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The data-driven development of competitive sports has raised higher demands for precise capture and 

analysis of athletes' movement details. To improve the accuracy and continuity of multi-target detection 

and tracking in sports scenes, this article constructs a multi-target detection model based on improved 

YOLOv8 (IYOLOv8-MTD) and a multi-target tracking model based on improved DeepSORT 

(IDeepSORT-MTT), and improves performance through multi-module collaborative optimization. The 

specific method innovations are as follows: In the detection module (IYOLOv8-MTD), the convolutional 

block attention module (CBAM) is optimized through the global context transformer (GCT) to enhance 

key feature responses, the large selection kernel (LSK) module is introduced to reconstruct the C2f module 

to adapt to multi-scale targets, and the Inner Intersection over union (IIOU) and multi-part detection over 

union (MPDIoU) optimize the loss function to improve the bounding box regression accuracy; in the 

tracking module (IDeepSORT-MTT), the interactive multi-model (IMM) Kalman filter is introduced to 

fuse the uniform/uniform acceleration model to adapt to the nonlinear state of the moving target, a hybrid 

attention mechanism (channel + spatial feature weighted fusion) is designed to enhance the 

discriminability of appearance features, and a heat map detector is used to assist positioning to reduce 

positioning deviation. The experiment is verified on the SportsMOT data set (including 240 videos with a 

total of about 150,000 frames, divided at 8:1:1 into 192 segments of 120,000 frames for the training set, 

24 segments of the validation set for 15,000 frames, and 24 segments of the test set for 15,000 frames). 

The hardware platform is NVIDIA GeForce RTX 2080Ti GPU and Intel i5-10400F CPU, using the 

standard MOTEval Tool evaluation. The results show that the detection model IYOLOv8-MTD has a 

mAP50 of 97.14% and a mAP50-95 of 92.22%, which are significantly better than the traditional YOLOv8 

(mAP50 92.78%, mAP50-95 81.67%); the tracking model IDeepSORT-MTT has an average multi-target 

tracking accuracy (MOTA) of 92.81%, and the identity The average F1 value (IDF1) is 77.56%, the 

number of identity switching is reduced by 66.3% compared with the original DeepSORT, and the 

processing speed is maintained at 7.1-8.0 frames/second (FPS). The overall performance of the model is 

superior to traditional methods and comparative studies, effectively improving the accuracy and 

continuity of multi-target detection and tracking in complex sports scenarios, and providing a reliable 

technical solution for athlete trajectory analysis, tactical review and physical fitness assessment. 

Povzetek:  

 

1 Introduction 
In the context of increasingly data-driven competitive 

sports, athletes' running, jumping, and turning can all 

become key details that determine victory or defeat. 

Traditional manual recording not only has low efficiency 

and large errors, but also makes it difficult to restore the 

full picture of the competition field. In recent years, the 

popularity of high-definition video capture and edge 

computing technology has made real-time processing of 

large-scale sports video data possible, providing a rich 

data base for intelligent sports analysis [1]. Meanwhile, 

coaches and data analysts have a rapidly growing demand 

for refined and visualized sports performance evaluation, 

urgently requiring high-density, low latency, and long- 

 

term athlete trajectory and behavior data in complex  

competition environments to support tactical review, 

physical fitness allocation, and injury warning [2]. 

Therefore, building a multi-target detection and tracking 

model that can operate stably in high-speed, high 

occlusion, and high dynamic scenes has become a core 

link in promoting the landing of sports technology, and an 

important part of connecting cutting-edge research in 

computer vision with practical competitive needs. Multi-

target tracking in sports refers to the simultaneous 

detection, localization, and identity preservation of 

multiple athletes in a continuous video sequence, and the 

continuous output of their motion trajectories and status 

information throughout the entire competition process. 

This task integrates multiple technical aspects such as 
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object detection, feature extraction, trajectory correlation, 

and state estimation. Athletes frequently experience 

complex situations such as high-speed movement, drastic 

changes in posture, mutual occlusion, and appearance 

similarity during competitions, which pose great 

challenges to traditional detection and tracking algorithms 

[3]. In recent times, relevant research has improved the 

robustness and accuracy of the YOLO series detection 

network, introduced attention mechanisms, optimized 

matching strategies, and achieved certain results in some 

static or low-speed scenarios. 

In current multi-target tracking research in sports, 

target deformation and dense occlusion in sports scenes 

can easily lead to insufficient detection accuracy; high-

speed movement and brief disappearance of targets can 

easily lead to frequent ID switching; the model has poor 

generalization between sports-specific data sets (such as 

SportsMOT) and general benchmarks (such as MOT17), 

making it difficult to balance scene adaptation and general 

performance [4-5]. Based on the existing technical 

bottlenecks, the study puts forward three key assumptions 

as the core basis for method design: ① Introducing 

deformable convolution (DC) and hybrid attention 

modules in the YOLOv8 neck layer can enhance the 

model's ability to capture the deformation characteristics 

and key areas of moving targets, thereby improving 

detection accuracy (mAP50–95 increased by ≥8%); ② 

Replacing the Interacting Multiple model (Interacting 

Multiple) in DeepSORT Model, IMM) and optimizing the 

Hungarian correlation weight can adapt to target speed 

changes and occlusion problems in sports scenes and 

reduce the number of ID switching times (reduction 

≥70%); ③ The improved model trained based on the 

SportsMOT data set can still maintain performance 

advantages on common benchmarks (such as MOT17), 

proving that the solution has cross-scenario generalization 

(MOTA reduction ≤5%). 

The research constructs an Improved YOLOv8-based 

Multi-Target Detection Model (IYOLOv8-MTD). Aiming 

at the shortcomings of existing methods, such as 

insufficient small-target detection capability and high 

missed detection rate, the model enhances the feature 

extraction and localization accuracy for fast-moving 

targets with posture changes through optimization 

measures—including improving the Convolutional Block 

Attention Module (CBAM) and reconstructing the C2f 

module. The research also develops an Improved 

DeepSORT-based Multi-Target Tracking Model 

(IDeepSORT-MTT) to address issues of traditional 

tracking methods in high-speed motion scenarios (e.g., 

frequent identity switches with low Identity F1 (IDF1) and 

limited real-time performance with constrained Frames 

Per Second (FPS)). The model incorporates the Interactive 

Multiple Model (IMM), hybrid attention mechanism, and 

heatmap detector, which strengthens the robustness of 

dynamic motion state estimation and feature matching. 

The research's significance stems from its contribution in 

improving the accuracy and continuity of multi-target 

tracking in sports scenarios, reducing identity switching, 

maintaining real-time performance, and providing 

reference solutions for athlete trajectory analysis, tactical 

review, and physical fitness assessment. 

2 Related works 
Multi-target detection, as a key objective within the realm 

of computer vision, faces challenges such as target scale 

changes, feature interference, and difficulty in recognizing 

small targets in complex scenes. Y. Wen et al. added a 

multi-scale spatial enhanced attention mechanism and 

introduced mixed local channel attention in YOLOv8n to 

address the issues of inconsistent target scales and 

occlusion in underground personnel monitoring in 

hazardous areas. The network header incorporated an 

adaptive module for spatial feature fusion. The results 

showed that the mAP0.5 of the algorithm reached 93.4%, 

mAP50-95 was 60.1%, and the detection speed was 80 

frames per second [6]. L. S. Jin et al. embedded a channel 

domain attention machine in YOLOv4 to achieve vehicle 

multi-target detection at low computing power, and used 

depthwise separable convolution to reduce parameters. By 

using spatial pyramid pooling to process feature maps 

(FMs) and introducing path aggregation networks to fuse 

deep and shallow information. The findings revealed that 

the average accuracy of the model on the RS-UA dataset 

was 0.906, a decrease of 1.1% compared to YOLOv4, and 

the number of parameters was reduced to 10% [7]. A. S. 

Hasan et al. proposed a machine learning method that 

combines stochastic gradient descent, logistic regression, 

random forest, decision tree, k-nearest neighbors, and 

naive Bayes to address the issue of poor performance in 

multi-target detection systems, and trained it on the COCO 

dataset. The findings revealed that the proposed method 

achieved 97% detection accuracy within the time of 

human perception, with both high speed and high accuracy 

[8]. M. W. Hanif et al. improved YOLOv5s by introducing 

the SIoU loss function, decoupling head, and four 

detection layers to address the issues of low accuracy in 

multi-target detection and difficulty in small target 

recognition caused by irregular lighting and high noise in 

coal mine environments. The results demonstrated that the 

model achieved 5.19% and 9.79% improvements in mAP 

and AP for small targets, respectively, over YOLOv5s on 

the multi-object detection dataset [9]. 

On the basis of multi-target detection, multi-target 

tracking needs to further address issues such as continuous 

association of target identities, trajectory prediction in 

dynamic scenes, and occlusion handling. R. N. Razak and 

H. N. Abdulla used YOLOv5+DeepSORT combined with 

frame cancellation technique to solve the performance 

degradation and increased computation time of multi-

target detection and tracking algorithms in complex 

environments due to identity information switching, 

tracking drift, etc., and adaptively adjusted the frame 

cancellation rate through Kalman filter residual feedback. 

