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Modern industrial power systems as well as integrated energy systems face the crucial and demanding 

challenge of power demand forecasting. Because of this, improvements in the accuracy of power demand 

forecasts are severely impeded. An industrial power demand model that uses machine learning and 

incorporates several kinds of data (such as weather, production, and economic indicators) produces more 

accurate and thorough power demand predictions compared to systems that rely on a single model. To 

better capture the complex elements driving industrial power consumption, this strategy integrates diverse 

data sources and analytical approaches. The result is enhanced forecast accuracy and stability, leading 

to a more dependable power system. To accurately forecast power use in the near future, this research 

suggests a hybrid deep learning model that combines Gated Recurrent Units (GRU) and Long Short-Term 

Memory (LSTM) units. The model takes into account generation and consumption data from the past to 

represent both the short-term variations and the long-term relationships in power use using SHapley 

Additive exPlanations (SHAP) model. We ran many trials and used industry-standard measures like R2, 

MAE, MSE, and RMSE to assess the model's performance. Having an R2 score of 0.9902, a MAE of 

0.0124, or RMSE of 0.0187, the suggested SHAP-GRU-LSTM model outperformed solo GRU and LSTM 

as well as many benchmark models found in the literature.  

Povzetek: 

 

1 Introduction  
Electric power data went from being nonexistent 

to being managed centrally in the last decade. There has 

been a significant increase in both the quantity and 

efficiency of the management [1], [2]. This data also plays 

a vital role in the electric power business and is employed 

extensively in other industries. The term "electric power 

big data" is often used to describe the massive amounts of 

data acquired through different channels, including 

sensors, intelligent gadgets, video monitoring machinery, 

audio communication equipment, mobile interruptions, 

and structured and semi-structured data. Electric power big 

data is already finding use in a number of domains; by 

studying this data, we can better understand the patterns of 

distribution and fluctuation in energy usage, which helps 

with power allocation and conservation. Further, by 

analyzing current safety threats with the use of electric 

power big data, we can better serve the electric power 

system's overall security and find solutions to issues with 

prospective safety hazards. From a marketing perspective, 

clustering models along with additional mining methods 

can be employed to delve into the specifics of electricity 

consumption behavior based on user behavior data. This 

will allow for the implementation of differentiated user 

administration strategies, which in turn improves the  

 

 

 

capacity to analyze said behavior. Consequently, it is 

crucial to efficiently extract relevant data from electric 

power data depending on its properties [3], [4].  

The internal correlation of electric power data, 

however, has received little academic attention recently, 

despite the robust development of multimodal research. It 

follows that analyzing multi-modal electric power 

information requires a method that provides a description 

using electric power data that is multi-modal [5], [6]. It is 

common practice for feature descriptions of multimodal 

data to use self-supervised techniques. This means that the 

feature descriptions are trained using multimodal data that 

already has relevant supervision in place, and the data is 

mined for its internal correlations. knowledge mining as 

well as modeling for downstream activities are greatly 

aided by this strategy, which builds tasks and applies this 

extra knowledge to jobs based on multi-tasking methods. 

Due to the multi-disciplinary and technically complex 

nature of the power grid system the electric power business 

is well-suited to the use of multi-model data [7], [8]. The 

most thorough and precise judgment foundation may be 

achieved by using multi-model data, which makes use of 

expert knowledge and data from several domains. These 

instances demonstrate the vast potential applications of 

multi-model data in intricate systems. In addition to 

enhancing the precision of analysis and prediction, it 
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addresses the limitations of single-model approaches, 

yielding more thorough and consistent outcomes [9], [10]. 

Modern industrial electrical consumption is 

complicated and influenced by many variables, including 

real-time operational information and various, high-

frequency data streams. This text explicitly tackles these 

concerns [11], [12], [13]. The scope of this extends beyond 

only predicting future electricity use. Industrial data 

centers, Smart factories, and large-scale AI training 

clusters are examples of intelligent industrial facilities that 

are the primary focus of this investigation into power use. 

