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This paper introduces a hybrid IBBB-STGNN framework for dynamic tracking and optimization of power 

distribution paths. The model integrates Improved Big Bang–Big Crunch (IBBB) optimization with a 

Spatiotemporal Graph Neural Network (STGNN) to achieve fast, scalable, and accurate reconfiguration 

decisions. Evaluated on IEEE 33-bus, IEEE 69-bus, and a 123-node synthetic network, the model 

demonstrated substantial performance gains. Compared to a baseline STGNN, power loss reduction 

improved from 72% to 85%, average decision latency decreased from 1.92 s to 0.74 s, and scalability 

increased from 85% to 97% across varying network sizes. These results highlight the suitability of IBBB-

STGNN for real-time deployment in distribution networks. 

Povzetek:  

 

1 Introduction 

The distribution network forms the final link between 

high-voltage transmission systems and end users, and 

plays a crucial role in ensuring stability, reliability, and 

efficiency of electricity delivery. It consists of a 

complicated network of components such as feeders, 

transformers, distribution lines, and circuit breakers that 

function together to provide a steady power flow under 

changing load circumstances [3]. 

The typical distribution system begins at a substation, 

where voltage is stepped down [4]. Power is then delivered 

to customers through primary and secondary distribution 

lines and transformers [5]. Depending on service design, 

networks may be radial, looped, or meshed, with 

performance influenced by factors such as distance, 

conductor size, and load distribution [6]. 

The trend of power transmission within the distribution 

system is also posing new challenges as more electricity is 

needed to be consumed. Population growth, urbanization, 

industrialization, and the use of technological devices all 

contribute to an increasing and varied load [7]. The 

network load may include seasonal changes, overtime, and 

crises, which can all cause network downtimes or degraded 

quality of services [8]. Maintaining a stable power supply 

line under these conditions necessitates not just careful 

planning and infrastructure investment but also operational 

flexibility for responding to unexpected changes in need or 

supply [9].Environmental conditions such as extreme 

weather and natural disasters can severely compromise the 

stability of the distribution paths, as well as the utilization 

of old facilities [10]. Routine maintenance, system 

updates, and adequate techniques of locating faults are 

inevitable as far as ensuring the soundness of the power 

supply path is concerned [11]. The distribution network 

has mainly been aimed at ensuring a safe, reliable, and 

efficient supply of power to the point of consumption [12]. 

The major distribution network has challenges of 

inefficient routing and failure to adapt to changes in real-

time demand in its power-supply line. Current methods, 

including Support Vector Machines (SVM) and Artificial 

Neural Networks (ANN), are less comprehensively 

supportive in spatiotemporal relations. It is recommended 

to overcome these limitations using an IBBB-STGNN. 

This hybrid model combines IBBB optimization with 

STGNN to effectively learn network topology and time-

based demand patterns, resulting in more efficient and 

adaptable power routing. The contribution section is as 

follows: 

 To represent various and dynamic power distribution 

scenarios, a synthetic yet realistic dataset was constructed 
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by combining voltage, power losses, resistance, load 

kinds, and switching events. 

 To ensure consistent scaling and enhanced data quality for 

efficient training of spatiotemporal and optimization 

modules, missing values were imputed, and Min-Max 

normalization was used. 

 Temporal features like lag values, rolling statistics, load 

gradients, power factor, and PCA-based dimensionality 

reduction improve model input for spatiotemporal learning 

problems. 

 The IBBB-STGNN is used to intelligently learn network 

structure and switching pathways for real-time power 

routing. 

The research is structured as follows: It begins by 

emphasizing the need for intelligent power distribution 

systems in modern networks. The next section discusses 

how to create a synthetic dataset. The following section 

explains data preprocessing techniques such as missing 

value imputation and Min-Max normalization. Feature 

extraction strategies, such as PCA for dimensionality 

reduction and the suggested IBBB-STGNN model, which 

combines STGN and BBB optimization, are presented for 

real-time power routing. Finally, the experimental findings 

and conclusions are presented. 

The novelty of this work lies not only in the combination 

of IBBB and STGNN but in demonstrating their 

synergistic suitability for power distribution optimization. 

IBBB provides fast global exploration of parameter space, 

while STGNN captures spatiotemporal dependencies in 

grid dynamics. Together, they achieve real-time 

reconfiguration capabilities not attained by either method 

alone or by existing metaheuristic–GNN combinations 

reported in literature. 

Research objectives and questions: 

This study is guided by the following research questions: 

1. How can spatiotemporal graph learning be 

leveraged to capture the dynamic load and topology 

variations in power distribution networks? 

2. Can the Improved Big Bang–Big Crunch (IBBB) 

algorithm enhance STGNN training convergence and 

adaptability for real-time path reconfiguration? 

3. How does the proposed IBBB-STGNN compare 

against existing optimization and control-oriented 

methods in terms of power loss reduction, response 

latency, and scalability? 

The novelty of this work lies in integrating a physics-

inspired global optimization method (IBBB) with data-

driven spatiotemporal graph learning. This combination 

enables accurate, low-latency switching optimization in 

large-scale distribution networks, a synergy not fully 

explored in prior literature. 

2  Related work 

An Optimal Energy Management (OEM) that uses Deep 

Neural Networks as substitute systems to optimize Deep 

Reinforcement Learning (DRL) in a bi-level OEM for 

multi-Microgrids (MGs) linked to the Distribution 

Network (DN) was suggested in [13]. To reduce 

calculation time, the method made probabilistic 

predictions about power flow. Simulation findings 

demonstrated that the suggested technique decreased 

computing effort by 89.23% as compared to the 

Differential Evolution approach. 

A real-time monitoring, day-ahead control, and production 

sequencing-based predictive energy exchange platform 

based on blockchain was introduced in [14]. The model 

utilized data mining methods for time-series analysis, 

leading to enhanced sustainable resource management. 

Two novel approaches for detecting electrical disturbances 

in low-voltage networks were presented in [15]. The initial 

model employed the Fourier transform to categorize 

complex voltage signals via a multilayered neural network, 

thereby lowering computational costs and training time. 

The second approach extracted and reduced 

dimensionality using the short-time Fourier transform and 

a convolutional neural network (CNN). The 

methodologies were contrasted with simulated data and 

empirical findings. Both methods provided excellent 

findings for classification. 

It computed historical network loss using cleaned data 

from consumer power meters and transformer gateway 

meters. Machine learning techniques were utilized in [16] 

to assess the loss and forecast potential distribution 

network losses. Random Forest features were used to 

investigate the relationships between power network loss, 

electrical parameters, and atmospheric conditions. It 

combined the Selective Particle Swarm Optimization 

(SPSO) with the Extra Trees Classifier to enhance dynamic 

distribution network reconfiguration [17]. The technique 

was able to reduce power wastage and enhance the 

reliability of energy delivery. The simulation results by 

means of the IEEE 33-bus distribution test system indicate 

a 78% and 48% decrease in active and reactive power loss. 

The use of parallel computing to reduce execution time 

while maintaining accurate load forecasting models for 

electricity was examined in [18]. The method employed a 

machine learning model, execution speed, and scalability. 

