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In the context of edge computing (EC), there are distributed Internet of Things (loT) devices that
generate huge volumes of sensitive data, which necessitates privacy-preserving and efficient model
training. Federated learning (FL) enables the ability to collaboratively train models without sharing
raw data, albeit at the risk of sharing data values through indirect means and in an uncontrolled
manner that continues to expose privacy risks like gradient inference attacks and data reconstruction
methods. To propose a secure aggregation framework that combines FL with differential privacy (DP)
at the 'moise' level of 1.e—4 and a red panda optimizer fused bidirectional recurrent neural network
(RedPO-BRNNet), that improves predictive performance, convergence efficiency, and robustness in an
EC environment. This framework is implemented using Python and utilizes local datasets of 2,501 time-
series recordings gathered from 10 distributed edge devices, which feature blood pressure, activity
level, body temperature, heart rate, anomaly scores, and a binary classification label. The data are
pre-processed using Z-score normalization to standardize scales for the features across devices. Each
edge device trains a local RedPO-BRNNet model, applies DP noise to the model parameters and then
contributes updates that preserve privacy to the global aggregation using FedAvg. RedPO-BRNNet is
tested against LSTM, Bi-LSTM, and baseline BRNN models during five training epochs. The proposed
model achieves 94.97% anomaly detection accuracy, 2.14% privacy leakage, 57.82 ms client latency,
and 78.96% model convergence efficiency, with improvements statistically validated using paired t-
tests (p < 0.05). These results show that RedPO-BRNNet effectively protects privacy while enabling
efficient and scalable edge intelligence, making it a dependable solution for safe, multi-device 10T
deployments.

Povzetek:

However, investigations have demonstrated that even

1 Introduction : A :
model gradients can be used to reconstitute private data

Edge computing was utilized to efficiently manage the

vast amount of data generated by various smart devices,
particularly in the era of the rapidly growing Internet of
Things (loT) [1]. Unlike cloud computing, which is
based on centralized servers, edge computing analyzes
data locally, closer to the source, lowering latency,
increasing decision-making speed, and optimizing
bandwidth utilization [2]. However, as data processing
shifts to distributed edge nodes, new issues arise in
maintaining privacy, assuring security, and conducting
effective data aggregation [3]. In real-world applications
such as autonomous vehicles, healthcare monitoring, and
smart environments, transferring raw data to central
Sservers raises privacy concerns, necessitating the use of
privacy-preserving federated and decentralized learning
systems [4]. Federated Learning (FL) evolved as a viable
paradigm to solve these difficulties by allowing devices
to train local models on their own data and only share
model updates (weights or gradients) with a central
server, rather than raw data [5]. This decentralized
technique ensured user anonymity while reducing
communication overhead.

[6]. Differential Privacy (DP) was introduced into FL to
improve privacy by adding controlled noise to common
parameters. This guaranteed that changes in individual
data points had a low impact on the global model output
[7], hence improving dependability and secrecy in
privacy-preserving learning frameworks [8]. Due to the
limited internet connectivity, low power, and short
battery life of edge devices, applying Federated Learning
(FL) and Differential Privacy (DP) for secure data
aggregation in edge computing presented considerable
hurdles [9]. As a result, any secure aggregation method
in such situations must be scalable, lightweight, and
resistant to malicious attacks. Furthermore, ensuring
data integrity and accuracy while avoiding privacy
intrusions is critical [10]. Integrating FL and DP into
edge computing necessitated a well-defined framework
that balanced resource efficiency with robust and secure
data aggregation [11]. Because edge devices frequently
encounter energy and bandwidth limits, the aggregation
mechanism must be fault-tolerant and adaptable to client
dropouts [12].
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This required efficient communication protocols and
adaptive learning models to handle noisy or missing
inputs from edge nodes, alongside the development of
secure aggregation mechanisms to counter both passive
and active adversarial attacks [13]. Several limitations
were identified, including challenges in achieving
scalability with real-time performance on limited
resources, substantial computational demands on edge
nodes, vulnerability to advanced attack vectors, and
potential trade-offs between model accuracy and privacy.
To improve predictive accuracy, data confidentiality, and
computational efficiency in distributed edge computing
environments by combining FL with DP to create a safe
and private data aggregation framework.The main
contributions are as follows:

Privacy-Preserving Federated Learning Framework:
To safeguard user data in edge computing settings, a
secure model aggregation technique that combines
Federated Learning (FL) and Differential Privacy (DP)
was introduced.

Robust Dataset Collection and Preprocessing: To
guarantee uniform feature scaling across all edge nodes,
Z-score normalisation was used in conjunction with real-
time time-series data from dispersed 10T devices.

Effective Hybrid Model Design: To increase
anomaly detection precision and accelerate convergence
in federated environments, a Red Panda Optimizer-fused
Bidirectional Recurrent Neural Network (RedPO-
BRNNet) was created.

2 Literature review

FL-RAEC utilized phased aggregation and hybrid
privacy methods to protect information [14]. It displayed
good resilience to malicious interference with high
computational costs and initial trust authentication
requirements, emphasizing the importance of secure and
expandable aggregation in decentralized Al learning. An
adaptive gradient compression and differential privacy-
empowered hybrid federated edge learning system
augmented industrial data privacy and defeated inference
attacks [15]. Despite additional complexity and
processing cost, it reduced latency considerably and
improved real-time security, with a focus on scalable
privacy-preserving learning in decentralized networks.
Blockchain FL incorporated distributed K-means,
random forest, and AdaBoost models combined with
homomorphic encryption and differential privacy to
secure 1loT data aggregation [16]. Experiments
demonstrated improved accuracy and privacy but latency
and computing workload remained an issue. It delivered
greater protection from model extraction and reverse
engineering, highlighting the importance of scalable,
crypto-based FL aggregation.

In an effort to counter privacy attacks and leakage
across edge networks, a Differential Privacy-Fuzzy
Convolution  Neural Network (DP-FCNN) was
designed, which combines the Laplace mechanism and
a Fuzzy CNN [17]. With Java implementation and the
use of Merkle trees, BLAKE2 hashing, and Piccolo
encryption, it enhanced accuracy, speed of processing,
and scalability but limited real-time flexibility and
resilience.
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A light scheme named Privacy Protection FL for Edge
Computing (PPFLEC) was put forward to defend privacy
in edge computing through hash functions, digital
signatures, and weight masking to assist in secret sharing
with FL [18].The method facilitated data integrity,
gradient protection, and replay and collusion attack
resilience. Comparison results showed that differential
privacy performed 40% worse. However, the method was
challenged by constraints in edge instability and low
scalability. Data privacy and integrity were prioritized
under limited computational capabilities within Internet of
Medical Things (IoMT) situations. Table 1 displays the
literature review of existing methods.