Because they are controlled by things like: Computing 

resources are under high demand due to intelligence-

related tasks (AI/ML workloads) [14] – [15]. Schedules for 

production in real time, batch processing, and adaptable 

equipment use are all examples of dynamic operations [16] 

– [20].  

1.1. Primary research goal 
We can state with certainty what this study's ultimate 

objective is: With the goal of creating a unique hybrid deep 

learning design that incorporates multimodal feature data, 

we can greatly enhance the precision and understandability 

of industrial power demand forecasts for the near to 

medium term. 

1.2. Specific research sub-objectives 
Following is a list of the following particular and 

quantifiable sub-objectives: 

1. Creating a Novel Multimodal Feature Alignment 

Layer: This layer will be responsible for creating 

a unified, information-rich input state from 

diverse time-series data, such as load, weather, 

and operational indicators. 

2. Hybrid Modeling: Building a GRU-LSTM 

hybrid recurrent core that optimally captures both 

short-term load volatility (GRU) or long-term 

industrial periodicity (LSTM) for various 

forecasting horizons is the goal of hybrid 

modeling. 

3. Integrating Explainability: The third goal is to 

make the forecasting model more transparent by 

using SHAP (SHapley Additive exPlanations) 

analysis. This will allow us to see how the 

relevance of features changes over time, turning 

the model into an auditable decision-support tool. 

4. Performance Benchmarking: Thoroughly 

comparing the suggested SHAP-GRU-LSTM 

model to state-of-the-art benchmarks (such as 

conventional LSTM, GRU, and SVR) on a 

variety of industrial datasets is essential for 

performance benchmarking. 

 

 

 

1.3. Core research hypotheses 
The following are the testable hypotheses that will guide 

our study: 

• H1 (Accuracy Hypothesis): Using a multimodal 

feature alignment mechanism, the SHAP-GRU-

LSTM hybrid model will outperform the best-

performing standard recurrent neural network 

(LSTM or GRU) on industrial load data in terms 

of forecasting accuracy, with a minimum 15% 

reduction in Root Mean Square Error (RMSE). 

•  H2 (Interpretability Hypothesis): By 

incorporating SHAP analysis, we can determine 

and measure the impact of different input features 

on the predicted power demand. This will help 

with energy management by revealing how 

certain features, like temperature versus 

production rate, change over time. 

By outlining the study's scope, methodology, and 

quantitative success criteria, this detailed framework now 

gives the reader a clear route. 

 

1.4. Contributions 
To manage varied data sets, this is the most 

important technological advancement:  

• Multimodal data: Refers to information 

acquired from various, diverse sources (or 

"modalities") relevant to the industrial activity. 

o Numbers: past power consumption, 

temperature, and data from time series 

sensors (vibration, speed). 

o  Textual Data: the following types of 

textual data: operating schedules, 

production orders, and maintenance 

records. 

o  External/Contextual Data: Data from 

outside sources, such as the weather, 

market prices, and changes on the 

supply chain. 

• Feature alignment: Mathematically translating 

characteristics of these many data kinds into a 

common representation space. The AI model is 

able to dynamically associate events described in 

the textual data (such as "start of high-power 

production stage") with matching increases in the 

statistical power consumption time series because 

of this connection. 

• Dynamic association modeling: The goal of the 

model is to learn from its experiences and 

anticipate how intelligence-driven features and 

power demand will interact over time. 

o Dynamic: The connections aren't 

static; they shift according to the 

operating situation (for instance, a 

machine's power consumption might 

vary on a daily basis dependent on the 

initial components utilized). 
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o  Association: By identifying demand 

in response to certain operational 

intelligence signals, the model is able 

to forecast not only the amount of 

electricity required but also why. 

This modeling approach's principal objective is to give a 

thorough, up-to-the-minute comprehension of industrial 

power demands. 

