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This paper introduces a hybrid IBBB-STGNN framework for dynamic tracking and optimization of power
distribution paths. The model integrates Improved Big Bang—Big Crunch (IBBB) optimization with a
Spatiotemporal Graph Neural Network (STGNN) to achieve fast, scalable, and accurate reconfiguration
decisions. Evaluated on IEEE 33-bus, IEEE 69-bus, and a 123-node synthetic network, the model
demonstrated substantial performance gains. Compared to a baseline STGNN, power loss reduction
improved from 72% to 85%, average decision latency decreased from 1.92 s to 0.74 s, and scalability
increased from 85% to 97% across varying network sizes. These results highlight the suitability of IBBB-
STGNN for real-time deployment in distribution networks.

Povzetek:

1 Introduction

The distribution network forms the final link between
high-voltage transmission systems and end users, and
plays a crucial role in ensuring stability, reliability, and
efficiency of electricity delivery. It consists of a
complicated network of components such as feeders,
transformers, distribution lines, and circuit breakers that
function together to provide a steady power flow under
changing load circumstances [3].

The typical distribution system begins at a substation,
where voltage is stepped down [4]. Power is then delivered
to customers through primary and secondary distribution
lines and transformers [5]. Depending on service design,
networks may be radial, looped, or meshed, with
performance influenced by factors such as distance,
conductor size, and load distribution [6].

The trend of power transmission within the distribution
system is also posing new challenges as more electricity is
needed to be consumed. Population growth, urbanization,
industrialization, and the use of technological devices all
contribute to an increasing and varied load [7]. The
network load may include seasonal changes, overtime, and
crises, which can all cause network downtimes or degraded
quality of services [8]. Maintaining a stable power supply
line under these conditions necessitates not just careful

planning and infrastructure investment but also operational
flexibility for responding to unexpected changes in need or
supply [9].Environmental conditions such as extreme
weather and natural disasters can severely compromise the
stability of the distribution paths, as well as the utilization
of old facilities [10]. Routine maintenance, system
updates, and adequate techniques of locating faults are
inevitable as far as ensuring the soundness of the power
supply path is concerned [11]. The distribution network
has mainly been aimed at ensuring a safe, reliable, and
efficient supply of power to the point of consumption [12].
The major distribution network has challenges of
inefficient routing and failure to adapt to changes in real-
time demand in its power-supply line. Current methods,
including Support Vector Machines (SVM) and Artificial
Neural Networks (ANN), are less comprehensively
supportive in spatiotemporal relations. It is recommended
to overcome these limitations using an IBBB-STGNN.
This hybrid model combines IBBB optimization with
STGNN to effectively learn network topology and time-
based demand patterns, resulting in more efficient and
adaptable power routing. The contribution section is as
follows:

To represent various and dynamic power distribution
scenarios, a synthetic yet realistic dataset was constructed


mailto:gzxiatian@126.com
mailto:623442582@qq.com
mailto:majianwei2005@163.com
mailto:tsmdm@163.com

356  Informatica 49 (2025) 355-370

by combining voltage, power losses, resistance, load
kinds, and switching events.

To ensure consistent scaling and enhanced data quality for
efficient training of spatiotemporal and optimization
modules, missing values were imputed, and Min-Max
normalization was used.

Temporal features like lag values, rolling statistics, load
gradients, power factor, and PCA-based dimensionality
reduction improve model input for spatiotemporal learning
problems.

The IBBB-STGNN is used to intelligently learn network
structure and switching pathways for real-time power
routing.

The research is structured as follows: It begins by
emphasizing the need for intelligent power distribution
systems in modern networks. The next section discusses
how to create a synthetic dataset. The following section
explains data preprocessing techniques such as missing
value imputation and Min-Max normalization. Feature
extraction strategies, such as PCA for dimensionality
reduction and the suggested IBBB-STGNN model, which
combines STGN and BBB optimization, are presented for
real-time power routing. Finally, the experimental findings
and conclusions are presented.

The novelty of this work lies not only in the combination
of IBBB and STGNN but in demonstrating their
synergistic suitability for power distribution optimization.
IBBB provides fast global exploration of parameter space,
while STGNN captures spatiotemporal dependencies in
grid dynamics. Together, they achieve real-time
reconfiguration capabilities not attained by either method
alone or by existing metaheuristic-GNN combinations
reported in literature.

Research objectives and questions:
This study is guided by the following research questions:

1. How can spatiotemporal graph learning be
leveraged to capture the dynamic load and topology
variations in power distribution networks?

2. Can the Improved Big Bang—Big Crunch (IBBB)
algorithm enhance STGNN training convergence and
adaptability for real-time path reconfiguration?

3. How does the proposed IBBB-STGNN compare
against existing optimization and control-oriented
methods in terms of power loss reduction, response
latency, and scalability?

The novelty of this work lies in integrating a physics-
inspired global optimization method (IBBB) with data-
driven spatiotemporal graph learning. This combination
enables accurate, low-latency switching optimization in
large-scale distribution networks, a synergy not fully
explored in prior literature.
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2 Related work

An Optimal Energy Management (OEM) that uses Deep
Neural Networks as substitute systems to optimize Deep
Reinforcement Learning (DRL) in a bi-level OEM for
multi-Microgrids (MGs) linked to the Distribution
Network (DN) was suggested in [13]. To reduce
calculation time, the method made probabilistic
predictions about power flow. Simulation findings
demonstrated that the suggested technique decreased
computing effort by 89.23% as compared to the
Differential Evolution approach.

A real-time monitoring, day-ahead control, and production
sequencing-based predictive energy exchange platform
based on blockchain was introduced in [14]. The model
utilized data mining methods for time-series analysis,
leading to enhanced sustainable resource management.
Two novel approaches for detecting electrical disturbances
in low-voltage networks were presented in [15]. The initial
model employed the Fourier transform to categorize
complex voltage signals via a multilayered neural network,
thereby lowering computational costs and training time.
The second approach extracted and reduced
dimensionality using the short-time Fourier transform and
a convolutional neural network (CNN). The
methodologies were contrasted with simulated data and
empirical findings. Both methods provided excellent
findings for classification.

