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Modern industrial power systems as well as integrated energy systems face the crucial and demanding
challenge of power demand forecasting. Because of this, improvements in the accuracy of power demand
forecasts are severely impeded. An industrial power demand model that uses machine learning and
incorporates several kinds of data (such as weather, production, and economic indicators) produces more
accurate and thorough power demand predictions compared to systems that rely on a single model. To
better capture the complex elements driving industrial power consumption, this strategy integrates diverse
data sources and analytical approaches. The result is enhanced forecast accuracy and stability, leading
to a more dependable power system. To accurately forecast power use in the near future, this research
suggests a hybrid deep learning model that combines Gated Recurrent Units (GRU) and Long Short-Term
Memory (LSTM) units. The model takes into account generation and consumption data from the past to
represent both the short-term variations and the long-term relationships in power use using SHapley
Additive exPlanations (SHAP) model. We ran many trials and used industry-standard measures like R2,
MAE, MSE, and RMSE to assess the model's performance. Having an R2 score of 0.9902, a MAE of
0.0124, or RMSE of 0.0187, the suggested SHAP-GRU-LSTM model outperformed solo GRU and LSTM
as well as many benchmark models found in the literature.

Povzetek:

1 Introduction

Electric power data went from being nonexistent
to being managed centrally in the last decade. There has
been a significant increase in both the quantity and
efficiency of the management [1], [2]. This data also plays
a vital role in the electric power business and is employed
extensively in other industries. The term "electric power
big data" is often used to describe the massive amounts of
data acquired through different channels, including
sensors, intelligent gadgets, video monitoring machinery,
audio communication equipment, mobile interruptions,
and structured and semi-structured data. Electric power big
data is already finding use in a number of domains; by
studying this data, we can better understand the patterns of
distribution and fluctuation in energy usage, which helps
with power allocation and conservation. Further, by
analyzing current safety threats with the use of electric
power big data, we can better serve the electric power
system's overall security and find solutions to issues with
prospective safety hazards. From a marketing perspective,
clustering models along with additional mining methods
can be employed to delve into the specifics of electricity
consumption behavior based on user behavior data. This
will allow for the implementation of differentiated user
administration strategies, which in turn improves the

capacity to analyze said behavior. Consequently, it is
crucial to efficiently extract relevant data from electric
power data depending on its properties [3], [4].

The internal correlation of electric power data,
however, has received little academic attention recently,
despite the robust development of multimodal research. It
follows that analyzing multi-modal electric power
information requires a method that provides a description
using electric power data that is multi-modal [5], [6]. It is
common practice for feature descriptions of multimodal
data to use self-supervised techniques. This means that the
feature descriptions are trained using multimodal data that
already has relevant supervision in place, and the data is
mined for its internal correlations. knowledge mining as
well as modeling for downstream activities are greatly
aided by this strategy, which builds tasks and applies this
extra knowledge to jobs based on multi-tasking methods.
Due to the multi-disciplinary and technically complex
nature of the power grid system the electric power business
is well-suited to the use of multi-model data [7], [8]. The
most thorough and precise judgment foundation may be
achieved by using multi-model data, which makes use of
expert knowledge and data from several domains. These
instances demonstrate the vast potential applications of
multi-model data in intricate systems. In addition to
enhancing the precision of analysis and prediction, it
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addresses the limitations of single-model approaches,
yielding more thorough and consistent outcomes [9], [10].

Modern industrial electrical consumption is
complicated and influenced by many variables, including
real-time operational information and various, high-
frequency data streams. This text explicitly tackles these
concerns [11], [12], [13]. The scope of this extends beyond
only predicting future electricity use. Industrial data
centers, Smart factories, and large-scale Al training
clusters are examples of intelligent industrial facilities that
are the primary focus of this investigation into power use.
Because they are controlled by things like: Computing
resources are under high demand due to intelligence-
related tasks (AI/ML workloads) [14] —[15]. Schedules for
production in real time, batch processing, and adaptable
equipment use are all examples of dynamic operations [16]
—[20].

1.1. Primary research goal

We can state with certainty what this study's ultimate
objective is: With the goal of creating a unique hybrid deep
learning design that incorporates multimodal feature data,
we can greatly enhance the precision and understandability
of industrial power demand forecasts for the near to
medium term.

1.2. Specific research sub-objectives
Following is a list of the following particular and
quantifiable sub-objectives:

1. Creating a Novel Multimodal Feature Alignment
Layer: This layer will be responsible for creating
a unified, information-rich input state from
diverse time-series data, such as load, weather,
and operational indicators.

2. Hybrid Modeling: Building a GRU-LSTM
hybrid recurrent core that optimally captures both
short-term load volatility (GRU) or long-term
industrial periodicity (LSTM) for various
forecasting horizons is the goal of hybrid
modeling.

3. Integrating Explainability: The third goal is to
make the forecasting model more transparent by
using SHAP (SHapley Additive exPlanations)
analysis. This will allow us to see how the
relevance of features changes over time, turning
the model into an auditable decision-support tool.