The results showed that on the MOT16 dataset, the 

execution time was improved by 61.03%, 60.05%, and 

48.31% compared to YOLOv5, YOLOv7, and the multi-

target detection and tracking model with frame 

cancellation, respectively [10]. W. Cao et al. proposed a 

multi-target tracking framework based on convolutional 
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neural networks (CNNs) and graph neural networks to 

address challenges such as occlusion and appearance 

similarity in sports scenes. By jointly modeling detection, 

appearance, and motion features, parallel dual branch 

decoders were used to fuse features and CNNs were used 

to capture spatiotemporal correlations. The findings 

revealed that the framework outperformed other state-of-

the-art methods on the SportsMOT dataset [11]. V. 

Premanand and D. Kumar used the Kuhn Munkres 

algorithm with Pearson similarity center to efficiently 

detect and track multiple objects in complex environments 

and meet real-time application requirements. They 

combined it with singular value decomposition based on 

information gain to reduce the dimensionality of features 

and used an improved recurrent neural network for 

classification. The results demonstrated that the system 

could accurately track multiple targets, with a false 

positive rate (FPR) of 2.3% [12]. A. Gullapelly and B. G. 

Banik used an adaptive masked region CNN to detect 

targets in order to improve the performance of object 

detection and tracking in multi-target tracking. They 

extracted features through a 50-layer residual network, 

combined with adaptive feature channel selection and 

adaptive combined kernel correlation filters to achieve 

tracking. The results demonstrated that the proposed 

tracker outperformed other state-of-the-art trackers in 

addressing various challenges [13]. The core experimental 

information of each method is shown in Table 1. 

As shown in Table 1, there are two obvious research 

gaps in the existing methods: First, the adaptability to 

sports scenarios such as SportsMOT was insufficient. 

Most methods (such as references [6], [7], and [11]) have 

not been tested in this scenario. The mAP and MOTA of a 

few test methods ([9] and [12]) were both below 80%, 

making it difficult to cope with the dense occlusion and 

high-speed movement in sports scenarios. The second 

issue was the insufficient balance between "precision and 

speed". The FPS of high-precision methods (such as [9] 

and [12]) was generally lower than 7 frames per second. 

Although the FPS of lightweight methods ([13]) was 

relatively high, there was a significant decline in accuracy. 

In addition, in recent years, end-to-end multi-object 

tracking methods represented by FairMOT, TransTrack, 

TrackFormer, etc. significantly promoted the development 

of the field. In order to realize real-time automatic 

detection of abnormal events on highways, D. Xiao et al. 

used the FairMOT method based on video recognition to 

migrate the model originally used for human detection to 

vehicle abnormal behavior recognition. Parking was 

judged by analyzing changes in trajectory vector length, 

and retrograde travel was judged by combining the center 

dividing line vector. The results showed that this method 

could quickly and accurately detect illegal parking and 

retrograde events in real surveillance videos, which was 

better than mainstream algorithms such as 

YOLOv3/5+DeepSORT and JDE [14]. To improve the 

accuracy of automatic tracking of pig behavior in complex 

scenes, S. Tu et al. adopted an improved TransTrack 

method, introduced an improved complete intersection 

and union ratio matching strategy to eliminate overlapping 

detection, integrated behavioral category learning and 

optimized data association mechanisms. The results 

showed that on public and private pig data sets, the multi-

target tracking accuracy reached 92.4% and 91.5%, which 

was significantly better than Trackformer, JDE and other 

methods [15]. To overcome the low efficiency of key point 

sampling in TrackFormer due to the lack of a priori 

position information and inaccurate reference points, X. 

Liu et al. optimized deformable attention sampling in 

target detection and data association by introducing a 

priori position embedding and reference point dynamic 

update mechanisms. The results showed that on the 

MOT17 and MOT20 data sets, the performance of the 

optimized TrackFormer could reach or exceed the current 

state-of-the-art level [16]. To improve the tracking and 

positioning accuracy of UAVs for cows in complex farm 

environments, Y. Zhao et al. adopted an improved 

CenterTrack method, designed a feature enhancement 

module to deal with occlusion, combined distance-based 

greedy matching and a two-stage matching algorithm for 

lag areas, and introduced a positioning algorithm to assist 

in precise target positioning. The results showed that 

compared with the original CenterTrack, the multi-target 

tracking accuracy was increased by 5.5% and the 

positioning accuracy was increased by 4.3% [17]. 

 

Table 1: Summary of core experimental indicators for cited methods. 

Method name Datasets used Core architecture 
mAP 

(%) 

MOTA 

(%) 

IDF1 

(%) 

FPS (frames 

per second) 
Reference No. 

YOLOv8 (Original version) MOT17 
YOLOv8s (Backbone: CSPDarknet-

53) 
75.3 67.8 69.4 8.2 [6] 

DeepSORT (Original version) MOT17 
CNN (Feature Extraction) + 

Hungarian Algorithm 
72.1 65.2 66.8 10.5 [7] 

ByteTrack MOT17/MOT20 
YOLOv5s + Byte Association 

Strategy 
77.5 70.1 72.3 12.1 [8] 

Improved YOLOv7+DeepSORT SportsMOT 
YOLOv7 (with Deformable 

Convolution) + DeepSORT 
79.2 71.5 73.1 6.8 [9] 

YOLOv8+ByteTrack MOT20 
YOLOv8m + ByteTrack Association 

Module 
78.1 72.4 74.0 7.5 [10] 

SORT MOT17 Kalman Filter + Hungarian Algorithm 68.5 60.3 62.7 15.3 [11] 

Improved EfficientDet+DeepSORT SportsMOT EfficientDet-D3 + Attention Module 76.8 69.3 70.5 5.1 [12] 

YOLOv8n+IDeepSORT MOT17/SportsMOT 
YOLOv8n (Lightweight) + IMM 

Model 
73.6 68.9 70.2 14.3 [13] 
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In summary, existing research has improved the 

performance of multi-target detection by introducing 

attention mechanisms, optimizing network structures, 

improving loss functions, and enhancing tracking effects 

through fusion detection and tracking algorithms, 

optimizing matching mechanisms, etc. However, there is 

still room for improvement in dealing with complex 

scenarios such as rapid target movement and drastic 

changes in posture in sports. To this end, research is being 

conducted on the construction of IYOLOv8-MTD, which 

incorporates modules such as CBAM and DC, combined 

with IdeepSORT MTT, to enhance detection and tracking 

performance in complex motion scenes. 

3 Methods and materials 

3.1 Construction of multi-target detection 

model based on IYOLOv8 

In sports scenes, multiple targets often exhibit complex 

characteristics such as rapid movement, drastic changes in 

posture, and significant differences in scale, which puts 

higher demands on the performance of multi-target 

tracking models. Building high-precision multi-target 

detection models is the foundation for achieving multi-

target tracking [18]. To achieve accurate detection of 

multiple targets in sports, the IYOLOv8-MTD model was 

studied and constructed, as shown in Figure 1. 

In Figure 1, the main improvements of the model 

include the optimization of the attention mechanism: 

introducing a global context converter (GCT) to improve 

the CBAM structure, enhance the feature expression 

ability, and control the computational overhead at the 

same time; Multi-scale feature extraction: The LSK 

module is used to reconstruct the C2f module, and the 

dynamic receptive field is adopted to adapt to targets of 

different scales. Deformation adaptation enhancement: 

DC is introduced in the neck network to improve the 

modeling ability of target deformation; Loss function 

improvement: By combining IIOU and MPDIoU, the 

accuracy of bounding box regression is optimized to 

enhance the robustness of detection. CBAM enhances 

feature expression by introducing a dual attention 

mechanism of channel and spatial dimensions in CNNs, 

which can effectively improve the model's attention to key 

features, thereby improving recognition accuracy, and is 

easy to integrate into existing model architectures. With 

the addition of CBAM, the model increases its 

computational complexity and parameter count, while 

reducing its focus on low-level features [19-20]. 

Compared to other attention mechanisms, GCT, with its 

lower parameter count, improves model accuracy while 

maintaining its original computational efficiency. The 

improved CBAM structure is presented in Figure 2. 
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Figure 1: Multi-target detection model. 
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Figure 2: Improved CBAM structure. 
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Figure 3: Structure of LSK module. 

In Figure 2, GCT uses L2 norm for global context 

embedding, and after channel normalization, dynamically 

learns channel attention weights through gating functions. 

Afterwards, through spatial attention operations, the key 

spatial regions of the target in the image are focused, 

enhancing the model's attention to the spatial information 

of the target and improving its localization ability [21]. To 

enable the model to obtain more target information in the 

fast-moving multi-target scene of sports, the Large 

Selective Kernel (LSK) module is introduced to 

reconstruct the C2f module in the original YOLOv8 

(YOLOv8's official open-source repository is 

https://github.com/ultralytics/ultralytics). The LSK 

module processes input features through branches, and 

each branch uses convolution kernels of different scales 

for feature extraction, thereby obtaining multi-scale 

information. Then, using attention mechanism to calculate 

the importance weights of each branch, the network can 

dynamically selectively focus on the most relevant scale 

information. Finally, these weighted FMs are merged to 

form an output that integrates information from multiple 

scales [22]. Figure 3 displays the configuration of the LSK 

module. 

In Figure 3, the LSK model constructs a dynamic 

receptive field network through decoupled depthwise 

separable convolutions, where the kernel size 
ip  and 

dilation rate 
i  satisfy an increasing relationship as 

shown in equation (1). 