It validated the approach with actual energy consumption 

data from distribution transformers in the electrical 

system. An approach to the optimal power flow (OPF) in 

DN with renewable energy and storage devices using deep 

reinforcement learning (DRL) was introduced in [19]. The 

OPF was a stochastic nonlinear programming problem, 

whereas the multi-period decision problem was a Markov 

decision process (MDP). Neural networks collect 

operational knowledge from past data and make online 

choices based on real-time DN conditions. 
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The restricted Markov decision process was used to 

implement a safe DRL method to quantify the optimum 

distribution network (OODN) [20]. The algorithm 

minimized discrete and continuous actions that maximized 

a stochastic policy. The simulations in the modified IEEE-

34 and IEEE-123 node systems proved the technology to 

be more realistic for application in the real world. A real-

time Volt-Var control (VVC) strategy for active 

distribution networks with fluctuating renewable energy 

resources by a two-stage DRL-based VVC strategy was 

proposed in [21]. The first stage would use on-load tap 

converters and capacitor banks on an hourly basis, and the 

second stage could continuously manage the reactive 

power of photovoltaic. A multi-agent deep deterministic 

policy gradient algorithm was used to address the real-time 

VVC problem.  

The distribution network’s reactive power optimization 

using a graph attention network-based method was 

introduced in [22]. It was based on data-driven properties, 

including a self-loop or a max-pooling layer, to model the 

complex process corresponding to the association between 

graphs and reactive strategies of the power. The approach 

performed better than current machine learning techniques 

in the quality of the solution and resistance to load 

conditions. 

2.1 Research gap 

Traditional approaches, such as the DRL-based OPF [19] 

and the GAT-based reactive power optimization [22], 

provide improvements but have limitations. The DRL-

OPF approach has slow convergence and reduced 

scalability in dynamic, large-scale networks, whereas the 

GAT-based method lacks temporal modeling, limiting its 

capability to adapt to real-time topological changes. The 

proposed IBBB-STGNN solves these problems by 

integrating spatiotemporal graph learning and global 

optimization. It captures the distribution network’s 

evolving spatial dependencies and temporal fluctuations 

and employs the Big Bang-Big Crunch algorithm to 

achieve faster convergence and global optimum 

performance. This leads to more accurate, efficient, and 

adaptable power supply channel optimization, allowing for 

real-time decision-making and boosting resilience in 

complex distribution systems. 

 

 

2.2 Relation to advanced control-oriented 

methods 

In addition to machine learning and optimization 

approaches for distribution networks, a large body of 

research in control theory has focused on regulating 

complex nonlinear and dynamical systems. Representative 

strategies include adaptive fuzzy control for fixed-time 

synchronization of fractional-order chaotic systems, 

output-feedback control for uncertain chaotic systems with 

input nonlinearities, robust neural adaptive control for 

multivariable nonlinear dynamics, adaptive backstepping 

methods for uncertain single-input–single-output systems, 

nonlinear optimal control for gas compressor–induction 

motor systems, and adaptive backstepping for flexible 

robotic manipulators. These methods have been widely 

applied in domains such as robotics, process control, and 

nonlinear oscillatory systems. 

The common feature of such control frameworks is the 

development of rigorous stability guarantees and adaptive 

mechanisms for handling uncertainties. However, they are 

often tailored to deterministic system models and require 

accurate mathematical representations of system 

dynamics. By contrast, power distribution networks 

operate as large-scale, data-rich, spatiotemporal systems 

where topology changes, stochastic load variations, and 

switching events are not easily modeled with explicit 

equations. 

The novelty of the proposed IBBB-STGNN lies in 

bridging this gap. While sharing the adaptive spirit of 

fuzzy and neural adaptive control, our approach leverages 

spatiotemporal graph neural networks to directly capture 

evolving network states and load dynamics from data, and 

integrates the IBBB metaheuristic to perform global 

optimization of switching configurations. This 

combination provides real-time adaptability comparable to 

advanced control schemes, but without requiring explicit 

parametric models. Moreover, unlike backstepping or 

fuzzy methods that scale poorly to networks with hundreds 

of nodes, the proposed approach demonstrates scalability 

to larger distribution topologies with low decision latency. 

Therefore, IBBB-STGNN can be viewed as a 

complementary paradigm: it generalizes the adaptability of 

classical control methods to data-driven, topology-aware, 

and large-scale power distribution systems. There are 

several studies highlighting hybrid optimization and AI-

driven control in dynamic systems. For example, Kaluža 

et al. (2010) presented a hybrid intelligent system for real-

time optimization in dynamic environments, while Karba 

et al. [Informatica, 1999] compared genetic algorithms and 

gradient-based methods for control optimization. More 

recently, Gjoreski et al. (2016) explored continuous real-

time monitoring and prediction in dynamic settings. These 

works align with the present study’s emphasis on 

combining optimization with adaptive learning, though 

none have applied such methods to spatiotemporal graph 

learning in power distribution networks. 

Table 1: Summary of related works in distribution 

network optimization 

Work Method Dataset Type Performance 

Metrics 
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[13] 

DRL-

OPF 

Deep RL for 

OPF 

IEEE-30 bus Loss reduction 68% 

[19] 

DRL-

based 

OPF 

DRL IEEE-118 bus Voltage deviation 

0.05 pu 

[22] 

GAT-

RPO 

GAT for reactive 

power 

optimization 

IEEE-33 bus Loss reduction 79% 

This 

work 

IBBB-STGNN IEEE-33, 

IEEE-69, 

synthetic 123-

node 

Loss reduction 

85%, latency 0.74 s, 

scalability 97% 

 

3  Methodology 

Modern power distribution networks require flexible, 

intelligent systems to handle dynamic load variations and 

complicated topologies. A synthetic yet realistic dataset is 

created using factors such as voltage, power flow, 

resistance, load kinds, and switching events. To guarantee 

quality and consistency, data is preprocessed using missing 

value imputation and Min-Max normalization. Feature 

extraction using PCA simplifies data and identifies key 

patterns for learning. The proposed IBBB-STGNN model 

combines to provide intelligent, real-time power routing 

and topology-aware decision-making. Figure 1 shows the 

overall flow for the power supply path of the distribution 

network. 

3.1 Dataset 

The experimental setup is based on the IEEE 33-bus and 

IEEE 69-bus standard distribution test systems, extended 

to a 123-node synthetic network derived from a Kaggle 

dataset. The synthetic dataset was constructed to reflect 

realistic operating conditions by incorporating stochastic 

load variations, voltage fluctuations, and switching events 

modeled on utility reports. Using IEEE standard systems 

ensures comparability with prior research, while the 

extended 123-node network demonstrates robustness and 

scalability in larger grid configurations. 

 

 

Figure 1: Overall suggested flow for the power supply 

path of the distribution network 

The Dynamic Power Distribution Network Dataset 

provides a realistic spatiotemporal simulation of electrical 

distribution networks, enabling real-time power flow 

optimization and tracking. It comprises 3456 time-series 

entries collected at 5-minute intervals over 48 nodes, 

which include voltage, active/reactive power, power loss, 

resistance, and power factor. Switch statuses, breaker 

events, and load types are some of the system behavior 

aspects. Rolling averages, delayed power values, load 

gradients, and principal components are indications of 

engineered characteristics that help with advanced 

analysis. The dataset retains network architecture, records 

dynamic reconfigurations, and assigns optimization labels 

to path selection and switching techniques, allowing grid 

monitoring and intelligent decision-making. 

The dataset used in this study is synthetic, constructed to 

emulate realistic load and switching conditions. It 

incorporates residential, commercial, and industrial 

demand patterns with daily and seasonal variations, as well 

as fault-like events and measurement noise. Using 

synthetic data allows controlled testing of reconfiguration 

under diverse scenarios, which is difficult with real 

SCADA data due to privacy and accessibility restrictions. 