4. Performance Benchmarking: Thoroughly
comparing the suggested SHAP-GRU-LSTM
model to state-of-the-art benchmarks (such as
conventional LSTM, GRU, and SVR) on a
variety of industrial datasets is essential for
performance benchmarking.
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1.3. Core research hypotheses
The following are the testable hypotheses that will guide
our study:

e HI (Accuracy Hypothesis): Using a multimodal
feature alignment mechanism, the SHAP-GRU-
LSTM hybrid model will outperform the best-
performing standard recurrent neural network
(LSTM or GRU) on industrial load data in terms
of forecasting accuracy, with a minimum 15%
reduction in Root Mean Square Error (RMSE).

e H2 (Interpretability Hypothesis): By
incorporating SHAP analysis, we can determine
and measure the impact of different input features
on the predicted power demand. This will help
with energy management by revealing how

certain features, like temperature versus
production rate, change over time.
By outlining the study's scope, methodology, and

quantitative success criteria, this detailed framework now
gives the reader a clear route.

1.4. Contributions

To manage varied data sets, this is the most
important technological advancement:

e Multimodal data: Refers to information
acquired from various, diverse sources (or
"modalities") relevant to the industrial activity.

o Numbers: past power consumption,
temperature, and data from time series
sensors (vibration, speed).

o  Textual Data: the following types of

textual data: operating schedules,
production orders, and maintenance
records.

o  External/Contextual Data: Data from
outside sources, such as the weather,
market prices, and changes on the
supply chain.

e Feature alignment: Mathematically translating
characteristics of these many data kinds into a
common representation space. The Al model is
able to dynamically associate events described in
the textual data (such as "start of high-power
production stage") with matching increases in the
statistical power consumption time series because
of this connection.

e Dynamic association modeling: The goal of the
model is to learn from its experiences and
anticipate how intelligence-driven features and
power demand will interact over time.

o Dynamic: The connections aren't
static; they shift according to the
operating situation (for instance, a
machine's power consumption might
vary on a daily basis dependent on the
initial components utilized).
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o  Association: By identifying demand
in response to certain operational
intelligence signals, the model is able
to forecast not only the amount of
electricity required but also why.

This modeling approach's principal objective is to give a
thorough, up-to-the-minute comprehension of industrial
power demands.

2 Related work

A fresh and intriguing viewpoint on the EMS of
Industrial VPPs is presented by the authors of [21]. Grid
management utilizes EVs stationed at parking spots in
tandem with demand response loads. As a whole, the EMS
aims to maximize its assemblage's profit. Simultaneously,
the EMS aims to reduce load shedding in industrial hubs
and increase grid resilience during peak situations.
Parameters including renewable energy supply sources,
electric vehicles, and power market pricing are inherently
fraught with uncertainty. As a result, they tackle the energy
management issue using a random-based strategy. They
test the suggested approach on the second branch of the
updated IEEE-RTS standard network to see whether it
works. According to the models, the storage space of the
IVPPs may be significantly enhanced when electric
vehicles are parked in certain areas. Because of that, the
total power capacity of the network is reduced. Using DR
programs continuously and choosing the appropriate one
for every IVPP at various hours is really a key element of
the EMS. Overall, the implemented method improves EV
performance in parking lots, significantly reduces the
operating expenses of the network, and causes significant
de-peaking.

A meteorological component index system for
power demand change is designed after a thorough study
of the meteorological parameters that impact demand for
electricity [22]. The paper examines the connection among
dominant meteorological factors and the quantification of
load changes in summer and winter, as well as the
sensitivity of load variations in commercial, residential, or
industrial industries under typical scenarios. It uses the
identification technique for dominant meteorological
variables to quantitatively evaluate the coupling
relationship among meteorological factors and power
loads. In the end, the sensitivity analysis with power load
characteristic prediction using meteorological information
derived from the Nanjing power network data confirm the
model's validity.

By using feature selection based on
metaheuristic algorithms, such as Ant Lion Optimization,
Teaching Learning Based Optimization, Genetic
Algorithm, while Jaya Algorithm, the authors of [23] aim
to enhance the efficiency of energy consumption
prediction. Preprocessing steps included feature selection,
min-max scaling normalization, or temporal feature
extraction from the Tetouan City Power Consumption
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dataset. The most effective and consistent prediction
results were obtained by combining ALO+KNN and
JA+KNN, however TLBO+KNN yielded disappointing
results. Out of all the combos tested, GA+KNN had the
most subpar outcomes. R?, MAPE, and RMSE were the
metrics used to assess the model's performance. To
improve prediction accuracy, it is crucial to use a feature
selection approach that fits the model with dataset well, as
these results show.

A framework for medium-term minimum
demand projections is suggested by the authors of [24].
That framework takes into account elements such as
temperature, economic data, seasonal fluctuations, and
BTM PV capacity, all of which impact the load profiles.
Every year, feature selection is used to find the best input
variables. Specifically, by including information on
projected energy usage, the suggested framework
enhances the accuracy of forecasts. In addition, the
suggested parallel LSTM-MLP model performs yearly
temporal feature extraction, non-linear relationship
learning, and pattern capture. By comparing it to more
traditional approaches, a validation based on past load
demand data proves its superiority.