 

2   Related work 

A fresh and intriguing viewpoint on the EMS of 

Industrial VPPs is presented by the authors of [21]. Grid 

management utilizes EVs stationed at parking spots in 

tandem with demand response loads. As a whole, the EMS 

aims to maximize its assemblage's profit. Simultaneously, 

the EMS aims to reduce load shedding in industrial hubs 

and increase grid resilience during peak situations. 

Parameters including renewable energy supply sources, 

electric vehicles, and power market pricing are inherently 

fraught with uncertainty. As a result, they tackle the energy 

management issue using a random-based strategy. They 

test the suggested approach on the second branch of the 

updated IEEE-RTS standard network to see whether it 

works. According to the models, the storage space of the 

IVPPs may be significantly enhanced when electric 

vehicles are parked in certain areas. Because of that, the 

total power capacity of the network is reduced. Using DR 

programs continuously and choosing the appropriate one 

for every IVPP at various hours is really a key element of 

the EMS. Overall, the implemented method improves EV 

performance in parking lots, significantly reduces the 

operating expenses of the network, and causes significant 

de-peaking.  

 A meteorological component index system for 

power demand change is designed after a thorough study 

of the meteorological parameters that impact demand for 

electricity [22]. The paper examines the connection among 

dominant meteorological factors and the quantification of 

load changes in summer and winter, as well as the 

sensitivity of load variations in commercial, residential, or 

industrial industries under typical scenarios. It uses the 

identification technique for dominant meteorological 

variables to quantitatively evaluate the coupling 

relationship among meteorological factors and power 

loads. In the end, the sensitivity analysis with power load 

characteristic prediction using meteorological information 

derived from the Nanjing power network data confirm the 

model's validity. 

 By using feature selection based on 

metaheuristic algorithms, such as Ant Lion Optimization, 

Teaching Learning Based Optimization, Genetic 

Algorithm, while Jaya Algorithm, the authors of [23] aim 

to enhance the efficiency of energy consumption 

prediction. Preprocessing steps included feature selection, 

min-max scaling normalization, or temporal feature 

extraction from the Tetouan City Power Consumption 

dataset. The most effective and consistent prediction 

results were obtained by combining ALO+KNN and 

JA+KNN, however TLBO+KNN yielded disappointing 

results. Out of all the combos tested, GA+KNN had the 

most subpar outcomes. R², MAPE, and RMSE were the 

metrics used to assess the model's performance. To 

improve prediction accuracy, it is crucial to use a feature 

selection approach that fits the model with dataset well, as 

these results show. 

 A framework for medium-term minimum 

demand projections is suggested by the authors of [24]. 

That framework takes into account elements such as 

temperature, economic data, seasonal fluctuations, and 

BTM PV capacity, all of which impact the load profiles. 

Every year, feature selection is used to find the best input 

variables. Specifically, by including information on 

projected energy usage, the suggested framework 

enhances the accuracy of forecasts. In addition, the 

suggested parallel LSTM-MLP model performs yearly 

temporal feature extraction, non-linear relationship 

learning, and pattern capture. By comparing it to more 

traditional approaches, a validation based on past load 

demand data proves its superiority.  

 In order to identify attacks on power networks 

using high-dimensional heterogeneous data, the authors of 

[25] suggest an approach called BHG-AD, which is based 

on machine learning. To address the issue of structured and 

unstructured data fusion, a distributed framework based on 

blocks is built to process regional traffic characteristics 

locally. To achieve that, a hierarchical dimensionality 

reduction method is used, which combines BERT 

encoding with principal component analysis. They address 

the limited sample issue by enhancing a Wasserstein 

distance driven generative adversarial network and create 

a dual graph convolutional neural network to detect 

topological structural abnormalities. Lastly, in order to 

accomplish multimodal collaborative decision-making, 

characteristics related to topology, reconstruction, and 

time are integrated via a dynamic attention mechanism. 