2.1Problem statement

Federated learning solutions [19-29] show great progress
in the ability to perform privacy-preserving computation
via approaches like differential privacy, homomorphic
encryption, and using blockchain. Still, existing models
struggle with scalability when there are client dropouts
[21], [27], computational overhead [22], [28], dependence
on hardware-specific strategies [26], and little evaluation
of gradient inversion or real-world settings with
heterogeneity [19], [23]. For example, most models that
have been proposed do not measure resiliency to network
effects, such as latency and packet loss. The model
proposed in this paper, RedPO-BRNNet, addresses these
limitations by integrating Red Panda Optimization into
Differential Privacy to achieve higher accuracy on the
model, faster convergence, and very strong resistance to
gradient leakage when compared to realistic edge-network
environments.

3 Methodological framework

The Secure Edge IoT dataset, based on discrete device
biometric data, is used for safe anomaly detection in edge-
based 10T networks. Standardization of feature scales and
local hybrid RedPO-BRNNet model training ensures

differential privacy. Figure 1 illustrates the complete
process of the Secure Data Aggregation Scheme for EC.
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Figure 1: The overall process of the secure data
aggregation scheme for EC

3.1 Dataset

The Secure Edge loT Data for Federated Learning dataset
with 2,501 time-series recordings captured from 10
distributed edge devices, such as wearables and sensors.
Context and biometric features like blood pressure,
activity level, body temperature, and heart rate, along with
anomaly scores and binary classification labels. The
dataset was partitioned between 70% training, 15%
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validation, and 15% testing using a non-11D Dirichlet

partition (a=0.5).

Source:https://www.kaggle.com/datasets/programmer3/s

ecure-edge-iot-data-for-federated-learning
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Table 2 displays the proposed architecture, which uses
device-wise data distribution to show total, normal, and
anomalous samples across ten non-11D edge devices that
are seeded with a consistent random seed (42).

Table 1: Summary of existing FL approaches for PPDA in edge computing
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Approach Evaluat nism Metrics Outcomes Missing Aspects
Used :
ion (€/9)
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Table 2: Simulated IoT edge device datasets using non- Devic 260 160 100 Non-11D 42
11D distribution principles e8
Devic | Total | Norma | Anomalo | Distributi | See D:\gc 250 150 100 Non-1D 42
elD | Sampl | us on Type d -
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e2 The secure federated edge learning emphasizes accuracy
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e3' convergence, and strong distributed scaling among loT
Devic | 230 145 85 Non-IID | 42 | devices. The independence of the model enhances
e 4_ privacy-preserving federated learning accuracy and
Devic | 280 175 105 Non-1ID | 42 | generalization, yielding more trustworthy predictions. The
De 5_ 250 50 100 Nor-1ID 22 interactions among temperature, heart rate, and anomaly
:\gc on- score in the sensor data obtained from edge devices are
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Figure 2: Correlation heatmap of key biometric features
in edge devices

Figure 3 shows average anomaly scores from ten edge
IoT devices, demonstrating the model's sensitivity to
minute behavioral abnormalities. It wuses data
confidentiality, accurate anomaly detection, and
efficient convergence for real-time health monitoring.

Average Anomaly Score Over Time

Avg Anomsly Score

Figure 3: Anomaly score trend over time in federated Edge
loT framework

It securely manages device-specific variability and
identifies health problems across edge nodes without
revealing raw biometric data, for temporal learning,
Federated Learning and Differential Privacy for secrecy.
The heart rate trends for randomly selected three edge
devices (D6, D7, and D8) gathered from a distributed loT
system are displayed in Figure 4.

Heart Rate over Teme for Sample Devices

eart Bate P
—_— "
b

-

Figure 4: Heart rate pattern analysis for privacy-
preserving federated monitoring

Sensor data from 1oT edge devices can distinguish
between normal and aberrant behavior, with FL and DP
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ensuring secure anomaly detection without revealing raw
data, making it beneficial for sensitive edge computing
applications in Figure 5.

Distribution of Anomaly Scores
o

4
Anomaly Score

Figure 5: Anomaly score distribution for federated edge
device monitoring.

Figure 6 shows data contribution rates from ten loT edge
devices in federated learning configuration. D7, D4, and
D1 provide the most data, ensuring strong representation
in the global model and promoting effective FedAvg.

Data Contribution by Devices

De

o))}

Do

Do

Figure 6: Device-wise data contribution in federated
edge learning

A scatter plot of heart rate vs body temperature shows
effectively detects subtle biometric changes, even weakly
connected features. This highlights the importance of
dense temporal learning models in federated networks for
privacy-preserving anomaly detection in Figure 7.
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HoRIt Nt V0. Dinpennire by Swaiidy For classification: Dense(num_classes), activation
- sl | b = softmax
For regression: Dense(1), activation = linear
2.Initialize Red Panda Optimizer (RedPO):
— Create population W of size P = 30
— Foreachw_jinW:
Randomly initialize all weights & biases in
range [—0.5,0.5]
— For eachw_j:
; = ; = Evaluate fitness F(w_j):
PSS Pass batch through BRNN with weights w_j
Compute loss (cross
FIgUI'e 7 Scatter p|0t Of heart rate vs. temperature With — entropy for ClaSSlflCathn or MSE for regression)
anomaly classification — Find the best weight vector wy.swith the
lowest loss

3.2 Pre-processing 3.RedPO Main Loop (t = 1tol = 100):

Z-score normalization is used to preprocess sensed edge Foreach candidatew_jin the population:

device distributed time-series data. The data gets normalized — Exploration step:

to a mean of 0 and standard deviation of 1 during this w_jnew = w_j + 08 x rand() * (w_best — w_j)
process, which normalizes each feature by subtracting its ~ t Gaussian_noise(u = 0,0 = 0.05)
mean and dividing by its standard deviation. This is useful to  — Exploitation step:

models, as it speeds up training and makes training on w_jnew = w_jnew + 03 * (rand() — 0.5)
different devices more consistent. It makes all the features . * (",V;lb,es’:__Sme‘;n(W))

have the same significance, eliminating bias in FL's learning Clip w_j_new within [-0.5,0.5]

procedure. As stated in Equation (1), the normalized value '’ Evaluat,e Fw_jnew) .
i mputed as: —If F(w_j_new) < F(w_j):
S, co u]_p_L;je as: Updatew_j = w_j_new

U= i (1) — Update w_best if a new best is found

Where, u’ = normalization value's outcome. u = the attribute'sh-Set network weights to w_best
actual value to be adjusted. F;= attribute's deviation. j =-Fine — tune with Gradient Descent:

. . . . — Use Adam optimizer, learning_rate = 0.001
Feature being normalized in each edge device's local dataset. Train for 10 additional epochs on the full dataset
This change enhances the global model's resilience and6 Output final trained RedPO — BRNNet
maintains privacy while enabling uniform training across aIIP'

participating edge nodes.