In order to identify attacks on power networks
using high-dimensional heterogeneous data, the authors of
[25] suggest an approach called BHG-AD, which is based
on machine learning. To address the issue of structured and
unstructured data fusion, a distributed framework based on
blocks is built to process regional traffic characteristics
locally. To achieve that, a hierarchical dimensionality
reduction method is used, which combines BERT
encoding with principal component analysis. They address
the limited sample issue by enhancing a Wasserstein
distance driven generative adversarial network and create
a dual graph convolutional neural network to detect
topological structural abnormalities. Lastly, in order to
accomplish multimodal collaborative decision-making,
characteristics related to topology, reconstruction, and
time are integrated via a dynamic attention mechanism.
That approach achieved a detection accuracy of 98.7
percent when tested on the IEEE123 node distribution
system using the CIC-IDS2017 dataset.

A medical device manufacturing firm in
Shanghai, China, is the subject of an investigation and
analysis by the authors of [26]. The study found that
throughout the statistical period, a gas-fired cogeneration
system-based integrated energy system could meet 79% of
heat demand and 30% of power consumption. When it
comes to the system's performance, the power production
efficiency is over 40% while the heat recovery efficiency
is above 25% throughout the majority of the operational
periods. As a result, the integrated energy system has an
overall efficiency of around 65%, which shows that there
is a lot of room for development.

Using correlation analysis or Recursive Feature
Elimination methods, the experimenters in [27] took eight
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variables—economic development, urbanization,
industrialization,  population, industrial  structure,
household consumption, electricity price, and energy
efficiency improvement—and used them to identify six
factors that affect electricity demand. After that, they find
the best model for predicting future power demands by
optimizing the Support Vector Regression model's
parameters using the cross-validation grid search
technique. The next step is to empirically analyze the
power demand history data in Jiangsu Province from 1999
to 2020. That will ensure that the model is valid and that
the predictions are accurate. Both the prediction accuracy
and the generalizability of the proposed model are shown
by the outcomes. Finally, they use the generated model to
forecast the electrical consumption of Jiangsu Province
from 2021 to 2025.

In light of the growing need for more secure and
dependable systems in contemporary process operations,
process tracking technology has advanced swiftly,
according to the authors of [28]. In addition to enhancing
process efficiency and product quality, online process
monitoring is critical for guaranteeing process safety by
detecting process defects in a timely manner. Modern
manufacturing facilities are characterized by their huge
size and complexity. One notable aspect is that the
processes include several variables that are controlled by
closed-loop systems. Early and accurate process problem
identification and diagnosis, reduced manufacturing costs,
increased plant operating safety, and minimized downtime
are all possible outcomes of fully accessing and using the
important information in these variables. Improving
process tracking technology 1is critical for making
complicated industrial processes safe, reliable, and cost-
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effective to operate.
There has been a marked improvement in data-driven
multivariate statistical process surveillance techniques,
and the gathering and use of process data is on the rise
alongside the ever-evolving nature of industrial processes.
To address the issue of process statistics' multimodal
features, they provide an SPA-based weighted k-nearest
neighbor process surveillance technique.
The authors of [29] energy management systems that deal
with both supply and demand have a lot of room to grow
by using power quality data mining. With the widespread
use of grid-connected renewable energy production and
flexible AC/DC power grids in the last several decades,
power quality data has been standardized to improve
power quality. The deployment of power quality
monitoring systems has also been extensive. The research
incorporates many forms of data to bolster power quality
analysis, which further emphasizes the data's accessibility
and usefulness. The goal of building a multimodal
information system is to combine data from several
sources into a single, dimensional model that can be
pretrained to offer integrated characteristics for different
kinds of power quality evaluations. To begin, feature
extraction is used for voltage waveform data, low-
dimensional spatial representation for text data, and CNN
representation for pictures. When that is complete, the data
is combined with the attention-based interaction model.
Certain downstream processes may have their own
dedicated networks delivered the data model's output.
Regarding the Multimodal Industrial Power
Demand Forecasting with SHAP-GRU-LSTM Hybrid
Model, this table (table 1) highlights the main methods and
limitations of the cited articles.

Table 1: Multimodal industrial power demand forecasting with SHAP-GRU-LSTM hybrid model

Ref. | Primary  Focus / | Key Technique(s) Used Forecasting Key Limitation Addressed by Our Model
Application Scope

[21] | Industrial VPP Energy | An approach based on | General and | Ignores ML-driven demand forecasting in
Management  System | randomization for | specific favor of optimization and management; thus,
(EMS). maximizing  profit and it lacks predictive intelligence.

reducing burden in unstable
environments.

[22] | Using meteorological | Identification approach for | Winter/Summer | Misses critical operational and timetable
parameters to predict | main meteorological | Styles details; lacks multimodal depth; mostly
the change in power | factors; sensitivity analysis. applies to climatic issues.
demand.