It computed historical network loss using cleaned data
from consumer power meters and transformer gateway
meters. Machine learning techniques were utilized in [16]
to assess the loss and forecast potential distribution
network losses. Random Forest features were used to
investigate the relationships between power network loss,
electrical parameters, and atmospheric conditions. It
combined the Selective Particle Swarm Optimization
(SPSO) with the Extra Trees Classifier to enhance dynamic
distribution network reconfiguration [17]. The technique
was able to reduce power wastage and enhance the
reliability of energy delivery. The simulation results by
means of the IEEE 33-bus distribution test system indicate
a 78% and 48% decrease in active and reactive power loss.
The use of parallel computing to reduce execution time
while maintaining accurate load forecasting models for
electricity was examined in [18]. The method employed a
machine learning model, execution speed, and scalability.
It validated the approach with actual energy consumption
data from distribution transformers in the electrical
system. An approach to the optimal power flow (OPF) in
DN with renewable energy and storage devices using deep
reinforcement learning (DRL) was introduced in [19]. The
OPF was a stochastic nonlinear programming problem,
whereas the multi-period decision problem was a Markov
decision process (MDP). Neural networks collect
operational knowledge from past data and make online
choices based on real-time DN conditions.
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The restricted Markov decision process was used to
implement a safe DRL method to quantify the optimum
distribution network (OODN) [20]. The algorithm
minimized discrete and continuous actions that maximized
a stochastic policy. The simulations in the modified IEEE-
34 and IEEE-123 node systems proved the technology to
be more realistic for application in the real world. A real-
time Volt-Var control (VVC) strategy for active
distribution networks with fluctuating renewable energy
resources by a two-stage DRL-based VVC strategy was
proposed in [21]. The first stage would use on-load tap
converters and capacitor banks on an hourly basis, and the
second stage could continuously manage the reactive
power of photovoltaic. A multi-agent deep deterministic
policy gradient algorithm was used to address the real-time
VVC problem.

The distribution network’s reactive power optimization
using a graph attention network-based method was
introduced in [22]. It was based on data-driven properties,
including a self-loop or a max-pooling layer, to model the
complex process corresponding to the association between
graphs and reactive strategies of the power. The approach
performed better than current machine learning techniques
in the quality of the solution and resistance to load
conditions.

2.1 Research gap

Traditional approaches, such as the DRL-based OPF [19]
and the GAT-based reactive power optimization [22],
provide improvements but have limitations. The DRL-
OPF approach has slow convergence and reduced
scalability in dynamic, large-scale networks, whereas the
GAT-based method lacks temporal modeling, limiting its
capability to adapt to real-time topological changes. The
proposed IBBB-STGNN solves these problems by
integrating spatiotemporal graph learning and global
optimization. It captures the distribution network’s
evolving spatial dependencies and temporal fluctuations
and employs the Big Bang-Big Crunch algorithm to
achieve faster convergence and global optimum
performance. This leads to more accurate, efficient, and
adaptable power supply channel optimization, allowing for
real-time decision-making and boosting resilience in
complex distribution systems.

2.2 Relation to advanced control-oriented
methods

In addition to machine learning and optimization
approaches for distribution networks, a large body of
research in control theory has focused on regulating
complex nonlinear and dynamical systems. Representative
strategies include adaptive fuzzy control for fixed-time
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synchronization of fractional-order chaotic systems,
output-feedback control for uncertain chaotic systems with
input nonlinearities, robust neural adaptive control for
multivariable nonlinear dynamics, adaptive backstepping
methods for uncertain single-input—single-output systems,
nonlinear optimal control for gas compressor—induction
motor systems, and adaptive backstepping for flexible
robotic manipulators. These methods have been widely
applied in domains such as robotics, process control, and
nonlinear oscillatory systems.

The common feature of such control frameworks is the
development of rigorous stability guarantees and adaptive
mechanisms for handling uncertainties. However, they are
often tailored to deterministic system models and require
accurate mathematical representations of system
dynamics. By contrast, power distribution networks
operate as large-scale, data-rich, spatiotemporal systems
where topology changes, stochastic load variations, and
switching events are not easily modeled with explicit
equations.

The novelty of the proposed IBBB-STGNN lies in
bridging this gap. While sharing the adaptive spirit of
fuzzy and neural adaptive control, our approach leverages
spatiotemporal graph neural networks to directly capture
evolving network states and load dynamics from data, and
integrates the IBBB metaheuristic to perform global
optimization of switching configurations.  This
combination provides real-time adaptability comparable to
advanced control schemes, but without requiring explicit
parametric models. Moreover, unlike backstepping or
fuzzy methods that scale poorly to networks with hundreds
of nodes, the proposed approach demonstrates scalability
to larger distribution topologies with low decision latency.
Therefore, IBBB-STGNN can be viewed as a
complementary paradigm: it generalizes the adaptability of
classical control methods to data-driven, topology-aware,
and large-scale power distribution systems. There are
several studies highlighting hybrid optimization and Al-
driven control in dynamic systems. For example, Kaluza
et al. (2010) presented a hybrid intelligent system for real-
time optimization in dynamic environments, while Karba
et al. [Informatica, 1999] compared genetic algorithms and
gradient-based methods for control optimization. More
recently, Gjoreski et al. (2016) explored continuous real-
time monitoring and prediction in dynamic settings. These
works align with the present study’s emphasis on
combining optimization with adaptive learning, though
none have applied such methods to spatiotemporal graph
learning in power distribution networks.

Table 1: Summary of related works in distribution
network optimization

Work  [Method Performance

Metrics

Dataset Type
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[13] Deep RL for|IEEE-30 bus |Loss reduction 68%

DRL- |OPF

OPF

[19] DRL IEEE-118 bus |Voltage deviation

DRL- 0.05 pu

based

OPF

[22] GAT for reactive|IEEE-33 bus |Loss reduction 79%

GAT-  |power

RPO optimization

This IBBB-STGNN |IEEE-33, Loss reduction

work IEEE-69, 85%, latency 0.74 s,
synthetic 123-|scalability 97%
node

3 Methodology

Modern power distribution networks require flexible,
intelligent systems to handle dynamic load variations and
complicated topologies. A synthetic yet realistic dataset is
created using factors such as voltage, power flow,
resistance, load kinds, and switching events. To guarantee
quality and consistency, data is preprocessed using missing
value imputation and Min-Max normalization. Feature
extraction using PCA simplifies data and identifies key
patterns for learning. The proposed IBBB-STGNN model
combines to provide intelligent, real-time power routing
and topology-aware decision-making. Figure 1 shows the
overall flow for the power supply path of the distribution
network.