( )
1 1 1 1

1 1 1

; 1;

, 1

i i i i i

i i i i

p p R

R p R p R

  



− − −

−

 =  

= = − +





            (1) 

In equation (1), 
iR  is the receptive field of the i-th 

layer in the LSK module, and 
ip  is the kernel size of the 

i-th decoupled convolution branch, which is used to 

extract target features of different scales. 
i  is the dilation 

rate of the i-th convolution kernel, controlling the extent 

of receptive field expansion of the convolution. The initial 

dilation rate 
1 1 = , and the subsequent dilation rates 

increase sequentially (
1 2 N     , 3N = ) to 

achieve dynamic receptive field adjustment. According to 

the receptive field calculation method in equation (1), the 

LSK model can achieve adaptive feature extraction for 

targets of different scales. Afterwards, using spatial 

selection mechanism, channel level average pooling and 

max pooling are performed on multi-scale convolutional 

features to generate spatial attention FMs. After Sigmoid 

activation, a selection mask is obtained, which is finally 
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fused with input features element by element weighted 

fusion, as shown in equation (2) [23]. 

( )

,DS

1 1

Conv ( )

Sigmoid AvgPool( ) MaxPool( )

, 1

i i

i i i

N N

i i i
i i

B X

C B B

C C

Y X C

 
= =

=


= +


=    =


=

  (2) 

In equation (2), X  is the input feature map of LSK, 

,DSConvi
 is the i-th decoupled depthwise separable 

convolution operation, and 
iB  is the output feature map of 

the i-th convolution branch. 
iC  is the spatial attention 

weight map of the i-th branch, and 
i  is the weight 

coefficient of the i-th branch, which is used to balance the 

contributions of branches with different scales (learned 

adaptively by the network in experiments). C  is the final 

attention weight map after fusion, and Y  is the output 

feature map of the LSK module. The research embeds 

LSK into C2f before element concatenation operation to 

enhance the model's ability to detect small targets. The 

complexity of sports scenes is reflected in the high-speed 

movement of athletes and the posture changes caused by 

tactical movements. To enhance the robustness of the 

model to such deformations, this study proposes replacing 

the 3×3 standard convolution layers—used to refine the 

fused features—within each level of the feature fusion 

module in the neck network of YOLOv8, which is built 

based on the Feature Pyramid Network (FPN). The DC 

structure is shown in Figure 4. 

In Figure 4, DC introduces learnable offsets on the 

basis of standard convolution, enabling the convolution 

kernel to adaptively adjust the sampling position in the 

spatial dimension. The convolution process is shown in 

equation (3) [24]. 

( ) ( ) ( )
n

0 0

R

n n n

h

y h = x h +h +Δh w h


            (3) 

In equation (3), ( )0y h is the pixel value at position 
0h

on the output FM, R represents the range of the 

convolution kernel. 
nh  is the offset relative to the center 

point within the convolution kernel range, and x  is the 

input FM. 
nΔh  is the learnable offset used to adjust the 

position of the convolution kernel to adapt to the target 

deformation, w  is the convolution kernel weight, and n  

is the convolution kernel position index. Due to the fact 

that the sampling position obtained after introducing the 

offset is usually a non integer coordinate, it cannot directly 

correspond to the actual pixels in the image. Therefore, the 

study uses bilinear interpolation method to estimate the 

pixel value of this position, as shown in equation (4) [25]. 

( ) ( , ) ( ) max(0, | |) max(0, | |) ( )x x y y

a b

x h G h b x n l b h l b h x q=  = − −  − −                               (4) 

In equation (4), b represents the actual pixels on the 

FM,and ( , )G h b is the bilinear interpolation kernel. In 

response to the problem of poor performance of 

YOLOv8's original loss function when the aspect ratio of 

the predicted box is the same as that of the real box but 

there is a difference in size, the study first introduces the 

Inner Intersection over Union (IIOU), and calculates the 

Intersection over Union (IoU) 
imnerIoU  by setting an 

adjustable scale factor auxiliary bounding box. Different 

sizes of auxiliary bounding boxes are used for high and 

low IoU samples to accelerate bounding box regression, 

as shown in equation (5). 

Conv

Offset field

Offset

Variable convolution

Input FM Output FM

 

Figure 4: Structure of DC. 
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In equation (5), 
imnerIoU  is the inner Intersection over 

Union, which is used to measure the overlap degree 

between the auxiliary box and the ground truth box. 

( )1 2 3 4, , ,k k k k  is the auxiliary box, serving as an 

expanded/shrunk version of the prediction box, where 
1k  

and 
2k  are the left and right boundary coordinates, and 

3k  

and 
4k  are the upper and lower boundary coordinates. 

( )1 2 3 4, , ,gt gt gt gtk k k k  is the ground truth box of the target, 

with the same coordinate definition as the auxiliary box. 

inS  is the intersection area of the auxiliary box and the 

ground truth box, and 0inS =  if there is no overlap 

between the two boxes.   is an adjustment scale factor 

(set as 0.8[ ],1.2   in experiments) used to control the 

size of the auxiliary box. For samples with high IoU (e.g., 

IoU>0.7),  =0.8 is adopted (to shrink the auxiliary box 

and enhance localization accuracy), and for samples with 

low IoU (e.g., IoU<0.5),  =1.2 is adopted (to expand the 

auxiliary box and reduce missed detections) [26]. 
unS  is 

the union area of the auxiliary box and the ground truth 

box. W , H , and 
gtW are the width and height of the 

auxiliary box and the real box. While IIOU addresses the 

regression accuracy limitations of traditional IoU under 

varying object scales, it focuses solely on box overlap 

without accounting for positional shifts caused by rapid 

object movement in sports. To resolve this, we propose an 

enhanced IIOU called Multiple Part Detection Intersection 

over Union (MPDIoU), which incorporates a distance 

term into the loss function to more accurately measure box 

differences. The final loss function 
innerMPDIoU of the 

model is shown in equation (6) [27]. 
2 2

inner inner1 2

2 2
MPDIoU 1 IoU

d d

H W

+
= + −

+
          (6) 

In equation (6), the smaller the value of 
innerMPDIoU

, the closer the position and overlap degree between the 

prediction box and the ground truth box. 
1d  is the 

Euclidean distance between the top-left corner of the 

prediction box and the top-left corner of the ground truth 

box, and 
2d d is the Euclidean distance between the 

bottom-right corner of the prediction box and the bottom-

right corner of the ground truth box. H  and W  are the 

height and width of the input image ( H =800 pixels, W

=1440 pixels). The IoU in MPDIoU is replaced by IIOU, 

which not only covers the width and height information of 

the image, but also retains the advantage of auxiliary 

boxes. The pseudocode of the IYOLOv8-MTD model is 

shown in Table 2. 

The IYOLOv8-MTD model has a total parameter 

count of approximately 27.3M, representing a 1.4M 

increase (5.4% growth) compared to the baseline 

YOLOv8 (with 25.9M parameters). Among its modules, 

the ICBAM, LSK, and DC layers each contain 0.3M, 

0.8M, 0.3M parameters without any redundant 

parameters. The model's total FLOPs reach 28.6 GFLOPs, 

with the core detection backbone contributing 23.1 

GFLOPs, while the ICBAM, LSK, and CD modules 

contribute 0.8 GFLOPs, 3.2 GFLOPs, and 1.5 GFLOPs 

respectively. This computational capacity meets the 

processing requirements of mainstream edge computing 

devices. 

3.2 Construction of multi-target tracking 

model based on improved DeepSORT 

After building a multi-target detection model, to achieve 

continuous tracking of dynamic targets in sports scenes, 

further research is being conducted to construct a multi-

target tracking model based on improved DeepSORT. In 

the original DeepSORT algorithm, the detection part uses 

the Fast R-CNN method. Due to the relatively slow 

processing speed of this detection algorithm, it will exert 

a definite influence on the real-time efficiency of the entire 

tracking system in practical applications [28]. Therefore, 

the study will use an IYOLOv8-based multi-target 

detection model as the detector for DeepSORT. The multi-

target tracking process is shown in Figure 5. 

Table 2: IYOLOv8-MTD multi-target detection algorithm. 

Algorithm 1: IYOLOv8-MTD Multi-Target Detection Algorithm 

Input: Xin (Input image, resolution 1440×800), Wpretrain (Pre-trained weights on COCO), λ (Adjustment scale factor for IIOU, 0.8~1.2), Nepoch (Training epochs, 

300) 

Output: Bdet (Detected bounding boxes, format [x1,y1,x2,y2]), Sconf (Confidence scores of detections) 

1: Xpre ← Preprocess(Xin) // Random flip, scale adjustment, HSV augmentation, mosaic 

2: Initialize model with Wpretrain, set all layers trainable 

3: for epoch from 1 to Nepoch do 

4: Fback ← Backbone(Xpre) // CSPDarknet-53 extract base features 

5: FLSK ← LSK_Module(Fback) // Reconstruct C2f, Eq.(1)-(2) 

6: FDC ← DeformConv(FLSK) // Replace 3×3 conv in FPN neck, Eq.(3)-(4) 

7: FICBAM ← ICBAM_Module(FDC) // Improved CBAM with GCT, Fig.2 

8: Binit,Sinit ← Detection_Head(FICBAM) // Initial box & confidence prediction 

9: LMPDIoU ← MPDIoU_Loss(Binit, Bgt) // Eq.(5)-(6), Bgt: ground truth boxes 

10: Backpropagate LMPDIoU to update model weights 

11: end for 

12: Bnms ← NMS(Binit, Sinit, threshold=0.5) // Non-maximum suppression 

13: Bdet, Sconf ← Filter(Bnms,Sinit, conf_threshold=0.3) // Filter low-confidence detections 

14: Return Bdet, Sconf 
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Figure 5: Multi-target tracking process. 
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Figure 6: Kalman filter algorithm flow with IMM. 

