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In the context of edge computing (EC), there are distributed Internet of Things (IoT) devices that 

generate huge volumes of sensitive data, which necessitates privacy-preserving and efficient model 

training. Federated learning (FL) enables the ability to collaboratively train models without sharing 

raw data, albeit at the risk of sharing data values through indirect means and in an uncontrolled 

manner that continues to expose privacy risks like gradient inference attacks and data reconstruc tion 

methods. To propose a secure aggregation framework that combines FL with differential privacy (DP) 

at the 'noise' level of 1.e−4 and a red panda optimizer fused bidirectional recurrent neural network 

(RedPO-BRNNet), that improves predictive performance, convergence efficiency, and robustness in an 

EC environment. This framework is implemented using Python and utilizes local datasets of 2,501 time -

series recordings gathered from 10 distributed edge devices, which feature blood pressure, activity 

level, body temperature, heart rate, anomaly scores, and a binary classification label. The data are 

pre-processed using Z-score normalization to standardize scales for the features across devices. Each 

edge device trains a local RedPO-BRNNet model, applies DP noise to the model parameters and then 

contributes updates that preserve privacy to the global aggregation using FedAvg.  RedPO-BRNNet is 

tested against LSTM, Bi-LSTM, and baseline BRNN models during five training epochs.  The proposed 

model achieves 94.97% anomaly detection accuracy, 2.14% privacy leakage, 57.82 ms client latency, 

and 78.96% model convergence efficiency, with improvements statistically validated using paired t -

tests (p < 0.05).  These results show that RedPO-BRNNet effectively protects privacy while enabling 

efficient and scalable edge intelligence, making it a dependable solution for safe, multi -device IoT 

deployments. 

Povzetek: 

 

 

1 Introduction  
Edge computing was utilized to efficiently manage the 

vast amount of data generated by various smart devices, 

particularly in the era of the rapidly growing Internet of 

Things (IoT) [1]. Unlike cloud computing, which is 

based on centralized servers, edge computing analyzes 

data locally, closer to the source, lowering latency, 

increasing decision-making speed, and optimizing 

bandwidth utilization [2]. However, as data processing 

shifts to distributed edge nodes, new issues arise in 

maintaining privacy, assuring security, and conducting 

effective data aggregation [3]. In real-world applications 

such as autonomous vehicles, healthcare monitoring, and 

smart environments, transferring raw data to central 

servers raises privacy concerns, necessitating the use of 

privacy-preserving federated and decentralized learning 

systems [4]. Federated Learning (FL) evolved as a viable 

paradigm to solve these difficulties by allowing devices 

to train local models on their own data and only share 

model updates (weights or gradients) with a central 

server, rather than raw data [5].  This decentralized 

technique ensured user anonymity while reducing 

communication overhead.   

 

 

 

 

However, investigations have demonstrated that even 

model gradients can be used to reconstitute private data 

[6].  Differential Privacy (DP) was introduced into FL to 

improve privacy by adding controlled noise to common 

parameters.  This guaranteed that changes in individual 

data points had a low impact on the global model output 

[7], hence improving dependability and secrecy in 

privacy-preserving learning frameworks [8]. Due to the 

limited internet connectivity, low power, and short 

battery life of edge devices, applying Federated Learning 

(FL) and Differential Privacy (DP) for secure data 

aggregation in edge computing presented considerable 

hurdles [9].  As a result, any secure aggregation method 

in such situations must be scalable, lightweight, and 

resistant to malicious attacks.  Furthermore, ensuring 

data integrity and accuracy while avoiding privacy 

intrusions is critical [10].  Integrating FL and DP into 

edge computing necessitated a well-defined framework 

that balanced resource efficiency with robust and secure 

data aggregation [11].  Because edge devices frequently 

encounter energy and bandwidth limits, the aggregation 

mechanism must be fault-tolerant and adaptable to client 

dropouts [12].  
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This required efficient communication protocols and 

adaptive learning models to handle noisy or missing 

inputs from edge nodes, alongside the development of 

secure aggregation mechanisms to counter both passive 

and active adversarial attacks [13]. Several limitations 

were identified, including challenges in achieving 

scalability with real-time performance on limited 

resources, substantial computational demands on edge 

nodes, vulnerability to advanced attack vectors, and 

potential trade-offs between model accuracy and privacy. 

To improve predictive accuracy, data confidentiality, and 

computational efficiency in distributed edge computing 

environments by combining FL with DP to create a safe 

and private data aggregation framework.The main 

contributions are as follows: 

Privacy-Preserving Federated Learning Framework: 

To safeguard user data in edge computing settings, a 

secure model aggregation technique that combines 

Federated Learning (FL) and Differential Privacy (DP) 

was introduced. 

Robust Dataset Collection and Preprocessing: To 

guarantee uniform feature scaling across all edge nodes, 

Z-score normalisation was used in conjunction with real-

time time-series data from dispersed IoT devices. 

Effective Hybrid Model Design: To increase 

anomaly detection precision and accelerate convergence 

in federated environments, a Red Panda Optimizer-fused 

Bidirectional Recurrent Neural Network (RedPO-

BRNNet) was created. 

 

2 Literature review  
FL-RAEC utilized phased aggregation and hybrid 

privacy methods to protect information [14]. It displayed 

good resilience to malicious interference with high 

computational costs and initial trust authentication 

requirements, emphasizing the importance of secure and 

expandable aggregation in decentralized AI learning. An 

adaptive gradient compression and differential privacy-

empowered hybrid federated edge learning system 

augmented industrial data privacy and defeated inference 

attacks [15]. Despite additional complexity and 

processing cost, it reduced latency considerably and 

improved real-time security, with a focus on scalable 

privacy-preserving learning in decentralized networks. 

Blockchain FL incorporated distributed K-means, 

random forest, and AdaBoost models combined with 

homomorphic encryption and differential privacy to 

secure IIoT data aggregation [16]. Experiments 

demonstrated improved accuracy and privacy but latency 

and computing workload remained an issue. It delivered 

greater protection from model extraction and reverse 

engineering, highlighting the importance of scalable, 

crypto-based FL aggregation. 

In an effort to counter privacy attacks and leakage 

across edge networks, a Differential Privacy-Fuzzy 

Convolution Neural Network (DP-FCNN) was 

designed, which combines the Laplace mechanism and 

a Fuzzy CNN [17]. With Java implementation and the 

use of Merkle trees, BLAKE2 hashing, and Piccolo 

encryption, it enhanced accuracy, speed of processing, 

and scalability but limited real-time flexibility and 

resilience. 

A light scheme named Privacy Protection FL for Edge 

Computing (PPFLEC) was put forward to defend privacy 

in edge computing through hash functions, digital 

signatures, and weight masking to assist in secret sharing 

with FL [18].The method facilitated data integrity, 

gradient protection, and replay and collusion attack 

resilience. Comparison results showed that differential 

privacy performed 40% worse. However, the method was 

challenged by constraints in edge instability and low 

scalability. Data privacy and integrity were prioritized 

under limited computational capabilities within Internet of 

Medical Things (IoMT) situations. Table 1 displays the 

literature   review of existing methods. 

 

2.1 Problem statement 
Federated learning solutions [19-29] show great progress 

in the ability to perform privacy-preserving computation 

via approaches like differential privacy, homomorphic 

encryption, and using blockchain. Still, existing models 

struggle with scalability when there are client dropouts 

[21], [27], computational overhead [22], [28], dependence 

on hardware-specific strategies [26], and little evaluation 

of gradient inversion or real-world settings with 

heterogeneity [19], [23]. For example, most models that 

have been proposed do not measure resiliency to network 

effects, such as latency and packet loss. The model 

proposed in this paper, RedPO-BRNNet, addresses these 

limitations by integrating Red Panda Optimization into 

Differential Privacy to achieve higher accuracy on the 

model, faster convergence, and very strong resistance to 

gradient leakage when compared to realistic edge-network 

environments.  

 

3 Methodological framework 
The Secure Edge IoT dataset, based on discrete device 

biometric data, is used for safe anomaly detection in edge-

based IoT networks. Standardization of feature scales and 

local hybrid RedPO-BRNNet model training ensures 

differential privacy. Figure 1 illustrates the complete 

process of the Secure Data Aggregation Scheme for EC. 

 
 

Figure 1: The overall process of the secure data 

aggregation scheme for EC 

 

3.1 Dataset 
The Secure Edge IoT Data for Federated Learning dataset 

with 2,501 time-series recordings captured from 10 

distributed edge devices, such as wearables and sensors. 

Context and biometric features like blood pressure, 

activity level, body temperature, and heart rate, along with 

anomaly scores and binary classification labels. The 

dataset was partitioned between 70% training, 15% 
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validation, and 15% testing using a non-IID Dirichlet 

partition (α=0.5).  

Source:https://www.kaggle.com/datasets/programmer3/s

ecure-edge-iot-data-for-federated-learning  

Table 2 displays the proposed architecture, which uses 

device-wise data distribution to show total, normal, and 

anomalous samples across ten non-IID edge devices that 

are seeded with a consistent random seed (42). 

 

 

Table 1: Summary of existing FL approaches for PPDA in edge computing 

 

Ref. 
Method / 

Approach 

Key 

Techniques 

Used 

Dataset 

/ 

Evaluat

ion 

Privacy 

Mecha

nism 

(ε/δ) 

Primary 

Metrics 

Findings / 

Outcomes 

Limitations / 

Missing Aspects 

[19] 

Differentially 

Private FL for 

Edge 

Differential 

Privacy, 

Weight-

based 

Anomaly 

Detection 

Edge 

Simulati

on 

(synthet

ic) 

ε = 2.0 
Accuracy, 

Comm. Cost 

Improved 

resilience to 

poisoning 

attacks, 

reduced 

overhead 

Limited dataset; 

lacks gradient 

leakage 

resistance 

analysis 

[20] 

Configurable FL 

with Privacy 

Mechanism 

Configurabl

e 

Participatio

n, Noise 

Addition 

Simulati

on 

Trials 

ε = 1.5 
Convergence 

Rate 

Improved 

client 

involvement, 

reduced 

comm. cost 

Poor 

convergence 

under high noise; 

no DP–model 

trade-off study 

[21] 

Privacy-

Preserving Data 

Aggregation in FL 

(PPDAFL) for  

Industrial Internet 

of Things (IIoT) 

Paillier 

Cryptosyste

m, Secret 

Sharing, 

PBFT 

Simulati

ons in 

IIoT 

Not 

Specifie

d 

Energy, 

Comm. 

Overhead 

Maintained 

privacy and 

data integrity 

Not resilient to 

client dropout; 

lacks adaptive 

training 

validation 

[22] 

Blockchain-Based 

FL for Secure 

Sharing 

Blockchain 

+ FL, 

Stackelberg 

Game, 

Gradient 

Optimizatio

n 

500-

node 

Simulati

on 

ε = 3.2 Utility, Delay 

2.01× utility 

gain; 2.59s 

faster 

performance 

High 

computational 

cost; scalability 

untested 

[23] 

Adaptive Gradient 

FL with 

Differential 

Privacy (DP) 

Adaptive 

Learning 

Rate (LR), 

Differential 

Privacy 

Edge 

Sensor 

Data 

(Compa

rative 

Experim

ents) 

ε = 0.9 

Accuracy, 

Comm. 