3.1 Dataset

The experimental setup is based on the IEEE 33-bus and
IEEE 69-bus standard distribution test systems, extended
to a 123-node synthetic network derived from a Kaggle
dataset. The synthetic dataset was constructed to reflect
realistic operating conditions by incorporating stochastic
load variations, voltage fluctuations, and switching events
modeled on utility reports. Using IEEE standard systems
ensures comparability with prior research, while the
extended 123-node network demonstrates robustness and
scalability in larger grid configurations.
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Figure 1: Overall suggested flow for the power supply

path of the distribution network
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The Dynamic Power Distribution Network Dataset
provides a realistic spatiotemporal simulation of electrical
distribution networks, enabling real-time power flow
optimization and tracking. It comprises 3456 time-series
entries collected at 5-minute intervals over 48 nodes,
which include voltage, active/reactive power, power loss,
resistance, and power factor. Switch statuses, breaker
events, and load types are some of the system behavior
aspects. Rolling averages, delayed power values, load
gradients, and principal components are indications of
engineered characteristics that help with advanced
analysis. The dataset retains network architecture, records
dynamic reconfigurations, and assigns optimization labels
to path selection and switching techniques, allowing grid
monitoring and intelligent decision-making.

The dataset used in this study is synthetic, constructed to
emulate realistic load and switching conditions. It
incorporates residential, commercial, and industrial
demand patterns with daily and seasonal variations, as well
as fault-like events and measurement noise. Using
synthetic data allows controlled testing of reconfiguration
under diverse scenarios, which is difficult with real
SCADA data due to privacy and accessibility restrictions.
The main limitation is that synthetic datasets may not fully
capture rare disturbances or locality-specific behaviors. To
mitigate this, the dataset was statistically compared with
IEEE benchmark load traces, and future work will extend
evaluation to real-world datasets as they become available.
The distribution network topology used in this study is
based on the IEEE-33 bus test system, which consists of
33 nodes and 32 radial feeders with multiple branching
paths. This topology is widely adopted as a benchmark in
distribution network reconfiguration studies, making it
suitable for evaluating optimization strategies

Source:
https://www.kaggle.com/datasets/ziya07/dynamic-power-
distribution-network-dataset/data
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3.1.1 Dataset realism, validation and generalization
tests

Although the dataset employed in this study is synthetic, it
was constructed to reflect realistic operating conditions by
incorporating residential, commercial, and industrial load
patterns, switching events, noise perturbations, and fault-
like disturbances. To validate its realism, statistical
indicators such as mean/variance, autocorrelation, and loss
distributions were compared with benchmark IEEE traces,
showing close agreement.

To demonstrate robustness, IBBB-STGNN was also
evaluated on multiple network sizes and load scenarios,
including IEEE-33 and IEEE-69 bus test systems and a
larger 123-node synthetic network, under base, peak, and
contingency conditions. Results confirmed that the model
consistently maintained strong power loss reduction and
low decision latency as the network size increased.

Table 2: Validation and generalization results of IBBB-

STGNN

Test Case Power Loss | Avg. Voltage

Reduction | Decision Stability

(%) Latency (%)

(s)

IEEE-33 (base | 83 0.72 95
load)
IEEE-69 (peak | 84 0.81 94
load)
123-node 85 0.88 96
(contingency)

These results indicate that, while synthetic, the dataset
reproduces realistic dynamics and that the proposed
framework generalizes effectively across varying
topologies and operating regimes.

3.2 Data preprocessing

Data preparation for the power supply path comprises
removing missing values to ensure data integrity and
consistency. After dealing with missing entries, Min-Max
normalization scales numerical features to a uniform
range, improving model accuracy and optimizing power
flow analysis.

To ensure reproducibility, preprocessing steps and
parameters are summarized in Table 3.
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Table 3: Preprocessing steps and parameters used in

dataset preparation

p ameter ue

Normalization (Method Z-score
normalization

PCA # components retained |50 (97% variance
preserved)

Temporal Rolling size 15 minutes

window

Lag features  |Time lags 3

Features Voltage, load, switching|12 total

state, power loss

3.2.1 Handling missing values

Missing values in the Dynamic Power Distribution
Network Dataset are carefully managed to ensure data
completeness and reliability. Electrical parameters, system
behavior indicators, and designed characteristics are
assigned values that are consistent with the surrounding
data patterns. After imputation, such derived properties as
load gradients, as well as lagged values, are recomputed to
keep temporal and geographic accuracy, ensuring that the
data are still valuable to power flow optimization, grid
monitoring, and smart decision-making.

3.2.2 Min-max normalization

The power supply path of the distribution network often
requires normalization procedures to maintain consistent
and reliable performance under varying input conditions.
This approach rescales the voltage, current, or other
operating aspects to a particular range, usually 0 — 1V
—11. The procedure utilized for this rescaling is in
equation (1):
1= WiTWmin

w =
Wmax—Wmin

(1)

Where w; represents the input value and Wyin, Whay
represent the minimum and maximum values of the
feature, respectively. The power loss across nodes is
depicted in Figure 2, with values probably adjusted with
Min-Max normalization.



360 Informatica 49 (2025) 355-370

Power Loss Across Nodes

Figure 2: Power loss across nodes

3.3 Feature extraction using PCA

PCA identifies significant elements from the primary
distribution network's power supply channel data,
decreasing dimensionality and duplication while revealing
prominent patterns for enhanced evaluation. Let W be the
collection of inputs, with each column representing a
sequence of n-dimensional inputs. Additionally, every
function in the set of values has an average of zero
(F(W) =0). An initial data matrix typically has m
samples and n variables, as illustrated below in equation

Q).
Win
)
2

The PCA transforms meteorological variables and
performance factors into a new event space while
preserving as much data as possible from the initial data.
The directions of highest variance in the input data sets are
identified and projected to a new subspace with equal or
lower dimensions than the original. To move W to a new
space S, apply an orthonormal transformation Y, as shown
below in equation (3).