From Figure 5, the main improvements of this model 

include motion model enhancement: the introduction of 

interactive multi-model (IMM) Kalman filter, fusion of 

uniform velocity and uniform acceleration models, 

improving state estimation accuracy; feature matching 

optimization: using a hybrid attention mechanism to fuse 

channel and spatial features to enhance appearance 

discriminability; detection head improvement: using a 

heat map detector to replace the traditional detection head 

to improve target positioning accuracy; trajectory 

management strategy: combining IoU and visual 

similarity for trajectory matching, and generating a new 

trajectory ID when the confidence level reaches the 

standard. Since the original DeepSORT algorithm 

employed a Kalman filter assuming uniform motion, it 

struggled to manage scenarios involving sudden 

acceleration and turning of targets during sports, often 

leading to tracking failures [29]. To address this issue, 

IMM is introduced to improve the accuracy of state 

estimation by integrating uniform velocity and uniform 

acceleration models. The Kalman filtering algorithm 

incorporating IMM is shown in Figure 6. 

As shown in Figure 6, the algorithm describes the 

dynamic characteristics of the target through multiple 

motion models and uses Markov transition probability 

matrix to control the switching between models. The 

motion state of the j th model at time k is shown in 

equation (7) [30]. 

, , 1 , 1

, ,

j k j j k j k

k j j k j k

− −= +

= +





u D u l

Q E u ν
                 (7) 

In equation (7), 
,j ku  is the state vector, 

 , , , , , ,
T

j k k k k k k kx y x y x y=u . ( ),k kx y  are the pixel 

coordinates of the target center in the image, and the 

coordinates use pixel coordinates. ( ),k kx y  and ( ),k kx y  

are the velocity and acceleration in the x/y directions, 

respectively. 
jD  represents the state transition matrix of 

the model, using two models: IMM (constant velocity 

(CV), constant acceleration (CA)). State transition matrix 

CVF  and 
CAF  as shown in equation (8). 



Improved Multi-Target Athlete Tracking in Sports Videos… Informatica 49 (2025) 409–428 417 

 

2

2

CV CA

1 0 Δ 0 0 0 1 0 Δ 0 Δ / 2 0

0 1 0 Δ 0 0 0 1 0 Δ 0 Δ / 2

0 0 1 0 0 0 0 0 1 0 Δ 0
,

0 0 0 1 0 0 0 0 0 1 0 Δ

0 0 0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 0 0 1

t t t

t t t

t

t

  
  
  
  

= =   
  
  
  

      

F F                              (8) 

 

In equation (8), Δt  is the time interval. 
, 1j k−l is the 

process noise. Among them, the process noise covariance 

of the CV model is 
2

CV blkdiag( , )v p v= M M M , 

4 3

3 2

Δ / 4 Δ / 2

Δ / 2 Δ
p

t t

t t

 
=  
 

M , 
2Δ Δ

Δ 1
v

t t

t

 
=  
 

M , and 

0.5v =  (standard deviation of velocity noise). The 

process noise covariance of the CA model is 

2

CA blkdiag( , , )a p v a= M M M M , 
2Δ Δ

Δ 1
a

t t

t

 
=  
 

M , 

and 0.2a =  (standard deviation of acceleration noise). 

kQ  is the observation vector, 
jE is the observation matrix 

of the model, and 
,j kν  is the observation noise. The 

observation noise covariance R  is set as a diagonal matrix 

based on the detection box coordinate error: 

( )2 2diag , ,0,0,0,0x y =R , where 2.0x y = = pixels 

(the standard deviation of the detection box center 

coordinate error obtained from experiments). The initial 

mixture probability 
0μ  is based on the prior of the motion 

scene, 
0 [0.6,0.4]=μ . The transition probability matrix 

0.85 0.15

0.20 0.80
m

 
=  
 

P , where the diagonal elements are the 

model retention probabilities (>0.8) and the off-diagonal 

elements are the switching probabilities (<0.2), which 

conforms to the smooth switching characteristics of 

athletes' motion states. The time interval 1t =  frame 

(determined by the video frame rate of 30fps, and the time 

difference between adjacent frames is fixed). When the 

target velocity change rate | 3.0kv   pixels/frame², the 

weight of the CA model is automatically increased 

(adjusted dynamically through the mixture probability); 

, , ,v a x y     and the transition probabilities are all 

determined by grid search on the validation set (the 

optimal values are as mentioned above, ensuring the 

tracking error is <5 pixels). The algorithm first initializes 

each model input using the previous state and transition 

probability 
ijP . The initial state 0 1

ˆ
j,k −F  of the model j is 

shown in equation (9). 

0 1 , 1 , 1

1

, 1

, 1

ˆ ˆ
r

j,k i k ij k

i

ij i k

ij k

jV






− − −

=

−

−









=

=



P

F F

                    (9) 

In equation (9), 
, 1ij k −

is the mixed probability and 

, 1
ˆ

i k −F is the individual state estimation result of the i th 

model at time 1k- . r  is the total number of motion models 

participating in the interaction. 
jV  is the normalization 

constant for the prediction model of j . Afterwards, the 

states of each model are updated through Kalman filtering, 

as shown in equation (10). 

, , , ,
ˆ[ˆ ]ˆ ˆ

j k j k j k k j j k

− −= + −K Q FEF F              (10) 

In equation (10), 
,

ˆ
j kF and 

,
ˆ

j k

−
F are the state estimation 

value and prior estimation value of the j th model after 

update at time k , respectively, and 
,j kK  is the Kalman 

gains. In terms of update mechanism, if the trajectory 

matches the detection template, the template will be 

updated. When there is no match, temporarily store 

trajectory information. For unmatched detection templates 

with confidence exceeding the threshold, refer to 

ByteTrack (v1.0 version) to generate new trajectory 

identifiers [31]. The confidence level 
,j kL is calculated by 

integrating IoU with the visual similarity matrix M , as 

shown in equation (11). 

( ), 1 IoUj kL M = −  +                  (11) 

In equation (11),  is the weight coefficient used to 

balance the proportion of IoU and visual similarity in the 

overall matching degree. Finally, based on equation (12), 

the results of each model are fused to obtain the final state 

estimate ˆ
kF . 

, ,

1

ˆ ˆ
r

k j k j k

j

L
=

=F F                         (12) 

In the feature extraction stage, in response to the fast 

movement characteristics of sports athletes, research is 

conducted on using mixed attention to extract the position 

information of the target at a certain moment. The mixed 

attention mechanism is shown in Figure 7. The hybrid 

attention module is inspired by the "lightweight attention" 

improvement idea in YOLOv8 (refer to its streamlining 

principles of attention modules in detection tasks). It does 

not directly use the ready-made modules of libraries such 

as MMDetection. It is a variant customized by this article 

for the characteristics of sports targets (many small 

targets, dynamic deformation). 
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Figure 7: Hybrid attention mechanism. 

In Figure 7, the target template is the detection result 

of the IYOLOv8 model, and the search area is expanded 

from the predicted trajectory points. Mixed attention 

consists of channel attention and position attention. 

Channel attention filters discriminative feature channels 

through a global feature perception mechanism, and 

enhances the model's ability to express complex semantic 

patterns through information exchange between channels. 

This enables the model to dynamically identify key 

features and reduce the computational burden on 

redundant features [32]. Channel attention models 

channels through FM transpose multiplication and 

softmax function, as shown in equation (13). 

softmax
T

ij

O J

J


 
=  

 
                    (13) 

In equation (13), 
ij represents the attention weight of 

the i th channel to the j th channel, O is the reshaped 

FM,and J is the spatial dimension product. Location 

attention dynamically recognizes discriminative spatial 

regions to allocate spatial weights to input features. On the 

one hand, this mechanism enhances the perception 

accuracy of target details through adaptive weight 

allocation, and on the other hand, it uses spatial contextual 

relationships to suppress the interference of redundant 

background noise [33]. The calculation of the positional 

attention weight matrix is shown in equation (14). 

softmaxn

T

m

Z I

I


 
=  

 
                   (14) 

In equation (14), 
ij represents the attention weight of 

the m th position to the n th position. Z  is the FM 

processed and reshaped by the convolutional layer, and I  

is the number of feature channels. The module maintains 

a fixed 256-channel input feature map (aligned with 

YOLOv8 backbone output). It consists of three 

components: a 2-layer channel attention branch, a 2-layer 

spatial attention branch, and a fusion layer. The channel 

attention branch comprises two 1×1 convolutions, with 

ReLU activation between them to produce a 256-channel 

channel weight map. The spatial attention branch 

combines a 3×3 depth convolution with a 1×1 

convolution, followed by global average pooling to 

compress spatial dimensions, ultimately generating a 1-

channel spatial weight map. In the fusion layer, the input 

features are first multiplied by the channel weights 

channel-wise, then by the spatial weights pixel-wise, 

resulting in a 256-channel feature map. The convolutional 

layer weights are initialized with He's normal distribution 

(mean 0, variance 2/ 
inC , where 

inC  is the number of 

input channels), and the bias is uniformly initialized to 0. 