The main limitation is that synthetic datasets may not fully 

capture rare disturbances or locality-specific behaviors. To 

mitigate this, the dataset was statistically compared with 

IEEE benchmark load traces, and future work will extend 

evaluation to real-world datasets as they become available. 

The distribution network topology used in this study is 

based on the IEEE-33 bus test system, which consists of 

33 nodes and 32 radial feeders with multiple branching 

paths. This topology is widely adopted as a benchmark in 

distribution network reconfiguration studies, making it 

suitable for evaluating optimization strategies 

Source: 

https://www.kaggle.com/datasets/ziya07/dynamic-power-

distribution-network-dataset/data 

 

https://www.kaggle.com/datasets/ziya07/dynamic-power-distribution-network-dataset/data
https://www.kaggle.com/datasets/ziya07/dynamic-power-distribution-network-dataset/data
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3.1.1 Dataset realism, validation and generalization 

tests 

Although the dataset employed in this study is synthetic, it 

was constructed to reflect realistic operating conditions by 

incorporating residential, commercial, and industrial load 

patterns, switching events, noise perturbations, and fault-

like disturbances. To validate its realism, statistical 

indicators such as mean/variance, autocorrelation, and loss 

distributions were compared with benchmark IEEE traces, 

showing close agreement.  

To demonstrate robustness, IBBB-STGNN was also 

evaluated on multiple network sizes and load scenarios, 

including IEEE-33 and IEEE-69 bus test systems and a 

larger 123-node synthetic network, under base, peak, and 

contingency conditions. Results confirmed that the model 

consistently maintained strong power loss reduction and 

low decision latency as the network size increased. 

Table 2: Validation and generalization results of IBBB-

STGNN 

Test Case Power Loss 

Reduction 

(%) 

Avg. 

Decision 

Latency 

(s) 

Voltage 

Stability 

(%) 

IEEE-33 (base 

load) 

83 0.72 95 

IEEE-69 (peak 

load) 

84 0.81 94 

123-node 

(contingency) 

85 0.88 96 

 

These results indicate that, while synthetic, the dataset 

reproduces realistic dynamics and that the proposed 

framework generalizes effectively across varying 

topologies and operating regimes. 

3.2 Data preprocessing 

Data preparation for the power supply path comprises 

removing missing values to ensure data integrity and 

consistency. After dealing with missing entries, Min-Max 

normalization scales numerical features to a uniform 

range, improving model accuracy and optimizing power 

flow analysis. 

To ensure reproducibility, preprocessing steps and 

parameters are summarized in Table 3. 

 

 

 

Table 3: Preprocessing steps and parameters used in 

dataset preparation 

Step Parameter Value 

Normalization Method Z-score 

normalization 

PCA # components retained 50 (97% variance 

preserved) 

Temporal 

window 

Rolling size 15 minutes 

Lag features Time lags 3 

Features Voltage, load, switching 

state, power loss 

12 total 

 

3.2.1 Handling missing values 

Missing values in the Dynamic Power Distribution 

Network Dataset are carefully managed to ensure data 

completeness and reliability. Electrical parameters, system 

behavior indicators, and designed characteristics are 

assigned values that are consistent with the surrounding 

data patterns. After imputation, such derived properties as 

load gradients, as well as lagged values, are recomputed to 

keep temporal and geographic accuracy, ensuring that the 

data are still valuable to power flow optimization, grid 

monitoring, and smart decision-making. 

3.2.2 Min-max normalization 

The power supply path of the distribution network often 

requires normalization procedures to maintain consistent 

and reliable performance under varying input conditions. 

This approach rescales the voltage, current, or other 

operating aspects to a particular range, usually 0 − 1 ∨

−11. The procedure utilized for this rescaling is in 

equation (1): 

 𝑤′ =
𝑤𝑗−𝑤𝑚𝑖𝑛

𝑤𝑚𝑎𝑥−𝑤𝑚𝑖𝑛
     

   (1) 

Where 𝑤𝑗  represents the input value and 𝑤𝑚𝑖𝑛, 𝑤𝑚𝑎𝑥  

represent the minimum and maximum values of the 

feature, respectively. The power loss across nodes is 

depicted in Figure 2, with values probably adjusted with 

Min-Max normalization.  
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Figure 2: Power loss across nodes 

3.3 Feature extraction using PCA 

PCA identifies significant elements from the primary 

distribution network's power supply channel data, 

decreasing dimensionality and duplication while revealing 

prominent patterns for enhanced evaluation. Let 𝑊 be the 

collection of inputs, with each column representing a 

sequence of 𝑛-dimensional inputs. Additionally, every 

function in the set of values has an average of zero 

(𝐹(𝑊) = 0). An initial data matrix typically has 𝑚 

samples and 𝑛 variables, as illustrated below in equation 

(2). 

𝑊 = [𝑤1, 𝑤2, …… ,𝑤𝑚]𝑆 = (

𝑤11 ⋯ 𝑤1𝑛

⋮ ⋱ ⋮
𝑤𝑚1 ⋯ 𝑤𝑚𝑛

) 

    (2) 

The PCA transforms meteorological variables and 

performance factors into a new event space while 

preserving as much data as possible from the initial data. 

The directions of highest variance in the input data sets are 

identified and projected to a new subspace with equal or 

lower dimensions than the original. To move 𝑊 to a new 

space 𝑆, apply an orthonormal transformation 𝑌, as shown 

below in equation (3). 

𝑆 = 𝑌𝑊      

    (3) 

The 𝑆-matrix of scores is made up of orthonormal vectors 

produced from a linear combination of 𝑊-matrix 

components, representing the relationship between 

samples. The 𝑆 Covariance Matrix is expressed in equation 

(4). 

𝐷𝑆 = 𝑌𝐷𝑊𝑌𝑆     

    (4) 

Where 𝐷𝑊 is the covariance matrix for 𝑊. The weight 

matrix 𝑌 could be calculated using the eigenvalue equation 

as follows in equation (5). 

(𝐷𝑆 − 𝜆𝐽)𝑓𝑗 = 0     

    (5) 

The PCA-based feature extraction for Node 1 was depicted 

in Figure 3, with time series for the top two components. 

It exposes essential patterns and variances in node activity, 

making it possible to reduce dimensionality, spot 

anomalies, and analyze power distribution data more 

efficiently. 

 

Figure 3: Feature extraction for node behavior in the 

power supply path 

3.4 IBBB-STGNN 

The Improved IBBB-STGNN is a hybrid deep learning 

approach designed to meet the demand for adaptive and 

intelligent power flow path optimization in current 

distribution networks. The suggested IBBB-STGNN 

framework integrates an STGNN, which represents the 

electrical grid as a dynamic network, with the IBBB 

optimization technique to fine-tune model parameters. The 

STGNN considers both spatial dependence and temporal 

evolution, whereas the IBBB improves convergence by 

simulating a gravitational collapse toward an ideal 

solution. The graph 𝐻 = (𝑈, 𝐹) provides substations 

(nodes 𝑈) and lines (edges 𝐹), and the temporal load at 

time 𝑠 is recorded as a feature matrix 𝑊𝑠. The approach 

modifies the node embeddings as follows in equation (6). 