W11
W = [W]_,Wz, ...... ,Wm]s = :

W1

S=Yw
&)

The S-matrix of scores is made up of orthonormal vectors
produced from a linear combination of W-matrix
components, representing the relationship between
samples. The S Covariance Matrix is expressed in equation

.
Dg =YDy YS
“
Where Dy, is the covariance matrix for W. The weight

matrix Y could be calculated using the eigenvalue equation
as follows in equation (5).

(Ds — U)fj =0
(%)
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The PCA-based feature extraction for Node 1 was depicted
in Figure 3, with time series for the top two components.
It exposes essential patterns and variances in node activity,
making it possible to reduce dimensionality, spot
anomalies, and analyze power distribution data more
efficiently.

PCA Component Time Series - Node 1

— PCA1
PCA2

PCA Values

07-28 00
07-28 01
07-28 02
07-28 03
07-28 04
07-28 05
07-28 06

=
El
£

Figure 3: Feature extraction for node behavior in the
power supply path

3.4 IBBB-STGNN

The Improved IBBB-STGNN is a hybrid deep learning
approach designed to meet the demand for adaptive and
intelligent power flow path optimization in current
distribution networks. The suggested IBBB-STGNN
framework integrates an STGNN, which represents the
electrical grid as a dynamic network, with the IBBB
optimization technique to fine-tune model parameters. The
STGNN considers both spatial dependence and temporal
evolution, whereas the IBBB improves convergence by
simulating a gravitational collapse toward an ideal
solution. The graph H = (U,F) provides substations
(nodes U) and lines (edges F), and the temporal load at
time s is recorded as a feature matrix W;. The approach
modifies the node embeddings as follows in equation (6).

1

uieN(uj) /CjCl'

k k
6k = o (3 X960 @) + X6 )

(6)

The embedding of the node u;at layer k and time s
captures its state and characteristics.

N(uj) indicates the neighbors of the node u;, while

X®and X s(k)are adaptable weights, o is an activation
function, and ¢;, ¢; are the degrees of nodes u; and u;.

The IBBB optimizer iteratively improves parameters by
simulating a cosmic collapse process in which particles
(solutions) converge on a center of mass that represents the
best path configuration. This integration enables IBBB-
STGNN to deliver highly accurate, real-time, and energy-
efficient power routing, ensuring resilience and
adaptability in smart grid operations. Algorithm 1 shows
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the working procedure for proposed IBBB-STGNN
model.

Algorithm 1: IBBB-STGNN Training Procedure

Input:

e Graph structure G=(V,E)

e Feature matrix XERNXTxF

e Population size P

¢ Maximum iterations I

e Learning rate a

o Fitness function (e.g., MSE)
Output:

e Optimized STGNN parameters

Procedure:

1. Initialize population of candidate parameter sets
{W1,W2,...,WP} randomly.

2. For iteration = 1 to I:
a. For each candidate Wi:
i. Train STGNN with parameters Wi on input
(X,G).
ii. Evaluate fitness using the defined loss
function.

b. Compute center of mass (COM) of the
population, weighted by inverse fitness.
c. Generate new candidate population by
perturbing COM with random noise scaled by a.
d. Update the population by selecting the best-
performing candidates.

3. Return the parameter set with the best fitness as
the optimized STGNN model.

3.4.1 STGNN is used for spatiotemporal power flow
modelling

The STGNN dynamically simulates spatial and temporal
relationships in the distribution network, allowing for
precise power supply path optimization and adaptive
decision-making under changing load and topological
conditions. GNNs were proposed as a generalization of
graph analysis features of deep learning. GNN conceives
an input feature representation of £ = (W, B) composed
of W representing an m-dimensional feature matrix
(consisting of a feature vector in every row in a graph) and
B being the adjacency matrix. This is to convert E to a
vector form that minimizes the loss function (K)supplied
by the downstream positions. The GNN system consists of
convolutional layers and temporal layers. Such
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convolutional layers in the GNN adopt a neighborhood
aggregate architecture, comprising many transformation
layers to construct a discriminative vector description
g(u) of each node (also called node embedding). The
additional layer g’/(u) modifies a node embedding
g7t (w)(g°(w) is W (u) from the initial feature matrix) by
combining the embedded data of its neighbors in equation

).
g’ (W) « nconcat (gj‘l(u), agg (gj‘l(u’): u' €
M@w)) @

Where 7 is the non-linear activation function. The
frequency domain describes the graph convolution of the
filtering kernels h with the input data w, as shown in
equation 8.

hxw =Ug(A)VSw
)

In this equation (8), V represents the eigenvectors of a
standardized network, and V°w is its Fourier transform.
The Laplacian matrix is A4=]—-C _%AD_%. Eigen
decomposition of 4 = VAV, where 4 is a diagonal matrix
of eigenvalues. Since computing V is costly, Equation (8)
could be approximated by Equation (9).

h*w = YIS, (@®)w
9)
Where S;(w) is a polynomial of order [, with coefficient
2
f=A-Junh e Q. S@W) =25 ,®HW) -

S;_, () (W), S (&) = w. The equation above indicates that
filters are positioned up to L hops from the node, with L
being the kernel size for graph convolution.

The temporal convolution layers have a one-dimensional
kernel filter and sigmoid-gated linear unit to attain non-
linearity. The sigmoid function picks significant parts of
the input to find complex structures and temporal changes
within time sequences. Figure 4 represents a graph neural
network with convolutional and temporal convolutional
layers over a timeseries. It builds a learning model referred
to as the spatiotemporal block that learns spatial dynamics
as well as temporal dynamics. The spatiotemporal block
approach extracts valuable temporal characteristics while
simultaneously capturing relevant spatial features. Figure
5 depicts the STGNN structure used for training and
predicting models.
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Figure 4: Spatiotemporal-GNN architecture

The network consists of three blocks: two spatiotemporal
(ST) blocks and an output layer. Each ST block consists of
two temporal convolutional layers separated by a spatial
layer. An output layer consists of two temporal layers in
series before a fully connected output layer. The dimension
of data used as input into the GNN model is Q(¢XMxD)
where G is the number of previous data points in the
timeseries, M is the number of all systems, and D is the
number of input channels. The output of the model is
Q%*M_ where N is the number of upcoming points to
estimate.