Rounds 

Improved 

accuracy and 

faster 

convergence 

Requires fine-

tuned 

hyperparameters; 

lacks real-world 

heterogeneity 

[24] 

Federated 

Learning with 

Privacy-

Preserving Data 

Aggregation 

(FLPDA) Scheme 

for Secure 

Attribution 

Paillier 

Cryptosyste

m, PBFT 

Consensus 

Security 

& 

Resourc

e 

Evaluati

on 

Not 

Specifie

d 

Latency, 

Storage 

Lower 

overheads in 

computation & 

storage 

Delay in key 

distribution; 

lacks empirical 

validation 

[25] 

Trust Chain FL 

with 

Homomorphic 

Encryption 

Trust Chain, 

Homomorp

hic 

Encryption, 

Secure 

Aggregation 

MNIST 

Dataset 
ε = 1.0 

Accuracy, 

Complexity 

Outperformed 

FedAvg, 

ensured secure 

aggregation 

High 

computational 

complexity 

under long key 

lengths 

https://www.kaggle.com/datasets/programmer3/secure-edge-iot-data-for-federated-learning
https://www.kaggle.com/datasets/programmer3/secure-edge-iot-data-for-federated-learning
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[26] 

Efficient and 

Privacy-

Preserving Data 

Aggregation 

(EPPDA) for IoT 

Healthcare 

Additive 

Homomorp

hic 

Encryption, 

Node 

Verification 

MySign

als HW 

V2 

Platfor

m 

Not 

Specifie

d 

Integrity, 

Energy 

Ensured 

privacy and 

integrity with 

low overhead 

Hardware-

dependent; 

limited 

scalability 

[27] 

Hybrid Federated 

Privacy-

Improved Data 

Aggregation 

(HFPIDA) for 

Wireless Sensor 

Network (WSNs) 

Homomorp

hic 

Fingerprinti

ng, Digital 

Twin 

Wireles

s Sensor 

Networ

ks 

Not 

Specifie

d 

Privacy Level, 

Energy 

Verified data 

integrity and 

reduced energy 

No real-time 

validation; lacks 

resilience to 

dynamic nodes 

[28] 

Federated 

Anomaly 

Detection 

Gaussian 

DP, Secure 

Aggregation 

Distribu

ted IoT 

Datasets 

ε = 0.8, 

δ = 

1e−5 

Accuracy, 

Privacy 

Leakage 

99.8% 

accuracy; 

mitigated 

inversion and 

leakage attacks 

High 

computational 

cost; no packet-

drop or 

scalability 

metrics 

[29] 

Edge Artificial 

Intelligence 

framework that 

combines Isolation 

Forest (IF) and 

Long Short-Term 

Memory 

Autoencoder 

(LSTM-AE 

Hybrid FL, 

Quantizatio

n 

Optimizatio

n 

Smart 

Home 

Dataset, 

IoT 

Devices 

Not 

Specifie

d 

Accuracy, 

Latency 

93.6% 

accuracy; 76% 

inference time 

reduction 

High model 

complexity, 

limited 

heterogeneity 

handling 

Propos

ed 

(RedP

O-

BRNN

et) 

Federated BRNN 

with Red Panda 

Optimization and 

Differential 

Privacy 

Adaptive 

Bidirectiona

l Recurrent 

Neural Net, 

RedPO 

Optimizer, 

DP-SGD, 

FedAvg 

Secure 

Edge 

IoT 

Data for 

Federate

d 

Learnin

g 

(Kaggle

) 

ε = 0.6, 

δ = 

1e−6 

Accuracy 

(98.9%), 

Gradient 

Leakage 

Resistance 

(94%), Packet 

Drop 

Resilience 

(94.3%), 

Model 

Compression 

(36.6%) 

Outperforms 

existing 

methods with 

faster 

convergence 

(−19.7% 

training time), 

higher 

scalability 

(92.5%), and 

stronger 

privacy 

protection. 

Slight 

performance 

trade-off under 

extreme node 

heterogeneity; 

future work 

includes SMPC 

or HE hybrid 

integration. 

 

Table 2: Simulated IoT edge device datasets using non-

IID distribution principles 

Devic

e ID 

Total 

Sampl

es 

Norma

l 

Sampl

es 

Anomalo

us 

Samples 

Distributi

on Type 

See

d 

Devic

e 1 

250 160 90 Non-IID 42 

Devic

e 2 

260 155 105 Non-IID 42 

Devic

e 3 

270 165 105 Non-IID 42 

Devic

e 4 

230 145 85 Non-IID 42 

Devic

e 5 

280 175 105 Non-IID 42 

Devic

e 6 

250 150 100 Non-IID 42 

Devic

e 7 

240 155 85 Non-IID 42 

Devic

e 8 

260 160 100 Non-IID 42 

Devic

e 9 

250 150 100 Non-IID 42 

Devic

e 10 

211 130 81 Non-IID 42 

 
3.1.1 Data exploration of privacy-preserving 

anomaly detection in federated edge IoT  
The secure federated edge learning emphasizes accuracy 

in anomaly detection, privacy protection, fast 

convergence, and strong distributed scaling among IoT 

devices. The independence of the model enhances 

privacy-preserving federated learning accuracy and 

generalization, yielding more trustworthy predictions. The 

interactions among temperature, heart rate, and anomaly 

score in the sensor data obtained from edge devices are 

depicted in Figure 2. 
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Figure 2: Correlation heatmap of key biometric features 

in edge devices 

 

Figure 3 shows average anomaly scores from ten edge 

IoT devices, demonstrating the model's sensitivity to 

minute behavioral abnormalities. It uses data 

confidentiality, accurate anomaly detection, and 

efficient convergence for real-time health monitoring. 

 

 
 

Figure 3: Anomaly score trend over time in federated Edge 

IoT framework 

 

It securely manages device-specific variability and 

identifies health problems across edge nodes without 

revealing raw biometric data, for temporal learning, 

Federated Learning and Differential Privacy for secrecy. 

The heart rate trends for randomly selected three edge 

devices (D6, D7, and D8) gathered from a distributed IoT 

system are displayed in Figure 4. 

 

 
 

Figure 4: Heart rate pattern analysis for privacy-

preserving federated monitoring 

 

Sensor data from IoT edge devices can distinguish 

between normal and aberrant behavior, with FL and DP 

ensuring secure anomaly detection without revealing raw 

data, making it beneficial for sensitive edge computing 

applications in Figure 5. 

 

 
 

Figure 5: Anomaly score distribution for federated edge 

device monitoring. 

 

Figure 6 shows data contribution rates from ten IoT edge 

devices in federated learning configuration. D7, D4, and 

D1 provide the most data, ensuring strong representation 

in the global model and promoting effective FedAvg. 

 

 
 

Figure 6: Device-wise data contribution in federated 

edge learning 

 

A scatter plot of heart rate vs body temperature shows 

effectively detects subtle biometric changes, even weakly 

connected features. This highlights the importance of 

dense temporal learning models in federated networks for 

privacy-preserving anomaly detection in Figure 7. 
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Figure 7:  Scatter plot of heart rate vs. temperature with 

anomaly classification 

 

3.2 Pre-processing 
Z-score normalization is used to preprocess sensed edge 

device distributed time-series data. The data gets normalized 

to a mean of 0 and standard deviation of 1 during this 

process, which normalizes each feature by subtracting its 

mean and dividing by its standard deviation. This is useful to 

models, as it speeds up training and makes training on 

different devices more consistent. It makes all the features 

have the same significance, eliminating bias in FL's learning 

procedure. As stated in Equation (1), the normalized value u′ 

is computed as: 

u′ =
uj−Fj

std(F)
    (1) 

Where, u′ = normalization value's outcome. u = the attribute's 

actual value to be adjusted. Fj = attribute's deviation. 𝑗 = 

Feature being normalized in each edge device's local dataset. 

This change enhances the global model's resilience and 

maintains privacy while enabling uniform training across all 

participating edge nodes. 

 

3.3 RedPO-BRNNet model 
RedPO-BRNNet, which integrates RedPO and BRNNet, 

boosts convergence in FL on EC systems. The model is 

robust in protecting privacy and injecting DP noise, allowing 

secure, scalable, and communications-efficient learning under 

scarce resources. Algorithm 1 illustrates the training process.  

Algorithm 1: Hybrid RedPO-BRNNet Model 

𝐼𝑛𝑝𝑢𝑡:  
    𝑇𝑟𝑎𝑖𝑛𝑖𝑛𝑔 𝑑𝑎𝑡𝑎𝑠𝑒𝑡 𝐷 =  {(𝑋_𝑖, 𝑦_𝑖)} 𝑓𝑜𝑟 𝑖 = 1. . 𝑁 
    𝐻𝑦𝑝𝑒𝑟𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠:  
        ℎ𝑖𝑑𝑑𝑒𝑛_𝑢𝑛𝑖𝑡𝑠 =  128 
        𝑙𝑒𝑎𝑟𝑛𝑖𝑛𝑔_𝑟𝑎𝑡𝑒 =  0.001 
        𝑒𝑝𝑜𝑐ℎ𝑠 =  50 
        𝑏𝑎𝑡𝑐ℎ_𝑠𝑖𝑧𝑒 =  64 
    𝑅𝑒𝑑𝑃𝑂 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠: 
        𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛_𝑠𝑖𝑧𝑒 𝑃 =  30 
        𝑚𝑎𝑥_𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠 𝐼 =  100 
        𝛼 =  0.8  (𝑒𝑥𝑝𝑙𝑜𝑟𝑎𝑡𝑖𝑜𝑛 𝑓𝑎𝑐𝑡𝑜𝑟) 
        𝛽 =  0.3  (𝑒𝑥𝑝𝑙𝑜𝑖𝑡𝑎𝑡𝑖𝑜𝑛 𝑓𝑎𝑐𝑡𝑜𝑟) 
        𝑤𝑒𝑖𝑔ℎ𝑡_𝑟𝑎𝑛𝑔𝑒 =  [−0.5, 0.5] 
𝑂𝑢𝑡𝑝𝑢𝑡: 
    𝑇𝑟𝑎𝑖𝑛𝑒𝑑 𝑅𝑒𝑑𝑃𝑂 − 𝐵𝑅𝑁𝑁𝑒𝑡 𝑚𝑜𝑑𝑒𝑙 𝑤𝑖𝑡ℎ 𝑜𝑝𝑡𝑖𝑚𝑖𝑧𝑒𝑑 𝑤𝑒𝑖𝑔ℎ𝑡𝑠 
1. 𝐼𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑧𝑒 𝐵𝑖𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛𝑎𝑙 𝑅𝑁𝑁: 
    − 𝑓𝑜𝑟𝑤𝑎𝑟𝑑_𝑅𝑁𝑁 =  𝐿𝑆𝑇𝑀 𝑤𝑖𝑡ℎ 128 ℎ𝑖𝑑𝑑𝑒𝑛 𝑢𝑛𝑖𝑡𝑠 
    − 𝑏𝑎𝑐𝑘𝑤𝑎𝑟𝑑_𝑅𝑁𝑁 =  𝐿𝑆𝑇𝑀 𝑤𝑖𝑡ℎ 128 ℎ𝑖𝑑𝑑𝑒𝑛 𝑢𝑛𝑖𝑡𝑠 
    − 𝐶𝑜𝑚𝑏𝑖𝑛𝑒 𝑓𝑜𝑟𝑤𝑎𝑟𝑑 +  𝑏𝑎𝑐𝑘𝑤𝑎𝑟𝑑 ℎ𝑖𝑑𝑑𝑒𝑛 𝑠𝑡𝑎𝑡𝑒𝑠 

→  𝑠𝑖𝑧𝑒 =  256 
    − 𝐴𝑑𝑑 𝑎 𝐷𝑒𝑛𝑠𝑒 𝑙𝑎𝑦𝑒𝑟 𝑤𝑖𝑡ℎ 64 𝑢𝑛𝑖𝑡𝑠, 𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛 =  𝑅𝑒𝐿𝑈 
    − 𝐴𝑑𝑑 𝑂𝑢𝑡𝑝𝑢𝑡 𝑙𝑎𝑦𝑒𝑟: 

        𝐹𝑜𝑟 𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛: 𝐷𝑒𝑛𝑠𝑒(𝑛𝑢𝑚_𝑐𝑙𝑎𝑠𝑠𝑒𝑠), 𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛 
=  𝑠𝑜𝑓𝑡𝑚𝑎𝑥 

        𝐹𝑜𝑟 𝑟𝑒𝑔𝑟𝑒𝑠𝑠𝑖𝑜𝑛: 𝐷𝑒𝑛𝑠𝑒(1), 𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛 =  𝑙𝑖𝑛𝑒𝑎𝑟 
2. 𝐼𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑧𝑒 𝑅𝑒𝑑 𝑃𝑎𝑛𝑑𝑎 𝑂𝑝𝑡𝑖𝑚𝑖𝑧𝑒𝑟 (𝑅𝑒𝑑𝑃𝑂): 
    − 𝐶𝑟𝑒𝑎𝑡𝑒 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 𝑊 𝑜𝑓 𝑠𝑖𝑧𝑒 𝑃 =  30 
    − 𝐹𝑜𝑟 𝑒𝑎𝑐ℎ 𝑤_𝑗 𝑖𝑛 𝑊: 
         𝑅𝑎𝑛𝑑𝑜𝑚𝑙𝑦 𝑖𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑧𝑒 𝑎𝑙𝑙 𝑤𝑒𝑖𝑔ℎ𝑡𝑠 & 𝑏𝑖𝑎𝑠𝑒𝑠 𝑖𝑛 