 𝐺𝑠
𝑘+1 = 𝜎 (∑

1

√𝑐𝑗𝑐𝑖
𝑢𝑖𝜖ℵ(𝑢𝑗)

𝑋(𝑘)𝐺𝑠
(𝑘)(𝑢𝑖) + 𝑋𝑠

(𝑘)
𝐺𝑠−1

(𝑘)
(𝑢𝑗))

   (6) 

The embedding of the node 𝑢𝑗at layer 𝑘 and time 𝑠 

captures its state and characteristics. 

ℵ(𝑢𝑗) indicates the neighbors of the node 𝑢𝑗, while 

𝑋(𝑘)and 𝑋𝑠
(𝑘)

are adaptable weights, 𝜎 is an activation 

function, and 𝑐𝑗 , 𝑐𝑖 are the degrees of nodes 𝑢𝑗 and 𝑢𝑖. 

The IBBB optimizer iteratively improves parameters by 

simulating a cosmic collapse process in which particles 

(solutions) converge on a center of mass that represents the 

best path configuration. This integration enables IBBB-

STGNN to deliver highly accurate, real-time, and energy-

efficient power routing, ensuring resilience and 

adaptability in smart grid operations. Algorithm 1 shows 
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the working procedure for proposed IBBB-STGNN 

model. 

Algorithm 1: IBBB-STGNN Training Procedure 

Input: 

• Graph structure G=(V,E) 

• Feature matrix X∈RN×T×F 

• Population size P 

• Maximum iterations I 

• Learning rate α 

• Fitness function (e.g., MSE) 

Output: 

• Optimized STGNN parameters 

 

Procedure:  

1. Initialize population of candidate parameter sets 

{W1,W2,…,WP} randomly. 

2. For iteration = 1 to I: 

a. For each candidate Wi: 

i. Train STGNN with parameters Wi on input 

(X,G). 

ii. Evaluate fitness using the defined loss 

function. 

b. Compute center of mass (COM) of the 

population, weighted by inverse fitness. 

c. Generate new candidate population by 

perturbing COM with random noise scaled by α. 

d. Update the population by selecting the best-

performing candidates. 

3. Return the parameter set with the best fitness as 

the optimized STGNN model. 

3.4.1 STGNN is used for spatiotemporal power flow 

modelling 

The STGNN dynamically simulates spatial and temporal 

relationships in the distribution network, allowing for 

precise power supply path optimization and adaptive 

decision-making under changing load and topological 

conditions. GNNs were proposed as a generalization of 

graph analysis features of deep learning. GNN conceives 

an input feature representation of 𝐸 = (𝑊,𝐵) composed 

of 𝑊 representing an m-dimensional feature matrix 

(consisting of a feature vector in every row in a graph) and 

𝐵 being the adjacency matrix. This is to convert 𝐸 to a 

vector form that minimizes the loss function (𝐾)supplied 

by the downstream positions. The GNN system consists of 

convolutional layers and temporal layers. Such 

convolutional layers in the GNN adopt a neighborhood 

aggregate architecture, comprising many transformation 

layers to construct a discriminative vector description 

𝑔(𝑢) of each node (also called node embedding). The 

additional layer 𝑔𝑗(𝑢) modifies a node embedding 

𝑔𝑗−1(𝑢)(𝑔0(𝑢) is 𝑊(𝑢) from the initial feature matrix) by 

combining the embedded data of its neighbors in equation 

(7). 

𝑔𝑗(𝑢) ← 𝜂𝑐𝑜𝑛𝑐𝑎𝑡 (𝑔𝑗−1(𝑢), 𝑎𝑔𝑔 (𝑔𝑗−1(𝑢′): 𝑢′′ ∈

ℳ(𝑢)))   (7) 

Where 𝜂 is the non-linear activation function. The 

frequency domain describes the graph convolution of the 

filtering kernels ℎ with the input data 𝑤, as shown in 

equation 8. 

ℎ ∗ 𝑤 = 𝑈𝑔(𝛬)𝑉𝑆𝑤    

   (8) 

In this equation (8), 𝑉 represents the eigenvectors of a 

standardized network, and 𝑉𝑠𝑤 is its Fourier transform. 

The Laplacian matrix is 𝛥 = 𝐽 − 𝐶−
1

2𝐴𝐷−
1

2. Eigen 

decomposition of 𝛥 = 𝑉𝛬𝑉𝑆, where 𝛬 is a diagonal matrix 

of eigenvalues. Since computing 𝑉 is costly, Equation (8) 

could be approximated by Equation (9). 

ℎ ∗ 𝑤 ≈ ∑ ℎ𝑙𝑆𝑙(∆~)𝑤𝐿−1
𝑙=0     

   (9) 

Where 𝑆𝑙(𝑤) is a polynomial of order 𝑙, with coefficient 

∆~=
2

𝜆𝑚𝑎𝑥
𝛥 − 𝐽𝑀 , ℎ ∈ ℚ𝐿 . 𝑆𝑙(∆~)(𝑤) = 2𝑆𝑙−1(∆~)(𝑤) −

𝑆𝑙−2(∆~)(𝑤), 𝑆0(∆~) = 𝑤. The equation above indicates that 

filters are positioned up to 𝐿 hops from the node, with 𝐿 

being the kernel size for graph convolution. 

The temporal convolution layers have a one-dimensional 

kernel filter and sigmoid-gated linear unit to attain non-

linearity. The sigmoid function picks significant parts of 

the input to find complex structures and temporal changes 

within time sequences. Figure 4 represents a graph neural 

network with convolutional and temporal convolutional 

layers over a timeseries. It builds a learning model referred 

to as the spatiotemporal block that learns spatial dynamics 

as well as temporal dynamics. The spatiotemporal block 

approach extracts valuable temporal characteristics while 

simultaneously capturing relevant spatial features. Figure 

5 depicts the STGNN structure used for training and 

predicting models. 
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Figure 4: Spatiotemporal-GNN architecture 

The network consists of three blocks: two spatiotemporal 

(ST) blocks and an output layer. Each ST block consists of 

two temporal convolutional layers separated by a spatial 

layer. An output layer consists of two temporal layers in 

series before a fully connected output layer. The dimension 

of data used as input into the GNN model is 𝑄(𝐺𝑋𝑀𝑥𝐷), 

where 𝐺 is the number of previous data points in the 

timeseries, 𝑀 is the number of all systems, and 𝐷 is the 

number of input channels. The output of the model is 

ℚ𝐺×𝑀, where 𝑁 is the number of upcoming points to 

estimate. 

The STGNN architecture was designed with three blocks, 

each containing two temporal layers followed by one 

spatial layer. This structure balances expressiveness and 

efficiency. The temporal layers capture both short-term 

and long-term load variations, while embedding a spatial 

layer in each block ensures continuous incorporation of 

topological dependencies. Preliminary tests showed that 

deeper networks provided only marginal improvements at 

significantly higher latency, while shallower models failed 

to capture long-range temporal patterns. The chosen 

design therefore represents a practical trade-off between 

accuracy and computational efficiency, which is critical for 

real-time deployment. 

Model architecture: 

The IBBB-STGNN model consists of three sequential 

spatiotemporal blocks, each comprising two temporal 

convolution layers followed by one spatial graph 

convolution layer. ReLU activations are applied to all 

layers, with a dropout rate of 0.2 for regularization. The 

architecture details are summarized in Table 4. 