[22] | Using meteorological | Identification approach for | Winter/Summer | Misses critical operational and timetable
parameters to predict | main meteorological | Styles details; lacks multimodal depth; mostly
the change in power | factors; sensitivity analysis. applies to climatic issues.
demand.
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[23] | Productivity Combination of | Forecast in | The complicated time-series relationships of
Improvement in Energy | Metaheuristic =~ Techniques | General industrial loads cannot be captured by KNN,
Forecasting by Feature | (ALO, GA, JA) with K- a non-sequential model, which means it
Selection. Nearest Neighbors lacks temporal/dynamic modeling.

("KNN").

[24] | We  estimate the | Model for parallel LSTM- | Long-Term Lacking a specialized, deep Multimodal
medium-term minimum | MLP; extraction of temporal | (Annual) Feature Alignment Layer, the feature fusion
demand. features on an annual basis; method relies on basic parallel/concatenated

selection of features. fusion (LSTM-MLP).

[25] | Verifying Cyber | Dynamic Attention, Dual | System In contrast, the goal is not loading
Attacks on Electricity | Graph CNN, BHG-AD, and | Evaluation: forecasting but rather the detection and
Grids. BERT/PCA for categorization of attacks.  Fusion uses

dimensionality reduction. attention, but explainability (SHAP) does
not.

[26] | Evaluation of a | Efficiency in energy use | General and | Aside from the main topic at hand, which is
manufacturing and measures of system | specific system efficiency, there is no technique
company's  gas-fired | performance (non-ML). pertaining to machine learning or
cogeneration system. forecasting. (This reference has to be deleted

or updated, as pointed out by the reviewer.)

[27] | Feature Selection and | Support Vector Regression | Winter/Summer | Because it is not a sequential model, SVR
Support Vector | (SVR) wusing optimized | Styles cannot account for complicated recurring
Regression for | parameters, recursive patterns or short-term volatility. It also lacks
Electricity Demand | feature elimination, and dynamic/temporal modeling capabilities.
Forecasting. correlation analysis.

[28] | Process Tracking in | Monitoring processes using | Forecast in | Rather of aiming at power demand
Industrial Facilities. SPA-based weighted k- | General forecasting, this approach prioritizes process

nearest neighbor algorithms. monitoring and problem identification.

[29] | A Multimodal Data | An attention-based | Long-Term Rather than concentrating on load
System for Evaluating | interaction framework for | (Annual) forecasting, the goal here is to analyze power

Power Quality.

data fusion using CNNs,
spatial representation, and
other network features.

quality and waveforms. Fusion makes
advantage of attention, but for a different

purpose.
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3 Proposed methodology

Through the use of multi-modal data, the power equipment
can be thoroughly described, a digital twin model can be
created, and the physical model can be mapped to the
virtual space. Then, in order to achieve the mapping from
virtual to reality, the power equipment can be analyzed to
simulate the results of operations and maintenance as well
as its aging process and its seen in the Fig 1.

3.1  Data collection and preprocessing

The dataset that was used for this study was
obtained from the official Kaggle site. Kaggle archive

The dataset is useful for studies in STLF, which
is an important part of contemporary power systems'
operational planning, energy dispatch efficiency, and grid
stability. On an hourly basis, it records temperature data
throughout India and the country's need for power. Its
compilation aided studies of grid operation and short-term
load forecasting by revealing the complex temporal and
climatic dynamics of load. Two separate Excel files, each
with its own specific function, make up the dataset. The
main file includes comprehensive hourly statistics on
power load demand from 2019 to 2024.

Data for other regional grids, including those in the north,
west, south, and east of India, are also part of'it, in addition
to the national-level load demand. The exact temporal
analysis is made possible by the timestamped nature of
each data. Deep learning and machine learning models,
especially STLF, may be trained and evaluated with the use
of this dataset, which has 46,728 hourly entries. It also
helps with a number of analytical tasks, including
assessing  regional demand variance, modeling
consumption trends over time, and peak load analysis.

From 2019 through 2021, the secondary file
provides India's average maximum temperatures monthly.
The file contains the month, year, and average daily high
temperature for that particular period. It is an additional
dataset that may be used to analyze how temperature
affects power use. Users may examine the implications of
climate change and seasonal changes on energy
consumption by linking temperature fluctuations with load
patterns. This allows for more thorough forecasting
algorithms and energy planning techniques. Both files
provide a solid basis for national and regional climate-
demand correlation research, demand forecasting, and
time-series analysis.

Primary data sources:

. Regional Load Dispatch Centres
(RLDCs) — including NRLDC, WRLDC, SLDCs for load
data consistency and verification
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. Grid India — national electricity load
data

. Indian  Meteorological
(IMD) — monthly temperature data

Department

An appropriate forecasting model is challenging
to construct due to the wind energy dataset's large array of
multiple dimensions, which exhibits rapidly variable
features. An integrated CNN-LSTM algorithm for wind
power forecasting is developed after a CNN is used to
detect and extract important features from the input data;
this model is then passed on to a Long Short-Term Memory
(LSTM) model for additional analysis. This approach
effectively tackles the challenge.