 𝑟𝑎𝑛𝑔𝑒 [−0.5, 0.5] 
    − 𝐹𝑜𝑟 𝑒𝑎𝑐ℎ 𝑤_𝑗: 
         𝐸𝑣𝑎𝑙𝑢𝑎𝑡𝑒 𝑓𝑖𝑡𝑛𝑒𝑠𝑠 𝐹(𝑤_𝑗): 
             𝑃𝑎𝑠𝑠 𝑏𝑎𝑡𝑐ℎ 𝑡ℎ𝑟𝑜𝑢𝑔ℎ 𝐵𝑅𝑁𝑁 𝑤𝑖𝑡ℎ 𝑤𝑒𝑖𝑔ℎ𝑡𝑠 𝑤_𝑗 
             𝐶𝑜𝑚𝑝𝑢𝑡𝑒 𝑙𝑜𝑠𝑠 (𝑐𝑟𝑜𝑠𝑠
− 𝑒𝑛𝑡𝑟𝑜𝑝𝑦 𝑓𝑜𝑟 𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛 𝑜𝑟 𝑀𝑆𝐸 𝑓𝑜𝑟 𝑟𝑒𝑔𝑟𝑒𝑠𝑠𝑖𝑜𝑛) 
    − 𝐹𝑖𝑛𝑑 𝑡ℎ𝑒 𝑏𝑒𝑠𝑡 𝑤𝑒𝑖𝑔ℎ𝑡 𝑣𝑒𝑐𝑡𝑜𝑟 𝑤𝑏𝑒𝑠𝑡𝑤𝑖𝑡ℎ 𝑡ℎ𝑒 

 𝑙𝑜𝑤𝑒𝑠𝑡 𝑙𝑜𝑠𝑠 
3. 𝑅𝑒𝑑𝑃𝑂 𝑀𝑎𝑖𝑛 𝐿𝑜𝑜𝑝 (𝑡 =  1 𝑡𝑜 𝐼 =  100): 
    𝐹𝑜𝑟 𝑒𝑎𝑐ℎ 𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒 𝑤_𝑗 𝑖𝑛 𝑡ℎ𝑒 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛: 
        − 𝐸𝑥𝑝𝑙𝑜𝑟𝑎𝑡𝑖𝑜𝑛 𝑠𝑡𝑒𝑝: 
            𝑤_𝑗_𝑛𝑒𝑤 =  𝑤_𝑗 +  0.8 ∗  𝑟𝑎𝑛𝑑()  ∗  (𝑤_𝑏𝑒𝑠𝑡 −  𝑤_𝑗)  

+  𝐺𝑎𝑢𝑠𝑠𝑖𝑎𝑛_𝑛𝑜𝑖𝑠𝑒(𝜇 = 0, 𝜎 = 0.05) 
        − 𝐸𝑥𝑝𝑙𝑜𝑖𝑡𝑎𝑡𝑖𝑜𝑛 𝑠𝑡𝑒𝑝: 
            𝑤_𝑗_𝑛𝑒𝑤 =  𝑤_𝑗_𝑛𝑒𝑤 +  0.3 ∗  (𝑟𝑎𝑛𝑑()  −  0.5)  

∗  (𝑤_𝑏𝑒𝑠𝑡 −  𝑚𝑒𝑎𝑛(𝑊)) 
        − 𝐶𝑙𝑖𝑝 𝑤_𝑗_𝑛𝑒𝑤 𝑤𝑖𝑡ℎ𝑖𝑛 [−0.5, 0.5] 
        − 𝐸𝑣𝑎𝑙𝑢𝑎𝑡𝑒 𝐹(𝑤_𝑗_𝑛𝑒𝑤) 
        − 𝐼𝑓 𝐹(𝑤_𝑗_𝑛𝑒𝑤)  <  𝐹(𝑤_𝑗): 
            𝑈𝑝𝑑𝑎𝑡𝑒 𝑤_𝑗 =  𝑤_𝑗_𝑛𝑒𝑤 
    − 𝑈𝑝𝑑𝑎𝑡𝑒 𝑤_𝑏𝑒𝑠𝑡 𝑖𝑓 𝑎 𝑛𝑒𝑤 𝑏𝑒𝑠𝑡 𝑖𝑠 𝑓𝑜𝑢𝑛𝑑 
4. 𝑆𝑒𝑡 𝑛𝑒𝑡𝑤𝑜𝑟𝑘 𝑤𝑒𝑖𝑔ℎ𝑡𝑠 𝑡𝑜 𝑤_𝑏𝑒𝑠𝑡 
5. 𝐹𝑖𝑛𝑒 − 𝑡𝑢𝑛𝑒 𝑤𝑖𝑡ℎ 𝐺𝑟𝑎𝑑𝑖𝑒𝑛𝑡 𝐷𝑒𝑠𝑐𝑒𝑛𝑡: 
    − 𝑈𝑠𝑒 𝐴𝑑𝑎𝑚 𝑜𝑝𝑡𝑖𝑚𝑖𝑧𝑒𝑟, 𝑙𝑒𝑎𝑟𝑛𝑖𝑛𝑔_𝑟𝑎𝑡𝑒 =  0.001 
    − 𝑇𝑟𝑎𝑖𝑛 𝑓𝑜𝑟 10 𝑎𝑑𝑑𝑖𝑡𝑖𝑜𝑛𝑎𝑙 𝑒𝑝𝑜𝑐ℎ𝑠 𝑜𝑛 𝑡ℎ𝑒 𝑓𝑢𝑙𝑙 𝑑𝑎𝑡𝑎𝑠𝑒𝑡 
6.𝑂𝑢𝑡𝑝𝑢𝑡 𝑓𝑖𝑛𝑎𝑙 𝑡𝑟𝑎𝑖𝑛𝑒𝑑 𝑅𝑒𝑑𝑃𝑂 − 𝐵𝑅𝑁𝑁𝑒𝑡 
𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛: 
    𝐹𝑜𝑟 𝑛𝑒𝑤 𝑖𝑛𝑝𝑢𝑡 𝑋: 
        − 𝑃𝑎𝑠𝑠 𝑡ℎ𝑟𝑜𝑢𝑔ℎ 𝑓𝑜𝑟𝑤𝑎𝑟𝑑_𝑅𝑁𝑁 & 𝑏𝑎𝑐𝑘𝑤𝑎𝑟𝑑_𝑅𝑁𝑁 
        − 𝐶𝑜𝑛𝑐𝑎𝑡𝑒𝑛𝑎𝑡𝑒 ℎ𝑖𝑑𝑑𝑒𝑛 𝑠𝑡𝑎𝑡𝑒𝑠 (𝑠𝑖𝑧𝑒 256) 
        − 𝑃𝑎𝑠𝑠 𝑡ℎ𝑟𝑜𝑢𝑔ℎ 𝑑𝑒𝑛𝑠𝑒 +  𝑜𝑢𝑡𝑝𝑢𝑡 𝑙𝑎𝑦𝑒𝑟 
        − 𝑅𝑒𝑡𝑢𝑟𝑛 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛 𝑦_ℎ𝑎𝑡  

The Hybrid RedPO-BRNNet model is a training protocol 

that synergizes a RedPO and a BRNN for robust learning. It 

uses a Bidirectional LSTM, dense ReLU layer, and Red 

Panda Optimizer to optimize the population and create 

diversity. This hybrid approach produces a well-trained 

model with higher accuracy, faster convergence, and greater 

generalization than traditional gradient-based training alone. 

 

3.3.1 Bidirectional recurrent neural network 

(BRNNet) model for learning IoT time-series 

data 
The proposed RedPO-BRNNet framework uses 

Bidirectional Recurrent Neural Network (BRNNet) 

structures to efficiently mimic sequence or time-series 

information from edge devices like wearable sensors, 

extracting temporal relationships and holding contextual 

information in local data before aggregation. The power of 

the RNN lies in the fact that it can have a representation in 

terms of the input at time s and the hidden state time at s −
 i, which is in terms of the input at time s −  i as well as the 

hidden state at time s −  i, and hence is suited for structured 

IoT data modeling under low-resource scenarios. For the 

input vector sequence W = {wi, … ,wS}   and an output 

vector sequence. The RNN activations are calculated as 

follows, Z = {z𝑖 , … , zS} in Equations (2) and (3), 
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gt = tanh(Xwgws
+ Xgggs−i + ag) (2) 

zs = Xgzgs + az   (3) 

 

An RNN operates by maintaining past data in a hidden 

state (gt). It receives new input (ws) in each step and refines 

this memory with the help of weights (Xwg and Xgg) and a 

tiny constant referred to as bias (ag ). Then, it gives an 

output (zs) using more weights (Xgz) and another bias (az). 

The conditional probabilities of output tokens in sequence 

modelling tasks, such as local prediction at edge nodes, are 

provided by Equation (4): 

 

o(xs = j|xs−i, gs−2) =
exp (zs

i )

∑ exp(zs
i )M

i=1

 (4) 

 

The jthelement of the output vector zs
i  representing the 

activation for token, 𝑥𝑠−𝑖 indicates the preceding time-step 

input value. 𝑔𝑠−2  Indicates an earlier concealed memory 

state. M  is the verbal size, the overall possibility of a 

classification O(xs|xs − i, gs−2, xs + 1, gs + 2) is in Equation 

(5): 

 

O = (X) = ∏ o = (xs|xs−i, gs−2)
S
s=i    (5) 

 

RNN language models offer superior accuracy and privacy 

compared to feedforward neural networks and word/class 

m-gram models, using past data for edge devices' 

predictions and Federated Averaging and Differential 

Privacy. It enhances prediction precision and facilitates 

effective federated model convergence, with two distinct 

hidden states calculated in the BRNNet architecture in 

Figure 8. 

 

 
 

Figure 8: The BRNNet structure 

 

The input sequence is processed by a forward hidden layer 

gs
E, which runs from time step s = i, … , S. Need to validate 

the normalized data in the input. A backward hidden layer 

that analyses the sequence in reverse from s = S, … , T,  is 

called gs
A. The followings are the related equations for the 

activations of the hidden states: 

 

gs
E = tanh(Xwg

E ws + Xgg
E gs−i

E + ag
E)  (6) 

gs
A = tanh(Xwg

A ws + Xgg
A gs−i

A + ag
A)  (7) 

zs = Xgz
E gs−i

E + Xgz
A gs−i

A + az  (8) 

 

In Equations (6) to (8), at each time step s , it has a 

forward hidden state (gs
E) that processes input ws from the 

past, and a backward hidden state ( gs
A ) that processes 

input from the future. These hidden states are updated 

using input-to-hidden weights ( Xwg
E , Xwg

A ), hidden-to-

hidden weights (Xgg
E , Xgg

A ), and biases (ag
E, ag

A). The final 

output zs  is generated by combining the two directions 

using hidden-to-output weights (Xgz
E , Xgz

A ) and an output 

bias (az), that outputs mention 0 – normal data, and i – 

mentions anomalous data. Bidirectional models improve 

understanding of temporal patterns by utilizing past and 

future contextual information. Despite challenges in exact 

likelihood estimation, optimizing based on contextual data 

boosts learning performance and secures anomaly 

detection across distributed IoT devices. The RedPO-

BRNNet model incorporates Gaussian DP by clipping 

local gradients to an L2 norm and adding Gaussian noise 

for security. It employs Rényi Differential Privacy (RDP) 

to measure cumulative privacy loss during training, 

achieving a total budget of 1.5 and 1e-5, thereby 

balancing privacy with model utility. This architecture, 

utilizing Adam, features adaptive exploration-

exploitation-based parameter modifications to ensure 

performance improvements are solely attributed to 

optimization enhancements. 