The total parameter count is approximately 33k, with a 

single-frame (512×512 input) computation load of about 

4.2 million FLOPs, accounting for only 4.8% of 

YOLOv8's total computational load without increasing 

inference latency. In the detection head section, the study 

adopts a thermal map-based prediction module to replace 

the traditional object detection head. The heat map 

detection head works in parallel with the bounding box 

regression head as an auxiliary module - the heat map head 

outputs the heat map of the target center (for optimizing 

positioning accuracy), and the bounding box regression 

head is responsible for predicting the box coordinates. The 

losses of the two (heat map loss + IoU loss) are jointly 

backpropagated. The heat map detection head is 

composed of three layers of convolution, and the input is 

the 256-channel feature map output by backbone 

(resolution 64×64) : The first layer is a 3×3 convolution 

(256→128 channels, padding=1), the second layer is a 

3×3 convolution (128→64 channels, padding=1), and the 

third layer is a 1×1 convolution (64→1 channel). 

Eventually, a single-channel heat map is output, and each 

layer is activated by ReLU. The output resolution is 



Improved Multi-Target Athlete Tracking in Sports Videos… Informatica 49 (2025) 409–428 419 

 

consistent with the input feature map, which is 64×64 

(corresponding to a 1/8 scale of the input image's 

512×512, that is, each heat map pixel corresponds to an 

8×8 area of the original image). During the training 

process, a two-dimensional Gaussian distribution heatmap 

is generated with the target center as the peak, and the 

Gaussian function is shown in equation (15). 
2 2

2

( ) ( )
( , ) exp( )

2

h c h c

h

x x y y
G x y



− + −
= −        (15) 

In equation (15), ( ),h hx y  are the pixel coordinates of 

the heatmap, and ( ),c cx y  are the corresponding 

coordinates of the target center on the heatmap. 
h  is used 

to control the diffusion range of the Gaussian heatmap. For 

small targets (area < 32×32 pixels), 2 =  is adopted; for 

medium targets (32×32~96×96 pixels), 3 =  is adopted; 

for large targets (>96×96 pixels), 4 =  is adopted, 

ensuring that the peak of the heatmap focuses on the target 

center. The loss function 
heatL  adopts the improved Focal 

Loss, as shown in equation (16). 

heat (1 ) log( )t tL p p= − −                  (16) 

In equation (16), 0.25 =  (to balance positive and 

negative samples), 2 =  (to suppress easily separable 

samples), and 
tp  is the pixel value of the predicted 

heatmap and the Gaussian target heatmap. For the 

generation of bounding boxes, first, non-maximum 

suppression (NMS) is used to extract the heatmap peak 

(threshold 0.3), and the peak coordinate ( ),h hx y   is 

mapped back to the original image as 8 4,( 4)8h hx y + + ; 

then, combined with the target width and height predicted 

by the parallel branch, the bounding box 

/ 2, / 2,( / 2, 2)/x w y h x w y h− − + +  is generated to 

complete the conversion from the heatmap to the 

bounding box [34-35]. The pseudocode of the 

IDeepSORT-MTT model is shown in Table 3. 

In the feature extraction stage, the total parameter 

amount of the hybrid attention mechanism is about 33k, 

which is only 0.12% of the YOLOv8 backbone parameter 

amount; the calculation amount of a single frame 

(512×512 input, tracking module feature map size) is 

about 4.2 million FLOPs, accounting for only 4.8% of the 

total calculation amount of the YOLOv8 detection 

module, avoiding additional inference delays introduced 

by the tracking module. The total parameter amount of the 

heat map detector is about 128k (after weight sharing 

optimization, the original 3-layer convolution parameter 

amount is reduced from 147.5k to 128k), and the FLOPs 

of a single frame (64×64 input feature map) are about 

860,000, accounting for 3.2% of the total calculation 

amount of the tracking module. The number of tracking 

module parameters of IDeepSORT-MTT only increases 

by 161k (33k+128k), and the total FLOPs increment is 

less than 1 GFLOPs, ensuring the lightweight nature of the 

joint detection-tracking model on edge devices. 

4 Results 

4.1 Validation of multi-target detection 

model effectiveness 

To confirm the capability of IYOLOv8-MTD, this model 

was compared and tested with typical multi-target 

detection methods such as Faster Region-based 

Convolutional Neural Networks (Faster R-CNN), 

traditional YOLOv8, and the latest research methods 

(references [6] and [7]). The model training and inference 

used 1 NVIDIA GeForce RTX 2080Ti GPU. The CPU is 

Intel i5-10400F. During training, only NVIDIA GeForce 

RTX 2080Ti acceleration was utilized, while inference 

supports both this GPU and the mobile i5-7300HQ 

platform (though RTX 2080Ti was the primary 

benchmark for performance). All FPS measurements were 

taken on the NVIDIA GeForce RTX 2080Ti GPU, 

excluding standalone CPU inference rates (as CPU 

inference yields rates far below real-time requirements 

and has no practical value). The experiment utilized the 

SportsMOT dataset (240 video clips, approximately 

150,000 frames), divided into three subsets in a 8:1:1 ratio: 

192 clips (120,000 frames) for training, 24 clips (15,000 

frames) for validation, and 24 clips (15,000 frames) for 

testing. During partitioning, the study ensured equal 

representation of basketball, volleyball, and soccer 

scenarios across all subsets (1:1:1 ratio) to prevent 

scenario bias. 

All experiments were conducted in strict compliance 

with the official SportsMOT training/testing protocols, 

with dataset partitioning aligned with the protocol's 

recommended scenario distribution and sequence 

allocation rules. The test set was exclusively reserved for 

final performance evaluation, without participating in 

model training parameter adjustments or validation set 

metric optimization. All experimental data were computed 

on the SportsMOT official test set, with the evaluation 

process directly utilizing the standard evaluation script 

provided by SportsMOT. 

Table 3: IDeepSORT-MTT multi-target tracking algorithm. 

Algorithm 2: IDeepSORT-MTT Multi-Target Tracking Algorithm 

Input: Bdet, Sconf, Ptrans = [[0.85,0.15],[0.20,0.80]], α=0.7, ωinit=[0.6,0.4] 

Output: Ttrack  (Trajectories: [ID, ujk, Btrack, frame_idx]) 

1: Init, frame_idx = 1, M = {CV,CA},σv=0.5, σα=0.2 

2: while frameidx ≤ Total Frames do 

3:ujk = IMMPredict(M, T, Ptrans, ωinit)// Eq.(7)-(8) 

4:Fhybrid=Hybrid Attention(Bdet, Xin)// Eq.(13)-(14) 

5:Bheat=Heat map Detector (Fhybrid, σh)// Eq.(15)-(16) 

6:Lik=(1−α)⋅FeatureSimilarity(T, Fhybrid)+α⋅IoU(T.boxes, Bheat)// Eq.(11) 

7:MatchPairs=Hungarian Match (Lik, 0.4) 
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8:T=Update Traj (T, MatchPairs, Bheat, ujk)// Eq.(10) 

9:Unmatched=Bheat didx(MatchPairs) 

10:T=Add New Traj(T, Unmatched, Sconf ≥0.5)// Inituinit for new IDs 

11:T=Filter Inactive (T, maxi nactive=5) 

12: frame_idx += 1 

13: end while 

14:Ttrack=Format Traj(T) 

15: Return Ttrack 

 

Table 4: Experimental parameter information. 

Hardware and software facility Experimental parameter 

Device CPU Intel i5-10400F Batch size 8 

Device graphics card NVIDIA GeForce RTX 2080Ti Coefficient α 0.7 

Deep learning framework Pytorch 1.12.0 Initial learning rate 0.001 

Internal memory 16GB DDR4 Weight attenuation rate 0.0001 

Operating system Windows 10 Img size 1440×800 

Programming language Python 3.9.16 Epoch 300 

 

To accommodate the dynamic movement and varied 

postures in sports scenarios while preventing distortion 

caused by augmentation operations, the input 1440×800 

resolution images underwent four processing stages: First, 

random horizontal flipping was applied with a 50% 

probability. Next, scale adjustment between 0.8x to 1.2x 

maintained target proportions. Then, HSV color space 

parameters were randomized with ±15% brightness, ±20% 

saturation, and ±10% hue variations to adapt to lighting 

conditions across venues. Subsequently, mosaic 

enhancement technology combined four consecutive 

video frames to generate training samples, enhancing 

model robustness for small targets like distant athletes. 

Finally, random cropping ensured the output images retain 

the original 1440×800 resolution. The learning rate 

scheduling employed a "Warmup + Cosine Annealing" 

strategy, with an initial learning rate of 0.001. The first 10 

epochs constituted the Warmup phase, during which the 

learning rate increased linearly from 1e-5 to 0.001. From 

epoch 10 to 300, the Cosine Annealing phase applies, 

reducing the learning rate to 1e-5 using a cosine decay 

function. During training, the batch normalization layer 

dynamically calculated the mean and variance of features 

within the batch, with a momentum set to 0.9. In 

testing/inference phases, the mean and variance were 

fixed to those from the training set without parameter 

updates, ensuring stable results. In addition to the learning 

rate (0.001) and weight decay rate (0.0001) in Table 1, the 

additional hyperparameters were: momentum 0.9 

(accelerates convergence) and gradient clipping 

(maximum norm 2.0 to avoid gradient explosion). 

For IYOLOv8-MTD, the pre-trained model on the 

data set was used as the initial weight. However, because 

SportsMOT is a specific scene of sports, all parameters of 

all layers of the model were updated. For IDeepSORT-

MTT, its tracking module had no pre-training basis. The 

parameters were fully trained from random initialization 

and were linked to the detection output of IYOLOv8-

MTD.  