 

 

 

 

Table 4: Architecture Details of the IBBB-STGNN Model 

Layer Type Activation Dropout Notes 

Block 

1 

Temporal Conv (2) 

+ Spatial GCN (1) 

ReLU 0.2 64 

hidden 

units 

Block 

2 

Temporal Conv (2) 

+ Spatial GCN (1) 

ReLU 0.2 64 

hidden 

units 

Block 

3 

Temporal Conv (2) 

+ Spatial GCN (1) 

ReLU 0.2 32 

hidden 

units 

 

3.4.2 IBBB is used for network reconfiguration and 

switching optimization 

The IBBB algorithm enhances the power supply channel 

in a major distribution network by mimicking cosmic 

evolution principles. It combines global exploration (Big 

Bang) and concentrated convergence (Big Crunch) to 

dynamically rearrange network architecture, boosting 

power flow efficiency, decreasing losses, and improving 

reliability under changing load circumstances in real time. 

At first (when 𝑙 = 1), randomly created swarms are 

assigned randomly produced velocities, resulting in an 

arbitrary distribution function. 𝑉 is explained using the 

population set 𝑊𝑙 and the velocity set 𝑈𝑙. The velocity set 

is specified as 𝑈𝑙 = {𝑢⃗ 1
𝑙 , 𝑢⃗ 2

𝑙 , … . . , 𝑢⃗ 𝑗
𝑙 , … , 𝑢⃗ 𝑀

𝑙 }. 𝑉: 𝑊⃗⃗⃗ 𝑙=1 →

𝑈⃗⃗ 𝑙=1 is accepted on the enclosed set 𝑊⃗⃗⃗ 𝑙 of the real surface. 

In the 𝑙𝑡ℎ iteration, swarm 𝑤⃗⃗ 𝑗
𝑙 ∈ 𝑊⃗⃗⃗ 𝑙is one-to-one 

transferred to 𝑢𝑗
𝑙 ∈ 𝑈⃗⃗ 𝑙. Candidates 𝑤⃗⃗ 𝑗

𝑙 are assigned to their 

appropriate fitness value 𝑒𝑗
𝑙using an objective function 𝑒0. 

Big Crunch Phase (BCP) calculates the center of mass 

(𝐷⃗⃗ 𝑙(𝑊⃗⃗⃗ 𝑙)) based on 𝑤⃗⃗ 𝑗
𝑙 and 𝑒𝑗

𝑙, as shown in equation (10). 

𝐷⃗⃗ 𝑙(𝑊⃗⃗⃗ 𝑙) =

∑
𝑤⃗⃗⃗ 𝑗

𝑙

𝑒𝑗
𝑙

𝑀
𝑗=1

∑
1

𝑒𝑗
𝑙

𝑀
𝑗=1

     

   (10) 

An inelastic collision happens when all particles hit the 

center of mass. This center of mass has a speed in the 

preceding iteration (𝑈⃗⃗ 𝐷
𝑙 ), as shown in equation (11). 

𝑈⃗⃗ 𝐷
𝑙 =

∑
𝑢⃗⃗ 𝑗
𝑙

𝑒𝑗
𝑙

𝑀
𝑗=1

∑
1

𝑒𝑗
𝑙

𝑀
𝑗=1

     

   (11) 
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In equation (11), 𝑢⃗ 𝑗
𝑙 represents the velocity and 𝑒𝑗

𝑙 

represents the fitness value of the 𝑗𝑡ℎ candidate in the 𝑙𝑡ℎ 

iteration. After creating the center of mass and determining 

its velocity in the BCP, new swarms or candidates (𝑊⃗⃗⃗ 𝑛𝑒𝑤) 

are formed in the search space for the Big Bang Phase 

(BBP). BBP generates swarms depending on the center of 

mass and velocity in the 𝑙𝑡ℎ iteration. Equation (12) 

generates new swarms (𝑤⃗⃗ 𝑗
𝑛𝑒𝑤). 

𝑤⃗⃗ 𝑗
𝑛𝑒𝑤 = 𝐷⃗⃗ 𝑙 (𝑊⃗⃗⃗ 𝑙) + 𝑢⃗ 𝑗

𝑛𝑒𝑤    

    (12) 

Equation (13) is used to determine the new velocity (𝑢⃗ 𝑗
𝑛𝑒𝑤) 

of a new candidate (𝑤⃗⃗ 𝑗
𝑛𝑒𝑤), where ∀𝑗 = 1…𝑀. 

𝑢⃗ 𝑗
𝑛𝑒𝑤 = 𝑈⃗⃗ 𝐷

𝑙 . ℎ     

      

    (13) 

In equation (13), ℎ represents the adaptive gravity factor, 

which is represented in equation (14) as follows: 

ℎ = (
𝑒𝑗
𝑙−𝑒𝑚𝑖𝑛

𝑙

𝑒𝑎𝑣𝑔
)     

    (14) 

In (9), 𝑒𝑎𝑣𝑔 represents the mean of the fitness values 

recorded in 𝑒(𝑊⃗⃗⃗ 𝑙).  And 𝑒𝑎𝑣𝑔 is supplied in equation (15). 

𝑒𝑎𝑣𝑔 =
∑ 𝑒𝑗

𝑙𝑀
𝑗=1

𝑀
     

    (15) 

In equation (15), 𝑒𝑚𝑖𝑛
𝑙  represents the minimal value in the 

fitness function set 𝑒(𝑊⃗⃗⃗ 𝑙). It's important to highlight that 

the new candidates (𝑤⃗⃗ 𝑗
𝑛𝑒𝑤) are mapped to their respective 

velocities (𝑢⃗ 𝑗
𝑛𝑒𝑤). BBP is followed by BCP, which 

calculates 𝐷⃗⃗ 𝑙+1(𝑊⃗⃗⃗ 𝑙+1).  

The critical hyperparameters for training an STGNN using 

IBBB optimization are shown in Table 5. It covers 

clarifications and typical tuning ranges for model design, 

optimization, regularization, temporal-spatial settings, and 

evolutionary control parameters. 

Table 5: Hyperparameters for IBBB-STGNN 

Hyperparameter Typical Value / Range 

𝑒𝑝𝑜𝑐ℎ𝑠 50 – 300 

𝑙𝑒𝑎𝑟𝑛𝑖𝑛𝑔𝑟𝑎𝑡𝑒  0.001 – 0.01 

𝑜𝑝𝑡𝑖𝑚𝑖𝑧𝑒𝑟 Adam / RMSprop 

ℎ𝑖𝑑𝑑𝑒𝑛𝑢𝑛𝑖𝑡𝑠 32 – 256 

𝑑𝑟𝑜𝑝𝑜𝑢𝑡𝑟𝑎𝑡𝑒 0.1 – 0.5 

𝑝𝑜𝑝  10 – 50 

𝑎𝑙𝑝ℎ𝑎(𝛼) 0.05 – 0.2 

𝑓𝑖𝑡𝑛𝑒𝑠𝑠𝑓𝑛 MSE / MAE / Cross-

Entropy 

𝑡𝑒𝑚𝑝𝑜𝑟𝑎𝑙𝑤𝑖𝑛𝑑𝑜𝑤  3 – 12 

𝑠𝑝𝑎𝑡𝑖𝑎𝑙𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠 1 – 3 

𝑏𝑎𝑡𝑐ℎ  32 – 128 

𝑔𝑟𝑎𝑝ℎ  GCN / GAT / 

ChebNet 

𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛 ReLU / LeakyReLU / 

Tanh 

𝑤𝑒𝑖𝑔ℎ𝑡  [-1, 1] 

𝑐𝑒𝑛𝑡𝑒𝑟  Inverse fitness-

weighted mean 

𝑒𝑎𝑟𝑙𝑦  10 – 20 

 

Rationale for selecting IBBB 

The Improved Big Bang–Big Crunch (IBBB) algorithm 

was chosen in preference to other metaheuristics such as 

Particle Swarm Optimization (PSO), Genetic Algorithms 

(GA), and standard gradient-based optimizers (e.g., Adam) 

for several reasons. First, IBBB has a simple structure with 

very few control parameters, which reduces the need for 

extensive parameter tuning compared to GA or PSO. 