 

3.3.2 Red Panda Optimizer (RedPO) for fast 

model convergence in edge devices 
The RedPO is population-based, drawing inspiration from 

red pandas' diversified foraging strategy in search of 

maximally efficient model parameters. It uses their 

diverse diet, like bamboo, acorns, berries, fruits, grasses, 

lichen, mushrooms, and roots, to select and adjust model 

weights, equation (9) demonstrating their effective 

strategy for dealing with feature spaces and loss surfaces.  

qid = kac + rand( ). (vac − kac)j = 1,2,… .M;    c =
1,2,… . , n    (9) 

The value of the c thdecision variable for the jth  red 

panda (solution) is represented by qid, while the lower and 

upper bounds of the search space are denoted by kacand 

vac, respectively. Equation (10) illustrates that the full set 

of red pandas (solutions) is included in the overall 

population matrix Q , where each column is a model 

parameter (decision variable) and each row denotes a 

candidate solution (Qj): 

 

Q =

[
 
 
 
 
Q1

⋮
Qj

⋮
QM]

 
 
 
 

M×n

=

[
 
 
 
 

q11 ⋯ q1c ⋯ q1n

⋮ ⋱ ⋮ ⋰ ⋮
qj1 ⋯ qid ⋯ qim

⋮ ⋰ ⋮ ⋱ ⋮
qM1 ⋯ qMc ⋯ qMn]

 
 
 
 

M×n

 (10) 

 

Equation (11) calculates the objective function for 

evaluating each red panda's performance, which is the 

model's anticipated accuracy or loss minimization: 
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ObF =

[
 
 
 
 
ObF1

⋮
ObFj

⋮
ObFM]

 
 
 
 

M×1

=

[
 
 
 
 
ObF (Q1)

⋮
ObF(Qj) 

⋮
ObF(QM) ]

 
 
 
 

M×1

 (11) 

 

Here, ObFj denotes the objective function value of 

the   jth, and ObF is the evaluated objective function 

candidate solution local model parameters, such as 

classification loss and accuracy. 

Exploration Stage in Edge-Based Federated 

Optimization: The RedPO exploration stage enables a wide 

search throughout the parameter space to improve model 

accuracy and shorten convergence times in edge devices. 

Each local model actively looks for parameter 

configurations that provide superior objective function 

values, drawing inspiration from the animal's keen 

olfactory, auditory, and visual sense skills. The following is 

a group of candidate positions with exceptional 

performance in Equation (12): 

 

PFS = {Ol|l ∈ {1,2, … .M}and El < Ej} ∪ {Obest}(12) 

 

PFS stands for the collection of anticipated improved 

model parameters (food sources) for the client, the red 

panda, and Obest  indicates the globally most well-known 

solution among all participating edge users. The edge 

model's red panda modifies its current parameter vector by 

using Equations (13) and (14): 

 

Qj,c
O1 = Qj,c + rand(. ). (SFSj,c − J. qj,c) (13) 

Qj = {
Qj

O1,   Ej
O1 < Ej;

Qj, otherwise
   (14) 

 

The solution is approved if this revised location results 

in a better objective function value Ej
O1 < Ej : The newly 

suggested parameter value is represented by Qj,c
O1, while the 

chosen food source superior parameter configuration is 

represented by SFSj,c . In federated optimisation, this stage 

improves global search and aids in avoiding local optima. 

The exploitation stage refines local parameters by using 

local search, replicating red pandas' foraging approach, 

reducing training overhead and improving convergence 

precision in edge situations with limited resources. The red 

panda, representing the local model, modifies its parameter 

in the following Equation (15): 

 

qid
O2 = qj,c +

kac+rand( ).(vac−kac)

s
  (15) 

 

This facilitates fine-tuning by allowing little 

experimentation with current parameters.  Equation (16) 

only retains the model modification when it results in 

improvement. 

 

Qj = {
Qj

O2,    Ej
O2 < Ej

Qj,   otherwise
   (16) 

 Ej
O2 < Ej  is the matching objective function value, 

and Qj
O2 is the updated model state for the jthdevice. The 

RedPO method offers quick convergence, solution 

viability, and lower execution times for FL models in 

distant edge computing environments with privacy 

constraints, hence enhancing prediction precision. The 

RedPO's convergence requirements are reinforced by 

empirical validation and theoretical analysis, which show 

stability under constrained gradients and Lipschitz 

continuity, ensuring consistent convergence over 

communication rounds and model updates. 

The RedPO-BRNNet model optimizes BRNN by 

encoding weights and biases into a single solution vector. 

The search process involves exploration and exploitation, 

balancing global search and local exploitation for optimal 

parameters, resulting in improved prediction performance 

and convergence. Algorithm 2 display the using 

population initialization, exploration-exploitation 

balancing, iterative weight updates, fitness evaluation, and 

global best selection to optimize neural network 

parameters. Table 3 lists the primary hyperparameter 

environments for the proposed model, which are adjusted 

to deliver efficient convergence, dependable temporal 

learning, and privacy-preserving performance in edge 

computing environments. 

 

Table 3: Hyperparameter settings for RedPO-BRNNet 

model 

 

Hyperparameter Value / Setting 

Number of Hidden Layers 2 

Hidden Units per Layer 128 

Learning Rate 0.001 

Batch Size 32 

Dropout Rate 0.3 

Local Training Epochs 5 

Sequence Length (Time Steps) 10 

Differential Privacy Noise (σ) 0.85 

FedAvg Rounds 20 

 

Algorithm 2. RedPO optimizer 

𝑺𝒕𝒆𝒑 𝟏. 𝑰𝒏𝒊𝒕𝒊𝒂𝒍𝒊𝒛𝒆 𝒑𝒐𝒑𝒖𝒍𝒂𝒕𝒊𝒐𝒏 𝒓𝒂𝒏𝒅𝒐𝒎𝒍𝒚 
𝒑𝒐𝒑𝒖𝒍𝒂𝒕𝒊𝒐𝒏 =  𝒏𝒑. 𝒓𝒂𝒏𝒅𝒐𝒎. 𝒖𝒏𝒊𝒇𝒐𝒓𝒎(𝒍𝒐𝒘

= −𝟏, 𝒉𝒊𝒈𝒉 = 𝟏, 𝒔𝒊𝒛𝒆
= (𝒑𝒐𝒑_𝒔𝒊𝒛𝒆, 𝒅𝒊𝒎)) 

𝒇𝒊𝒕𝒏𝒆𝒔𝒔 
=  𝒏𝒑. 𝒂𝒓𝒓𝒂𝒚([𝒇𝒊𝒕𝒏𝒆𝒔𝒔_𝒇𝒖𝒏𝒄𝒕𝒊𝒐𝒏(𝒊𝒏𝒅) 𝒇𝒐𝒓 𝒊𝒏𝒅 𝒊𝒏 

 𝒑𝒐𝒑𝒖𝒍𝒂𝒕𝒊𝒐𝒏]) 
𝑺𝒕𝒆𝒑 𝟐. 𝑰𝒅𝒆𝒏𝒕𝒊𝒇𝒚 𝒕𝒉𝒆 𝒃𝒆𝒔𝒕 𝒊𝒏𝒅𝒊𝒗𝒊𝒅𝒖𝒂𝒍 
𝒃𝒆𝒔𝒕_𝒊𝒅𝒙 =  𝒏𝒑. 𝒂𝒓𝒈𝒎𝒊𝒏(𝒇𝒊𝒕𝒏𝒆𝒔𝒔) 
𝒃𝒆𝒔𝒕_𝒔𝒐𝒍𝒖𝒕𝒊𝒐𝒏 =  𝒑𝒐𝒑𝒖𝒍𝒂𝒕𝒊𝒐𝒏[𝒃𝒆𝒔𝒕_𝒊𝒅𝒙]. 𝒄𝒐𝒑𝒚() 
𝒃𝒆𝒔𝒕_𝒇𝒊𝒕𝒏𝒆𝒔𝒔 =  𝒇𝒊𝒕𝒏𝒆𝒔𝒔[𝒃𝒆𝒔𝒕_𝒊𝒅𝒙] 
𝑺𝒕𝒆𝒑 𝟑. 𝑰𝒕𝒆𝒓𝒂𝒕𝒊𝒗𝒆 𝒐𝒑𝒕𝒊𝒎𝒊𝒛𝒂𝒕𝒊𝒐𝒏 
𝒇𝒐𝒓 𝒕 𝒊𝒏 𝒓𝒂𝒏𝒈𝒆(𝒎𝒂𝒙_𝒊𝒕𝒆𝒓): 
𝒑_𝒆𝒙𝒑𝒍𝒐𝒓𝒆 =  𝟎. 𝟖 ∗  (𝟏 −  𝒕/𝒎𝒂𝒙_𝒊𝒕𝒆𝒓) 
𝒇𝒐𝒓 𝒊 𝒊𝒏 𝒓𝒂𝒏𝒈𝒆(𝒑𝒐𝒑_𝒔𝒊𝒛𝒆): 
𝒊𝒇 𝒏𝒑. 𝒓𝒂𝒏𝒅𝒐𝒎. 𝒓𝒂𝒏𝒅()  <  𝒑_𝒆𝒙𝒑𝒍𝒐𝒓𝒆: 
𝒔𝒕𝒆𝒑 =  𝒂𝒍𝒑𝒉𝒂 ∗  𝒏𝒑. 𝒓𝒂𝒏𝒅𝒐𝒎. 𝒓𝒂𝒏𝒅𝒏(𝒅𝒊𝒎) 
𝒆𝒍𝒔𝒆: 
𝒔𝒕𝒆𝒑 =  𝒂𝒍𝒑𝒉𝒂 ∗  (𝒃𝒆𝒔𝒕_𝒔𝒐𝒍𝒖𝒕𝒊𝒐𝒏 −  𝒑𝒐𝒑𝒖𝒍𝒂𝒕𝒊𝒐𝒏[𝒊]) 
𝒑𝒐𝒑𝒖𝒍𝒂𝒕𝒊𝒐𝒏[𝒊] +=  𝒔𝒕𝒆𝒑 
𝒇𝒊𝒕𝒏𝒆𝒔𝒔[𝒊]  =  𝒇𝒊𝒕𝒏𝒆𝒔𝒔_𝒇𝒖𝒏𝒄𝒕𝒊𝒐𝒏(𝒑𝒐𝒑𝒖𝒍𝒂𝒕𝒊𝒐𝒏[𝒊]) 
𝒊𝒇 𝒇𝒊𝒕𝒏𝒆𝒔𝒔[𝒊]  <  𝒃𝒆𝒔𝒕_𝒇𝒊𝒕𝒏𝒆𝒔𝒔: 
𝒃𝒆𝒔𝒕_𝒇𝒊𝒕𝒏𝒆𝒔𝒔 =  𝒇𝒊𝒕𝒏𝒆𝒔𝒔[𝒊] 
𝒃𝒆𝒔𝒕_𝒔𝒐𝒍𝒖𝒕𝒊𝒐𝒏 =  𝒑𝒐𝒑𝒖𝒍𝒂𝒕𝒊𝒐𝒏[𝒊]. 𝒄𝒐𝒑𝒚() 
𝒂𝒍𝒑𝒉𝒂 =  𝒂𝒍𝒑𝒉𝒂 ∗  𝟎. 𝟗𝟗 

𝒓𝒆𝒕𝒖𝒓𝒏 𝒃𝒆𝒔𝒕_𝒔𝒐𝒍𝒖𝒕𝒊𝒐𝒏, 𝒃𝒆𝒔𝒕_𝒇𝒊𝒕𝒏𝒆𝒔𝒔 
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The RedPO pseudocode starts with a population of potential 

solutions, where each is a representation of network weights. At 

every iteration, each individual either explores new areas in a 

random manner or exploits the current best solution. The fitness 

of each candidate is calculated, the global best is updated as 

needed, and the probability of exploring versus exploiting is 

decreased over time to support convergence. Local refinement 

or step-size decay may also be applied to improve performance. 

This mechanism supports efficient optimization of neural 

network parameters by balancing a global search of 

hyperparameters with local tuning to improve predictive 

performance while avoiding getting trapped in mini-maxima. 

 

3.3.3 Federated averaging (FedAvg) algorithm for 

secure federated learning  
To improve predictive accuracy, data confidentiality, and 

computational efficiency in distributed EC environments, 

DP is incorporated into the standard FedAvg algorithm to 

create a privacy-preserving FL framework. A parameter 

server (PS) and a total of M  clients make up this FL network. 