The STGNN architecture was designed with three blocks,
each containing two temporal layers followed by one
spatial layer. This structure balances expressiveness and
efficiency. The temporal layers capture both short-term
and long-term load variations, while embedding a spatial
layer in each block ensures continuous incorporation of
topological dependencies. Preliminary tests showed that
deeper networks provided only marginal improvements at
significantly higher latency, while shallower models failed
to capture long-range temporal patterns. The chosen
design therefore represents a practical trade-off between
accuracy and computational efficiency, which is critical for
real-time deployment.

Model architecture:

The IBBB-STGNN model consists of three sequential
spatiotemporal blocks, each comprising two temporal
convolution layers followed by one spatial graph
convolution layer. ReLU activations are applied to all
layers, with a dropout rate of 0.2 for regularization. The
architecture details are summarized in Table 4.
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Table 4: Architecture Details of the IBBB-STGNN Model

Layer |Type Activation|Dropout|Notes

Block |Temporal Conv (2)|ReLU 0.2 64

1 + Spatial GCN (1) hidden
units

Block |Temporal Conv (2)|ReLU 0.2 64

2 + Spatial GCN (1) hidden
units

Block |Temporal Conv (2)|ReLU 0.2 32

3 + Spatial GCN (1) hidden
units

3.4.2 IBBB is used for network reconfiguration and
switching optimization

The IBBB algorithm enhances the power supply channel
in a major distribution network by mimicking cosmic
evolution principles. It combines global exploration (Big
Bang) and concentrated convergence (Big Crunch) to
dynamically rearrange network architecture, boosting
power flow efficiency, decreasing losses, and improving
reliability under changing load circumstances in real time.
At first (when [ = 1), randomly created swarms are
assigned randomly produced velocities, resulting in an
arbitrary distribution function. V is explained using the
population set W' and the velocity set U'. The velocity set

k) v >

U'=tis accepted on the enclosed set W' of the real surface.

is specified as U' = {u},u}, s Uy

In the [lth iteration, swarm W/jl € Wlis one-to-one

transferred to u} € U'. Candidates W/jl are assigned to their
appropriate fitness value e]-lusing an objective function e,.
Big Crunch Phase (BCP) calculates the center of mass

(ﬁl(Wl)) based on W/jl and e]-l, as shown in equation (10).

=l

wt

M

o D
Nl 1y — Jj
D (W)_ M 1
Zj=1;

j

(10)

An inelastic collision happens when all particles hit the
center of mass. This center of mass has a speed in the

preceding iteration (ﬁ })), as shown in equation (11).

=y
J.‘~|fi~

X

=

Up =

=
i
A

(11)
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In equation (I1), #} represents the velocity and ef
represents the fitness value of the jth candidate in the Ith
iteration. After creating the center of mass and determining
its velocity in the BCP, new swarms or candidates (W"ew)
are formed in the search space for the Big Bang Phase
(BBP). BBP generates swarms depending on the center of
mass and velocity in the [th iteration. Equation (12)
generates new swarms (W;*").
anew =Dt (Wl) + ﬁ’]new
(12)
‘(IEW)

Equation (13) is used to determine the new velocity (17]
of a new candidate (W;**"), where Vj = 1...M.

—new _ Jjl
u =Up.h

(13)

In equation (13), h represents the adaptive gravity factor,
which is represented in equation (14) as follows:

B = (e}—efnin)
€avg
(14)

In (9), eqyy represents the mean of the fitness values
recorded in e(Wl). And eg,,  is supplied in equation (15).

M l
_ &j=1¢j

Cavg = I
15)

L . represents the minimal value in the

min
fitness function set e(Wl). It's important to highlight that
the new candidates (w/*®") are mapped to their respective

velocities (u"*"). BBP is followed by BCP, which

calculates D1 (WH1),

In equation (15), e

The critical hyperparameters for training an STGNN using
IBBB optimization are shown in Table 5. It covers
clarifications and typical tuning ranges for model design,
optimization, regularization, temporal-spatial settings, and
evolutionary control parameters.

Table 5: Hyperparameters for IBBB-STGNN

Hyperparameter Typical Value / Range
epochs 50-300
learning,qte 0.001 —0.01
optimizer Adam / RMSprop
hidden,,i;s 32 -256
dropout,,ie 0.1-0.5
pop 10-50
alpha(a) 0.05-0.2
fitnessg, MSE / MAE / Cross-
Entropy
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temporal,,indow 3-12
Spatialneighbors 1-3
batch 32-128
graph GCN / GAT /
ChebNet
activation ReLU / LeakyReLU /
Tanh
weight [-1, 1]
center Inverse fitness-
weighted mean
early 10-20

Rationale for selecting IBBB

The Improved Big Bang-Big Crunch (IBBB) algorithm
was chosen in preference to other metaheuristics such as
Particle Swarm Optimization (PSO), Genetic Algorithms
(GA), and standard gradient-based optimizers (e.g., Adam)
for several reasons. First, IBBB has a simple structure with
very few control parameters, which reduces the need for
extensive parameter tuning compared to GA or PSO.
Second, the COM-based contraction phase of IBBB
accelerates convergence toward promising regions while
maintaining sufficient exploration in the expansion phase,
making it well-suited for dynamic and high-dimensional
problems. Third, unlike gradient-based optimizers such as
Adam, which may be sensitive to local minima in non-
convex graph learning landscapes, IBBB provides a global
search mechanism that enhances robustness. Finally,
empirical tests in our experiments (see Section 4.2)
showed that IBBB achieved lower decision latency and
faster convergence than GA and PSO baselines, while
scaling more efficiently to larger distribution networks.
These properties make IBBB particularly suitable for
optimizing STGNN  parameters under real-time
operational constraints.

Justification for IBBB:

The Improved Big Bang—Big Crunch (IBBB) algorithm
was selected over other metaheuristics due to its rapid
convergence and low computational complexity, which are
particularly advantageous for real-time power system
optimization. Unlike Particle Swarm Optimization (PSO)
or Genetic Algorithms (GA), which require extensive
population updates, IBBB reduces each iteration to a
center-of-mass computation, thereby lowering runtime.
Compared to gradient-based optimizers such as Adam,
IBBB is less sensitive to initialization and local minima,
making it better suited for non-convex loss landscapes in
spatiotemporal graph learning.



364  Informatica 49 (2025) 355-370

Empirical comparison:

Table 6: summarizes the ablation study comparing IBBB
against alternative optimizers.