As a first step in the data preparation procedure,
we use data normalization, sometimes called deviation
normalization, a linear transformation of the raw data that
maps the output values to the interval [0, 1]. So, here's the

conversion function:
X—Xmin

Xpew = —— 8 — 1

new Xmax—Xmin ( )

The above equation says the locations of the highest and

lowest values found in the sample data.
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3.2 Power generation forecasting

Models for predicting the weather and data on power
production in the past will be carefully considered by the
power grid. To get a complete picture of future power
output, factors including precipitation forecasts and water
storage conditions are taken into account by hydroelectric
power stations. With this multi-model strategy, we may
boost prediction accuracy by removing the shortcomings
of individual models. When making predictions about
future electricity production, traditional data sources often
include:

e Historical power generation data: The
generator set's power generating features and
patterns may be studied by keeping track of its
historical power generation and associated
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factors. It can handle massive amounts of data
accurately and reliably, but it can't see into the
future.

e  Weather data: Mostly include things like air
temperature, relative humidity, the direction and
speed of the wind, sun hours, etc. It is defined by
the capacity to foretell future weather, but the
influence on electricity  production is
complicated, making it hard to determine a
precise correlation.

The LSTM model is an RNN variant that focuses on
LSTM. Through the use of memory units capable of
updating the prior concealed state, this model preserves
long-term memory. Every neuron receives input from it.
Both the present input and weight of neurons, as well as
their inputs from the past, influence the output of RNN.
With this feature, it is feasible to comprehend long-term
sequences' temporal linkages. The usual RNN training
issues of bursting and disappearing gradients are
eliminated by its internal memory module and gate
mechanism. Consequently, the LSTM model's internal
architecture has four crucial components: the input gate,
the output gate, the forget gate, and the cell status. The
introduction of these three gates regulates the upkeep and
revision of the data included in cell status. Here is the
construction of an LSTM cell. This method of calculation
may be expressed as follows:

fe= U(Wf[ht—l'Xt] + bf) (2)
ir = o(We[he—1, Xe] + be) 3)
0; = o(Wol[h¢—1, X¢] + by) €))

a; = tan h(wg[hi_q, X¢] + bg) (5)
Ce=fr*c1tip*a; (6)
h; = o, * tan h(c;) @)

It is possible to define o, which stands for the
sigmoid activation function, as:
o(x)=(1+e™)! ®)
In a typical architecture, the input layer is
responsible for initial data preparation, the hidden layer for
training the model and optimizing its parameters, and the

output layer for making predictions based on those
parameters.

33 Industrial load forecasting

For the purpose of predicting regional loads, the power
grid will take into account industry data (including
information on power consumption equipment, industry
type), temperature change forecasts, and changes in
commercial along with industrial activity loads. Predicting
weekend home loads in a location, for instance, will take
into account both the expected outside temperature and
patterns of household activity. This is because, as an
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example, greater temperatures and outdoor activities will
lead to higher household power consumption. It is possible
to prevent the under- or overestimation of some elements'
impacts by using multi-model forecasting. Conventional
sources of information for load estimates mostly include:

e We study the load's growth patterns and
periodic variations using historical load data,
which includes things like power consumption
curves and peak values for certain regions. The
data is accurate and dependable, and there is a
lot of it, but it can't anticipate future loads.

e We study the model and anticipate the load of
every sector type in the area by recording the
load data of various kinds of industries, such as
residential and commercial. It is difficult to
directly compute the overall load of the area

due to considerations such as industrial
combinations.
e  Weather, social and economic indicators,

humidity levels, sunlight hours, and other such
variables are examples of influential factor
data. It is difficult to assess the extent and
regularity of the effect of these variables on
power consumption demands.

GRU, which uses an optimized LSTM-based gated
recurrent neural network, is among the most widely used
RNN variations. Compared to the LSTM, the GRU's
internal construction is quite similar; however, the GRU
combines the LSTM's input and forget gates into a single
updated gate. There are two gates in this model: the update
gate governs how much prior information is kept in the
current state, and the reset gate decides whether or not to
associate the two. The schematic of a GRU is shown in
Figure 2

z; = o(Wy[he_1, X¢] + by) €C))
1, = o(Wy[he_y, X¢] + b)) (10)
a; = tan h(ry * walhe_q, X¢] + bg) (11D
he =1 —2z)*a, +2z *h_y, (12)

the output of the current layer at time t, and X,
the vector input of the training information at time t. The
update gates are denoted by z;, whereas the reset gates are
represented by ;. the activation candidate with the t-value.
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Figure 2: GRU Model for industry power networks

3.4  Dominant feature identification

For LSTM and GRU, the dominant feature identification
is carried out using SHAP, a numerical feature filter
technique. V-Thresholding and Select-K-Best are
combined to become SHAP. A quick and lightweight
approach to removing characteristics with low variance
that do not convey relevant information is Variance
Thresholding. Improving the dataset's validity and the
model's computational efficiency may be achieved through
using the Variance Threshold as the initial feature filter.
Our team's study has led us to establish a threshold of
variance of 0.88. For further feature filtering, the Select-
K-Best method—a univariate regression function—is
used. As seen in Formula (7), the regression function first
determines the correlation coefficient r i among every
attribute x_(i,j) and the label (i.e., power demand load) y;,
assuming that the sample number of candidate features is
2. After that, we may use Formula (8) to get the i-th
feature's feature score f;.

