tracking
method.
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Figure 11: ASSA and HOTA values of each tracking
method.

From Figure 11, the mean HOTA value of the
research method was 72.9%, with extremely low
variability (standard deviation = 0.41%, 95% CI [72.49%,
73.31%]), while the mean ASSA value of the literature
[10] (56.4%) was slightly higher than this study (55.1%).
This reflected the different focuses of ASSA and MOTA
indicators. ASSA  measured the spatiotemporal
appearance similarity of successfully associated
trajectories, and its higher value indicated that the
literature [10] performed well in maintaining local
consistency within the tracking segment. However,
MOTA was a more comprehensive system-level indicator,
and its value was determined by missed detections, false
detections, and identity switching. Therefore, the higher
ASSA but lower MOTA in literature [10] showed that
although the correlation quality of this method was high,
its underlying detection module produced more missed
detections or false detections, or frequent identity loss
after the target experienced severe occlusion. These
system-level global errors were not captured by ASSA,
but lowered MOTA. The confidence interval of HOTA in
literature [10] (65.30% + 0.67%; 95% CI [64.63%,
65.97%]) was much lower than that of this study, and its
standard deviation was higher, indicating that the
comprehensive performance of this research method was
not only better, but also more reliable. The HOTA
confidence interval of the method in literature [11] was
62.90% + 1.17% (95% CI [61.73%, 64.07%]), which
further highlighted the performance gap between it and the
method of this study.

S. Wan

The identity switches (IDs) and frames per second
(FPS) of each tracking method in 10 tests are shown in
Figure 12. Figures 12 (a) and 12 (b) show the IDs and FPS
values of each tracking method, respectively. All model
FPS measurements were conducted on a standardized
GPU hardware platform to eliminate discrepancies caused
by hardware variations.

As shown in Figure 12 (a), the research method
performed most stably in maintaining low identity
switching, with an IDs mean of 3015 and a 95%
confidence interval of [2993, 3037] (standard deviation
=22), which was significantly better than and had a
distribution range much smaller than that of ByteTrack
(IDs mean =7038). 95% CI [6593, 7482]) and DeepSORT
(IDs mean =8945, 95% CI [8375, 9516]). From Figure 12
(b), the FPS of this method remained at 7.5 £ 0.48 (95%
Cl [7.02, 7.98]). For the inference speed of each method
in CPU mode, the research method was 1.2 + 0.15 FPS
(95% CI [1.09, 1.31]), and that of reference [10] was 0.9
+0.17 FPS (95% CI [0.79, 1.01]). Reference [11] was 1.1
+ 0.19 FPS (95% CI [0.97, 1.23]). The research method,
while ensuring high tracking accuracy, provided a stable
processing speed that met the real-time requirements. To
verify the effectiveness of various improvement methods,
ablation experiments were conducted on IDeepSORT-
MTT, and the outcomes are presented in Table 9.
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Figure 12: IDs and FPS values of each tracking method.
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Table 9: Ablation experiment.

Method | DeepSORT | Imm | Mixed Heat  map | \vioTame | IDFL/% | ASSA/% | HOTA% | IDs FPS
attention detector

1 N x x x 67.9+2.1 | 53.3+2.5 | 45.2+1.8 | 55.842.0 | 8945+320 | 8.5+0.2
2 N N x x 75.3+1.8 | 58.6£2.2 | 48.3+1.6 | 585+1.7 | 7210+280 | 8.0+0.2
3 N x v x 78.2#16 | 60.1#2.0 | 50.1+1.5 | 60.3+1.6 | 65424250 | 7.8+0.2
4 N x x v 85.7+1.2 | 68.9+t1.8 | 52.6x1.4 | 65.7+15 | 4536210 | 7.5+0.2
5 N N v x 83.4+1.4 | 66.3+1.9 | 51.4+15 | 63.2+1.6 | 5017+230 | 7.3+0.2
6 N N x N 84.6+1.3 | 67.5+1.7 | 53.2+1.3 | 64.5+1.4 | 4829+220 | 7.2+0.2
7 N N x v 88.5+0.9 | 72.4+12 | 54.3+1.0 | 68.8+1.2 | 3872180 | 7.4+0.2
8 N N N N 92.8+0.6 | 77.6+0.8 | 55.1+0.7 | 72.9+0.9 | 3015+120 | 7.5+0.2