Heart Rate (BPM)

rediction:
For new input X:
— Pass through forward_RNN & backward_RNN

3.3 RedPO-BRNNet model — Concatenate hidden states (size 256)
RedPO-BRNNet, which integrates RedPO and BRNNet, — Passthrough dense + output layer
boosts convergence in FL on EC systems. The model is — Returnprediction y_hat

robust in protecting privacy and injecting DP noise, allowingThe Hybrid RedPO-BRNNet model is a training protocol
secure, scalable, and communications-efficient learning undeithat synergizes a RedPO and a BRNN for robust learning. It

scarce resources. Algorithm 1 illustrates the training process. Uses @ Bidirectional LSTM, dense ReLU layer, and Red

- 3 - ) Panda Optimizer to optimize the population and create
Algorithm 1: Hybrid RedPO-BRNNet Model diversity. This hybrid approach produces a well-trained

Input: . .

- _ . . model with higher accuracy, faster convergence, and greater

Training dataset D = {(X_i,y O} fori = 1..N generalization than traditional gradient-based training alone.
Hyperparameters:

hidden_units = 128

learning rate = 0.001 3.3.1 Bidirectional recurrent neural network

epochs = 50 (BRNNet) model for learning 10T time-series
batch_size = 64 data
RedPO parameters: The proposed RedPO-BRNNet framework uses
population_size P = 30 Bidirectional Recurrent Neural Network (BRNNet)
max_iterations I = 100 structures to efficiently mimic sequence or time-series
a = 0.8 (exploration factor) information from edge devices like wearable sensors,
B = 0.3 (exploitation factor) extracting temporal relationships and holding contextual
weight range = [-0.5,0.5] information in local data before aggregation. The power of
Output: the RNN lies in the fact that it can have a representation in

Trained RedPO — BRNNet model with optimized weights
1. Initialize Bidirectional RNN:

— forward_RNN = LSTM with 128 hidden units

— backward_RNN = LSTM with 128 hidden units

— Combine forward + backward hidden states

- size = 256
— Add a Dense layer with 64 units, activation = RelLU
— Add Output layer:

terms of the input at time s and the hidden state time at s —
i, which is in terms of the input at time s — ias well as the
hidden state at time s — i, and hence is suited for structured
loT data modeling under low-resource scenarios. For the
input vector sequence W = {w;,...,wg} and an output
vector sequence. The RNN activations are calculated as
follows, Z = {z;, ..., zg} in Equations (2) and (3),
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g = tanh(Xygw, + Xgg8s—i + ag)
Zs = nggs + a,

An RNN operates by maintaining past data in a hidden
state (g.). It receives new input (wy) in each step and refines
this memory with the help of weights (X, and Xz,) and a
tiny constant referred to as bias (ag). Then, it gives an
output (zs) using more weights (X,,) and another bias (a,).
The conditional probabilities of output tokens in sequence
modelling tasks, such as local prediction at edge nodes, are
provided by Equation (4):

exp (z))
M i
Yi=1 exp(zs)

(4)

O(Xs = les—ir gs—Z) =

The jthelement of the output vector z! representing the
activation for token, x,_;indicates the preceding time-step
input value. g;_, Indicates an earlier concealed memory
state. M is the verbal size, the overall possibility of a
classification O(xg|xs — i, 8s_2, Xs + 1,85 + 2) is in Equation
(5):

0=X) = S:io = (Xs|Xs-i) 8s-2) (5)

RNN language models offer superior accuracy and privacy
compared to feedforward neural networks and word/class
m-gram models, using past data for edge devices'
predictions and Federated Averaging and Differential
Privacy. It enhances prediction precision and facilitates
effective federated model convergence, with two distinct
hidden states calculated in the BRNNet architecture in
Figure 8.

Output

0 - nermal Data
Gl oy

Output

0 - normal Data )
1 = anal dat

Hdde{\

\

Forward States

Hidden

\ ) \ backward States
\ Hidden \ Hidden fe—
Input Input

({Normalized Data) {Normalized Data)

Figure 8: The BRNNet structure

The input sequence is processed by a forward hidden layer
gE, which runs from time steps =1,...,S. Need to validate
the normalized data in the input. A backward hidden layer
that analyses the sequence in reverse from s =S,...,T, is
called g2. The followings are the related equations for the
activations of the hidden states:

gt = tanh(XE w + XE.85 ; +af) (6)
g? = tanh(XQgWs + ngg?—i + 32) (7)
Zs = nggg—i + ngg?—i + a (8)
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In Equations (6) to (8), at each time step s, it has a
forward hidden state (gE) that processes input wg from the
past, and a backward hidden state (g) that processes
input from the future. These hidden states are updated
using input-to-hidden weights (Xg,, Xévg), hidden-to-
hidden weights (XE,, X&), and biases (af, a§). The final
output z¢ is generated by combining the two directions
using hidden-to-output weights (Xg,, Xg,) and an output
bias (a,), that outputs mention 0 — normal data, and i —
mentions anomalous data. Bidirectional models improve
understanding of temporal patterns by utilizing past and
future contextual information. Despite challenges in exact
likelihood estimation, optimizing based on contextual data
boosts learning performance and secures anomaly
detection across distributed 10T devices. The RedPO-
BRNNet model incorporates Gaussian DP by clipping
local gradients to an L2 norm and adding Gaussian noise
for security. It employs Rényi Differential Privacy (RDP)
to measure cumulative privacy loss during training,
achieving a total budget of 1.5 and 1le-5, thereby
balancing privacy with model utility. This architecture,
utilizing  Adam, features adaptive  exploration-
exploitation-based parameter modifications to ensure
performance improvements are solely attributed to
optimization enhancements.

3.3.2 Red Panda Optimizer (RedPO) for fast

model convergence in edge devices
The RedPO is population-based, drawing inspiration from
red pandas' diversified foraging strategy in search of
maximally efficient model parameters. It uses their
diverse diet, like bamboo, acorns, berries, fruits, grasses,
lichen, mushrooms, and roots, to select and adjust model
weights, equation (9) demonstrating their effective
strategy for dealing with feature spaces and loss surfaces.
Qiq = ka. + rand().(va. —ka)j=12,...M; c=
1,2,....,n 9

The value of the c ™decision variable for the j* red
panda (solution) is represented by q;q, while the lower and
upper bounds of the search space are denoted by ka.and
vag, respectively. Equation (10) illustrates that the full set
of red pandas (solutions) is included in the overall
population matrix Q, where each column is a model
parameter (decision variable) and each row denotes a
candidate solution (Q;):

Q qi1 -+ 91c 0 din
Qm Mxn lqu o Ame dMn Mxn

Equation (11) calculates the objective function for
evaluating each red panda's performance, which is the
model's anticipated accuracy or loss minimization:
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ObF, ObF (Q,)

ObF = OBFj = OthQj) (11)

obFyl, . Lobr(Qu) ]

Mx1

Here, ObF; denotes the objective function value of
the jh, and ObF is the evaluated objective function

candidate solution local model parameters, such as
classification loss and accuracy.
Exploration  Stage in  Edge-Based Federated

Optimization: The RedPO exploration stage enables a wide
search throughout the parameter space to improve model
accuracy and shorten convergence times in edge devices.
Each local model actively looks for parameter
configurations that provide superior objective function
values, drawing inspiration from the animal's keen
olfactory, auditory, and visual sense skills. The following is
a group of candidate positions with exceptional
performance in Equation (12):

PFS = {0]1 € {1,2, ....M}and E; < Ej} U {Opes}(12)
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constraints, hence enhancing prediction precision. The
RedPO's convergence requirements are reinforced by
empirical validation and theoretical analysis, which show
stability under constrained gradients and Lipschitz
continuity, ensuring consistent convergence over
communication rounds and model updates.