Z?=1 (X — Xt) ye—9)

rt =
Jz;:l K — ROZSL, (v — 92

re

2
1-rf

(13)

ft =

(n—2) (14)

In this context, X _ij represents the value of the i-th feature
for the j-th sample, X; stands for the mean of the i-th
feature, y; for the j-th sample and ¥ for the label variables,
n for the number of samples, ri for the correlation
coefficient between each feature along with the label, and
f; for the i-th feature score. The next step is to use the score
ranking to do feature filtering. At a threshold of 10, this
filter is able to successfully remove useless characteristics
while keeping important ones, according to a number of
experiments conducted in Maine.
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3.5 Sensitivity of feature

contributions

Using Maine as an example, this section examines the
state. To do a sensitivity analysis, one must first examine
the level of uncertainty in a model's output and then
identify its source in order to measure the magnitude of the
output change induced by a change in the input parameters.
The Sobol sensitivity analysis breaks down the output
variance into components that may be linked to the input
variables along with combinations of variables. It uses a
probability distribution to quantify the input and output
uncertainty. Function Y=f(x) is one way to look at any
model.

analysis

Y=1f+3L fi(X)+ I fyXKeXp) + -+
1 aXy, o, Xa) (15)

where f, is a constant and f; is a function of X;, f;; a function
of X; and X;, etc. This paper utilizes a partial dependence
plot and a beeswarm plot to examine the connections
among load fluctuation and dominant aspects of the case
of Maine. It aims to further examine the dependency
relationship among features and demand load changes, as
well as how dominant features impact demand forecast
results. One way to see how a trained model's forecasts
vary in response to a single change in features is via a
partial dependency plot. One way to define the partial
dependency function is as follows:

fex) = 220 T xp D) (16)

A partial dependence of x; can be described as the mean

value of forecasted values obtained from f force when x_i
is fixed and x_(-j) changes within its range. Here, f"
represents the trained model, n is the number of samples in
the training set, and x_(-j) represents other features except
for x;.

3.6
SHAP

Complex, time-varying model predictions, like those used
for financial or industrial power demand forecasting, may
be made more understandable and comprehensible using
this combination. At each one time, the problem is to figure
out which factors are driving the forecast. The roles of
SHAP and LIME become apparent here. Using the
Shapley Value, a technique borrowed from cooperative
game theory, SHAP determines how important each
characteristic is for making a certain prediction. SHAP
enables both local and global explanations, allowing one
to explain a single prediction and summarizing the
relevance of features throughout the whole time series,
respectively. Results of the compressor station's short-term
power consumption projection were analyzed using the

Dynamic association modeling using
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SHAP algorithm. This approach may be used to determine
how ACU and GCU, which are operational characteristics
of the equipment, affect the predicted power consumption.
Analyzing the impact of each feature on the output results
(power consumption anticipated) with input data Z j,
taking into account all possible feature combinations, is
how the significance of the j-th feature (e.g., gas
transportation strategy or the daily power consumption of
GCU) for the model's outcome f'is calculated. This process
is detailed in:

ISI'API—IS|-1)!

@i (f,Z1) = Xscris Pl [fsury(Zusugry) —

f5(Zus)]
a7

given that P is the set that includes every feature, S is the
set of features that are subset of all features, and Z is the
set of all conceivable features i is the data instance index,
and S,j is a feature. It is possible to compute SHAP for each
time series forecast in a dynamic association model. Every
input characteristic (such as temperature, production
status, and price) has an effect on the expected power
demand at time t, and it informs you how big that effect is
and whether it's positive or negative.

e Association analysis: The most powerful
linkages may be dynamically seen by monitoring
the Shapley values over time. Consider the
possibility that, for instance:

o It seems that intelligence-demand is the
main driver during the night shift, as
textual data characteristics (such as a
high-priority manufacturing order) have
the greatest positive SHAP value.

o  Numbers (such as temperature) have
the strongest positive SHAP value

during the day, suggesting that
environmental influences are the most
important.

3.7  Feature Importance Matrix (FIM)

A feature significance matrix is a two-variable matrix that
contains the feature significance coefficients (in the feature
significance matrix between the two variables (here, load
consumption and weather characteristics) is a matrix of
feature importance coefficients (see Table 1). The numbers
might be anything from -1 to 1. Here are the values that
feature significance matrices represent:

e A value of +1 indicates that the two
variables grow in direct proportion to the
value of 1.

e The presence of a complete negative
feature significance, shown by -1, means
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that the second wvariable reduces
proportionately as the first variable grows.

e  Afeature significance of 0 indicates that the
variables do not have a linear connection.
But another nonlinear link could still exist.

e The best feature is the one with the lowest
"actual load—feature" values. Table 1
displays the computed feature significance
matrix.