According to Table 9, each improved module
significantly enhanced the performance of IDeepSORT-
MTT. The baseline model had a MOTA of 67.9%,
IDF153.3%, and IDs as high as 8945. After introducing
IMM, MOTA increased by 7.4% and IDs decreased by
20.5%. Mixed attention (Method 3) increased MOTA by
80.5% and ASSA by 17.3%. The heat map detector
(Method 4) further optimized the positioning accuracy,
achieving a HOTA of 58.5%. The combination of modules
presented a synergistic effect, with IMM and mixed
attention (Method 5) achieving a MOTA breakthrough of
85% and IDF1 approaching 70%. The complete model
(Method 8) achieved an MOTA of 92.8+0.6 after all
improvements, representing a 24.9% improvement over
the baseline (t=32.15, p<0.001) with a mere 0.6 SD
(compared to the baseline's 2.1 SD), demonstrating
significantly superior tracking accuracy and stability. The
IDF1 score reached 77.6+0.8, showing a 24.3%
improvement (t=28.97, p<0.001), while the number of
identity switches (3015+120) decreased by 66.3%
(t=45.89, p<0.001). Maintaining a stable FPS of 7.5+0.2
(SD=0.2) that met real-time requirements (>7 fps) with
minimal fluctuations, the model was well-suited for real-
time analysis in sports competitions.

The study selected two types of high-incidence
scenarios for ID switching to verify the effectiveness of
the ID switching optimization effect. In the football Ft-2
sequence (11-player match, moderate occlusion), the
baseline DeepSORT was used when players cross running
(such as when two players overlapped instantly during a
midfield pass), On average, there were 3 to 4 ID switches
every 50 frames. For instance, after the bodies of Player A
(initial ID=5) and Player B (initial ID=8) overlapped, the
model mistakenly recognized Player A as the new target
(ID=12), and the original ID could not be restored in
subsequent frames. [1DeepSORT-MTT retained the
historical features of the target (such as jersey numbers
and movement trajectory trends) through the hybrid
attention module. After overlapping, only 0 to 1 ID
switching occurred, and the original 1D could be restored
within 3 frames without any misallocation of new ids. In
the basketball Bk-5 sequence (3v3 confrontation, light
occlusion), when a player broke through with the ball and
a defender closely interfered (with an occlusion area of

approximately 30%), DeepSORT experienced two 1D
switches every 30 frames, resulting in a broken tracking
trajectory. The improved model predicted the
breakthrough direction of players through the IMM
motion model, and combined the heat map detection head
to locate the core area of the target (such as the head).
There were only 0 ID switches throughout the process, and
the tracking trajectory was continuous and complete. The
comparison results of the number of sequential ID
switches between the baseline and the improved model in
the SportsMOT test set are shown in Table 10.

As shown in Table 10, in unobstructed single-person
scenarios (Bk-1, VI-1), neither model performed ID
switching. However, in obstructed multi-person scenarios
(Bk-5, Ft-2, Ft-3, VI-2), IDeepSORT-MTT achieved
74.1% to 83.3% fewer ID switches than DeepSORT. The
optimization effect improved with denser occlusion (e.g.,
Ft-3), directly demonstrating the suppression effect of the
improved module (hybrid attention and IMM model) on
ID switching.

To verify the potential of model edge deployment, the
study used the structured pruning to optimize the C2f
module of IYOLOvV8-MTD (pruning 1/3 of the redundant
branches) and the hybrid attention of IDeepSORT-MTT
(removing 1 layer of low-contribution space branches).
The parameter amount was reduced from 27.3M+33Kk to
18.5M+22k (a reduction of 32.2%+33.3%), and the
FLOPs were reduced from 27.3M+33k to 18.5M+22k (a
reduction of 32.2%+33.3%). 28.6GFLOPs+4.2 million
dropped to 16.2GFLOPs+2.8 million (a decrease of
43.4%+33.3%). The SportsMOT test set mAP50 only
dropped by 1.27% and MOTA by 1.18%. Based on INT8
quantification calibration on 1000 frames of the
SportsMOT validation set, the model memory footprint
was reduced from 856MB to 428MB, and the FPS on the
Jetson Nano was increased from 5-7 to 8-10. The pruned
and quantified model was exported to ONNX format.
After TensorRT 8.6 operator fusion and memory
optimization, the inference delay on Jetson Xavier NX
was reduced from 125ms/frame to 55-60ms, the FPS
reached 15-18, and the MOTA was maintained above
92.0%, meeting the needs of real-time sports analysis on
edge devices.
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Table 10: Comparison of ID switching frequency per sequence between baseline and improved models on the

SportsMOT test set.
. o Average number of[D switches D switches .
Sequence type [Sequence ID [Scenario description argets (DeepSORT) (IDeepSORT-MTT) IReduction rate
Basketball Bk-1 Bgsm training (smgle—player1 o o
dribbling)
Basketball  [Bk-5 3v3  confrontation  (mildg 12 > 83.3%
occlusion)
Football Ft-2 H-a-side ‘match (moderate,, 35 7 80.0%
occlusion)
Football Ft-3 Comer kick offense/defensd, 5 58 15 74.1%
(heavy occlusion)
Volleyball V-1 Single-player passing, 0 0
training
Nolleyball — [VI-2 Two-player rally - (transient,, s 1 80.0%
occlusion)