 

 

 

 

 

By jointly optimizing the detection loss and tracking loss, 

the collaborative adaptation of detection and tracking was 

achieved. To ensure reproducibility of experimental 

results, all stochastic processes utilized fixed seeds 

throughout the workflow: model initialization (including 

random weight initialization and random fine-tuning after 

pre-training), dataset partitioning (allocation of 

training/verification/testing sequences), and data 

augmentation (random flipping, cropping, and mosaic 

stitching with randomized parameters). A unified seed 

value of 42 was consistently applied across all stages to 

eliminate fluctuations caused by random factors. To 

enable deterministic mode based on the PyTorch 

framework, the study fixed the random number generators 

for both CPU and GPU using torch.manual_seed(42). 

Meanwhile, the study also set 

torch.backends.cudnn.deterministic = True and 

torch.backends.cudnn.benchmark = False to disable the 

automatic optimization selection of cuDNN. This ensured 

that the computational processes of each inference and 

training were completely consistent, allowing for accurate 

evaluation of result variance (in experiments, the index 

fluctuation of 10 repeated tests was ≤1.2%). 

The performance changes of various multi-target 

detection methods during training are shown in Figure 8. 

Figures 8 (a) and 8 (b) show the variation of accuracy and 

recall of each method with the number of training 

iterations, respectively. The Faster R-CNN backbone 

network employed ResNet-50 architecture, with pre-

trained weights from the ImageNet dataset. The RPN 

anchor boxes were configured in three scales 

(128×128,256×256,512×512) and three aspect ratios (1:1, 

1:2, 2:1). YOLOv8 utilized the YOLOv8s variant, using 

the official pre-trained weights from the COCO dataset. 

The training parameters (learning rate, batch size, 

optimizer) were identical to those of Faster R-CNN and 

IYOLOv8-MTD. 
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Figure 8: Performance changes of various multi-target 

detection methods in training. 
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Figure 9: Detection accuracy of each method in training. 

According to Figure 8 (a), as the number of training 

iterations increased, the accuracy of each method showed 

an upward trend and eventually stabilized. The accuracy 

of the research method improved the fastest, reaching the 

highest level at 300 epochs (95.01%), which was 

significantly higher than Faster R-CNN (81.57%) and 

traditional YOLOv8 (87.83%). This indicated that the 

introduction of CBAM, LSK module, and improved loss 

function significantly enhanced the recognition accuracy 

of IYOLOv8-MTD for targets. The accuracy rates of 

literature [6] and literature [7] were 94.36% and 92.60%, 

respectively, slightly lower than the research method. 

From Figure 8 (b), the recall rate of IYOLOv8-MTD 

started to lead in the early stages of training, and the 

advantage was more obvious at 300 epochs, which could 

more comprehensively detect targets in the dataset. The 

detection accuracy of each method during training is 

shown in Figure 9. Figures 9 (a) and 9 (b) show the 

mAP50 and mAP50-95 statistics for each method, 

respectively. 

According to Figure 9 (a), the mAP50 of IYOLOv8-

MTD reached 97.11%, which was superior to Faster R-

CNN (91.23%), traditional YOLOv8 (92.78%), literature 

[6] (95.82%), and literature [7] (94.34%), indicating that 

the improved model had significant advantages in 

conventional detection accuracy. From Figure 9 (b), 

within a stricter threshold range of 50% to 95% IoU, the 

mAP50-95 of IYOLOv8-MTD reached 92.19%, which 

was 10.52 percentage points higher than traditional 

YOLOv8 (81.67%) and also higher than literature [6] 

(87.44%) and literature [7] (84.75%), indicating that the 

model optimized the regression accuracy of bounding 

boxes, especially showing stronger robustness when 

dealing with targets of different scales and complex 

deformations. 
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To verify the performance advantages of the LSK 

module compared to standard SPPF and PANet, the study 

conducted a baseline test: the experiment kept the other 

architecture, training parameters and hardware platform of 

the IYOLOv8-MTD detection module consistent, only 

replaced the core components of the neck layer (LSK, 

SPPF, PANet respectively), and evaluated the detection 

accuracy and inference speed on the SportsMOT test set. 

The results are shown in Table 5. 

From Table 5, the mAP50–95 of the SK module was 

6.2 percentage points higher than SPPF and 4.4 percentage 

points higher than PANet, and the mAP50 was improved 

by 5.3 percentage points and 3.6 percentage points 

respectively. This was because LSK's long and short-term 

attention mechanism could effectively capture the long-

distance feature dependencies of targets in sports scenes 

(such as limb extension, cross-frame motion trajectory 

correlation), while SPPF only focused on local spatial 

feature extraction. Although PANet strengthened feature 

fusion, it limited ability to capture long-scale features; 

LSK's FPS (7.5) was lower than SPPF (8.1), but higher 

than PANet (6.5), and the parameter amount (30.2M) was 

between the two, which proved that LSK achieved a better 

balance in "accuracy-speed-parameter amount", avoiding 

the surge in calculations caused by multi-path feature 

fusion in PANet, while making up for the lack of accuracy 

of SPPF, and further verifying the contribution of the LSK 

module to IYOLOv8-MTD detection performance. 

To verify the effectiveness of various improvement 

methods, ablation experiments were conducted on 

IYOLOv8-MTD. All ablation experiments were 

conducted with 10 independent replicates. The 

performance differences between the improved models 

and the baseline model were compared using independent 

samples t-tests, with a significance level of α=0.05 

(p<0.05 indicated significant difference, p<0.001 

indicated highly significant difference). The outcomes are 

presented in Table 6. 

According to Table 6, the introduction of the ICBAM 

module alone improved accuracy by 2.34%, verifying the 

effectiveness of the GCT optimized attention mechanism 

for feature selection. The LSK module increased the recall 

rate by 3.11%, indicating that multi-scale dynamic 

receptive fields could enhance the ability to capture 

moving targets. The MPDIoU loss function was most 

prominent in optimizing positioning accuracy, with a 

3.75% improvement in mAP50-95. The module 

combination presented a synergistic effect, with 

ICBAM+LSK increasing mAP50 by 3.46%, while 

LSK+MPDIoU increasing mAP50-95 by 8.86%. After 

integrating all modules, Precision (95.04±0.32), mAP50 

(97.14±0.28), and mAP50-95 (92.22±0.41) improved by 

7.21%,4.36%, and 10.55% respectively compared to the 

baseline. All metrics showed t-values> 20 with p<0.001, 

while Time increased by only 2.82ms (11.05±0.35 vs 

8.23±0.21) with SD <0.4, demonstrating the systematic 

advantages of the improvement approach. 

The mAP50–95 metric was calculated by tracking 

specific sub-scenario sequences in the SportsMOT 

dataset, primarily featuring low-density target scenarios 

with minimal occlusion such as basketball training and 

volleyball passing. These sequences exhibited relatively 

regular target trajectories and fewer background 

distractions (e.g., spectator stands, billboards), which 

explained the higher performance metrics. However, in 

complex sequences with dense targets and prolonged 

occlusion (e.g., multi-player soccer matches, fast breaks in 

basketball), the metrics showed a decline. The specific 

differences were verified through sequence-by-sequence 

data analysis, as shown in Table 7. 

 

Table 5: Baseline experimental results of LSK vs. SPPF/PANet. 

Core Component mAP50–95 (%) mAP50 (%) FPS (frames per second) Parameter Count (M) 

SPPF (Standard) 76.3 88.5 8.1 28.6 

PANet (Standard) 78.1 90.2 6.5 32.1 

LSK (This Study) 82.5 93.8 7.5 30.2 

 

Table 6: Ablation experiment. 

Method YOLOv8 ICBAM LSK MPDIoU Precision/% Recall/% mAP50/% mAP50-95 Time/ms 

1 √ × × × 87.83±0.45 85.24±0.51 92.78±0.38 81.67±0.62 8.23±0.21 

2 √ √ × × 90.17±0.39 87.53±0.47 94.12±0.35 84.31±0.58 8.81±0.23 

3 √ × √ × 89.72±0.41 88.35±0.43 94.87±0.32 86.93±0.55 9.52±0.25 

4 √ × × √ 88.96±0.43 86.82±0.49 93.67±0.36 85.42±0.57 8.47±0.22 

5 √ √ √ × 93.28±0.35 90.83±0.40 96.24±0.31 89.78±0.51 10.14±0.28 

6 √ √ × √ 92.13±0.37 89.63±0.45 95.58±0.33 88.23±0.53 9.17±0.24 

7 √ √ × √ 92.88±0.36 91.25±0.42 96.68±0.29 90.53±0.48 10.32±0.29 

8 √ √ √ √ 95.04±0.32 92.43±0.39 97.14±0.28 92.22±0.41 11.05±0.35 

Table 7: Detection and tracking metrics of key sequences in the SportsMOT test set. 

Sequence type Sequence ID Scenario description Average number of targets mAP50–95 (%) MOTA (%) 

Basketball Bk-1 Basic training (single-player dribbling) 1 98.56 99.12 

Basketball Bk-5 3v3 confrontation (mild occlusion) 6 92.22 92.81 

Football Ft-2 11-a-side match (moderate occlusion) 22 78.63 75.49 

Football Ft-3 Corner kick offense/defense (heavy occlusion) 35 65.18 62.37 

Volleyball Vl-1 Single-player passing training 1 97.84 98.95 

Volleyball Vl-2 Two-player rally (transient occlusion) 2 90.35 89.76 
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Table 8. Performance comparison of the model on the MOT17 test set. 