That approach achieved a detection accuracy of 98.7 

percent when tested on the IEEE123 node distribution 

system using the CIC-IDS2017 dataset. 

 A medical device manufacturing firm in 

Shanghai, China, is the subject of an investigation and 

analysis by the authors of [26]. The study found that 

throughout the statistical period, a gas-fired cogeneration 

system-based integrated energy system could meet 79% of 

heat demand and 30% of power consumption. When it 

comes to the system's performance, the power production 

efficiency is over 40% while the heat recovery efficiency 

is above 25% throughout the majority of the operational 

periods. As a result, the integrated energy system has an 

overall efficiency of around 65%, which shows that there 

is a lot of room for development.  

 Using correlation analysis or Recursive Feature 

Elimination methods, the experimenters in [27] took eight 
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variables—economic development, urbanization, 

industrialization, population, industrial structure, 

household consumption, electricity price, and energy 

efficiency improvement—and used them to identify six 

factors that affect electricity demand. After that, they find 

the best model for predicting future power demands by 

optimizing the Support Vector Regression model's 

parameters using the cross-validation grid search 

technique. The next step is to empirically analyze the 

power demand history data in Jiangsu Province from 1999 

to 2020. That will ensure that the model is valid and that 

the predictions are accurate. Both the prediction accuracy 

and the generalizability of the proposed model are shown 

by the outcomes. Finally, they use the generated model to 

forecast the electrical consumption of Jiangsu Province 

from 2021 to 2025.  

In light of the growing need for more secure and 

dependable systems in contemporary process operations, 

process tracking technology has advanced swiftly, 

according to the authors of [28]. In addition to enhancing 

process efficiency and product quality, online process 

monitoring is critical for guaranteeing process safety by 

detecting process defects in a timely manner. Modern 

manufacturing facilities are characterized by their huge 

size and complexity. One notable aspect is that the 

processes include several variables that are controlled by 

closed-loop systems. Early and accurate process problem 

identification and diagnosis, reduced manufacturing costs, 

increased plant operating safety, and minimized downtime 

are all possible outcomes of fully accessing and using the 

important information in these variables. Improving 

process tracking technology is critical for making 

complicated industrial processes safe, reliable, and cost-

effective to operate.  

There has been a marked improvement in data-driven 

multivariate statistical process surveillance techniques, 

and the gathering and use of process data is on the rise 

alongside the ever-evolving nature of industrial processes. 

To address the issue of process statistics' multimodal 

features, they provide an SPA-based weighted k-nearest 

neighbor process surveillance technique.  

 The authors of [29] energy management systems that deal 

with both supply and demand have a lot of room to grow 

by using power quality data mining. With the widespread 

use of grid-connected renewable energy production and 

flexible AC/DC power grids in the last several decades, 

power quality data has been standardized to improve 

power quality. The deployment of power quality 

monitoring systems has also been extensive. The research 

incorporates many forms of data to bolster power quality 

analysis, which further emphasizes the data's accessibility 

and usefulness. The goal of building a multimodal 

information system is to combine data from several 

sources into a single, dimensional model that can be 

pretrained to offer integrated characteristics for different 

kinds of power quality evaluations. To begin, feature 

extraction is used for voltage waveform data, low-

dimensional spatial representation for text data, and CNN 

representation for pictures. When that is complete, the data 

is combined with the attention-based interaction model. 

Certain downstream processes may have their own 

dedicated networks delivered the data model's output. 

Regarding the Multimodal Industrial Power 

Demand Forecasting with SHAP-GRU-LSTM Hybrid 

Model, this table (table 1) highlights the main methods and 

limitations of the cited articles.

 

Table 1: Multimodal industrial power demand forecasting with SHAP-GRU-LSTM hybrid model 

 

Ref. Primary Focus / 

Application 

Key Technique(s) Used Forecasting 

Scope 

Key Limitation Addressed by Our Model 

[21] Industrial VPP Energy 

Management System 

(EMS). 