The PS manages training without directly editing any client's 

raw data, protecting local data privacy. Assume that 𝒞l ≜

{(wl,n, zl,n)}n=1

ml
represent the local dataset on the lth client for 

l ∈ [M]  ≜ {1,… . . , M}, where: ml  is the number of samples on 

client  l ,   wl,n  is the  n − th training input, and zl,n is the 

corresponding label. The collaborative model training process 

aims to solve the following global optimization problem in 

Equation (17): 

 

min
x

{E(x) ≜ ∑ ol
M
l=1 El(x)}    (17) 

 

Here, x = the shared global model. M = the total number 

of devices (clients). El(x)= the loss (error) on the data from 

the lthdevice. ol = the weight for each device, based on how 

much data it has. E(x)= the combined loss across all devices.  

x ∈ ℚN  is the global model parameter vector to be learned, 

ol =
ml

∑ ml
M
l=1

 is the relative weight of the client l dataset in the 

global aggregation     m = ∑ ml
M
l=1  is the whole number of 

training samples through all clients,  

 

∑ ml,
ml
l=1 El(x) =

1

ml
∑ ℓ(x;wl,n, zl,n)

ml
n=1    (18) 

 

 

 

 

 

 

 

 

 

In Equation (18), ml,  is the number of training 

sections on the nth user. ℓ(x;wl,n, zl,n) is the loss for the 

nth sample on client l , calculated using wl,n : the input 

features of the  nth  data point on client l. zl,n : the true 

label/output corresponding to wl,n,  x is the current global 

model parameters. The local cost function ℓ(. ) on client l 
based on a user-defined loss function. The FedAvg 

algorithm is based on the traditional Distributed 

Stochastic Gradient Descent (SGD) and is used to solve 

the global optimisation issue given in Equation (17). 

Because it allows several clients to work together to train 

a global model while ensuring data secrecy, this method 

works well in decentralised edge contexts. Every client 

l separately updates its local model xs
l  using local SGD 

based on its private dataset for each training round s. The 

expression for the local update rule is in Equation (19): 

 

xs+1
l ← xs

l − ηs∇El(xs
l ; ξs

l , a)  (19) 

 

Where ηs is the learning rate (step size) at iteration 

s, a is the mini-batch size used for local updates,   ξs
l   is 

a randomly sampled mini-batch from the dataset 𝒞l , 

taken from [
ml

a
] mini-batches, in Equation (20): 

 

 ∇El(xs
l ; ξs

l , a) = (
1

a
)∑ ∇ℓn∈ξl

s (xs
l ; wl,n, zl,n)  (20) 

 

Here: xs
l  is the current model on client l during 

training round s.  ξs
l   is the small random batch (mini-

batch) of data taken from client l local dataset. a is the 

size of the mini-batch (how many data points are in it). 

wl,n: The gradient of the loss function tells us how to 

adjust the model to improve its predictions. ∇El : The 

average gradient for the mini-batch used to update the 

local model is the mini-batch stochastic gradient of the 

loss function. Each client sends the PS their updated 

local models xs+1
l , l ∈ [M], after calculating the local 

modifications. To get the most recent global model, the 

PS averages the models: Where  x̅s+1 = ∑ olxs+1
lM

l=1 , 

indicates the client l's relative data weight. The mean 

model   x̃s+1 . All clients are informed of s + 1 for the 

upcoming training session. Two crucial tactics are 

principally responsible for this improvement:  

➢ Partial client participation 

➢ Multiple local SGD updates. 

During each communication cycle, a random subset 

of clients𝒯s ⊆ [M], with subset size |𝒯s| = L, is chosen 

to perform local SGD updates and send their modified 

models to the PS in partial client participation. The 

following weighted model averaging may be used to 

estimate the global model objectively when choosing  𝒯s 

is regarded as sampling without replacement.  

 

 

 

 

 

 

 x̅s+1 =
M

L
 ∑ olxs+1

l
l∈𝒯s     (21) 

 

Where: x̅s+1  is the updated global model after the 

communication round, s + 1 is aggregated from selected 

clients. M  is the total number of clients in the federated 

learning network. l : The number of clients selected to 

participate in this round. A random subset of clients is 

selected during communication round s . ol  is the relative 

weight of client l, defined as olxs+1
l is the quantity of data 

models on client l.  x̅s+1 : The locally updated model from 

client l after round s + 1 in Equation (21).  Theoretical and 

empirical examination also demonstrated that clients 

performing R > 1  local SGD updates every communication 

round can speed up convergence. Let s0 be the iteration that 
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satisfies mod (s0, R) = 0 . Next, each client executes  l 
successive local SGD updates in the manner described below: 

For  s = s0, … . . , s0 + R − 1  , As a result, contact with the PS 

only happens during iterations when mod  (s + 1, R) = 0. The 

entire amount of communication sequences is 
S

R
 . If S is the 

total number of local updates. FedAvg can't adequately secure 

data confidentiality despite its effective communication, 

particularly in hostile environments. The shared updates can 

be used by both trustworthy but inquisitive servers and 

outside attackers.  {xs+1
l }

l=1

M
  To deduce private client 

information.  

Algorithms 3–7 provide a complete framework covering 

privacy accounting, model convergence efficiency, 

communication overhead, gradient-leakage resistance, and 

reproducibility—ensuring secure, efficient, and transparent 

evaluation of federated edge AI systems.  

 

Algorithm 3: Rényi Differential Privacy (RDP) Accountant 

Purpose: Compute the overall privacy budget (ε,δ)(\varepsilon, 

\delta)(ε,δ) for the global model after all communication rounds. 

𝐼𝑛𝑝𝑢𝑡: 

    𝜎        →  𝑛𝑜𝑖𝑠𝑒 𝑚𝑢𝑙𝑡𝑖𝑝𝑙𝑖𝑒𝑟 

    𝑞        →  𝑐𝑙𝑖𝑒𝑛𝑡 𝑠𝑎𝑚𝑝𝑙𝑖𝑛𝑔 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑝𝑒𝑟 𝑟𝑜𝑢𝑛𝑑 

    𝑇        →  𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑜𝑚𝑚𝑢𝑛𝑖𝑐𝑎𝑡𝑖𝑜𝑛 𝑟𝑜𝑢𝑛𝑑𝑠 

    𝛿        →  𝑡𝑎𝑟𝑔𝑒𝑡 𝑑𝑒𝑙𝑡𝑎 (𝑒. 𝑔. , 1𝑒 − 5) 

    𝛼_𝑙𝑖𝑠𝑡   

→  𝑙𝑖𝑠𝑡 𝑜𝑓 𝑅é𝑛𝑦𝑖 𝑜𝑟𝑑𝑒𝑟𝑠 (𝑒. 𝑔. , [2, 4, 8, 16, 32, 64, 128]) 

𝑂𝑢𝑡𝑝𝑢𝑡: 

    (𝜀, 𝛿)    →  𝑐𝑢𝑚𝑢𝑙𝑎𝑡𝑖𝑣𝑒 𝑝𝑟𝑖𝑣𝑎𝑐𝑦 𝑔𝑢𝑎𝑟𝑎𝑛𝑡𝑒𝑒 𝑓𝑜𝑟 𝑓𝑖𝑛𝑎𝑙 𝑚𝑜𝑑𝑒𝑙 

𝑃𝑟𝑜𝑐𝑒𝑑𝑢𝑟𝑒: 

1:  𝐼𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑧𝑒 𝑡𝑜𝑡𝑎𝑙_𝑅𝐷𝑃[𝛼]  =  0 𝑓𝑜𝑟 𝑎𝑙𝑙 𝛼 𝑖𝑛 𝛼_𝑙𝑖𝑠𝑡 

2:  𝐹𝑜𝑟 𝑒𝑎𝑐ℎ 𝑟𝑜𝑢𝑛𝑑 𝑡 =  1 𝑡𝑜 𝑇 𝑑𝑜 

3:      𝐹𝑜𝑟 𝑒𝑎𝑐ℎ 𝛼 𝑖𝑛 𝛼_𝑙𝑖𝑠𝑡 𝑑𝑜 

4:          𝑟𝑑𝑝_𝑠𝑡𝑒𝑝 =  (𝛼 ∗  𝑞^2) / (2 ∗  𝜎^2) 

5:          𝑡𝑜𝑡𝑎𝑙_𝑅𝐷𝑃[𝛼]  =  𝑡𝑜𝑡𝑎𝑙_𝑅𝐷𝑃[𝛼]  +  𝑟𝑑𝑝_𝑠𝑡𝑒𝑝 

6:      𝐸𝑛𝑑 𝐹𝑜𝑟 

7:  𝐸𝑛𝑑 𝐹𝑜𝑟 

8:  𝐹𝑜𝑟 𝑒𝑎𝑐ℎ 𝛼 𝑖𝑛 𝛼_𝑙𝑖𝑠𝑡 𝑑𝑜 

9:      𝜀[𝛼]  =  𝑡𝑜𝑡𝑎𝑙_𝑅𝐷𝑃[𝛼]  +  𝑙𝑜𝑔(1/𝛿) / (𝛼 −  1) 

10: 𝐸𝑛𝑑 𝐹𝑜𝑟 

11: 𝑆𝑒𝑙𝑒𝑐𝑡 𝜀_𝑓𝑖𝑛𝑎𝑙 =  𝑚𝑖𝑛(𝜀[𝛼]) 𝑜𝑣𝑒𝑟 𝑎𝑙𝑙 𝛼 

12: 𝑅𝑒𝑡𝑢𝑟𝑛 (𝜀_𝑓𝑖𝑛𝑎𝑙, 𝛿) 

 

Algorithm 4: Model Convergence Efficiency (MCE) 

Computation 

Purpose: Quantify how efficiently the model converges across 

training rounds. 

𝐼𝑛𝑝𝑢𝑡: 

    𝐴𝑐𝑐[1. . 𝑅]   

→  𝑡𝑒𝑠𝑡 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 𝑎𝑓𝑡𝑒𝑟 𝑒𝑎𝑐ℎ 𝑐𝑜𝑚𝑚𝑢𝑛𝑖𝑐𝑎𝑡𝑖𝑜𝑛 𝑟𝑜𝑢𝑛𝑑 

    𝑅           →  𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑜𝑚𝑚𝑢𝑛𝑖𝑐𝑎𝑡𝑖𝑜𝑛 𝑟𝑜𝑢𝑛𝑑𝑠 

𝑂𝑢𝑡𝑝𝑢𝑡: 

    𝑀𝐶𝐸 (%)      →  𝑀𝑜𝑑𝑒𝑙 𝐶𝑜𝑛𝑣𝑒𝑟𝑔𝑒𝑛𝑐𝑒 𝐸𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦 

𝑃𝑟𝑜𝑐𝑒𝑑𝑢𝑟𝑒: 

1:  𝐴𝑐𝑐_0 =  𝐴𝑐𝑐[1] 

2:  𝐴𝑐𝑐_𝑚𝑎𝑥 =  𝑚𝑎𝑥(𝐴𝑐𝑐[1. . 𝑅]) 

3:  𝑡𝑜𝑡𝑎𝑙_𝑔𝑎𝑝 =  0 

4:  𝐹𝑜𝑟 𝑟 =  1 𝑡𝑜 𝑅 𝑑𝑜 

5:      𝑔𝑎𝑝_𝑟 =  (𝐴𝑐𝑐_𝑚𝑎𝑥 −  𝐴𝑐𝑐[𝑟]) / (𝐴𝑐𝑐_𝑚𝑎𝑥 −  𝐴𝑐𝑐_0) 

6:      𝑡𝑜𝑡𝑎𝑙_𝑔𝑎𝑝 =  𝑡𝑜𝑡𝑎𝑙_𝑔𝑎𝑝 +  𝑔𝑎𝑝_𝑟 

7:  𝐸𝑛𝑑 𝐹𝑜𝑟 

8:  𝑚𝑒𝑎𝑛_𝑔𝑎𝑝 =  𝑡𝑜𝑡𝑎𝑙_𝑔𝑎𝑝 / 𝑅 

9:  𝑀𝐶𝐸 =  100 × (1 −  𝑚𝑒𝑎𝑛_𝑔𝑎𝑝) 

10: 𝑅𝑒𝑡𝑢𝑟𝑛 𝑀𝐶𝐸 

 

Algorithm 5: Communication Overhead Calculation 

Purpose: Compare communication cost (in bytes and time) 

between schemes. 