The RedPO-BRNNet model optimizes BRNN by
encoding weights and biases into a single solution vector.
The search process involves exploration and exploitation,
balancing global search and local exploitation for optimal
parameters, resulting in improved prediction performance
and convergence. Algorithm 2 display the using
population initialization, exploration-exploitation
balancing, iterative weight updates, fitness evaluation, and
global best selection to optimize neural network
parameters. Table 3 lists the primary hyperparameter
environments for the proposed model, which are adjusted
to deliver efficient convergence, dependable temporal
learning, and privacy-preserving performance in edge
computing environments.

Table 3: Hyperparameter settings for RedPO-BRNNet

model
PFS stands for the collection of anticipated improved -
model parameters (food sources) for the client, the red Hyperparameter Value / Setting
panda, and Oy indicates the globally most well-known Number of Hidden Layers 2
solutiqn among all participating edge users. The edge Hidden Units per Layer 128
mc_)del S red_panda modifies its current parameter vector b Learning Rate 0.001
using Equations (13) and (14): Batch Size 32
Dropout Rate 0.3
01 _ . - )
je © Q(lj'j + rglnd(')' (SFSjc =J-gjc) (13) Local Training Epochs 5
Q = { i E <.EJ'; (14) Sequence Length (Time Steps) 10
Qj, otherwise Differential Privacy Noise () 0.85
FedAvg Rounds 20

The solution is approved if this revised location results
in a better objective function value Ej01 < Ej: The newly

suggested parameter value is represented by ]Ocl while the
chosen food source superior parameter configuration is
represented by SFS;.. In federated optimisation, this stage
improves global search and aids in avoiding local optima.

The exploitation stage refines local parameters by using
local search, replicating red pandas' foraging approach,
reducing training overhead and improving convergence
precision in edge situations with limited resources. The red
panda, representing the local model, modifies its parameter
in the following Equation (15):

kac+rand().(vac—kac)
s

Ay = gjc + (15)

This facilitates fine-tuning by allowing little
experimentation with current parameters. Equation (16)
only retains the model modification when it results in
improvement.

02 EO2 < E.

Q' — ) ] ) ]

) {Qj, otherwise

E]-02 < E; is the matching objective function value,
and Q)? is the updated model state for the j"device. The
RedPO method offers quick convergence, solution
viability, and lower execution times for FL models in
distant edge computing environments with privacy

(16)

Algorithm 2. RedPO optimizer

Step 1.Initialize population randomly
population = np.random.uniform(low
= —1,high = 1, size
= (pop_size,dim))

fitness
= np.array([fitness_function(ind) for ind in
population])
Step 2. 1dentify the best individual
best_idx = np.argmin(fitness)
best_solution = population[best_idx].copy()
best_fitness = fitness[best_idx]
Step 3. Iterative optimization
for tinrange(max_iter):
p_explore = 0.8 = (1 — t/max_iter)
foriinrange(pop_size):
if np.random.rand() < p_explore:
step = alpha * np.random.randn(dim)
else:
step = alpha * (best_solution — population]i])
population[i] += step
fitness[i] = fitness_function(population|i])
if fitness[i] < best_fitness:
best_fitness = fitness[i]
best_solution = population[i].copy()
alpha = alpha * 0.99

return best_solution, best_fitness
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Because it allows several clients to work together to train
The RedPO pseudocode starts with a population of potentiah global model while ensuring data secrecy, this method
solutions, where each is a representation of network weights. Atvorks well in decentralised edge contexts. Every client
every iteration, each individual either explores new areas in d separately updates its local model x. using local SGD
random manner or exploits the current best solution. The fitneshased on its private dataset for each training round s. The
of each candidate is calculated, the global best is updated asxpression for the local update rule is in Equation (19):
needed, and the probability of exploring versus exploiting is
decreased over time to support convergence. Local refinement  x! = « x! —n VE (xL; €, a)
or step-size decay may also be applied to improve performance.
This mechanism supports efficient optimization of neural  Where 1, is the learning rate (step size) at iteration
network parameters by balancing a global search ok ;s the mini-batch size used for local updates, & is

hyperparameters with local tuning to improve predictive randomly sampled mini-batch from the dataset ¢, ,

performance while avoiding getting trapped in mini-maxima. taken from [?] mini-batches, in Equation (20):

(19)

3.3.3 Federated averaging (FedAvg) algorithm for
secure federated learning

To improve predictive accuracy, data confidentiality, and
computational efficiency in distributed EC environments, Here: x. is the current model on client | during
DP is incorporated into the standard FedAvg algorithm taraining round s. & is the small random batch (mini-
create a privacy-preserving FL framework. A parameteiatch) of data taken from client 1local dataset. a is the
server (PS) and a total of M clients make up this FL networksjze of the mini-batch (how many data points are in it).
The PS manages training without directly editing any client'sy, - The gradient of the loss function tells us how to
raw data, protecting local data privacy. Assume that Ci =djust the model to improve its predictions. VE,: The
{(win, zl_n)}nmzllrepresent the local dataset on the 1" client fomverage gradient for the mini-batch used to update the
1€ [M] £{1,....,M}, where: m; is the number of samples orfocal model is the mini-batch stochastic gradient of the
client 1, wy, is the n—th training input, and z,, is thdoss function. Each client sends the PS their updated
corresponding label. The collaborative model training procesdocal models xg.,,1 € [M], after calculating the local
aims to solve the following global optimization problem inmodifications. To get the most recent global model, the
Equation (17): PS averages the models: Where Xo,; = ¥M, oxL,, ,
indicates the client I's relative data weight. The mean
model X.,;. All clients are informed of s+ 1 for the
upcoming training session. Two crucial tactics are

Here, x = the shared global model. M = the total numbelprmmpall_y responsmle_fc_)r th.'s Improvement:
> Partial client participation

of devices (clients). E;(x)= the loss (error) on the data from> Multiple local SGD updates

the 1!"device. o, = the weight for each device, based on how Duringpeach communi(?ation ;:ycle a random subset

much data it has. E(x)= the combined loss across all devices.Of clientsT, < [M], with subset size |7l”| — L is chosen
s — 1 sl — )

N
x € Q" is the global model parameter vector to be Iearnedto perform local SGD updates and send their modified

m

0 = V. m is the relative weight of the client I dataset in thgnodels to the PS in partial client participation. The

global aggregation m = YM, m, is the whole number of0llowing weighted model averaging may be used to
training samples through all clients, estimate the global model objectively when choosing T

is regarded as sampling without replacement.