An approach based on 

randomization for 

maximizing profit and 

reducing burden in unstable 

environments. 

General and 

specific 

Ignores ML-driven demand forecasting in 

favor of optimization and management; thus, 

it lacks predictive intelligence. 

[22]  Using meteorological 

parameters to predict 

the change in power 

demand. 

 Identification approach for 

main meteorological 

factors; sensitivity analysis. 

 Winter/Summer 

Styles 

 Misses critical operational and timetable 

details; lacks multimodal depth; mostly 

applies to climatic issues. 

[22]  Using meteorological 

parameters to predict 

the change in power 

demand. 

 Identification approach for 

main meteorological 

factors; sensitivity analysis. 

 Winter/Summer 

Styles 

 Misses critical operational and timetable 

details; lacks multimodal depth; mostly 

applies to climatic issues. 
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[23]  Productivity 

Improvement in Energy 

Forecasting by Feature 

Selection. 

 Combination of 

Metaheuristic Techniques 

(ALO, GA, JA) with K-

Nearest Neighbors 

("KNN"). 

 Forecast in 

General 

 The complicated time-series relationships of 

industrial loads cannot be captured by KNN, 

a non-sequential model, which means it 

lacks temporal/dynamic modeling. 

[24]  We estimate the 

medium-term minimum 

demand. 

 Model for parallel LSTM-

MLP; extraction of temporal 

features on an annual basis; 

selection of features. 

 Long-Term 

(Annual) 

 Lacking a specialized, deep Multimodal 

Feature Alignment Layer, the feature fusion 

method relies on basic parallel/concatenated 

fusion (LSTM-MLP). 

[25]  Verifying Cyber 

Attacks on Electricity 

Grids. 

 Dynamic Attention, Dual 

Graph CNN, BHG-AD, and 

BERT/PCA for 

dimensionality reduction. 

 System 

Evaluation: 

 In contrast, the goal is not loading 

forecasting but rather the detection and 

categorization of attacks.  Fusion uses 

attention, but explainability (SHAP) does 

not. 

[26]  Evaluation of a 

manufacturing 

company's gas-fired 

cogeneration system. 

 Efficiency in energy use 

and measures of system 

performance (non-ML). 

General and 

specific 

 Aside from the main topic at hand, which is 

system efficiency, there is no technique 

pertaining to machine learning or 

forecasting.  (This reference has to be deleted 

or updated, as pointed out by the reviewer.) 

[27]  Feature Selection and 

Support Vector 

Regression for 

Electricity Demand 

Forecasting. 

 Support Vector Regression 

(SVR) using optimized 

parameters, recursive 

feature elimination, and 

correlation analysis. 

 Winter/Summer 

Styles 

 Because it is not a sequential model, SVR 

cannot account for complicated recurring 

patterns or short-term volatility. It also lacks 

dynamic/temporal modeling capabilities. 

[28]  Process Tracking in 

Industrial Facilities. 

 Monitoring processes using 

SPA-based weighted k-

nearest neighbor algorithms. 

 Forecast in 

General 

 Rather of aiming at power demand 

forecasting, this approach prioritizes process 

monitoring and problem identification. 

[29]  A Multimodal Data 

System for Evaluating 

Power Quality. 

 An attention-based 

interaction framework for 

data fusion using CNNs, 

spatial representation, and 

other network features. 

 Long-Term 

(Annual) 

 Rather than concentrating on load 

forecasting, the goal here is to analyze power 

quality and waveforms.  Fusion makes 

advantage of attention, but for a different 

purpose. 
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3   Proposed methodology  
Through the use of multi-modal data, the power equipment 

can be thoroughly described, a digital twin model can be 

created, and the physical model can be mapped to the 

virtual space. Then, in order to achieve the mapping from 

virtual to reality, the power equipment can be analyzed to 

simulate the results of operations and maintenance as well 

as its aging process and its seen in the Fig 1. 