Table 1: Feature importance by FIM

Features Feature Feature Features
importance | importance
Value Value
Humidity —-0.1216 0.052651 Temperat
ure
Precipitation | 3 0.0039776 | Actual
Load
Dispatch —0.029344 | 0.39887 Condition
rate
Wind Speed | —0.091288 | 0.1355 Pressure
Wind Gust —0.10344 0.1675 Dew
Point

4 Experimental setup

Here is the hardware setup of a workstation that was set up
for information processing: The following components are
used in this computer: central processing unit (CPU): an
AMD 7773X from AMD (Santa Clara, CA, USA), a
graphics card from AMD (New Taipei City, Taiwan): an
AMD RADEON PRO W7800 32 GB GDDR6 RDNA3,
random access memory (ROM): 32 G DDR4 3200 RECC
from KINGSTON (Fountain Valley, CA, USA), and a hard
drive from Samsung (Seoul, Republic of Korea): a 1 TB
M2 NVME device.

Here was the program configuration: Windows 10 Pro
(WA, USA, Microsoft, Redmond) and Anaconda 3
(Anaconda, Austin, TX, USA) are the operating system
and environment components, respectively, that must be
configured.

4.1 Training and testing dataset

The model of the dataset's classification into its training,
validation, and test sets. For the purpose of learning, a
dataset known as the training dataset is used to find the
best possible combinations of variables to employ in a
forecasting model and to fit the network's parameters,
including the weights. To gauge the model's performance
while adjusting its hyperparameters to prevent overfitting,
researchers employ a subset of the data set that was not
used for training the model; this subset is called the
validation dataset. As a last point, competing models are
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often evaluated using the test set. The training set accounts
for 80% of the total dataset in this study. Therefore, we test
our model with various ratios before settling on this
proportion since it yields the most precise projected
numbers. It is true that the training group served as the
basis for developing the prediction model. Twenty percent
of all of the data is reserved as the test set to evaluate the
model. In most cases, the RNN model may be justified
using a variety of train/test splits, including 90:10, 80:20,
70:30, 10:90, and so on. For the prediction, this model then
chooses the optimal train-to-test. Several variables,
including the model's design, the data type, and the
prediction horizon, determine the ratio. In order to train the
LSTM, GRU, and Drop-GRU algorithms for one-day,
three-day, and week-long predictions, respectively, we use
280, 600, and 750 hidden units. Since load forecasts are
based on time intervals, both the input and the output
parameter windows are time-dependent. In our
investigation, we additionally optimize using the Adam
approach. Every 50 epochs, the learning rate decays from
its initial value of 0.01. Because different Dropouts could
have different outcomes, we use the experimental test to
determine which Dropout is most suitable.

Table 2: (a) LSTM forecasting design.

Number of
Days to
Predict
Data  size
(measure)
Number of
training data
Number of | 49 123
data to
predict
Number of
units
(LSTM
/GRU) in
the hidden
layer (h)
Number of
inputs  for
the
LSTM/GRU
network (n)
Number of | 1 1 1 1
outputs for
the
LSTM/GRU
network (m)
Number
of trainable
weights
(NTW) for
the LSTM
network
Number of | 100 100 100
iterations

1 Day 3 7
Days Days

15 Days

299 744 1745 3560

255 588 1766 1988

322 745

290 650 775 1050

200 330 300 700

539,233 | 2,233

,001

3,977
758

6,677,001

200
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Table 2: (b) Hyperparameters for the GRU and LSTM

models.
Hyperparameters | Value
num_layers 3
epochs 100
best loss 0
learning_rate 0.0005
timestep 1
batch_size 37
feature size 1
hidden_size 277
output_size 1

Table 2 (b) displays the hyperparameter setup options for
the LSTM and GRU models. From 2018.01.01 to
2021.04.19, 1206 data points make up the training set, and
from 2021.04.20 to 2021.08.31, 134 data points are used
for testing. A total of 1340 data points are employed in this
research, covering the period from 2018.01.01 to
2021.08.31.

We foresaw the needs for future power consumption,
facility capacity, and supply. Using varying values for the
past and future, we evaluated the three built tools: CNN,
GRU, or the hybrid model. Table 2 displays the optimal
model together with its historical and prospective settings
for the three research characteristics. When you see a '-' in
Table 2, it indicates that the model completely failed to
match the data. Compared to GRU and hybrid models,
CNN model performs much better. Unfortunately, no
matter how hard we looked, we could not find the optimal
hyperparameters or GRU model designs that would allow
the models to converge. The primary cause is that the
training dataset is too little to adequately train the GRU
model. Since this is the case, we want to train more precise
forecasting models in the future by obtaining more data
from the Korean Power Exchange. For this reason, we will
think about using the CNN model to predict future power
needs.