VEI(XIS; EIS’ a) = (i) ZnEEf' \%4 (Xls: Win, Zl,n) (20)

min{E(Y) £ XM, 0, F;(9) (17)

iy () = -k, 206 Wi zn) - (18)

(1)

_ M 1
Xs+1 = T ZIETS 01Xs5+1

In Equation (18), m;, is the number of training
sections on the n" user. £(x; wyy,,7,) is the loss for the
n'tsample on client 1, calculated using wy,: the input
features of the n'" data point on client 1. z,,: the true
label/output corresponding to w;,,, x is the current global
model parameters. The local cost function £(.) on client 1
based on a user-defined loss function. The FedAvg
algorithm is based on the traditional Distributed
Stochastic Gradient Descent (SGD) and is used to solve
the global optimisation issue given in Equation (17).

Where: X, is the updated global model after the
communication round, s+ 1is aggregated from selected
clients. M is the total number of clients in the federated
learning network. 1: The number of clients selected to
participate in this round. A random subset of clients is
selected during communication round s. o, is the relative
weight of client I, defined as oyx.,,is the quantity of data
models on client I. X,,,: The locally updated model from
client | after round s + 1 in Equation (21). Theoretical and
empirical examination also demonstrated that clients
performing R > 1 local SGD updates every communication
round can speed up convergence. Let s, be the iteration that
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satisfies mod (s, R) =0 . Next, each client executes V: End For
successive local SGD updates in the manner described below8: mean_gap = total_gap / R

For s = sy, ...

..,So + R—1, As a result, contact with the P®: MCE = 100 x (1 — mean_gap)

only happens during iterations when mod (s + 1,R) = 0. Thel0: Return MCE

. . . .S .
entire amount of communication sequences is . If Sis the

total number of local updates. FedAvg can't adequately securgAlgorithm 5: Communication Overhead Calculation
data confidentiality despite its effective communicationPurpose: Compare communication cost (in bytes and time)
particularly in hostile environments. The shared updates carbetween schemes.

be used by both trustworthy but inquisitive servers andmput:

outside attackers. {x‘sﬂ}fil To deduce private client P — number of model parameters

information.

b — bytes per parameter (e.g.,4 for float32)

Algorithms 3-7 provide a complete framework covering ¢ — number of participating clients per round

privacy accounting, model convergence

efficiency, R — total number of communication rounds

communication overhead, gradient-leakage resistance, and CR
reproducibility—ensuring secure, efficient, and transparent> compression ratio (fractional size after compression)

evaluation of federated edge Al systems.

t_ raw[1l..R],t_comp[1..R]
— measured wall

Algorithm 3: Rényi Differential Privacy (RDP) Accountant

— clock time per round

Purpose: Compute the overall privacy budget (g,8)(\varepsilon,
\delta)(g,d) for the global model after all communication rounds.

Input:
o — noise multiplier
q — client sampling probability per round
T — total number of communication rounds
) - target delta (e.g.,1le = 5)
a_list

— list of Rényi orders (e.g.,[2,4,8,16,32,64,128])
Output:

(e,6) - cumulative privacy guarantee for final model

Procedure:

1: Initialize total RDP[a] = O for all a in a_list
2: Foreachroundt = 1toT do

3: Foreachaina_list do

: For each a in a_list do

Output:
Bytesraw' BytescompDP' AVgtimeruw'
Avg_time_compDP
Procedure:
1: Bytesraw = R X C X P X b
2: Bytes_compDP = R X C X P X b X CR
3: Avg_time_raw = mean(t_raw[1l..R])
4: Avg_time_compDP = mean(t_comp[1l..R])
5: Return (Bytes_raw, Bytes_compDP, Avg_time_raw,
Avg_time_compDP)

Algorithm 6: Gradient-Leakage Resistance Evaluation
(DeepLeakage Attack)

4: rdp_step = (a * q"2) /(2 * ¢"2)

5: total RDP[a] = total RDP[a] + rdp_step
6: EndFor

7: End For

8

9:

gla] = total RDP[a] + log(1/8) /(¢ — 1)
10: End For

11: Select _final = min(e[a]) over all a

12: Return (e_final, §)

Purpose: Evaluate reconstruction resistance under different DP
noise levels.

Input:
fe) - target model
g_obs — observed noisy gradients from client
o_list - list of DP noise multipliers
N_iters — optimization steps for the attack
) - small regularization weight
Output:

Attack_Success|o]
- reconstruction accuracy or SSIM for each o

Algorithm 4: Model Convergence Efficiency (MCE)
Computation

Purpose: Quantify how efficiently the model converges across
training rounds.
Input:
Acc[1..R]
— test accuracy after each communication round
R - total number of communication rounds
Output:
MCE (%)
Procedure:
1: Acc_ 0 = Acc[1]
2: Acc_max = max(Acc[1..R])
3: total_gap = 0
4: Forr = 1toR do
5
6

— Model Convergence Ef ficiency

gap_r = (Acc_max — Acc[r]) / (Acc_max — Acc_0)
total_gap = total_gap + gap_r

Procedure:
1: For each o ino_list do
2: Initialize random input x'
Foriter = 1to N_iters do
pred = f(x)
g_fake = V_0 L(pred)
loss_attack = || g_fake — g_obs||*> + § X Reg(x")
Update x' « x' — n x V(loss_attack)
End For
Compute similarity = SSIM(x',x_original)
10: Store Attack_Success[o] = similarity
11: End For
12: Return Attack_Success

WO W

Algorithm 7: Reproducibility Workflow Checklist

Purpose: Ensure reproducibility of training and evaluation
experiments.
Checklist:
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1: Release complete training and evaluation code.
2: Include privacy accountant script and
parameters (0,q,T, §).

3: Publish all random seeds and data splits.
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Table 4: Training protocol configuration for the RedPO-

4: Provide configuration files for all experiments.

5: Include environment file (requirements.txt or

BRNNet framework
Parameter / Setting Value / Strategy
Client Population 10

Dockerfile).

Client Selection Policy All clients (default); optional

random subset (f=0.3)

6: Upload reproducibility scripts for:
a.Computing (g, 6)

Communication Rounds
(FedAvg)

20 (baseline); >100 recommended
for convergence validation

b.Computing MCE
¢.Measuring communication overhead

Local Epochs per Round 5 (baseline); 10-20 recommended

for extended evaluation

d.Running gradient — leakage experiment
7: Provide README.md with step — by

— step reproduction commands.

Batch Size 32
Sequence Length 10
Optimizer (Baseline) Adam (Ir =0.001, B1 =0.9, B =
0.999)

8: Archive results and plots in /results
/ directory for verification.