 

3.1 Data collection and preprocessing 
The dataset that was used for this study was 

obtained from the official Kaggle site. Kaggle archive  

 The dataset is useful for studies in STLF, which 

is an important part of contemporary power systems' 

operational planning, energy dispatch efficiency, and grid 

stability.  On an hourly basis, it records temperature data 

throughout India and the country's need for power.  Its 

compilation aided studies of grid operation and short-term 

load forecasting by revealing the complex temporal and 

climatic dynamics of load. Two separate Excel files, each 

with its own specific function, make up the dataset.  The 

main file includes comprehensive hourly statistics on 

power load demand from 2019 to 2024.   

 

 

Data for other regional grids, including those in the north, 

west, south, and east of India, are also part of it, in addition 

to the national-level load demand.  The exact temporal 

analysis is made possible by the timestamped nature of 

each data.  Deep learning and machine learning models, 

especially STLF, may be trained and evaluated with the use 

of this dataset, which has 46,728 hourly entries.  It also 

helps with a number of analytical tasks, including 

assessing regional demand variance, modeling 

consumption trends over time, and peak load analysis. 

 From 2019 through 2021, the secondary file 

provides India's average maximum temperatures monthly.  

The file contains the month, year, and average daily high 

temperature for that particular period.  It is an additional 

dataset that may be used to analyze how temperature 

affects power use.  Users may examine the implications of 

climate change and seasonal changes on energy 

consumption by linking temperature fluctuations with load 

patterns. This allows for more thorough forecasting 

algorithms and energy planning techniques.  Both files 

provide a solid basis for national and regional climate-

demand correlation research, demand forecasting, and 

time-series analysis. 

 

 

 

Primary data sources: 
• Regional Load Dispatch Centres 

(RLDCs) – including NRLDC, WRLDC, SLDCs for load 

data consistency and verification 

• Grid India – national electricity load 

data 

• Indian Meteorological Department 

(IMD) – monthly temperature data 

 

An appropriate forecasting model is challenging 

to construct due to the wind energy dataset's large array of 

multiple dimensions, which exhibits rapidly variable 

features. An integrated CNN-LSTM algorithm for wind 

power forecasting is developed after a CNN is used to 

detect and extract important features from the input data; 

this model is then passed on to a Long Short-Term Memory 

(LSTM) model for additional analysis. This approach 

effectively tackles the challenge. 

 As a first step in the data preparation procedure, 

we use data normalization, sometimes called deviation 

normalization, a linear transformation of the raw data that 

maps the output values to the interval [0, 1]. So, here's the 

conversion function: 

𝑥𝑛𝑒𝑤 =
𝑥−𝑥𝑚𝑖𝑛

𝑥𝑚𝑎𝑥−𝑥𝑚𝑖𝑛
                             (1) 

The above equation says the locations of the highest and 

lowest values found in the sample data. 

 

Electricity demand 

data 
Weather data

Data merging

• Features identification

• Variable identification

• Design scenarios (day-types 

& holidays)

Model design

LSTM
Back 

propagation

GRU

Back 

propagation 

through time

Error analysis

(MAPE.MAE)

Selection of the best 

model

Data pre-processing

Power 

demand

Load 

forecasting

Comparative study

Artificial Intelligence models

 
Figure 1: Proposed flowchart 

 

3.2 Power generation forecasting 

Models for predicting the weather and data on power 

production in the past will be carefully considered by the 

power grid. To get a complete picture of future power 

output, factors including precipitation forecasts and water 

storage conditions are taken into account by hydroelectric 

power stations. With this multi-model strategy, we may 

boost prediction accuracy by removing the shortcomings 

of individual models. When making predictions about 

future electricity production, traditional data sources often 

include:  

• Historical power generation data: The 

generator set's power generating features and 

patterns may be studied by keeping track of its 

historical power generation and associated 
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factors. It can handle massive amounts of data 

accurately and reliably, but it can't see into the 

future. 