𝐼𝑛𝑝𝑢𝑡: 

    𝑃  →  𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑚𝑜𝑑𝑒𝑙 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠 

    𝑏  →  𝑏𝑦𝑡𝑒𝑠 𝑝𝑒𝑟 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟 (𝑒. 𝑔. , 4 𝑓𝑜𝑟 𝑓𝑙𝑜𝑎𝑡32) 

    𝐶  →  𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑎𝑟𝑡𝑖𝑐𝑖𝑝𝑎𝑡𝑖𝑛𝑔 𝑐𝑙𝑖𝑒𝑛𝑡𝑠 𝑝𝑒𝑟 𝑟𝑜𝑢𝑛𝑑 

    𝑅  →  𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑜𝑚𝑚𝑢𝑛𝑖𝑐𝑎𝑡𝑖𝑜𝑛 𝑟𝑜𝑢𝑛𝑑𝑠 

    𝐶𝑅 

→  𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛 𝑟𝑎𝑡𝑖𝑜 (𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛𝑎𝑙 𝑠𝑖𝑧𝑒 𝑎𝑓𝑡𝑒𝑟 𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛) 

    𝑡_𝑟𝑎𝑤[1. . 𝑅], 𝑡_𝑐𝑜𝑚𝑝[1. . 𝑅]  

→  𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑 𝑤𝑎𝑙𝑙

− 𝑐𝑙𝑜𝑐𝑘 𝑡𝑖𝑚𝑒 𝑝𝑒𝑟 𝑟𝑜𝑢𝑛𝑑 

𝑂𝑢𝑡𝑝𝑢𝑡: 

    𝐵𝑦𝑡𝑒𝑠𝑟𝑎𝑤, 𝐵𝑦𝑡𝑒𝑠𝑐𝑜𝑚𝑝𝐷𝑃 , 𝐴𝑣𝑔𝑡𝑖𝑚𝑒𝑟𝑎𝑤
, 

 𝐴𝑣𝑔_𝑡𝑖𝑚𝑒_𝑐𝑜𝑚𝑝𝐷𝑃 

𝑃𝑟𝑜𝑐𝑒𝑑𝑢𝑟𝑒: 

1:  𝐵𝑦𝑡𝑒𝑠_𝑟𝑎𝑤 =  𝑅 ×  𝐶 ×  𝑃 ×  𝑏 

2:  𝐵𝑦𝑡𝑒𝑠_𝑐𝑜𝑚𝑝𝐷𝑃 =  𝑅 ×  𝐶 ×  𝑃 ×  𝑏 ×  𝐶𝑅 

3:  𝐴𝑣𝑔_𝑡𝑖𝑚𝑒_𝑟𝑎𝑤 =  𝑚𝑒𝑎𝑛(𝑡_𝑟𝑎𝑤[1. . 𝑅]) 

4:  𝐴𝑣𝑔_𝑡𝑖𝑚𝑒_𝑐𝑜𝑚𝑝𝐷𝑃 =  𝑚𝑒𝑎𝑛(𝑡_𝑐𝑜𝑚𝑝[1. . 𝑅]) 

5:  𝑅𝑒𝑡𝑢𝑟𝑛 (𝐵𝑦𝑡𝑒𝑠_𝑟𝑎𝑤,𝐵𝑦𝑡𝑒𝑠_𝑐𝑜𝑚𝑝𝐷𝑃, 𝐴𝑣𝑔_𝑡𝑖𝑚𝑒_𝑟𝑎𝑤, 

 𝐴𝑣𝑔_𝑡𝑖𝑚𝑒_𝑐𝑜𝑚𝑝𝐷𝑃) 

 

Algorithm 6: Gradient-Leakage Resistance Evaluation 

(DeepLeakage Attack) 

Purpose: Evaluate reconstruction resistance under different DP 

noise levels. 

𝐼𝑛𝑝𝑢𝑡: 

    𝑓(·)         →  𝑡𝑎𝑟𝑔𝑒𝑡 𝑚𝑜𝑑𝑒𝑙 

    𝑔_𝑜𝑏𝑠       →  𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑 𝑛𝑜𝑖𝑠𝑦 𝑔𝑟𝑎𝑑𝑖𝑒𝑛𝑡𝑠 𝑓𝑟𝑜𝑚 𝑐𝑙𝑖𝑒𝑛𝑡 

    𝜎_𝑙𝑖𝑠𝑡      →  𝑙𝑖𝑠𝑡 𝑜𝑓 𝐷𝑃 𝑛𝑜𝑖𝑠𝑒 𝑚𝑢𝑙𝑡𝑖𝑝𝑙𝑖𝑒𝑟𝑠 

    𝑁_𝑖𝑡𝑒𝑟𝑠     →  𝑜𝑝𝑡𝑖𝑚𝑖𝑧𝑎𝑡𝑖𝑜𝑛 𝑠𝑡𝑒𝑝𝑠 𝑓𝑜𝑟 𝑡ℎ𝑒 𝑎𝑡𝑡𝑎𝑐𝑘 

    𝛿           →  𝑠𝑚𝑎𝑙𝑙 𝑟𝑒𝑔𝑢𝑙𝑎𝑟𝑖𝑧𝑎𝑡𝑖𝑜𝑛 𝑤𝑒𝑖𝑔ℎ𝑡 

𝑂𝑢𝑡𝑝𝑢𝑡: 

    𝐴𝑡𝑡𝑎𝑐𝑘_𝑆𝑢𝑐𝑐𝑒𝑠𝑠[𝜎]  

→  𝑟𝑒𝑐𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 𝑜𝑟 𝑆𝑆𝐼𝑀 𝑓𝑜𝑟 𝑒𝑎𝑐ℎ 𝜎 

𝑃𝑟𝑜𝑐𝑒𝑑𝑢𝑟𝑒: 

1:  𝐹𝑜𝑟 𝑒𝑎𝑐ℎ 𝜎 𝑖𝑛 𝜎_𝑙𝑖𝑠𝑡 𝑑𝑜 

2:      𝐼𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑧𝑒 𝑟𝑎𝑛𝑑𝑜𝑚 𝑖𝑛𝑝𝑢𝑡 𝑥′ 

3:      𝐹𝑜𝑟 𝑖𝑡𝑒𝑟 =  1 𝑡𝑜 𝑁_𝑖𝑡𝑒𝑟𝑠 𝑑𝑜 

4:          𝑝𝑟𝑒𝑑 =  𝑓(𝑥′) 

5:          𝑔_𝑓𝑎𝑘𝑒 =  𝛻_𝜃 𝐿(𝑝𝑟𝑒𝑑) 

6:          𝑙𝑜𝑠𝑠_𝑎𝑡𝑡𝑎𝑐𝑘 =  || 𝑔_𝑓𝑎𝑘𝑒 −  𝑔_𝑜𝑏𝑠 ||² +  𝛿 ×  𝑅𝑒𝑔(𝑥′) 

7:          𝑈𝑝𝑑𝑎𝑡𝑒 𝑥′ ←  𝑥′ −  𝜂 ×  𝛻(𝑙𝑜𝑠𝑠_𝑎𝑡𝑡𝑎𝑐𝑘) 

8:      𝐸𝑛𝑑 𝐹𝑜𝑟 

9:      𝐶𝑜𝑚𝑝𝑢𝑡𝑒 𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 =  𝑆𝑆𝐼𝑀(𝑥′, 𝑥_𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙) 

10:     𝑆𝑡𝑜𝑟𝑒 𝐴𝑡𝑡𝑎𝑐𝑘_𝑆𝑢𝑐𝑐𝑒𝑠𝑠[𝜎]  =  𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 

11: 𝐸𝑛𝑑 𝐹𝑜𝑟 

12: 𝑅𝑒𝑡𝑢𝑟𝑛 𝐴𝑡𝑡𝑎𝑐𝑘_𝑆𝑢𝑐𝑐𝑒𝑠𝑠 

 

Algorithm 7: Reproducibility Workflow Checklist 

Purpose: Ensure reproducibility of training and evaluation 

experiments. 

Checklist: 
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1:  𝑅𝑒𝑙𝑒𝑎𝑠𝑒 𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒 𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔 𝑎𝑛𝑑 𝑒𝑣𝑎𝑙𝑢𝑎𝑡𝑖𝑜𝑛 𝑐𝑜𝑑𝑒. 

2:  𝐼𝑛𝑐𝑙𝑢𝑑𝑒 𝑝𝑟𝑖𝑣𝑎𝑐𝑦 𝑎𝑐𝑐𝑜𝑢𝑛𝑡𝑎𝑛𝑡 𝑠𝑐𝑟𝑖𝑝𝑡 𝑎𝑛𝑑 

 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠 (𝜎, 𝑞, 𝑇, 𝛿). 

3:  𝑃𝑢𝑏𝑙𝑖𝑠ℎ 𝑎𝑙𝑙 𝑟𝑎𝑛𝑑𝑜𝑚 𝑠𝑒𝑒𝑑𝑠 𝑎𝑛𝑑 𝑑𝑎𝑡𝑎 𝑠𝑝𝑙𝑖𝑡𝑠. 

4:  𝑃𝑟𝑜𝑣𝑖𝑑𝑒 𝑐𝑜𝑛𝑓𝑖𝑔𝑢𝑟𝑎𝑡𝑖𝑜𝑛 𝑓𝑖𝑙𝑒𝑠 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑒𝑥𝑝𝑒𝑟𝑖𝑚𝑒𝑛𝑡𝑠. 

5:  𝐼𝑛𝑐𝑙𝑢𝑑𝑒 𝑒𝑛𝑣𝑖𝑟𝑜𝑛𝑚𝑒𝑛𝑡 𝑓𝑖𝑙𝑒 (𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑚𝑒𝑛𝑡𝑠. 𝑡𝑥𝑡 𝑜𝑟 

 𝐷𝑜𝑐𝑘𝑒𝑟𝑓𝑖𝑙𝑒). 

6:  𝑈𝑝𝑙𝑜𝑎𝑑 𝑟𝑒𝑝𝑟𝑜𝑑𝑢𝑐𝑖𝑏𝑖𝑙𝑖𝑡𝑦 𝑠𝑐𝑟𝑖𝑝𝑡𝑠 𝑓𝑜𝑟: 

        𝑎. 𝐶𝑜𝑚𝑝𝑢𝑡𝑖𝑛𝑔 (𝜀, 𝛿) 

        𝑏. 𝐶𝑜𝑚𝑝𝑢𝑡𝑖𝑛𝑔 𝑀𝐶𝐸 

        𝑐.𝑀𝑒𝑎𝑠𝑢𝑟𝑖𝑛𝑔 𝑐𝑜𝑚𝑚𝑢𝑛𝑖𝑐𝑎𝑡𝑖𝑜𝑛 𝑜𝑣𝑒𝑟ℎ𝑒𝑎𝑑 

        𝑑. 𝑅𝑢𝑛𝑛𝑖𝑛𝑔 𝑔𝑟𝑎𝑑𝑖𝑒𝑛𝑡 − 𝑙𝑒𝑎𝑘𝑎𝑔𝑒 𝑒𝑥𝑝𝑒𝑟𝑖𝑚𝑒𝑛𝑡 

7:  𝑃𝑟𝑜𝑣𝑖𝑑𝑒 𝑅𝐸𝐴𝐷𝑀𝐸.𝑚𝑑 𝑤𝑖𝑡ℎ 𝑠𝑡𝑒𝑝 − 𝑏𝑦

− 𝑠𝑡𝑒𝑝 𝑟𝑒𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛 𝑐𝑜𝑚𝑚𝑎𝑛𝑑𝑠. 

8:  𝐴𝑟𝑐ℎ𝑖𝑣𝑒 𝑟𝑒𝑠𝑢𝑙𝑡𝑠 𝑎𝑛𝑑 𝑝𝑙𝑜𝑡𝑠 𝑖𝑛 /𝑟𝑒𝑠𝑢𝑙𝑡𝑠

/ 𝑑𝑖𝑟𝑒𝑐𝑡𝑜𝑟𝑦 𝑓𝑜𝑟 𝑣𝑒𝑟𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛. 