Optimizer Power Decision |Convergence
Loss Latency |Iterations
Reduction |(s)
(%)

GA 72+0.8 |2.15 50

PSO 75+0.6 [1.92 45

Adam 76+0.5 [1.20 40

IBBB 85+04 10.74 25

This demonstrates that IBBB-STGNN consistently

outperforms other optimizers in accuracy, latency, and
convergence speed.

3.5 Performance metrics

To evaluate the effectiveness of the proposed framework,
several performance metrics were defined and used
consistently throughout the experiments.

(a) Response Speed to Load Change (RSLC)

This metric quantifies the average delay between a load
variation event and the model’s stabilization response. It is
calculated as:

M
RSLC = l tres — gevent
M J J
j=1
where e is the time of the j-th load change event, tf is

the time when the system stabilizes after that event, and M
is the total number of events.

(b) Dynamic Load Balance Score (DLBS)

This measures the degree of load distribution balance
across feeders during operation. It is defined as the
complement of the normalized load variance:

(Var (L))

DIBS=1——7"—7"—"7"*"—
(Max(Var(L)))

where L is the vector of feeder loads. Higher values
indicate better balance.
(¢) Voltage Violation Avoidance (VVA)

This metric reflects the proportion of nodes that remain
within the permissible voltage range [Vmin, Vimax]:

Y. Huang

N
1
VVA = NZ 1(Vmin S Vi S Vmax)

i=1

where Vi is the voltage at node i, N is the total number of
nodes, and 1(+) is the indicator function.

(d) Power Loss Reduction (PLR)

This indicates the percentage improvement in power loss
relative to the baseline configuration:

Lossbaseline - Lossmodel

PLR = X 100%

LOSSbaseline
(e) Scalability Factor (SF)

This metric evaluates the computational growth rate when
scaling to larger networks. It is calculated as the
normalized inverse of latency growth:

Tlarge - Tsmall

SF=1-
Tsmall
where Tsman and Tiarge denote average decision times for the

smaller and larger test systems.

4 Results and discussion

Python is used to create and validate the proposed IBBB-
STGNN and baseline STGNN models for enhancing the
power supply path of the distribution network. Both
approaches are trained on the dynamic power distribution
network dataset, and their performance is measured
against key criteria such as power loss reduction,
computational efficiency, load adaptability, and voltage
stability.

4.1 Experimental results

The voltage drops and fluctuations occur over time at
certain nodes in the distribution network. Voltage
fluctuations reflect the grid's dynamic demand and supply
situations, as shown in Figure 5. Consistent voltage
decreases within an acceptable range indicate reliable
power transmission; however, sudden deviations may
indicate instability, overloading, or potential fault-prone
locations. Monitoring these patterns helps identify weak
points in the power supply chain and supports predictive
maintenance as well as real-time corrective actions,
resulting in a balanced and efficient functioning of the
whole distribution network architecture.
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\oltage Drop Over Time (Samole Nodes)

age Change (V)

Vot

Figure 5: Voltage drop monitoring along with the
distribution path

The temporal ON (1) or OFF (0) switch state of every node
in the primary power distribution network is shown in
Figure 6, with red representing ON and blue representing
OFF. This time, visualization aids in identifying switching
activity and trend/abnormalities within the operations of
the supply chain. Frequent switching could indicate load
balancing, fault isolation, or reconfiguration activities.
Analyzing these patterns improves the discovery of
unstable or essential portions, ensuring that the network
runs efficiently, is reliable, and responds effectively to
dynamic power demand and fault conditions across the
distribution system.

Switch Status Timeline Heatmap
10

08

status

Switch

02

Figure 6: Switching activity analysis in the supply path
network

The mean load gradient (kW) at various nodes in the main
power distribution network, with a focus on load variations
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along the supply channel, is shown in Figure 7. Nodes
having higher positive gradients would represent more
load, and the node having negative gradients would mean
less load or reverse flow. The red hues imply higher load
gradients, whereas the blue hues indicate lower or negative
gradients. Consistent load over several nodes indicates a
steady distribution, but sudden fluctuations could indicate
supply constraints or demand spikes.

Average Load Gradient per Node
14

40

-20

Node ID
47 45 43 41 39 37 35 33 31 2927252321 1917151311 9 7 5 3 1

L o CrmULN L -
(1= U SRR iNE S ANSLIEE LSRG 75t

load_gradient_kw

Figure 7: Gradient distribution across the network, where
red indicates higher positive gradients and blue indicates
lower or negative gradients, consistent with the color bar.

The power distribution network, with each node
representing a substation or load point and connecting
lines indicating electrical channels, is demonstrated in
Figure 8. The integrated structure provides several routes
for power, increasing dependability and lowering the
chance of interruptions. The distributed topology
facilitates balanced load sharing and rerouting during
interruptions or maintenance, delivering consistent and
robust power delivery across the network's operational
region.

Power Distribution Metwork Topalogy

Figure 8: Topology mapping of the distribution network
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The suggested strategy improves performance in the msow

distribution network's power supply channel when - -
compared to STGNN, as depicted in Figure 9 and Table 7. Q- s

Figure 10a shows that the proposed method improves load e
adaptability metrics significantly: response time to load 3 v
change improves from 79% to 96%, reduced switching
actions from 80% to 88%, recovery accuracy from 88% to
97%, fault recovery time efficiency from 78% to 95%, and
dynamic load balance score from 82% to 94%. Figure 10b
shows improvements in power routing quality, with power
loss reductions ranging from 72% to 85%, post-load spike

BBB-STONN [Prgosed]

=3 * s K
“

Power Routing Quality (%)

STGNN
[posodoid] NNDLS-ag9!

x

loss recovery from 68% to 80%, balanced load distribution

from 75% to 90%, optimal switch configurations from s 170 s e B o Powlos Fotlod Bl e Vot
78% to 94%, and voltage violation avoidance from 90% to G o Dol T T oo s
96%. These findings show that the suggested strategy - Netics
outperforms the usual approach in real-time distribution

network  operations, providing more flexibility, (a) ()

dependability, and efficiency.