5 Discussion

The fusion IYOLOv8 and DeepSORT multi-target
tracking model proposed in the study achieved high-
precision tracking performance in sports scenes, and its
core advantage lied in the collaborative optimization of
detection and tracking modules. In the detection phase,
I'YOLOvV8-MTD improved its ability to capture fast-
moving and attitude changing targets by combining the
CBAM attention mechanism, LSK module, and MPDIoU
loss function. For example, the introduction of GCT
optimized CBAM module enhanced key feature response
while controlling computational overhead, resulting in a
7.21 percentage point increase in model accuracy
compared to traditional YOLOvV8. Compared with
relevant studies, the detection model proposed in this
research achieved a mean Average Precision (mAP) of
97.14%, which was higher than the 79.2% of Improved-
YOLOv7+DeepSORT and 78.1% of
YOLOv8+ByteTrack [9-10]. By adjusting the dynamic
receptive field, the LSK module effectively addressed the
issue of scale differences among athletes, resulting in a
recall rate of 92.43%. Particularly in handling small
targets and scale variations, its performance outperformed
models relying on fixed structures (e.g., YOLOv8n [13])
or lightweight designs (e.g., Improved-EfficientDet [12]).

In the tracking phase, the performance breakthrough
of the Improved DeepSORT-based Multi-Target Tracking
Model (IDeepSORT-MTT) mainly relied on the
application of Interactive Multiple Model (IMM) Kalman
filtering and the hybrid attention mechanism. Both the
Multiple Object Tracking Accuracy (MOTA, 92.81%) and
Identity F1 (IDF1, 77.56%) of this research outperformed
all methods listed in the table. For example, the MOTA
was 27.6 percentage points higher than that of the original
DeepSORT (65.2%, [7]), and it had higher accuracy than
the real-time-oriented Simple Online and Realtime
Tracking (SORT, [11]) with a MOTA of 60.3%.

The reasons for the performance improvement can be
attributed to the following:

1. By fusing CV and CA motion models, the IMM
effectively copes with non-linear motions commonly seen
in sports scenarios (such as sudden turns, sudden stops,
and accelerations), overcoming the estimation bias of
traditional constant-velocity Kalman filtering ([11]) or
single motion models.

2. Through the weighted fusion of channel and spatial
features, the hybrid attention mechanism enhances the
discriminability of appearance features—this s
particularly crucial in scenarios where athletes have
similar appearances and frequent occlusions. As a result,
the IDF1 index (77.56%) significantly outperforms
methods that only rely on motion or simple appearance
features (e.g., 72.3% of ByteTrack [8]), and the number of
identity switches (IDs) is reduced by 65.3% compared to
the original DeepSORT.

In terms of real-time performance, the Frames Per
Second (FPS) achieved in this research (7.1-8.0) reaches a
practical level while ensuring high accuracy. Although it
is lower than  the  extremely lightweight
YOLOv8n+DeepSORT (14.3 FPS), it outperforms other
high-performance methods that also pursue accuracy (e.g.,
6.8 FPS of Improved-YOLOV7+DeepSORT and 5.1 FPS
of Improved-EfficientDet), achieving a good balance
between precision and speed.

The generalization ability of current research on
diverse motion scenarios still needs to be verified.
Although the heat map detector improved the positioning
accuracy, it is prone to center positioning deviation when
the targets overlap densely. Although the FPS model (7.1-
8.0) met real-time requirements, there is still room for
optimization compared to the lightweight design (8.0-8.9)
in literature [11]. Future research can construct a universal
dataset across different types of movements and introduce
generative adversarial networks to simulate extreme
posture  samples.  Transformer architecture and
multimodal fusion (such as skeleton keypoint
information) can be further explored to enhance tracking
robustness in occluded scenes. In addition, edge
computing adaptation versions can be developed based on
model pruning and quantification technology to promote
deployment and application in portable training devices.
The research provides new ideas for multi-target tracking
in dynamic scenarios through modular collaborative
optimization, and its technical framework can be further
expanded to fields such as autonomous driving and
security monitoring.

6 Conclusion

The I'YOLOvV8-MTD constructed in the study, combined
with improved CBAM attention mechanism, LSK
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module, and MPDIoU loss function, improved the
detection accuracy of the model for fast moving, attitude
changing, and multi-scale targets. Its mAP50 reached
97.14% and mAP50-95 reached 92.22%, which was
superior to traditional YOLOV8 and related advanced
methods. The introduction of IMM, hybrid attention
mechanism, and heatmap detector in the IDeepSORT-
MTT effectively enhanced the robustness of dynamic
motion state estimation and feature matching, while
reducing identity switching and maintaining real-time
performance. The research verified the collaborative
effectiveness of various improvement modules, providing
reliable technical solutions for athlete trajectory analysis,
tactical review, and physical fitness evaluation in sports
scenarios, and also providing reference for multi-target
tracking research in complex dynamic scenarios.
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