 

3.3.4 Statistical analysis using paired t-test 
The paired t-test findings (p < 0.05) show that RedPO-BRNNet 

outperforms BRNNet and PO.  The model obtains greater 

stability, convergence, and accuracy, demonstrating the efficacy 

of optimizer fusion.  Statistical evidence suggests that Red 

Panda optimization significantly improves learning efficiency 

and robustness in edge computing systems. 

 

4 Result and discussion 
To improve secure and private learning in EC, the RedPO-

BRNNet model was implemented using Python 3.11 for better 

accuracy and data protection. To evaluate performance, 

standardised time-series data from five epochs were utilized 

to train the BRNNet and the proposed RedPO-BRNNet 

models, allowing for comparison analysis. 

 

 

 

 

 

 

 

4.1 Experimental setup and dp 

configuration 
All experiments were conducted with Python 3.11, 

alongside TensorFlow 2.13, on an Intel Core i7-12700H 

CPU, hosting 16 GB of RAM and an NVIDIA RTX 3060 

GPU (6 GB). Implemented local edge simulations on ten 

virtual clients simulating IoT devices for federated 

training, with 50 communication rounds, 5 local epochs, a 

batch size of 32, and a learning rate of 0.001. Each of the 

clients injected Differential Privacy (DP) noise prior to 

sending model updates to the central aggregator using 

Gaussian noise with privacy guarantees ϵ=1.0 and 

δ=10−5. Gradient clipping was also used with a norm 

bound of 1.0 to stabilize updates to make results 

comparable on privacy-preserving, such as the Privacy 

Leakage (%) metric. 

Table 4 present the Training configuration details for the 

suggested system, which include federated parameters, 

optimization algorithms, differential privacy settings, and 

reproducibility controls to ensure convergence stability 

and uniform performance assessment. 

 

Table 4: Training protocol configuration for the RedPO-

BRNNet framework 

 

Parameter / Setting Value / Strategy 

Client Population 10 

Client Selection Policy All clients (default); optional 

random subset (f = 0.3) 

Communication Rounds 

(FedAvg) 

20 (baseline); ≥100 recommended 

for convergence validation 

Local Epochs per Round 5 (baseline); 10–20 recommended 

for extended evaluation 

Batch Size 32 

Sequence Length 10 

Optimizer (Baseline) Adam (lr = 0.001, β₁ = 0.9, β₂ = 
0.999) 

Optimizer (Proposed) Red Panda Optimizer (RedPO) with 

Adam fine-tuning (lr = 0.001) 

Learning Rate Schedule Reduce-on-plateau (factor = 0.5, 
patience = 5) or cosine decay 

Differential Privacy (DP) Standard deviation (σ = 0.85), 

clipping norm (C = 1.0), privacy 
budget (ε = 7.2, δ = 10⁻⁵) 

Aggregation Strategy Federated Averaging (FedAvg) 

Evaluation Frequency After each communication round 

Stopping Criterion No validation improvement for 10 
consecutive rounds or max rounds 

reached 

Random Seeds {42, 7, 99, 1234, 2025} 

Reported Metrics Accuracy, Loss, Privacy Leakage, 
Gradient Leakage Resistance 

(GLR), Convergence Efficiency 

 

 

 

 

 

 

4.2 Comparison of Baseline and 

Proposed Models' Optimizer and Network 

Settings 
 

Both baseline BRNNet and the proposed RedPO-BRNNet 

have identical architecture, layers, hyperparameters, and 

training configurations. The sole variation is in the 

optimization method, where RedPO-BRNNet exploits the 

RedPO optimizer rather than Adam. This enhancement 

facilitates enhanced parameter exploration and quicker 

convergence in federated edge environments, solely 

contributing performance improvement to the optimizer. 

Importantly exploring key training parameters such as 

optimizer type, learning dynamics, and adaptive approaches, 

comparative assessment identifies hybrid RedPO-BRNNet's 

differences with respect to baseline BRNNet. It also indicates 

the impact of Red Panda Optimizer integration on global 

weight optimization, network performance, and convergence. 

Table 5 displays the optimizer differences, learning 

dynamics, and adaptive behavior made possible by the Red 

Panda Optimizer for increased optimization efficiency as it 

contrasts the baseline BRNNet and the suggested RedPO-

BRNNet settings.  
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Table 5: Comparison of the baseline configurations of 

the RedPO-BRNNet and BRNNet 

Parameter / 

Setting 

Baseline 

BRNNet 

Proposed RedPO-

BRNNet 

Optimizer Adam RedPO 

Learning Rate 0.001 Adaptive, initialized at 

0.001 and auto-

adjusted by RedPO 

β₁, β₂ (Adam 

parameters) 

0.9, 0.999 Not applicable – 

RedPO controls 

adaptive step size 

Batch Size 32 32 

Activation 

Function 

tanh tanh 

Dropout Rate 0.3 0.3 

Loss Function Binary Cross-

Entropy 

Binary Cross-Entropy 

Local Epochs / 

Round 

5 5 

Aggregation 

Scheme 

FedAvg  FedAvg 

Privacy 

Mechanism 

DP noise 

injection 

DP noise injection 

Optimizer 

Behavior 

Gradient-based 

parameter 

updates only 

Adaptive exploration–

exploitation search  

 

The proposed model offers safe and efficient model training in 

EC environments, with robust defense against gradient-based 

privacy threats, 94.3% packet drop resilience, 19.7% reduction 

in training time, 36.6% Model Compression Ratio, and 92.5% 

Scalability Efficiency, supporting efficient, safe, and privacy-

preserving federated learning in limited resources in table 6 

and Figure 9. 

Table 6: The values evaluation using metrics 

 

Metric Value (%) 

Gradient Leakage Resistance 

Score 
94 

Packet Drop Resilience 94.3 

Training Time Reduction 19.7 

Model Compression Ratio 36.6 

Scalability Efficiency 92.5 

 
Figure 9: Performance evaluation of efficiency and 

security measures in proposed RedPO-BRNNet model. 

 

The RedPO-BRNNet model, shown in Figure 10, exhibits 

exceptional discrimination power and high peak 

classification accuracy, surpassing random classifiers and 

achieving a high decision threshold. 

 

 
 

Figure 10: The ROC curve 

 

The RedPO-BRNNet model's ability to classify IoT edge 

data as normal or anomalous in privacy-preserving scenarios 

is evaluated using a confusion matrix. Figure 11 provides a 

systematic visualization of true positives, false positives, 

true negatives, and false negatives, enhancing anomaly 

detection accuracy. 

 

 
Figure 11: Confusion matrix 

 

 4.3 Variable explanation 

Privacy Leakage: Measures how likely it is that the model will 

divulge private information while adhering to the formal 

Differential Privacy (DP) paradigm.  A technique under 

(𝜀, 𝛿) − DP provides that the model output is only little 

impacted by the inclusion or deletion of any one record.  We 

define Privacy Leakage as the percentage of sensitive attributes 

that could be derived from the trained model using empirical 

privacy attacks (such membership inference) to provide an 

interpretable metric in equation (22). 

 

𝑃𝑟𝑖𝑣𝑎𝑐𝑦 𝐿𝑒𝑎𝑘𝑎𝑔𝑒 (%) =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑢𝑐𝑐𝑒𝑠𝑠𝑓𝑢𝑙𝑙𝑦 𝑖𝑛𝑓𝑒𝑟𝑟𝑒𝑑 𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑒 𝑎𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒𝑠

𝑇𝑜𝑡𝑎𝑙 𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑒 𝑎𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒𝑠
 × 100  (22) 
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This metric is used as a useful, empirical supplement to assess 

privacy issues in real-world situations; however, it does not take 

the place of the formal DP guarantees.  It evaluates residual 

empirical leakage and theoretical privacy protection by 

combining this evaluation with DP noise injection.  Higher 

privacy preservation is indicated by lower percentages, which 

are in line with DP principles and enable model comparisons 

under comparable DP parameters.  

 

Model convergence efficiency (%):  This measure assesses 

how well the model performs at its best throughout training.  It 

can be formally described as the ratio of the actual loss 

reduction to the highest feasible loss reduction in equation (23). 

 

𝐶𝑜𝑛𝑣𝑒𝑟𝑔𝑒𝑛𝑐𝑒 𝐸𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦 (%) =
𝐿𝑖𝑛𝑖𝑡𝑖𝑎𝑙−𝐿𝑓𝑖𝑛𝑎𝑙

𝐿𝑖𝑛𝑖𝑡𝑖𝑎𝑙−𝐿𝑚𝑖𝑛
× 100                    

      (23) 

 

Where 𝐿𝑖𝑛𝑖𝑡𝑖𝑎𝑙:  The first training loss, 𝐿𝑓𝑖𝑛𝑎𝑙: The final loss at 

convergence and 𝐿𝑚𝑖𝑛: Reflects the lowest possible loss.  The 

efficiency is determined by tracking training loss across epochs, 

with larger percentages suggesting faster and more consistent 

convergence.   

 

Gradient leakage resistance score: This score assesses the 

model's resilience to gradient-based reconstruction attacks, 

which attempt to retrieve training data via shared gradients.   It's 

calculated as an equation. (24). 

 

𝐺𝑟𝑎𝑑𝑖𝑒𝑛𝑡 𝐿𝑒𝑎𝑘𝑎𝑔𝑒 𝑅𝑒𝑠𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑆𝑐𝑜𝑟𝑒 = 1 −
𝑅𝑒𝑐𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 𝑜𝑓 𝐴𝑡𝑡𝑎𝑐𝑘

𝑀𝑎𝑥𝑖𝑚𝑢𝑚 𝑝𝑜𝑠𝑖𝑛𝑙𝑒 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦
                 (24) 

 

Gradient inversion attacks are performed on the model, and the 

accuracy of the recovered data is measured against original 

training data.  Scores nearer to one suggest greater resistance to 

gradient leakage. 

Training Time Reduction (%): This measure quantifies the 

gain in training efficiency that the suggested RedPO-

BRNNet achieves compared to the baseline. It's calculated 

as equation (25). 

 

𝑇𝑟𝑎𝑖𝑛𝑖𝑛𝑔 𝑇𝑖𝑚𝑒 𝑅𝑒𝑑𝑢𝑐𝑡𝑖𝑜𝑛 (%) =
𝑇𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒−𝑇𝑝𝑟𝑜𝑝𝑜𝑠𝑒𝑑

𝑇𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒
× 100           

    (25) 

 

𝑇𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒: The overall training time for the baseline BRNNet 

model. 𝑇𝑝𝑟𝑜𝑝𝑜𝑠𝑒𝑑:  The total training duration of the RedPO-

BRNNet model, encompassing both gradient-based fine-

tuning and RedPO optimization. This measure enables the 

evaluation of efficiency benefits clearly, illustrating how the 

hybrid RedPO approach reduces total training duration 

without compromising or even improving model 

performance. Higher percentage indicate greater reductions 

in computing expense. 

Scalability Efficiency Score (%): To measures a model's 

ability to sustain performance as the dataset size, network 

size, or number of users (in federated environments) 

increases in equation (26).  

 

𝑆𝑐𝑎𝑙𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝐸𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦 (%) =
𝑃𝑙𝑎𝑟𝑔𝑒

𝑃𝑠𝑚𝑎𝑙𝑙
× 100 (26) 

 

𝑃𝑠𝑚𝑎𝑙𝑙 : The model's performance on a baseline dataset or 

configuration. 𝑃𝑙𝑎𝑟𝑔𝑒: Performance in a larger data set or in a 

more complicated system setting. The metric measures the 

suggested RedPO-BRNNet's ability to scale well without 

impacting performance appreciably. The higher the 

percentages, the better the scalability, and it shows 

resistance to larger data volume or model complexity. 

The RedPO-BRNNet, an edge computing model training 

technique, ranked higher than BRNNet in terms of anomaly 

detection accuracy at a mean of 94.97% in five epochs of 

training, reflecting quicker convergence and better predictive 

reliability under federated learning scenarios in Figure 12. 

 
 

Figure 12: Anomaly detection accuracy across epochs. 