Optimizer (Proposed) Red Panda Optimizer (RedPO) with

Adam fine-tuning (Ir = 0.001)

Learning Rate Schedule Reduce-on-plateau (factor = 0.5,

patience = 5) or cosine decay

3.3.4 Statistical analysis using paired t-test
The paired t-test findings (p < 0.05) show that RedPO-BRNN

Differential Privacy (DP) Standard deviation (c = 0.85),
clipping norm (C = 1.0), privacy

budget (e=7.2,56=10")

outperforms BRNNet and PO. The model obtains great

Aggregation Strategy Federated Averaging (FedAvg)

stability, convergence, and accuracy, demonstrating the effica

tY Evaluation Frequency After each communication round

of optimizer fusion. Statistical evidence suggests that R
Panda optimization significantly improves learning efficien

od
"

Stopping Criterion No validation improvement for 10
consecutive rounds or max rounds

reached

and robustness in edge computing systems.

Random Seeds {42,7,99, 1234, 2025}

4 Result and discussion

Reported Metrics Accuracy, Loss, Privacy Leakage,

Gradient Leakage Resistance

To improve secure and private learning in EC, the RedP

D- (GLR), Convergence Efficiency

BRNNet model was implemented using Python 3.11 for better

accuracy and data protection. To evaluate performanc

e,

standardised time-series data from five epochs were utilized

to train the BRNNet and the proposed RedPO-BRNN
models, allowing for comparison analysis.

4.1  Experimental and

configuration

All experiments were conducted with Python 3.11,
alongside TensorFlow 2.13, on an Intel Core i7-12700H
CPU, hosting 16 GB of RAM and an NVIDIA RTX 3060
GPU (6 GB). Implemented local edge simulations on ten
virtual clients simulating loT devices for federated
training, with 50 communication rounds, 5 local epochs, a
batch size of 32, and a learning rate of 0.001. Each of the
clients injected Differential Privacy (DP) noise prior to
sending model updates to the central aggregator using
Gaussian noise with privacy guarantees €=1.0 and
5=10-5. Gradient clipping was also used with a norm
bound of 1.0 to stabilize updates to make results
comparable on privacy-preserving, such as the Privacy
Leakage (%) metric.

Table 4 present the Training configuration details for the
suggested system, which include federated parameters,
optimization algorithms, differential privacy settings, and
reproducibility controls to ensure convergence stability
and uniform performance assessment.

setup dp

et

4.2  Comparison of Baseline and
Proposed Models’ Optimizer and Network
Settings

Both baseline BRNNet and the proposed RedPO-BRNNet
have identical architecture, layers, hyperparameters, and
training configurations. The sole variation is in the
optimization method, where RedPO-BRNNet exploits the
RedPO optimizer rather than Adam. This enhancement
facilitates enhanced parameter exploration and quicker
convergence in federated edge environments, solely
contributing performance improvement to the optimizer.
Importantly exploring key training parameters such as
optimizer type, learning dynamics, and adaptive approaches,
comparative assessment identifies hybrid RedPO-BRNNet's
differences with respect to baseline BRNNet. It also indicates
the impact of Red Panda Optimizer integration on global
weight optimization, network performance, and convergence.
Table 5 displays the optimizer differences, learning
dynamics, and adaptive behavior made possible by the Red
Panda Optimizer for increased optimization efficiency as it
contrasts the baseline BRNNet and the suggested RedPO-
BRNNet settings.
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Table 5: Comparison of the baseline configurations of
the RedPO-BRNNet and BRNNet

Parameter / Baseline Proposed RedPO-
Setting BRNNet BRNNet
Optimizer Adam RedPO
Learning Rate 0.001 Adaptive, initialized at
0.001 and auto-
adjusted by RedPO
B1, B2 (Adam 0.9, 0.999 Not applicable —
parameters) RedPO controls
adaptive step size
Batch Size 32 32
Activation tanh tanh
Function
Dropout Rate 0.3 0.3
Loss Function  Binary Cross- = Binary Cross-Entropy
Entropy
Local Epochs / 5 5
Round
Aggregation FedAvg FedAvg
Scheme
Privacy DP noise DP noise injection
Mechanism injection
Optimizer Gradient-based Adaptive exploration—
Behavior parameter exploitation search

updates only

The proposed model offers safe and efficient model training in
EC environments, with robust defense against gradient-based
privacy threats, 94.3% packet drop resilience, 19.7% reduction
in training time, 36.6% Model Compression Ratio, and 92.5%
Scalability Efficiency, supporting efficient, safe, and privacy-
preserving federated learning in limited resources in table 6
and Figure 9.
Table 6: The values evaluation using metrics

Metric Value (%)
Gradient Leakage Resistance
94
Score
Packet Drop Resilience 94.3
Training Time Reduction 19.7
Model Compression Ratio 36.6
Scalability Efficiency 925
94
943
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Figure 9: Performance evaluation of efficiency and
security measures in proposed RedPO-BRNNet model.

R.R. Tang

The RedPO-BRNNet model, shown in Figure 10, exhibits
exceptional discrimination power and high peak
classification accuracy, surpassing random classifiers and
achieving a high decision threshold.

Figure 10: The ROC curve

The RedPO-BRNNet model's ability to classify loT edge
data as normal or anomalous in privacy-preserving scenarios
is evaluated using a confusion matrix. Figure 11 provides a
systematic visualization of true positives, false positives,
true negatives, and false negatives, enhancing anomaly
detection accuracy.

Normeal (00

True Labels

Anmornaly (1) 4

Moamnal (0 Ancrnaly (1
PreceCted Labeis

Figure 11: Confusion matrix

4.3 Variable explanation

Privacy Leakage: Measures how likely it is that the model will
divulge private information while adhering to the formal
A technique under
(e,6) — DP provides that the model output is only little
impacted by the inclusion or deletion of any one record. We
define Privacy Leakage as the percentage of sensitive attributes
that could be derived from the trained model using empirical
privacy attacks (such membership inference) to provide an

Differential Privacy (DP) paradigm.

interpretable metric in equation (22).

Privacy Leakage (%) =

Number of successfully inferred sensitive attributes

x100  (22)

Total sensitive attributes
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This metric is used as a useful, empirical supplement to assessnore complicated system setting. The metric measures the
privacy issues in real-world situations; however, it does not takesuggested RedPO-BRNNet's ability to scale well without
the place of the formal DP guarantees. It evaluates residuaimpacting performance appreciably. The higher the
empirical leakage and theoretical privacy protection bypercentages, the better the scalability, and it shows
combining this evaluation with DP noise injection. Higherresistance to larger data volume or model complexity.
privacy preservation is indicated by lower percentages, whichThe RedPO-BRNNet, an edge computing model training
are in line with DP principles and enable model comparisongechnique, ranked higher than BRNNet in terms of anomaly
under comparable DP parameters. detection accuracy at a mean of 94.97% in five epochs of
training, reflecting quicker convergence and better predictive
Model convergence efficiency (%): This measure assessegeliability under federated learning scenarios in Figure 12.
how well the model performs at its best throughout training. It
can be formally described as the ratio of the actual loss

reduction to the highest feasible loss reduction in equation (23). 100
o8 ?" -iw ”"' 00  lorme
.. Linitial=Lfinal 26 s
Convergence Ef ficiency (%) = ——— ——x100 "%
initial”tmin 1
(23) ¥ =11 $ 9 E 9
_ o ) 5 o1} *
Where Liyjtiqi:  The first training loss, Lg;nq,: The final loss at E o :
convergence and L,,,;,: Reflects the lowest possible loss. The 5 ;
efficiency is determined by tracking training loss across epochs, 2 el .
with larger percentages suggesting faster and more consistent L N 3 -
convergence. g~ N\ g ”

Gradient leakage resistance score: This score assesses the
model's resilience to gradient-based reconstruction attacks,
which attempt to retrieve training data via shared gradients.