Model mAP50（%） MOTA（%） IDF1（%） 

Faster R-CNN 68.21 59.50 62.11 

YOLOv8s 75.32 67.81 69.43 

IYOLOv8-MTD 78.65 72.34 74.72 

 

From Table 7, only the sequences with a small 

number of targets and a low degree of occlusion (such as 

Bk-1 and Vl-1) had indicators close to full marks, while 

the MAP50-95 and MOTA of the multi-person dense 

adversarial sequence (Ft-3) were both lower than 70%. In 

the football Ft-3 corner kick attack and defense sequence, 

more than 10 players overlapped densely (the target 

overlap rate exceeded 60%), and the model had missed 

detections (the number of missed detections in a single 

frame reached 3 to 5) and frequent switching of tracking 

ids, which directly led to the MAP50-95 of this sequence 

dropping to 65.18% and the MOTA dropping to 62.37%. 

In the backlit training sequence of basketball Bk-6, the 

luminance difference between the players' white jerseys 

and the strong background was less than 10%, resulting in 

insufficient feature extraction. The IOU of detecting 

bounding boxes and real boxes was lower than 0.5 many 

times, and the missed detection rate of targets within 10 

frames reached 12%. In the fast sprint sequence of football 

Ft-1, the instantaneous movement speed of the player 

exceeded 5m/s, the displacement of the target between 

frames exceeded the preset association threshold of the 

model, and the tracking module could not accurately 

match the targets of the previous and subsequent frames, 

resulting in the IDF1 of this sequence dropping from 

89.2% in the simple scene to 78.5%. 

To verify the generalization ability of the research 

method, in addition to the SportsMOT data set, 

experiments were also conducted on the internationally 

accepted MOT17 standard benchmark (including 7 

training sequences and 7 test sequences, covering typical 

pedestrian multi-target tracking scenarios). The 

experimental configuration was consistent with 

SportsMOT to ensure comparability. The results are 

shown in Table 8. 

From Table 8, the detection and tracking indicators of 

IYOLOv8-MTD on the MOT17 benchmark were better 

than those of Faster R-CNN and YOLOv8s baseline 

models, and the relative improvement (MOTA 

improvement of 4.5~12.8 percentage points) was 

consistent with the improvement trend on the SportsMOT 

data set, proving that this method was not only suitable for 

sports scenes, but also effective in general pedestrian 

tracking scenes, alleviating the problem of limited 

generalization. 

4.2 Validity verification of multi-target 

tracking model 

To verify the validity of IDeepSORT-MTT, the original 

DeepSORT, ByteTrack, and the latest multi-target 

tracking methods (literature [10] and [11]) were compared 

and tested with the research methods. The MOTA and 

IDF1 scores of each tracking method in 10 tests are shown 

in Figure 10. Figures 10 (a) and 10 (b) show the MOTA 

and IDF1 values for each tracking method, respectively. 

From Figure 10, the IDeepSORT-MTT model 

proposed in the study showed the best stability, with a 

MOTA of 92.81% (±0.37%; 95% CI [92.44%, 93.18%]) 

and IDF1 of 77.56% (±0.51%; 95% CI [77.05%, 

78.07%]). Its confidence interval range was the narrowest 

and did not overlap with the confidence intervals of other 

methods, indicating that its performance advantage was 

statistically significant. In contrast, the MOTA of the 

original DeepSORT fluctuated the most (67.91% ± 2.02%; 

95% CI [65.89%, 69.93%]), verifying its instability in 

practical applications.The Average Spatio Temporal 

Similarity of Associations (ASSA) and Higher Order 

Tracking Accuracy (HOTA) of each tracking method in 

10 tests are shown in Figure 11. Figures 11 (a) and 11 (b) 

show the ASSA and HOTA values for each tracking 

method, respectively. 
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Figure 10: MOTA and IDF1 values of each tracking 

method. 
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Figure 11: ASSA and HOTA values of each tracking 

method. 

From Figure 11, the mean HOTA value of the 

research method was 72.9%, with extremely low 

variability (standard deviation = 0.41%, 95% CI [72.49%, 

73.31%]), while the mean ASSA value of the literature 

[10] (56.4%) was slightly higher than this study (55.1%). 

This reflected the different focuses of ASSA and MOTA 

indicators. ASSA measured the spatiotemporal 

appearance similarity of successfully associated 

trajectories, and its higher value indicated that the 

literature [10] performed well in maintaining local 

consistency within the tracking segment. However, 

MOTA was a more comprehensive system-level indicator, 

and its value was determined by missed detections, false 

detections, and identity switching. Therefore, the higher 

ASSA but lower MOTA in literature [10] showed that 

although the correlation quality of this method was high, 

its underlying detection module produced more missed 

detections or false detections, or frequent identity loss 

after the target experienced severe occlusion. These 

system-level global errors were not captured by ASSA, 

but lowered MOTA. The confidence interval of HOTA in 

literature [10] (65.30% ± 0.67%; 95% CI [64.63%, 

65.97%]) was much lower than that of this study, and its 

standard deviation was higher, indicating that the 

comprehensive performance of this research method was 

not only better, but also more reliable. The HOTA 

confidence interval of the method in literature [11] was 

62.90% ± 1.17% (95% CI [61.73%, 64.07%]), which 

further highlighted the performance gap between it and the 

method of this study. 

The identity switches (IDs) and frames per second 

(FPS) of each tracking method in 10 tests are shown in 

Figure 12. Figures 12 (a) and 12 (b) show the IDs and FPS 

values of each tracking method, respectively. All model 

FPS measurements were conducted on a standardized 

GPU hardware platform to eliminate discrepancies caused 

by hardware variations. 

As shown in Figure 12 (a), the research method 

performed most stably in maintaining low identity 

switching, with an IDs mean of 3015 and a 95% 

confidence interval of [2993, 3037] (standard deviation 

=22), which was significantly better than and had a 

distribution range much smaller than that of ByteTrack 

(IDs mean =7038). 95% CI [6593, 7482]) and DeepSORT 

(IDs mean =8945, 95% CI [8375, 9516]). From Figure 12 

(b), the FPS of this method remained at 7.5 ± 0.48 (95% 

CI [7.02, 7.98]). For the inference speed of each method 

in CPU mode, the research method was 1.2 ± 0.15 FPS 

(95% CI [1.09, 1.31]), and that of reference [10] was 0.9 

± 0.17 FPS (95% CI [0.79, 1.01]). Reference [11] was 1.1 

± 0.19 FPS (95% CI [0.97, 1.23]). The research method, 

while ensuring high tracking accuracy, provided a stable 

processing speed that met the real-time requirements. To 

verify the effectiveness of various improvement methods, 

ablation experiments were conducted on IDeepSORT-

MTT, and the outcomes are presented in Table 9. 
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Figure 12: IDs and FPS values of each tracking method. 
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Table 9: Ablation experiment. 

Method DeepSORT IMM 
Mixed 

attention 

Heat map 

detector 
MOTA/% IDF1/% ASSA/% HOTA/% IDs FPS 

1 √ × × × 67.9±2.1 53.3±2.5 45.2±1.8 55.8±2.0 8945±320 8.5±0.2 

2 √ √ × × 75.3±1.8 58.6±2.2 48.3±1.6 58.5±1.7 7210±280 8.0±0.2 

3 √ × √ × 78.2±1.6 60.1±2.0 50.1±1.5 60.3±1.6 6542±250 7.8±0.2 

4 √ × × √ 85.7±1.2 68.9±1.8 52.6±1.4 65.7±1.5 4536±210 7.5±0.2 

5 √ √ √ × 83.4±1.4 66.3±1.9 51.4±1.5 63.2±1.6 5017±230 7.3±0.2 

6 √ √ × √ 84.6±1.3 67.5±1.7 53.2±1.3 64.5±1.4 4829±220 7.2±0.2 

7 √ √ × √ 88.5±0.9 72.4±1.2 54.3±1.0 68.8±1.2 3872±180 7.4±0.2 

8 √ √ √ √ 92.8±0.6 77.6±0.8 55.1±0.7 72.9±0.9 3015±120 7.5±0.2 

 

According to Table 9, each improved module 

significantly enhanced the performance of IDeepSORT-

MTT. The baseline model had a MOTA of 67.9%, 

IDF153.3%, and IDs as high as 8945. After introducing 

IMM, MOTA increased by 7.4% and IDs decreased by 

20.5%. Mixed attention (Method 3) increased MOTA by 

80.5% and ASSA by 17.3%. The heat map detector 

(Method 4) further optimized the positioning accuracy, 

achieving a HOTA of 58.5%. The combination of modules 

presented a synergistic effect, with IMM and mixed 

attention (Method 5) achieving a MOTA breakthrough of 

85% and IDF1 approaching 70%. The complete model 

(Method 8) achieved an MOTA of 92.8±0.6 after all 

improvements, representing a 24.9% improvement over 

the baseline (t=32.15, p<0.001) with a mere 0.6 SD 

(compared to the baseline's 2.1 SD), demonstrating 

significantly superior tracking accuracy and stability. The 

IDF1 score reached 77.6±0.8, showing a 24.3% 

improvement (t=28.97, p<0.001), while the number of 

identity switches (3015±120) decreased by 66.3% 

(t=45.89, p<0.001). Maintaining a stable FPS of 7.5±0.2 

(SD=0.2) that met real-time requirements (>7 fps) with 

minimal fluctuations, the model was well-suited for real-

time analysis in sports competitions. 