T T T
Response  Redwed  Recovery  Fault  DyamicLoad

Figure 9: Comparison of performance of IBBB-STGNN
and STGNN in power distribution networks (a) load
adaptability, (b) power routing quality

Table 7: Performance metrics comparison for the
proposed and standard techniques

Load Adaptability (%) Power Routing Quality (%) . C
Meric | STG T IBBB- | Metrics STG | IBBB- The performance metrics for the distribution network's
s NN STGN NN STGN power supply path for the propo.s.ed model and STGNN,
N N w1th. a focus on Vqltage stability and computatlonal
(Propo (Propo efficiency, are shown in Figure 1'0'anq Table 8. Figure 10a
sed) sed) sh(;vzi/ that average volltage ds'tabﬂ?t’y 1n'1pro'ved fI‘OI’(Iil ?5%
to 96%, maximum voltage dip mitigation increased from
Respo | 79% | 96% Eower 2% | 85% 82% to 94%, and underfoltagpe recogvery speed improved
Islseee q RZ(Siilctio from 80% to 95%. The Voltage Stability Index (VSI)
top N initially reached 92% and then improved to 94%, while
Load violation-free path consistency increased from 89% to
Chang 96%. Figure 10b shows that computational efficiency has
. improved, with decision latency reduction from 84% to
95%, memory optimization from 84% to 92%, and
Reduc | 80% | 88% Post- 68% | 80% computation I.ytimsc) efficiency from 80% to 93%.
ed ) and Furthermore, the scalability factor increased from 89% to
Ezgc Isf)lsl:e 97%, while the energy efficiency score increased from
- 84% to 95%, suggesting both stable voltage control and
ﬁ:tlo Recovery optimal computing performance for dynamic power
Recov | 88% | 97% | Balanced | 75% |00% | Cswieution.
ery Load Table 8: Performance metrics comparison for the
Accur Distributi proposed and standard techniques
acy on — i : .
Fault | 78% | 95% | Optimal | 78% | 94% ol SR el e By
Recov Switch STGN | STGNN STGN | STGNN
ery Conﬁgur N [propos N [propos
Time ations ed] ed]
Efficie Found Avg. 85% 96% Decision 84% 95%
ncy Sttty Redueton
Dyna 82% | 94% Voltage 90% | 96% Max 82% 94% Memory 84% 92%
mic Violation Voltage Optimizat
Load Avoidanc Dip ion
Mitigation
Balan € Undervolt | 80% | 95% Computati | 80% | 93%
ce age on Time
Score Efficiency
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Figure 10: Comparison of performance of IBBB-STGNN
and STGNN in power distribution networks (a) voltage
stability, (b) computation efficiency

Statistical validation:

All experiments were repeated 10 times. Results are
reported as averages with standard deviation (std) < 0.8%.
Performance gains over the baseline STGNN were
statistically significant (p < 0.05, two-tailed t-test). For
example, power loss reduction averaged 85% = 0.4% for
IBBB-STGNN compared to 72% + 0.6% for STGNN.
Decision latency improvements (0.74 s vs. 1.92 s) also
achieved statistical significance (p < 0.05).

4.2 Expanded baseline comparison

To provide stronger validation, the proposed IBBB-
STGNN was evaluated against additional state-of-the-art
models referenced in the related works: a Deep
Reinforcement Learning-based Optimal Power Flow
approach (DRL-OPF) [19] and a Graph Attention
Network-based Reactive Power Optimization method
(GAT-RPO) [22]. A Genetic Algorithm (GA)-based
reconfiguration strategy was also included as a
representative evolutionary optimization method.

Table 9 summarizes the comparative performance. The
proposed IBBB-STGNN consistently outperformed all
baselines across decision latency, power loss reduction,
and scalability. Specifically, IBBB-STGNN achieved the
lowest average decision time (0.74 s), higher power loss
reduction (85%), and the highest scalability factor (97%).
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In contrast, DRL-OPF and GA-based methods exhibited
longer decision times, while GAT-RPO improved spatial
modeling but remained less effective in capturing temporal
load dynamics.

Table 9: Expanded baseline comparison of different
approaches in power distribution optimization

Method Decisio |Power  |Scalabilit [Memory
n Loss y Factor|Usage
Latency |Reductio |(%) (relative
(s) n (%) )
GA-based 2.15 72 82 100%
Reconfiguratio baseline
n
DRL-OPF [19] |1.92 78 85 115%
GAT-RPO [22] |1.35 82 88 108%
STGNN 1.20 72 89 100%
(baseline)
IBBB-STGNN |0.74 85 97 85%
(proposed)

These results confirm that, while DRL and GA offer
adaptability and global exploration, they struggle with
scalability and responsiveness. GAT-based methods
provide strong spatial feature extraction but insufficient
temporal modeling. By combining spatiotemporal graph
learning with metaheuristic optimization, IBBB-STGNN
provides both rapid convergence and robust scalability.

4.3 Error analysis

To assess robustness, we analyzed node-level prediction
errors using Mean Absolute Error (MAE) and Root Mean
Square Error (RMSE). Across all test cases, MAE
averaged 0.012 pu, while RMSE was 0.021 pu. The highest
error (0.04 pu) occurred under peak load conditions at
Node 17 in the 123-node network, highlighting a stress-
point scenario. These findings indicate that although
worst-case deviations exist, overall accuracy remains
within acceptable operational limits.

4.4 Discussion

The power supply path of the distribution network begins
at the substation, where high-voltage energy is stepped
down and delivered through primary feeders. Within this
context, research [13] suggested using Deep Neural
Networks to replace DRL in bi-level energy optimization
for multiple microgrids; its probabilistic method lacks
real-time flexibility and spatial awareness. Similarly,
investigation [17] used SPSO with Extra Trees for network
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reconfiguration, although it fell short of capturing
temporal fluctuations and complicated node interactions.
STGNNSs could have difficulty with scalability, dynamic
topology changes, and real-time efficiency in big,
complicated, and fast-growing power networks. The
proposed IBBB-STGNN model addresses these issues by
combining blockchain for safe, decentralized energy data
sharing with a spatiotemporal graph neural network to
represent both spatial and temporal dynamics. IBBB-
STGNN achieves a 96% response speed, 97% recovery
accuracy, 85% power loss reduction, 90% load balancing,
and 94% optimum switching. It provides 96% voltage
stability, 95% low voltage recovery, and 96% violation-
free route consistency. It also reduces decision latency by
95%, optimizes memory by 92%, and increases
computation efficiency by 93%, scalability by 97%, and
recovery time efficiency by 95%, making it a reliable and
intelligent solution for distribution networks.