Figure 12: Anomaly detection accuracy across epochs.

calculated as an equation. (24).

Gradient Leakage Resistance Score =1 —
Reconstruction Accuracy of Attack

(24)

Maximum posinle Accuracy

ItSl’he RedPO-BRNNet model Figure 13 showed better
resilience to inference attacks from data in federated edge
settings, with a mean privacy leakage of 2.14%, as opposed to
the standard BRNNet's 4.82%, proving it feasible for secure
information summation in federated learning.

Gradient inversion attacks are performed on the model, and the

accuracy of the recovered data is measured against original 4'-‘ @ 2 an ol
training data. Scores nearer to one suggest greater resistance to § 1 1 178
gradient leakage. ]

Training Time Reduction (%): This measure quantifies the i : ‘ / / -
gain in training efficiency that the suggested RedPO- 2} l }%’ AR "&‘I-
BRNNet achieves compared to the baseline. It's calculated Y’ / /, e
as equation (25). — / » : p

. . . Thaseline~T, d
Training Time Reduction (%) = M x 100
baseline

Tpasetine. The overall training time for the baseline BRNNet
model. Tyroposea:  The total training duration of the RedPO-
BRNNet model, encompassing both gradient-based fine-
tuning and RedPO optimization. This measure enables the
evaluation of efficiency benefits clearly, illustrating how the
hybrid RedPO approach reduces total training duration
without compromising or even improving model
performance. Higher percentage indicate greater reductions
in computing expense.

Scalability Efficiency Score (%): To measures a model's
ability to sustain performance as the dataset size, network
size, or number of users (in federated environments)
increases in equation (26).

Scalability Efficiency (%) = % x 100  (26)
small

Psnau: The model's performance on a baseline dataset or
configuration. Py,,.4.: Performance in a larger data set or in a

Figure 13: Privacy leakage (%) comparison between various
models

Figure 14 indicates the RedPO-BRNNet is better than the
conventional BRNNet in client latency for five epochs, with
an average latency of 57.82 ms, and proves to have better
responsiveness and real-time performance in federated edge
computing systems.
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e Gradient leakage: It assesses the proportion of
private data that is able to leak from shared gradient
updates across federated training. Lower proportion
indicates higher privacy preservation.

il NI\ WD

e Accuracy: It quantifies the percentage of
instances correctly predicted out of all instances,
indicating general anomaly detection reliability

o throughout the federated healthcare edge setting. It is
-~ formulated in equation (27).

...-_ ! |
‘

]

TP+TN

Accuracy = —————
TP+TN+FP+FN

Figure 14: Client latency (ms) comparison across various
epochs with models e Recall: It is the model's capacity to accurately
detect genuine anomalies or severe health occurrences
The RedPO-BRNNet model showed better convergencerom IoT streams, commensurate with the goal of precise
effectiveness and learning stability in federated edge contextsgdge-side anomaly detection. It is formulated in equation
with a 78.96% improvement over the conventional BRNNe{(28).
in five training rounds, thus establishing its better predictive
performance for edge computing privacy-preservingqRecall = —-2 (28)
applications, as presented in Figure 15. TP+FN

@7)

e Power consumption: It is the overall energy
consumed by the edge device while training and inferring
the model, whose impact is explicit on scalability and
sustainability of distributed loT deployments.

Table 7 and Figure 16 displays the RedPO-BRNNet model
outperforms the GuardianAl, FedAvg, FedDP, and FedSA
models in terms of privacy protection, with Model
Inversion 6.7%, Inference Attack 4.1%, and Gradient
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% Leakage 2.1%.
— N - . . .
P i, * Table 7: Privacy attack resistance analysis
A . ) ) Model Model Inference Gradient
Figure 15: Model convergence efficiency comparison with Inversion Attack (%) Leakage (%)
various models (%)
The RedPO-BRNNet model outperforms other models in Re‘[frooise';‘]’\‘et 67 41 21
anomaly detection, privacy leakage, latency, and GuardianAl [28] 83 57 2.9
convergence, proving its efficacy in secure, privacy- FedAvg [28] 132 378 15
preserving, and efficient federated learning in edge-based FedDP [28] 186 14.2 95
loT environments. The RedPO-BRNNet model was FedSA [28] 11.9 9.8 5.4
benchmarked against a number of current benchmark
models to confirm its privacy safeguard, prediction T
accuracy, and energy optimization. On privacy risk e WERrens Mk
evaluation, it was compared with Guardian Artificial 0 I
Intelligence (GuardianAl) [28], Federated Averaging
(FedAvg) [28], Federated Differential Privacy (FedDP)
[28], and Federated Secure Aggregation (FedSA) [28]. In R _
detection performance and computational efficiency, the f=5 £
RedPO-BRNNet model was compared with Isolation 2 3
Forest (IF) [29] and Long Short-Term Memory = 4 a 2
Autoencoder (LSTM-AE) [29]. 19 sa
g3
6.7 57
e Model inversion: It is the measure of how well et
an attacker can reconstruct original data samples from o ST R msl‘ml
exchanged model parameters or gradients. A lower BRNNet (28] (28]
percentage reflects better immunity to data reconstruction e Modet

in privacy-preserving federated environments. Figure 16: The metrics comparison of proposed methods

. . vs existing methods.
e Inference attack: It is the measure of how likely g

an adversary can infer sensitive attributes or membership
data from model responses. Lower values reflect greater
robustness against indirect disclosure of data.

Table 8 and Figure 17 display the RedPO-BRNNet
improves scalability by reducing training time from 5.2
s to 4.8 s (10 nodes) and communication cost from 3.5
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MB to 3.1 MB, resulting in consistent efficiency gains
over GuardianAl across all node configurations.

Table 8: Scalability analysis (training time and
communication cost)

Num | Trainin | Traini | Communica | Commu
ber g Time ng tion Cost nication
of per Time (MB) - Cost
Node | Round per GuardianAl | (MB) -
S (s) - Round [28] RedPO-
Guardia (s) - BRNNet
nAl [28] | RedPO [Propose
- d]
BRNN
et
[Propo
sed]
10 5.2 4.8 35 3.1
50 7.8 7.1 9.2 8.6
100 10.4 9.8 15.8 14.2
200 14.7 13.6 28.3 26.4
2;3 13‘
1:’7 =g L,
N 104 2
@
?\}\
‘bo"’h/»o,'v &
Oy

o8

Figure 17: Training time and communication cost of
proposed methods

Table 9 shows the model's trade-off between detection
performance and energy efficiency. The suggested RedPO-
BRNNet finds the best balance between recall (0.93) and
accuracy (0.95) while using just 3.4 W of power, exceeding
both the LSTM Auto encoder and the Isolation Forest in terms
of balanced efficiency.