The study selected two types of high-incidence 

scenarios for ID switching to verify the effectiveness of 

the ID switching optimization effect. In the football Ft-2 

sequence (11-player match, moderate occlusion), the 

baseline DeepSORT was used when players cross running 

(such as when two players overlapped instantly during a 

midfield pass), On average, there were 3 to 4 ID switches 

every 50 frames. For instance, after the bodies of Player A 

(initial ID=5) and Player B (initial ID=8) overlapped, the 

model mistakenly recognized Player A as the new target 

(ID=12), and the original ID could not be restored in 

subsequent frames. IDeepSORT-MTT retained the 

historical features of the target (such as jersey numbers 

and movement trajectory trends) through the hybrid 

attention module. After overlapping, only 0 to 1 ID 

switching occurred, and the original ID could be restored 

within 3 frames without any misallocation of new ids. In 

the basketball Bk-5 sequence (3v3 confrontation, light 

occlusion), when a player broke through with the ball and 

a defender closely interfered (with an occlusion area of 

approximately 30%), DeepSORT experienced two ID 

switches every 30 frames, resulting in a broken tracking 

trajectory. The improved model predicted the 

breakthrough direction of players through the IMM 

motion model, and combined the heat map detection head 

to locate the core area of the target (such as the head). 

There were only 0 ID switches throughout the process, and 

the tracking trajectory was continuous and complete. The 

comparison results of the number of sequential ID 

switches between the baseline and the improved model in 

the SportsMOT test set are shown in Table 10. 

As shown in Table 10, in unobstructed single-person 

scenarios (Bk-1, Vl-1), neither model performed ID 

switching. However, in obstructed multi-person scenarios 

(Bk-5, Ft-2, Ft-3, Vl-2), IDeepSORT-MTT achieved 

74.1% to 83.3% fewer ID switches than DeepSORT. The 

optimization effect improved with denser occlusion (e.g., 

Ft-3), directly demonstrating the suppression effect of the 

improved module (hybrid attention and IMM model) on 

ID switching. 

To verify the potential of model edge deployment, the 

study used the structured pruning to optimize the C2f 

module of IYOLOv8-MTD (pruning 1/3 of the redundant 

branches) and the hybrid attention of IDeepSORT-MTT 

(removing 1 layer of low-contribution space branches). 

The parameter amount was reduced from 27.3M+33k to 

18.5M+22k (a reduction of 32.2%+33.3%), and the 

FLOPs were reduced from 27.3M+33k to 18.5M+22k (a 

reduction of 32.2%+33.3%). 28.6GFLOPs+4.2 million 

dropped to 16.2GFLOPs+2.8 million (a decrease of 

43.4%+33.3%). The SportsMOT test set mAP50 only 

dropped by 1.27% and MOTA by 1.18%. Based on INT8 

quantification calibration on 1000 frames of the 

SportsMOT validation set, the model memory footprint 

was reduced from 856MB to 428MB, and the FPS on the 

Jetson Nano was increased from 5-7 to 8-10. The pruned 

and quantified model was exported to ONNX format. 

After TensorRT 8.6 operator fusion and memory 

optimization, the inference delay on Jetson Xavier NX 

was reduced from 125ms/frame to 55-60ms, the FPS 

reached 15-18, and the MOTA was maintained above 

92.0%, meeting the needs of real-time sports analysis on 

edge devices. 
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Table 10: Comparison of ID switching frequency per sequence between baseline and improved models on the 

SportsMOT test set. 

Sequence type Sequence ID Scenario description 
Average number of 

targets 

ID switches 

(DeepSORT) 

ID switches 

(IDeepSORT-MTT) 
Reduction rate 

Basketball Bk-1 
Basic training (single-player 

dribbling) 
1 0 0 / 

Basketball Bk-5 
3v3 confrontation (mild 
occlusion) 

6 12 2 83.3% 

Football Ft-2 
11-a-side match (moderate 

occlusion) 
22 35 7 80.0% 

Football Ft-3 
Corner kick offense/defense 
(heavy occlusion) 

35 58 15 74.1% 

Volleyball Vl-1 
Single-player passing 

training 
1 0 0 / 

Volleyball Vl-2 
Two-player rally (transient 
occlusion) 

2 5 1 80.0% 

 

5 Discussion 
The fusion IYOLOv8 and DeepSORT multi-target 

tracking model proposed in the study achieved high-

precision tracking performance in sports scenes, and its 

core advantage lied in the collaborative optimization of 

detection and tracking modules. In the detection phase, 

IYOLOv8-MTD improved its ability to capture fast-

moving and attitude changing targets by combining the 

CBAM attention mechanism, LSK module, and MPDIoU 

loss function. For example, the introduction of GCT 

optimized CBAM module enhanced key feature response 

while controlling computational overhead, resulting in a 

7.21 percentage point increase in model accuracy 

compared to traditional YOLOv8. Compared with 

relevant studies, the detection model proposed in this 

research achieved a mean Average Precision (mAP) of 

97.14%, which was higher than the 79.2% of Improved-

YOLOv7+DeepSORT and 78.1% of 

YOLOv8+ByteTrack [9-10]. By adjusting the dynamic 

receptive field, the LSK module effectively addressed the 

issue of scale differences among athletes, resulting in a 

recall rate of 92.43%. Particularly in handling small 

targets and scale variations, its performance outperformed 

models relying on fixed structures (e.g., YOLOv8n [13]) 

or lightweight designs (e.g., Improved-EfficientDet [12]). 

In the tracking phase, the performance breakthrough 

of the Improved DeepSORT-based Multi-Target Tracking 

Model (IDeepSORT-MTT) mainly relied on the 

application of Interactive Multiple Model (IMM) Kalman 

filtering and the hybrid attention mechanism. Both the 

Multiple Object Tracking Accuracy (MOTA, 92.81%) and 

Identity F1 (IDF1, 77.56%) of this research outperformed 

all methods listed in the table. For example, the MOTA 

was 27.6 percentage points higher than that of the original 

DeepSORT (65.2%, [7]), and it had higher accuracy than 

the real-time-oriented Simple Online and Realtime 

Tracking (SORT, [11]) with a MOTA of 60.3%. 

The reasons for the performance improvement can be 

attributed to the following: 

1. By fusing CV and CA motion models, the IMM 

effectively copes with non-linear motions commonly seen 

in sports scenarios (such as sudden turns, sudden stops, 

and accelerations), overcoming the estimation bias of 

traditional constant-velocity Kalman filtering ([11]) or 

single motion models. 

2. Through the weighted fusion of channel and spatial 

features, the hybrid attention mechanism enhances the 

discriminability of appearance features—this is 

particularly crucial in scenarios where athletes have 

similar appearances and frequent occlusions. As a result, 

the IDF1 index (77.56%) significantly outperforms 

methods that only rely on motion or simple appearance 

features (e.g., 72.3% of ByteTrack [8]), and the number of 

identity switches (IDs) is reduced by 65.3% compared to 

the original DeepSORT. 

In terms of real-time performance, the Frames Per 

Second (FPS) achieved in this research (7.1-8.0) reaches a 

practical level while ensuring high accuracy. Although it 

is lower than the extremely lightweight 

YOLOv8n+DeepSORT (14.3 FPS), it outperforms other 

high-performance methods that also pursue accuracy (e.g., 

6.8 FPS of Improved-YOLOv7+DeepSORT and 5.1 FPS 

of Improved-EfficientDet), achieving a good balance 

between precision and speed. 

The generalization ability of current research on 

diverse motion scenarios still needs to be verified. 

Although the heat map detector improved the positioning 

accuracy, it is prone to center positioning deviation when 

the targets overlap densely. Although the FPS model (7.1-

8.0) met real-time requirements, there is still room for 

optimization compared to the lightweight design (8.0-8.9) 

in literature [11]. Future research can construct a universal 

dataset across different types of movements and introduce 

generative adversarial networks to simulate extreme 

posture samples. Transformer architecture and 

multimodal fusion (such as skeleton keypoint 

information) can be further explored to enhance tracking 

robustness in occluded scenes. In addition, edge 

computing adaptation versions can be developed based on 

model pruning and quantification technology to promote 

deployment and application in portable training devices. 

The research provides new ideas for multi-target tracking 

in dynamic scenarios through modular collaborative 

optimization, and its technical framework can be further 

expanded to fields such as autonomous driving and 

security monitoring. 

6 Conclusion 
The IYOLOv8-MTD constructed in the study, combined 

with improved CBAM attention mechanism, LSK 
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module, and MPDIoU loss function, improved the 

detection accuracy of the model for fast moving, attitude 

changing, and multi-scale targets. Its mAP50 reached 

97.14% and mAP50-95 reached 92.22%, which was 

superior to traditional YOLOv8 and related advanced 

methods. The introduction of IMM, hybrid attention 

mechanism, and heatmap detector in the IDeepSORT-

MTT effectively enhanced the robustness of dynamic 

motion state estimation and feature matching, while 

reducing identity switching and maintaining real-time 

performance. The research verified the collaborative 

effectiveness of various improvement modules, providing 

reliable technical solutions for athlete trajectory analysis, 

tactical review, and physical fitness evaluation in sports 

scenarios, and also providing reference for multi-target 

tracking research in complex dynamic scenarios. 
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