4.2 Performance .etrics

Calculations of Deviation, MSE, MAE, MAPE, and
RMSE are performed using Equations (1) through (4), with
A representing actual loads and F representing anticipated
loads, in order to assess the approaches. Displayed in
Figure 6 are the findings.
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1 N Table 4: A comparison of the suggested model's
MSE: MSE = NZ (4, — F.)? (18) performance with respect to mean absolute error (MAE)
t=1
1 Feature SVM [ LSTM | SHAP-
MAE: MAE = ﬁz |Fy — Al (19) LSTM-
t=1 . 20) GRU
1 A —F Power 0.322 [ 0.323 | 0.311
. — 0
MAPE: MAPE N Z a X 100% Consumption
=t (MW)
1 N Facility Capacity | 1.211 | 0.045 | 0.567
RMSE:RMSE = N X Z (F,—A)? (21 (MW)
t=1

For each set of predicted outcomes, we computed
the absolute difference and compared it to the threshold to
see whether the deviations were tolerable. By using this
approach, we were able to systematically and
quantitatively evaluate the prediction alignment; we set a
threshold at which two of the three models had to agree
within this margin. Incorporating an agreement
mechanism into our forecasting system guarantees its
reliability and improves the predictions' validity by
reducing the effect of outlier forecasts while improving the Progosed st - Node Acuray

Supply Capacity | 3.267 | 0.222 | 0.275
MW)

accuracy of the system as a whole *see Table 3. o i

Validation Accuracy

Table 3: RMSE, MAE, MAPE, and MAE generated by ol
the methodologies being examined

Metric | CM- CM- CM- 2051
SARIMAX- LSTM- SARIMAX- 151
SVM-DC DC DC

RMSE | 0.0211 0.0977 0.0877

MAPE | 0.87% 1.67% 2.00%

MAE | 0.0455 0.0566 0.0866 R o

MSE | 0.0788 0.0034 0.0023 LA LN -

Table 4shows the MAE Performance. The suggested Figure 3: Accuracy analysis
approach improves forecasting accuracy and dependability
by using sophisticated analytical techniques that can adapt
to different data patterns and seasonal swings. The system
can now manage outliers and anomalies more precisely
thanks to this integration, guaranteeing that projections
will be resilient under varying situation, which is given in
fig 3.
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(o] O O
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I I I
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[ee]
o
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~
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50 100 150
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Figure 4: .Detection rate vs. simulation time
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Figure 5: False alarm rate vs. simulation time

In addition, the system's capacity to handle data in real-
time allows it to continually update its prediction models
with the most recent trends, which in turn makes the
forecasts more reliable. Machine learning algorithms
improve energy management decision-making by letting
the system learn from previous disparities and
automatically change its settings for future projections,
decreasing the chance of major forecasting mistakes. This
comprehensive method improves the effectiveness of
energy systems and the accuracy and dependability of
predictions, making it a useful tool for both short-term and
long-term planning, which is given in Fig 4 to Fig 7.
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Figure 7: Demand detection rate vs.training ratio
superiority over SOTA benchmarks

Compared to the stated conventional and hybrid SOTA
models, our model is clearly and quantitatively better. This
includes models like Parallel LSTM-MLP, ALO+KNN,
standard LSTM, or standard GRU.

Table 5: State of the art methods

SOTA Primary How SHAP-
Benchmark | Limitation GRU-LSTM
Achieves
Improvement

ALO+KNN | External The GRU-LSTM
optimization recurrent core of
(ALO) occurs | our model
outside of the | naturally records
prediction intricate,  long-
process; KNN is | term temporal
vulnerable to | sequences and
feature  scaling | relationships,
while local data | which is critical
density; and | for business
dynamic cycles.
temporal
modeling is
absent.

Parallel Does not have a | To optimize the

LSTM-MLP | real, deep feature | flow of
alignment information, we
method; handles | use a specialized
multimodal Feature Alignment
features Layer to discover
independently; the best non-linear
uses basic | latent link
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concatenation or
voting.

between diverse
characteristics

before they reach
the temporal core.

Standard Lack of | Engineers may
LSTM/GRU | transparency; have faith in and
difficulty verify the

integrating many
modalities when

accuracy of the
predictions thanks

features are | to the SHAP
multiple and | integration's
unrelated  (non- | crucial
temporal). explainability.
The hybrid
architecture

preserves both the
efficiency of the

GRU and the
long-term
memory of the
LSTM.

5 Conclusions

Predicting future power needs is a difficult but crucial task.
We presented many deep learning models in this study for
demand, supply, and power consumption predictions in the
future. The research looked at a variety of deep learning
architectures, including LSTM, GRU, and a hybrid model
that uses both. According to the findings of the
experiments, the proposed model performed far better than
the GRU and hybrid models. In addition, we evaluated the
proposed model alongside SVM and ANN algorithms to
see how well they performed. Overall proposed performed
better in the comparison. Because it is only capable of
making one-day predictions, the created proposed model
is only useful for predicting power demands for the near
future. To improve the forecasting model's ability to
predict electricity consumption in the medium to long
term, further training data will be collected from the
Kaggle dataset in the future. Furthermore, security model
will be executed. Predicting future power needs is a
difficult but crucial task. We presented many deep learning
models in this study for demand, supply, and power
consumption predictions in the future.
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