Table 9: The comparison of proposed vs existing methods

Model Accuracy | Recall Power
Consumption
(W)

Isolation 0.88 0.85 2.8
Forest [29]

LSTM 0.92 0.90 4.2
Autoencoder

[29]

RedPO- 0.95 0.93 3.4

BRNNet
[Proposed]
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e Computational efficiency and edge robustness
analysis

The proposed RedPO-BRNNet framework optimized
resource use with an average client compute time of 42 ms,
model size of 5.8 MB, and energy consumption of 3.4 W.
Under simulated network latency and 10% packet dropout,
performance  deterioration was less than  2.5%,
demonstrating great robustness and scalability in real-world
edge situations.

e  Statistical analysis

The paired t-test results show that both RedPO-BRNNet and
PO designs significantly outperform the baseline BRNNet (p
< 0.05). The maximum improvement is achieved by
combining the RedPO with the bidirectional recurrent neural
architecture. Table 10 illustrates the effectiveness of optimizer
fusion in enhancing model stability, convergence, and
accuracy for edge computing. 95% confidence intervals and
the number of runs (n=10) are now clearly shown in place of
single-figure statistics for greater experimentation openness
and replicability.

Table 10: Paired t-Test Results between RedPO-BRNNet,
BRNNet, and PO Models

Mod | Mean | Stand 95% t- p- n
el Differ ard Confide | Stati | Val | (Ru
Pair ence Devia nce stic ue ns)
A) tion Interval
(SD) A+
1.96xS
D/vn)
RedP | 0.058 0.014 | 0.058+ |8.21 |0.00 |10
O- 0.009 05
BRN (0.049-
Net 0.067)
Vs
BRN
Net
RedP | 0.037 0.012 | 0.037+ | 7.46 | 0.00 | 10
O- 0.007 08
BRN (0.030-
Net 0.044)
Vs
PO
PO 0.021 0.010 | 0.021+ |6.32 |0.00 |10
Vs 0.006 12
BRN (0.015-
Net 0.027)

e Ablation study
The ablation study statistically demonstrates the progressive
improvement of model performance with each iteration.
Incorporating the PO boosted the accuracy from 0.89 to 0.92,
and the RedPO-BRNNet system elevated it further to 0.95
with a recall score of 0.93. The ablation study shows that DP
tuning, clipping norm control, and integration of RedPO
continue to enhance model accuracy, recall, and efficiency
gradually, achieving an optimal privacy-accuracy trade-off
(e=1.5, 6=0.8) with minimal communication overhead. The
results, shown in Table 11 and Figure 18, establish that the
integration of the RedPO and differential privacy controls
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provides enhanced predictive reliability and privacy assurance
in loT edge computing environments.

Table 11: Ablation Analysis of the RedPO-BRNNet Model on
loT edge data classification

Model Variant Accuracy Recall
BRNNet (Base) 0.89 0.86
PO-BRNNet 0.92 0.89
RedPO-BRNNet (Proposed) 0.95 0.93
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Figure 18: The metrics values of proposed methods

5 Discussion

The RedPO-BRNNet framework combines a
BRNNet, the RedPO, and DP to overcome limitations in
existing approaches such as Blockchain-enabled FL with
homomorphic encryption and AdaBoost [16] and
Differential DP-FCNN [17]. These approaches faced
latency, scalability, and privacy issues. RedPO-BRNNet
improves convergence, accuracy of anomaly detection,

and resistance to gradient leakage and decreases
communication overhead, leading to low-latency,
scalable, and privacy-preserving learning in

heterogeneous edge-10T environments. Current methods
face severe challenges in real-world implementation.
Federated anomaly detection mechanisms possess huge
computational and communication overhead, hindering
scalability and efficiency in 10T networks [28]. In the
same manner, integrated Edge Al models that incorporate
IF and LSTM-AE have high complexity, low adaptability
to different devices, and low generalizability across
changing contexts [29]. A 2.14% privacy leakage rate
indicates enhanced security, but the experiment is only
conducted in a single-device adversary setting.
Countermeasures involve differential privacy noise and
aggregation methods, and future work can extend to
colluding adversaries. The responsive performance of the
RedPO-BRNNet can be witnessed with a latency of 57.82
ms for the client, but it might result in scalability
problems on energy-constrained and computing-resource-
limited edge devices. The proposed algorithm, RedPO-
BRNNet, works efficiently on a small number of edge
devices but might experience problems with latency,
energy efficiency, and model convergence when scaled up
to thousands of devices.

5.1 Practical implication

Although the proposed RedPO-BRNNet framework
demonstrated impressive performance, assessing it on
domain-specific datasets or real-world case studies like

R.R. Tang

patient monitoring in healthcare, surveillance sensor
streams, or industrial 10T logs would lend more practical
applicability to the evaluation. Originating from their
context, those datasets embody real anomalous variability,
noise, and device diversity, and would give a better
assessment of robustness, latency, and privacy-
preservation, that could inform deployment patterns and
apportion and communicate the model’s efficacy and
capabilities at scale in operational environments. As
future work entails these unprecedented evaluations, their
goal could be to authenticate RedPO-BRNNet’s
reliability, security, and adaptability for edge-intelligence
across a wide range of 10T ecosystems.

6 Conclusion

To design a privacy-friendly and safe data aggregation
approach for edge computing, this research integrates FL
with DP. An open-source database of time-series
biometric signals captured by wearable sensors was
adopted to emulate edge computing settings. Z-score
normalization was implemented for consistency in data as
well as model robustness. The RedPO-BRNNet was
designed to enhance training performance as well as
forecasting accuracy in the framework of FL. FFedAvg
was used for federated model updates, and DP noise
injection was used for keeping anonymity. The suggested
model revealed average values of all significant measures
across five epochs of training: Anomaly Detection
Accuracy: 94.97%, Privacy Leakage: 2.14%, Client
Latency: 57.82 ms, and Model Convergence Efficiency:
78.96%. Increased time for training on low-power
hardware, reduced performance from too much added
noise for privacy, and limited testing on more diverse
real-time data sets are the main limitations of the study.
The assessment of RedPO-BRNNet's generalization
performance is also limited because its gains in
performance are being measured on a limited set of
baseline models and data sets, and could lead to varied
results when deployed against diverse or real-world data
sets. The RedPO-BRNNet framework incorporating FL
and DP can be enhanced by contrasting it with
sophisticated control methods such as model predictive
control, adaptive control, and distributed consensus
algorithms. More research can make the secure FL-DP
paradigm better for real-time scaling and dynamic client
engagement, with hardware-conscious optimization
enhancing accuracy and performance.
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