The proposed IBBB-STGNN achieves consistent
improvements over existing approaches. For instance,
compared to the GAT-based reactive power optimization
[22], our method improved power loss reduction by +7%
(79% — 85%). Against DRL-based OPF [19], our
approach achieved ~60% lower decision latency (1.92 s —
0.74 s). Moreover, scalability improved by +12%
compared to the baseline STGNN, maintaining accuracy
across IEEE 33, 69, and 123-node networks. These results
confirm that combining metaheuristic optimization with
spatiotemporal graph learning provides a novel advantage
in balancing accuracy, speed, and adaptability in real-time
distribution network reconfiguration.

The observed improvements of IBBB-STGNN also
resonate with broader findings in optimization and Al
literature. Prior Informatica works, such as hybrid
intelligent control frameworks [Informatica, 2010] and
optimization studies comparing evolutionary methods
[Informatica, 1999], demonstrated the value of integrating
global optimization with adaptive modeling. Our results
extend this line of research by showing that IBBB, when
paired with STGNNSs, enables real-time scalability and
robustness specifically within power distribution systems.

4.5 Comparative analysis
methods

with existing

To provide a broader evaluation, the proposed IBBB-
STGNN was compared with reinforcement learning and
evolutionary optimization approaches commonly used in
power distribution networks. The selected baselines
include a Deep Reinforcement Learning-based Optimal
Power Flow (DRL-OPF) method [19], a Graph Attention
Network-based reactive power optimization (GAT-RPO)
method [22], and a Genetic Algorithm (GA)-based
reconfiguration strategy. Results are summarized in Table
9.
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The results demonstrate that IBBB-STGNN achieves the
best balance of decision latency, power loss reduction, and
scalability. For real-time switching, IBBB-STGNN
required an average of 0.74 seconds, compared to 1.92
seconds for DRL-OPF and 2.15 seconds for GA. The
power loss reduction achieved by IBBB-STGNN was
85%, which is higher than GA (72%) and DRL-OPF
(78%), and comparable to GAT-RPO (82%). Moreover,
IBBB-STGNN achieved a scalability factor of 97% when
tested on networks up to 123 nodes, outperforming both
DRL and GA, which showed steep increases in
computation time with network size.

These results confirm that reinforcement learning
methods, although adaptive, often require long training
times and struggle with scalability in large-scale networks.
Evolutionary algorithms such as GA provide good
exploration capability but lack temporal modeling, which
reduces their responsiveness to fast load variations. GAT-
RPO improves spatial modeling but does not fully
integrate temporal dynamics. By contrast, IBBB-STGNN
combines spatiotemporal learning with Big Bang-Big
Crunch optimization, enabling faster convergence,
stronger adaptability, and robust scalability in real-time
operation.

Table 9: Comparative results of different approaches in
power distribution network optimization

Method Decisi | Power Scalabil | Memor
on Loss ity y
Latenc | Reducti | Factor Usage
y (s) on (%) | (%) (relativ

e)

GA-based 2.15 72 82 100%

Reconfigurat baselin

ion e

DRL-OPF 1.92 78 85 115%

[19]

GAT-RPO 1.35 82 88 108%

[22]

STGNN 1.20 85 89 100%

(baseline)

IBBB- 0.74 90 97 85%

STGNN

(proposed)

4.6 Practical implementation aspects

For deployment in real distribution control centers, two
aspects are critical: response speed and interpretability of
model decisions.
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Real-time speed. The proposed IBBB-STGNN achieves an
average decision latency of approximately 0.74 seconds
for switching optimization on the 123-node test network,
which is well within the operational time window of
standard distribution management systems (typically 1-5
seconds). The near-linear scaling observed across IEEE-
33, IEEE-69, and 123-node networks indicates that the
method can be used in practice for real-time switching and
reconfiguration tasks.

Operator interpretability. Although deep learning models
are often considered black-boxes, the proposed framework
provides  explainable outputs through multiple
mechanisms. First, the spatiotemporal graph neural
network learns node embeddings that can be visualized to
highlight critical nodes and feeders influencing switching.
Second, the IBBB optimization step produces explicit
switching configurations, which can be presented as
recommended actions (e.g., “open breaker X, close switch
Y™). Third, post-hoc feature attribution methods such as
attention weight analysis and load gradient sensitivity
allow operators to verify why specific reconfigurations are
proposed. These mechanisms ensure that model
recommendations can be traced to measurable system
states, thereby improving trust and practical usability.

5 Limitations and future work

Although IBBB-STGNN demonstrates strong scalability
and accuracy, several limitations remain. First, validation
is currently limited to synthetic and benchmark IEEE
datasets; future work will extend testing to real-world
SCADA and smart grid data. Second, while decision
latency is suitable for real-time use, computational cost
may increase for networks exceeding 500 nodes. Third, the
current model does not incorporate renewable generation
variability or distributed storage effects, which are critical
in modern grids. Future research will focus on integrating
these factors and exploring distributed optimization for
even faster response.

6 Conclusion

The current electrical distribution systems require complex
and adaptive systems that can dynamically monitor and
optimize power flow paths in the face of varying load and
topology conditions. The parameters used to generate the
dataset include voltage, power, resistance, load kind, and
switching points, and the data is preprocessed, such as
applying missing value imputation and Min-Max
normalization. Lag-based attributes, rolling statistics,
power factor, and load gradients are performed through
PCA in feature extraction. The IBBB-STGNN is designed
as a combination of an IBBB optimization method with an
STGNN to learn the network topology, as well as time-
varying loads, to perform optimally to route power. The
results show that IBBB-STGNN improves when compared
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to standard STGNN, such as energy distribution with 97%
recovery accuracy, 96% voltage violation avoidance, 85%
power loss reduction, and 95% recovery time efficiency.
Its 93% computation efficiency and 97% scalability factor
confirm its effectiveness for real-time, secure, and
adaptive network optimization. The deep learning
approach for optimizing the power supply path has
disadvantages, such as dependency on huge amounts of
precise real-time data and difficulty adjusting to abrupt
network changes. Future enhancements could involve
faster edge computing integration, adaptive reinforcement
learning for better control, and the combination of data-
driven and physics-based methods to improve reliability
and flexibility.
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