Second, the COM-based contraction phase of IBBB 

accelerates convergence toward promising regions while 

maintaining sufficient exploration in the expansion phase, 

making it well-suited for dynamic and high-dimensional 

problems. Third, unlike gradient-based optimizers such as 

Adam, which may be sensitive to local minima in non-

convex graph learning landscapes, IBBB provides a global 

search mechanism that enhances robustness. Finally, 

empirical tests in our experiments (see Section 4.2) 

showed that IBBB achieved lower decision latency and 

faster convergence than GA and PSO baselines, while 

scaling more efficiently to larger distribution networks. 

These properties make IBBB particularly suitable for 

optimizing STGNN parameters under real-time 

operational constraints. 

Justification for IBBB: 

The Improved Big Bang–Big Crunch (IBBB) algorithm 

was selected over other metaheuristics due to its rapid 

convergence and low computational complexity, which are 

particularly advantageous for real-time power system 

optimization. Unlike Particle Swarm Optimization (PSO) 

or Genetic Algorithms (GA), which require extensive 

population updates, IBBB reduces each iteration to a 

center-of-mass computation, thereby lowering runtime. 

Compared to gradient-based optimizers such as Adam, 

IBBB is less sensitive to initialization and local minima, 

making it better suited for non-convex loss landscapes in 

spatiotemporal graph learning. 
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Empirical comparison: 

Table 6: summarizes the ablation study comparing IBBB 

against alternative optimizers. 

Optimizer Power 

Loss 

Reduction 

(%) 

Decision 

Latency 

(s) 

Convergence 

Iterations 

GA 72 ± 0.8 2.15 50 

PSO 75 ± 0.6 1.92 45 

Adam 76 ± 0.5 1.20 40 

IBBB 85 ± 0.4 0.74 25 

 

This demonstrates that IBBB-STGNN consistently 

outperforms other optimizers in accuracy, latency, and 

convergence speed. 

3.5 Performance metrics 

To evaluate the effectiveness of the proposed framework, 

several performance metrics were defined and used 

consistently throughout the experiments. 

(a) Response Speed to Load Change (RSLC) 

This metric quantifies the average delay between a load 

variation event and the model’s stabilization response. It is 

calculated as: 

𝑅𝑆𝐿𝐶 =
1

𝑀
∑𝑡𝑗

𝑟𝑒𝑠 − 𝑡𝑗
𝑒𝑣𝑒𝑛𝑡

𝑀

𝑗=1

 

where tⱼᵉᵛᵉⁿᵗ is the time of the j-th load change event, tⱼʳᵉˢ is 

the time when the system stabilizes after that event, and M 

is the total number of events. 

(b) Dynamic Load Balance Score (DLBS) 

This measures the degree of load distribution balance 

across feeders during operation. It is defined as the 

complement of the normalized load variance: 

𝐷𝐿𝐵𝑆 = 1 −
(𝑉𝑎𝑟(𝐿))

(𝑀𝑎𝑥(𝑉𝑎𝑟(𝐿)))
 

where L is the vector of feeder loads. Higher values 

indicate better balance. 

(c) Voltage Violation Avoidance (VVA) 

This metric reflects the proportion of nodes that remain 

within the permissible voltage range [Vₘᵢₙ,Vₘₐₓ]: 

𝑉𝑉𝐴 =
1

𝑁
∑1(𝑉𝑚𝑖𝑛 ≤ 𝑉𝑖 ≤ 𝑉𝑚𝑎𝑥)

𝑁

𝑖=1

 

where Vᵢ is the voltage at node i, N is the total number of 

nodes, and 1(⋅) is the indicator function. 

(d) Power Loss Reduction (PLR) 

This indicates the percentage improvement in power loss 

relative to the baseline configuration:  

𝑃𝐿𝑅 =
𝐿𝑜𝑠𝑠𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒 − 𝐿𝑜𝑠𝑠𝑚𝑜𝑑𝑒𝑙

𝐿𝑜𝑠𝑠𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒

× 100% 

(e) Scalability Factor (SF) 

This metric evaluates the computational growth rate when 

scaling to larger networks. It is calculated as the 

normalized inverse of latency growth: 

𝑆𝐹 = 1 −
𝑇𝑙𝑎𝑟𝑔𝑒 − 𝑇𝑠𝑚𝑎𝑙𝑙

𝑇𝑠𝑚𝑎𝑙𝑙

 

where Tₛₘₐₗₗ and Tₗₐᵣgₑ denote average decision times for the 

smaller and larger test systems. 

4 Results and discussion 

Python is used to create and validate the proposed IBBB-

STGNN and baseline STGNN models for enhancing the 

power supply path of the distribution network. Both 

approaches are trained on the dynamic power distribution 

network dataset, and their performance is measured 

against key criteria such as power loss reduction, 

computational efficiency, load adaptability, and voltage 

stability. 

4.1 Experimental results 

The voltage drops and fluctuations occur over time at 

certain nodes in the distribution network. Voltage 

fluctuations reflect the grid's dynamic demand and supply 

situations, as shown in Figure 5. Consistent voltage 

decreases within an acceptable range indicate reliable 

power transmission; however, sudden deviations may 

indicate instability, overloading, or potential fault-prone 

locations. Monitoring these patterns helps identify weak 

points in the power supply chain and supports predictive 

maintenance as well as real-time corrective actions, 

resulting in a balanced and efficient functioning of the 

whole distribution network architecture. 
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Figure 5: Voltage drop monitoring along with the 

distribution path 

The temporal ON (1) or OFF (0) switch state of every node 

in the primary power distribution network is shown in 

Figure 6, with red representing ON and blue representing 

OFF. This time, visualization aids in identifying switching 

activity and trend/abnormalities within the operations of 

the supply chain. Frequent switching could indicate load 

balancing, fault isolation, or reconfiguration activities. 

Analyzing these patterns improves the discovery of 

unstable or essential portions, ensuring that the network 

runs efficiently, is reliable, and responds effectively to 

dynamic power demand and fault conditions across the 

distribution system. 

 

Figure 6: Switching activity analysis in the supply path 

network 

The mean load gradient (kW) at various nodes in the main 

power distribution network, with a focus on load variations 

along the supply channel, is shown in Figure 7. Nodes 

having higher positive gradients would represent more 

load, and the node having negative gradients would mean 

less load or reverse flow. The red hues imply higher load 

gradients, whereas the blue hues indicate lower or negative 

gradients. Consistent load over several nodes indicates a 

steady distribution, but sudden fluctuations could indicate 

supply constraints or demand spikes. 

 

Figure 7: Gradient distribution across the network, where 

red indicates higher positive gradients and blue indicates 

lower or negative gradients, consistent with the color bar. 

The power distribution network, with each node 

representing a substation or load point and connecting 

lines indicating electrical channels, is demonstrated in 

Figure 8. The integrated structure provides several routes 

for power, increasing dependability and lowering the 

chance of interruptions. The distributed topology 

facilitates balanced load sharing and rerouting during 

interruptions or maintenance, delivering consistent and 

robust power delivery across the network's operational 

region. 