• Weather data: Mostly include things like air 

temperature, relative humidity, the direction and 

speed of the wind, sun hours, etc. It is defined by 

the capacity to foretell future weather, but the 

influence on electricity production is 

complicated, making it hard to determine a 

precise correlation. 

The LSTM model is an RNN variant that focuses on 

LSTM. Through the use of memory units capable of 

updating the prior concealed state, this model preserves 

long-term memory. Every neuron receives input from it. 

Both the present input and weight of neurons, as well as 

their inputs from the past, influence the output of RNN. 

With this feature, it is feasible to comprehend long-term 

sequences' temporal linkages. The usual RNN training 

issues of bursting and disappearing gradients are 

eliminated by its internal memory module and gate 

mechanism. Consequently, the LSTM model's internal 

architecture has four crucial components: the input gate, 

the output gate, the forget gate, and the cell status. The 

introduction of these three gates regulates the upkeep and 

revision of the data included in cell status. Here is the 

construction of an LSTM cell. This method of calculation 

may be expressed as follows: 

 

𝑓𝑡 = 𝜎(𝑤𝑓[ℎ𝑡−1, 𝑋𝑡] + 𝑏𝑓)          (2)

𝑖𝑡 = 𝜎(𝑤𝑡[ℎ𝑡−1, 𝑋𝑡] + 𝑏𝑡)            (3)

𝑜𝑡 = 𝜎(𝑤0[ℎ𝑡−1, 𝑋𝑡] + 𝑏0)           (4)

𝑎𝑡 = 𝑡𝑎𝑛 ℎ(𝑤𝑎[ℎ𝑡−1, 𝑋𝑡] + 𝑏𝑎)  (5)

𝑐𝑡 = 𝑓𝑡 ∗ 𝑐𝑡−1 + 𝑖𝑡 ∗ 𝑎𝑡                   (6)

ℎ𝑡 = 𝑜𝑡 ∗ 𝑡𝑎𝑛 ℎ(𝑐𝑡)                        (7)

 

 

It is possible to define σ, which stands for the 

sigmoid activation function, as: 

 

𝜎(𝑥) = (1 + 𝑒−𝑥)−1           (8) 

 

In a typical architecture, the input layer is 

responsible for initial data preparation, the hidden layer for 

training the model and optimizing its parameters, and the 

output layer for making predictions based on those 

parameters. 

 

3.3 Industrial load forecasting 
For the purpose of predicting regional loads, the power 

grid will take into account industry data (including 

information on power consumption equipment, industry 

type), temperature change forecasts, and changes in 

commercial along with industrial activity loads. Predicting 

weekend home loads in a location, for instance, will take 

into account both the expected outside temperature and 

patterns of household activity. This is because, as an 

example, greater temperatures and outdoor activities will 

lead to higher household power consumption. It is possible 

to prevent the under- or overestimation of some elements' 

impacts by using multi-model forecasting. Conventional 

sources of information for load estimates mostly include: 

• We study the load's growth patterns and 

periodic variations using historical load data, 

which includes things like power consumption 

curves and peak values for certain regions. The 

data is accurate and dependable, and there is a 

lot of it, but it can't anticipate future loads.  

• We study the model and anticipate the load of 

every sector type in the area by recording the 

load data of various kinds of industries, such as 

residential and commercial. It is difficult to 

directly compute the overall load of the area 

due to considerations such as industrial 

combinations. 

•  Weather, social and economic indicators, 

humidity levels, sunlight hours, and other such 

variables are examples of influential factor 

data. It is difficult to assess the extent and 

regularity of the effect of these variables on 

power consumption demands. 