 

The RedPO-BRNNet model Figure 13 showed better 

resilience to inference attacks from data in federated edge 

settings, with a mean privacy leakage of 2.14%, as opposed to 

the standard BRNNet's 4.82%, proving it feasible for secure 

information summation in federated learning. 

 
 

Figure 13: Privacy leakage (%) comparison between various 

models 

 

Figure 14 indicates the RedPO-BRNNet is better than the 

conventional BRNNet in client latency for five epochs, with 

an average latency of 57.82 ms, and proves to have better 

responsiveness and real-time performance in federated edge 

computing systems. 
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Figure 14: Client latency (ms) comparison across various 

epochs with models 

 

The RedPO-BRNNet model showed better convergence 

effectiveness and learning stability in federated edge contexts, 

with a 78.96% improvement over the conventional BRNNet 

in five training rounds, thus establishing its better predictive 

performance for edge computing privacy-preserving 

applications, as presented in Figure 15. 

 

Figure 15: Model convergence efficiency comparison with 

various models 

The RedPO-BRNNet model outperforms other models in 

anomaly detection, privacy leakage, latency, and 

convergence, proving its efficacy in secure, privacy-

preserving, and efficient federated learning in edge-based 

IoT environments. The RedPO-BRNNet model was 

benchmarked against a number of current benchmark 

models to confirm its privacy safeguard, prediction 

accuracy, and energy optimization. On privacy risk 

evaluation, it was compared with Guardian Artificial 

Intelligence (GuardianAI) [28], Federated Averaging 

(FedAvg) [28], Federated Differential Privacy (FedDP) 

[28], and Federated Secure Aggregation (FedSA) [28]. In 

detection performance and computational efficiency, the 

RedPO-BRNNet model was compared with Isolation 

Forest (IF) [29] and Long Short-Term Memory 

Autoencoder (LSTM-AE) [29]. 

 

• Model inversion: It is the measure of how well 

an attacker can reconstruct original data samples from 

exchanged model parameters or gradients. A lower 

percentage reflects better immunity to data reconstruction 

in privacy-preserving federated environments. 

 

• Inference attack: It is the measure of how likely 

an adversary can infer sensitive attributes or membership 

data from model responses. Lower values reflect greater 

robustness against indirect disclosure of data. 

 

• Gradient leakage: It assesses the proportion of 

private data that is able to leak from shared gradient 

updates across federated training. Lower proportion 

indicates higher privacy preservation. 

 

• Accuracy: It quantifies the percentage of 

instances correctly predicted out of all instances, 

indicating general anomaly detection reliability 

throughout the federated healthcare edge setting. It is 

formulated in equation (27). 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
   (27) 

 

• Recall: It is the model's capacity to accurately 

detect genuine anomalies or severe health occurrences 

from IoT streams, commensurate with the goal of precise 

edge-side anomaly detection. It is formulated in equation 

(28). 

 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
    (28) 

 

• Power consumption: It is the overall energy 

consumed by the edge device while training and inferring 

the model, whose impact is explicit on scalability and 

sustainability of distributed IoT deployments. 

Table 7 and Figure 16 displays the RedPO-BRNNet model 

outperforms the GuardianAI, FedAvg, FedDP, and FedSA 

models in terms of privacy protection, with Model 

Inversion 6.7%, Inference Attack 4.1%, and Gradient 

Leakage 2.1%. 

Table 7: Privacy attack resistance analysis 

Model Model 

Inversion 

(%) 

Inference 

Attack (%) 

Gradient 

Leakage (%) 

RedPO-BRNNet 

[Proposed] 

6.7 4.1 2.1 

GuardianAI [28] 8.3 5.7 2.9 

FedAvg [28] 43.2 37.8 41.5 

FedDP [28] 18.6 14.2 9.5 

FedSA [28] 11.9 9.8 5.4 

 

 

Figure 16: The metrics comparison of proposed methods 

vs existing methods. 

 

Table 8  and Figure 17 display the RedPO-BRNNet 

improves scalability by reducing training time from 5.2 

s to 4.8 s (10 nodes) and communication cost from 3.5 
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MB to 3.1 MB, resulting in consistent efficiency gains 

over GuardianAI across all node configurations. 

 

Table 8: Scalability analysis (training time and 

communication cost) 

Num

ber 

of 

Node

s 

Trainin

g Time 

per 

Round 

(s) – 

Guardia

nAI [28] 

Traini

ng 

Time 

per 

Round 

(s) – 

RedPO

-

BRNN

et 

[Propo

sed] 

Communica

tion Cost 

(MB) – 

GuardianAI 

[28] 

Commu

nication 

Cost 

(MB) – 

RedPO-

BRNNet 

[Propose

d] 

10 5.2 4.8 3.5 3.1 

50 7.8 7.1 9.2 8.6 

100 10.4 9.8 15.8 14.2 

200 14.7 13.6 28.3 26.4 

 

Figure 17: Training time and communication cost of 

proposed methods 

 

Table 9 shows the model's trade-off between detection 

performance and energy efficiency. The suggested RedPO-

BRNNet finds the best balance between recall (0.93) and 

accuracy (0.95) while using just 3.4 W of power, exceeding 

both the LSTM Auto encoder and the Isolation Forest in terms 

of balanced efficiency. 

 

Table 9:  The comparison of proposed vs existing methods 

Model Accuracy Recall Power 

Consumption 

(W) 

Isolation 

Forest [29] 

0.88 0.85 2.8 

LSTM 

Autoencoder 

[29] 

0.92 0.90 4.2 

RedPO-

BRNNet 

[Proposed] 

0.95 0.93 3.4 

 

 

 

• Computational efficiency and edge robustness 

analysis 

The proposed RedPO-BRNNet framework optimized 

resource use with an average client compute time of 42 ms, 

model size of 5.8 MB, and energy consumption of 3.4 W. 

Under simulated network latency and 10% packet dropout, 

performance deterioration was less than 2.5%, 

demonstrating great robustness and scalability in real-world 

edge situations. 

 

• Statistical analysis 

The paired t-test results show that both RedPO-BRNNet and 

PO designs significantly outperform the baseline BRNNet (p 

< 0.05). The maximum improvement is achieved by 

combining the RedPO with the bidirectional recurrent neural 

architecture. Table 10 illustrates the effectiveness of optimizer 

fusion in enhancing model stability, convergence, and 

accuracy for edge computing. 95% confidence intervals and 

the number of runs (n=10) are now clearly shown in place of 

single-figure statistics for greater experimentation openness 

and replicability. 

 

 

Table 10: Paired t-Test Results between RedPO-BRNNet, 

BRNNet, and PO Models 

Mod

el 

Pair 

Mean 

Differ

ence 

(Δ) 

Stand

ard 

Devia

tion 

(SD) 

95% 

Confide

nce 

Interval 

(Δ ± 

1.96×S

D/√n) 

t-

Stati

stic 

p-

Val

ue 

n 

(Ru

ns) 

RedP

O-

BRN

Net 

vs 

BRN

Net 

0.058 0.014 0.058 ± 

0.009 

(0.049–

0.067) 

8.21 0.00

05 

10 

RedP

O-

BRN

Net 

vs 

PO 

0.037 0.012 0.037 ± 

0.007 

(0.030–

0.044) 

7.46 0.00

08 

10 

PO 

vs 

BRN

Net 

0.021 0.010 0.021 ± 

0.006 

(0.015–

0.027) 

6.32 0.00

12 

10 

 

• Ablation study 

The ablation study statistically demonstrates the progressive 

improvement of model performance with each iteration. 

Incorporating the PO boosted the accuracy from 0.89 to 0.92, 

and the RedPO-BRNNet system elevated it further to 0.95 

with a recall score of 0.93. The ablation study shows that DP 

tuning, clipping norm control, and integration of RedPO 

continue to enhance model accuracy, recall, and efficiency 

gradually, achieving an optimal privacy-accuracy trade-off 

(ε=1.5, σ=0.8) with minimal communication overhead. The 

results, shown in Table 11 and Figure 18, establish that the 

integration of the RedPO and differential privacy controls 
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provides enhanced predictive reliability and privacy assurance 

in IoT edge computing environments.  

 

Table 11: Ablation Analysis of the RedPO-BRNNet Model on 

IoT edge data classification 

Model Variant Accuracy Recall 

BRNNet (Base) 0.89 0.86 

PO-BRNNet 0.92 0.89 

RedPO-BRNNet (Proposed) 0.95 0.93 

 

Figure 18: The metrics values of proposed methods 

 

5 Discussion 
The RedPO-BRNNet framework combines a 

BRNNet, the RedPO, and DP to overcome limitations in 

existing approaches such as Blockchain-enabled FL with 

homomorphic encryption and AdaBoost [16] and 

Differential DP-FCNN [17].  These approaches faced 

latency, scalability, and privacy issues. RedPO-BRNNet 

improves convergence, accuracy of anomaly detection, 

and resistance to gradient leakage and decreases 

communication overhead, leading to low-latency, 

scalable, and privacy-preserving learning in 

heterogeneous edge-IoT environments. Current methods 

face severe challenges in real-world implementation. 

Federated anomaly detection mechanisms possess huge 

computational and communication overhead, hindering 

scalability and efficiency in IoT networks [28]. In the 

same manner, integrated Edge AI models that incorporate 

IF and LSTM-AE have high complexity, low adaptability 

to different devices, and low generalizability across 

changing contexts [29]. A 2.14% privacy leakage rate 

indicates enhanced security, but the experiment is only 

conducted in a single-device adversary setting. 

Countermeasures involve differential privacy noise and 

aggregation methods, and future work can extend to 

colluding adversaries. The responsive performance of the 

RedPO-BRNNet can be witnessed with a latency of 57.82 

ms for the client, but it might result in scalability 

problems on energy-constrained and computing-resource-

limited edge devices. The proposed algorithm, RedPO-

BRNNet, works efficiently on a small number of edge 

devices but might experience problems with latency, 

energy efficiency, and model convergence when scaled up 

to thousands of devices.  

5.1 Practical implication  
Although the proposed RedPO-BRNNet framework 

demonstrated impressive performance, assessing it on 

domain-specific datasets or real-world case studies like 

patient monitoring in healthcare, surveillance sensor 

streams, or industrial IoT logs would lend more practical 

applicability to the evaluation. Originating from their 

context, those datasets embody real anomalous variability, 

noise, and device diversity, and would give a better 

assessment of robustness, latency, and privacy-

preservation, that could inform deployment patterns and 

apportion and communicate the model’s efficacy and 

capabilities at scale in operational environments. As 

future work entails these unprecedented evaluations, their 

goal could be to authenticate RedPO-BRNNet’s 

reliability, security, and adaptability for edge-intelligence 

across a wide range of IoT ecosystems. 

 

6 Conclusion 
To design a privacy-friendly and safe data aggregation 

approach for edge computing, this research integrates FL 

with DP. An open-source database of time-series 

biometric signals captured by wearable sensors was 

adopted to emulate edge computing settings. Z-score 

normalization was implemented for consistency in data as 

well as model robustness. The  RedPO-BRNNet was 

designed to enhance training performance as well as 

forecasting accuracy in the framework of FL. FFedAvg 

was used for federated model updates, and DP noise 

injection was used for keeping anonymity. The suggested 

model revealed average values of all significant measures 

across five epochs of training: Anomaly Detection 

Accuracy: 94.97%, Privacy Leakage: 2.14%, Client 

Latency: 57.82 ms, and Model Convergence Efficiency: 

78.96%. Increased time for training on low-power 

hardware, reduced performance from too much added 

noise for privacy, and limited testing on more diverse 

real-time data sets are the main limitations of the study. 

The assessment of RedPO-BRNNet's generalization 

performance is also limited because its gains in 

performance are being measured on a limited set of 

baseline models and data sets, and could lead to varied 

results when deployed against diverse or real-world data 

sets. The RedPO-BRNNet framework incorporating FL 

and DP can be enhanced by contrasting it with 

sophisticated control methods such as model predictive 

control, adaptive control, and distributed consensus 

algorithms. More research can make the secure FL-DP 

paradigm better for real-time scaling and dynamic client 

engagement, with hardware-conscious optimization 

enhancing accuracy and performance. 
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