 

Figure 8: Topology mapping of the distribution network 
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The suggested strategy improves performance in the 

distribution network's power supply channel when 

compared to STGNN, as depicted in Figure 9 and Table 7. 

Figure 10a shows that the proposed method improves load 

adaptability metrics significantly: response time to load 

change improves from 79% to 96%, reduced switching 

actions from 80% to 88%, recovery accuracy from 88% to 

97%, fault recovery time efficiency from 78% to 95%, and 

dynamic load balance score from 82% to 94%. Figure 10b 

shows improvements in power routing quality, with power 

loss reductions ranging from 72% to 85%, post-load spike 

loss recovery from 68% to 80%, balanced load distribution 

from 75% to 90%, optimal switch configurations from 

78% to 94%, and voltage violation avoidance from 90% to 

96%. These findings show that the suggested strategy 

outperforms the usual approach in real-time distribution 

network operations, providing more flexibility, 

dependability, and efficiency. 

Table 7: Performance metrics comparison for the 

proposed and standard techniques 

Load Adaptability (%) Power Routing Quality (%) 

Meric

s 

STG

NN 

IBBB-

STGN

N 

(Propo

sed) 

Metrics STG

NN 

IBBB-

STGN

N 

(Propo

sed) 

Respo

nse 

Speed 

to 

Load 

Chang

e 

79% 96% Power 

Loss 

Reductio

n 

72% 85% 

Reduc

ed 

Switc

hing 

Actio

ns 

80% 88% Post-

Load 

Spike 

Loss 

Recovery 

68% 80% 

Recov

ery 

Accur

acy 

88% 97% Balanced 

Load 

Distributi

on 

75% 90% 

Fault 

Recov

ery 

Time 

Efficie

ncy 

78% 95% Optimal 

Switch 

Configur

ations 

Found 

78% 94% 

Dyna

mic 

Load 

Balan

ce 

Score 

82% 94% Voltage 

Violation 

Avoidanc

e 

90% 96% 

 

Figure 9: Comparison of performance of IBBB-STGNN 

and STGNN in power distribution networks (a) load 

adaptability, (b) power routing quality 

The performance metrics for the distribution network's 

power supply path for the proposed model and STGNN, 

with a focus on voltage stability and computational 

efficiency, are shown in Figure 10 and Table 8. Figure 10a 

shows that average voltage stability improved from 85% 

to 96%, maximum voltage dip mitigation increased from 

82% to 94%, and undervoltage recovery speed improved 

from 80% to 95%. The Voltage Stability Index (VSI) 

initially reached 92% and then improved to 94%, while 

violation-free path consistency increased from 89% to 

96%. Figure 10b shows that computational efficiency has 

improved, with decision latency reduction from 84% to 

95%, memory optimization from 84% to 92%, and 

computation time efficiency from 80% to 93%. 

Furthermore, the scalability factor increased from 89% to 

97%, while the energy efficiency score increased from 

84% to 95%, suggesting both stable voltage control and 

optimal computing performance for dynamic power 

distribution. 

Table 8: Performance metrics comparison for the 

proposed and standard techniques 

Voltage Stability (%) Computational Efficiency (%) 

Metrics  

STGN

N 

IBBB-

STGNN 

[propos

ed] 

Metrics  

STGN

N 

IBBB-

STGNN 

[propos

ed] 

Avg. 

Voltage 

Stability 

85% 96% Decision 

Latency 

Reduction 

84% 95% 

Max 

Voltage 

Dip 

Mitigation 

82% 94% Memory 

Optimizat

ion 

84% 92% 

Undervolt

age 

80% 95% Computati

on Time 

Efficiency 

80% 93% 
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Recovery 

Speed 

VSI 92% 94% Scalabilit

y Factor 

89% 97% 

Violation-

Free Path 

Consisten

cy 

89% 96% Energy 

Efficiency 

Score 

84% 95% 

 

Figure 10: Comparison of performance of IBBB-STGNN 

and STGNN in power distribution networks (a) voltage 

stability, (b) computation efficiency 

 

Statistical validation: 

All experiments were repeated 10 times. Results are 

reported as averages with standard deviation (std) < 0.8%. 

Performance gains over the baseline STGNN were 

statistically significant (p < 0.05, two-tailed t-test). For 

example, power loss reduction averaged 85% ± 0.4% for 

IBBB-STGNN compared to 72% ± 0.6% for STGNN. 

Decision latency improvements (0.74 s vs. 1.92 s) also 

achieved statistical significance (p < 0.05). 

4.2 Expanded baseline comparison 

To provide stronger validation, the proposed IBBB-

STGNN was evaluated against additional state-of-the-art 

models referenced in the related works: a Deep 

Reinforcement Learning-based Optimal Power Flow 

approach (DRL-OPF) [19] and a Graph Attention 

Network-based Reactive Power Optimization method 

(GAT-RPO) [22]. A Genetic Algorithm (GA)-based 

reconfiguration strategy was also included as a 

representative evolutionary optimization method. 

Table 9 summarizes the comparative performance. The 

proposed IBBB-STGNN consistently outperformed all 

baselines across decision latency, power loss reduction, 

and scalability. Specifically, IBBB-STGNN achieved the 

lowest average decision time (0.74 s), higher power loss 

reduction (85%), and the highest scalability factor (97%). 

In contrast, DRL-OPF and GA-based methods exhibited 

longer decision times, while GAT-RPO improved spatial 

modeling but remained less effective in capturing temporal 

load dynamics. 

Table 9: Expanded baseline comparison of different 

approaches in power distribution optimization 

Method Decisio

n 

Latency 

(s) 

Power 

Loss 

Reductio

n (%) 

Scalabilit

y Factor 

(%) 

Memory 

Usage 

(relative

) 

GA-based 

Reconfiguratio

n 

2.15 72 82 100% 

baseline 

DRL-OPF [19] 1.92 78 85 115% 

GAT-RPO [22] 1.35 82 88 108% 

STGNN 

(baseline) 

1.20 72 89 100% 

IBBB-STGNN 

(proposed) 

0.74 85 97 85% 

 

These results confirm that, while DRL and GA offer 

adaptability and global exploration, they struggle with 

scalability and responsiveness. GAT-based methods 

provide strong spatial feature extraction but insufficient 

temporal modeling. By combining spatiotemporal graph 

learning with metaheuristic optimization, IBBB-STGNN 

provides both rapid convergence and robust scalability. 

4.3 Error analysis 

To assess robustness, we analyzed node-level prediction 

errors using Mean Absolute Error (MAE) and Root Mean 

Square Error (RMSE). Across all test cases, MAE 

averaged 0.012 pu, while RMSE was 0.021 pu. The highest 

error (0.04 pu) occurred under peak load conditions at 

Node 17 in the 123-node network, highlighting a stress-

point scenario. These findings indicate that although 

worst-case deviations exist, overall accuracy remains 

within acceptable operational limits. 

4.4 Discussion 

The power supply path of the distribution network begins 

at the substation, where high-voltage energy is stepped 

down and delivered through primary feeders. Within this 

context, research [13] suggested using Deep Neural 

Networks to replace DRL in bi-level energy optimization 

for multiple microgrids; its probabilistic method lacks 

real-time flexibility and spatial awareness. Similarly, 

investigation [17] used SPSO with Extra Trees for network 
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reconfiguration, although it fell short of capturing 

temporal fluctuations and complicated node interactions. 

STGNNs could have difficulty with scalability, dynamic 

topology changes, and real-time efficiency in big, 

complicated, and fast-growing power networks. The 

proposed IBBB-STGNN model addresses these issues by 

combining blockchain for safe, decentralized energy data 

sharing with a spatiotemporal graph neural network to 

represent both spatial and temporal dynamics. IBBB-

STGNN achieves a 96% response speed, 97% recovery 

accuracy, 85% power loss reduction, 90% load balancing, 

and 94% optimum switching. It provides 96% voltage 

stability, 95% low voltage recovery, and 96% violation-

free route consistency. It also reduces decision latency by 

95%, optimizes memory by 92%, and increases 

computation efficiency by 93%, scalability by 97%, and 

recovery time efficiency by 95%, making it a reliable and 

intelligent solution for distribution networks. 

The proposed IBBB-STGNN achieves consistent 

improvements over existing approaches. For instance, 

compared to the GAT-based reactive power optimization 

[22], our method improved power loss reduction by +7% 

(79% → 85%). Against DRL-based OPF [19], our 

approach achieved ~60% lower decision latency (1.92 s → 

0.74 s). Moreover, scalability improved by +12% 

compared to the baseline STGNN, maintaining accuracy 

across IEEE 33, 69, and 123-node networks. These results 

confirm that combining metaheuristic optimization with 

spatiotemporal graph learning provides a novel advantage 

in balancing accuracy, speed, and adaptability in real-time 

distribution network reconfiguration. 

The observed improvements of IBBB-STGNN also 

resonate with broader findings in optimization and AI 

literature. Prior Informatica works, such as hybrid 

intelligent control frameworks [Informatica, 2010] and 

optimization studies comparing evolutionary methods 

[Informatica, 1999], demonstrated the value of integrating 

global optimization with adaptive modeling. Our results 

extend this line of research by showing that IBBB, when 

paired with STGNNs, enables real-time scalability and 

robustness specifically within power distribution systems. 

4.5 Comparative analysis with existing 

methods 

To provide a broader evaluation, the proposed IBBB-

STGNN was compared with reinforcement learning and 

evolutionary optimization approaches commonly used in 

power distribution networks. The selected baselines 

include a Deep Reinforcement Learning-based Optimal 

Power Flow (DRL-OPF) method [19], a Graph Attention 

Network-based reactive power optimization (GAT-RPO) 

method [22], and a Genetic Algorithm (GA)-based 

reconfiguration strategy. Results are summarized in Table 

9. 

The results demonstrate that IBBB-STGNN achieves the 

best balance of decision latency, power loss reduction, and 

scalability. For real-time switching, IBBB-STGNN 

required an average of 0.74 seconds, compared to 1.92 

seconds for DRL-OPF and 2.15 seconds for GA. The 

power loss reduction achieved by IBBB-STGNN was 

85%, which is higher than GA (72%) and DRL-OPF 

(78%), and comparable to GAT-RPO (82%). Moreover, 

IBBB-STGNN achieved a scalability factor of 97% when 

tested on networks up to 123 nodes, outperforming both 

DRL and GA, which showed steep increases in 

computation time with network size. 

These results confirm that reinforcement learning 

methods, although adaptive, often require long training 

times and struggle with scalability in large-scale networks. 

Evolutionary algorithms such as GA provide good 

exploration capability but lack temporal modeling, which 

reduces their responsiveness to fast load variations. GAT-

RPO improves spatial modeling but does not fully 

integrate temporal dynamics. By contrast, IBBB-STGNN 

combines spatiotemporal learning with Big Bang–Big 

Crunch optimization, enabling faster convergence, 

stronger adaptability, and robust scalability in real-time 

operation. 

Table 9: Comparative results of different approaches in 

power distribution network optimization 

Method Decisi

on 

Latenc

y (s) 

Power 

Loss 

Reducti

on (%) 

Scalabil

ity 

Factor 

(%) 

Memor

y 

Usage 

(relativ

e) 

GA-based 

Reconfigurat

ion 

2.15 72 82 100% 

baselin

e 

DRL-OPF 

[19] 

1.92 78 85 115% 

GAT-RPO 

[22] 

1.35 82 88 108% 

STGNN 

(baseline) 

1.20 85 89 100% 

IBBB-

STGNN 

(proposed) 

0.74 90 97 85% 

 

4.6 Practical implementation aspects 

For deployment in real distribution control centers, two 

aspects are critical: response speed and interpretability of 

model decisions. 
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Real-time speed. The proposed IBBB-STGNN achieves an 

average decision latency of approximately 0.74 seconds 

for switching optimization on the 123-node test network, 

which is well within the operational time window of 

standard distribution management systems (typically 1–5 

seconds). The near-linear scaling observed across IEEE-

33, IEEE-69, and 123-node networks indicates that the 

method can be used in practice for real-time switching and 

reconfiguration tasks. 

Operator interpretability. Although deep learning models 

are often considered black-boxes, the proposed framework 

provides explainable outputs through multiple 

mechanisms. First, the spatiotemporal graph neural 

network learns node embeddings that can be visualized to 

highlight critical nodes and feeders influencing switching. 

Second, the IBBB optimization step produces explicit 

switching configurations, which can be presented as 

recommended actions (e.g., “open breaker X, close switch 

Y”). Third, post-hoc feature attribution methods such as 

attention weight analysis and load gradient sensitivity 

allow operators to verify why specific reconfigurations are 

proposed. These mechanisms ensure that model 

recommendations can be traced to measurable system 

states, thereby improving trust and practical usability. 

5  Limitations and future work 

Although IBBB-STGNN demonstrates strong scalability 

and accuracy, several limitations remain. First, validation 

is currently limited to synthetic and benchmark IEEE 

datasets; future work will extend testing to real-world 

SCADA and smart grid data. Second, while decision 

latency is suitable for real-time use, computational cost 

may increase for networks exceeding 500 nodes. Third, the 

current model does not incorporate renewable generation 

variability or distributed storage effects, which are critical 

in modern grids. Future research will focus on integrating 

these factors and exploring distributed optimization for 

even faster response. 

6  Conclusion 

The current electrical distribution systems require complex 

and adaptive systems that can dynamically monitor and 

optimize power flow paths in the face of varying load and 

topology conditions. The parameters used to generate the 

dataset include voltage, power, resistance, load kind, and 

switching points, and the data is preprocessed, such as 

applying missing value imputation and Min-Max 

normalization. Lag-based attributes, rolling statistics, 

power factor, and load gradients are performed through 

PCA in feature extraction. The IBBB-STGNN is designed 

as a combination of an IBBB optimization method with an 

STGNN to learn the network topology, as well as time-

varying loads, to perform optimally to route power. The 

results show that IBBB-STGNN improves when compared 

to standard STGNN, such as energy distribution with 97% 

recovery accuracy, 96% voltage violation avoidance, 85% 

power loss reduction, and 95% recovery time efficiency. 

Its 93% computation efficiency and 97% scalability factor 

confirm its effectiveness for real-time, secure, and 

adaptive network optimization. The deep learning 

approach for optimizing the power supply path has 

disadvantages, such as dependency on huge amounts of 

precise real-time data and difficulty adjusting to abrupt 

network changes. Future enhancements could involve 

faster edge computing integration, adaptive reinforcement 

learning for better control, and the combination of data-

driven and physics-based methods to improve reliability 

and flexibility. 
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