GRU, which uses an optimized LSTM-based gated 

recurrent neural network, is among the most widely used 

RNN variations. Compared to the LSTM, the GRU's 

internal construction is quite similar; however, the GRU 

combines the LSTM's input and forget gates into a single 

updated gate. There are two gates in this model: the update 

gate governs how much prior information is kept in the 

current state, and the reset gate decides whether or not to 

associate the two. The schematic of a GRU is shown in 

Figure 2  

𝑧𝑡 = 𝜎(𝑤𝑧[ℎ𝑡−1, 𝑋𝑡] + 𝑏𝑧)                          (9)

𝑟𝑡 = 𝜎(𝑤𝑟[ℎ𝑡−1, 𝑋𝑡] + 𝑏𝑟)                           (10)

𝑎𝑡 = 𝑡𝑎𝑛 ℎ(𝑟𝑡 ∗ 𝑤𝑎[ℎ𝑡−1, 𝑋𝑡] + 𝑏𝑎)          (11)

ℎ𝑡 = (1 − 𝑧𝑡) ∗ 𝑎𝑡 + 𝑧𝑡 ∗ ℎ𝑡−1,                   (12)

 

 

the output of the current layer at time t, and 𝑋𝑡, 

the vector input of the training information at time t. The 

update gates are denoted by 𝑧𝑡, whereas the reset gates are 

represented by 𝑟𝑡. the activation candidate with the t-value. 
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Figure 2: GRU Model for industry power networks 

 

3.4 Dominant feature identification 
 For LSTM and GRU, the dominant feature identification 

is carried out using SHAP, a numerical feature filter 

technique. V-Thresholding and Select-K-Best are 

combined to become SHAP. A quick and lightweight 

approach to removing characteristics with low variance 

that do not convey relevant information is Variance 

Thresholding. Improving the dataset's validity and the 

model's computational efficiency may be achieved through 

using the Variance Threshold as the initial feature filter. 

Our team's study has led us to establish a threshold of 

variance of 0.88. For further feature filtering, the Select-

K-Best method—a univariate regression function—is 

used. As seen in Formula (7), the regression function first 

determines the correlation coefficient r_i among every 

attribute x_(i,j) and the label (i.e., power demand load) yj, 

assuming that the sample number of candidate features is 

2. After that, we may use Formula (8) to get the i-th 

feature's feature score fi. 

 

rt =
∑  n

f=1   (Xtf − X‾ t)(yf − y‾)

√∑  n
f=1   (Xtf − X‾ t)2 ∑  n

f=1   (yf − y‾)2

     (13)

ft =
rt

2

1 − rt
2

(n − 2)                                          (14)

 

 

In this context, X_ij represents the value of the i-th feature 

for the j-th sample, X‾ i stands for the mean of the i-th 

feature, yj for the j-th sample and y‾ for the label variables, 

n for the number of samples, ri for the correlation 

coefficient between each feature along with the label, and 

fi for the i-th feature score. The next step is to use the score 

ranking to do feature filtering. At a threshold of 10, this 

filter is able to successfully remove useless characteristics 

while keeping important ones, according to a number of 

experiments conducted in Maine. 

 

 

 

 

 3.5 Sensitivity analysis of feature 

contributions 
Using Maine as an example, this section examines the 

state. To do a sensitivity analysis, one must first examine 

the level of uncertainty in a model's output and then 

identify its source in order to measure the magnitude of the 

output change induced by a change in the input parameters. 

The Sobol sensitivity analysis breaks down the output 

variance into components that may be linked to the input 

variables along with combinations of variables. It uses a 

probability distribution to quantify the input and output 

uncertainty. Function Y=f(x) is one way to look at any 

model. 

 

Y = f0 + ∑  d
i=1 ft(Xt) + ∑  d

t<j ftj(Xt , Xf) + ⋯ +

f1,…,d(X1, … , Xd)          (15) 

 

where f0 is a constant and fi is a function of Xi, fij a function 

of Xi and Xj, etc. This paper utilizes a partial dependence 

plot and a beeswarm plot to examine the connections 

among load fluctuation and dominant aspects of the case 

of Maine. It aims to further examine the dependency 

relationship among features and demand load changes, as 

well as how dominant features impact demand forecast 

results. One way to see how a trained model's forecasts 

vary in response to a single change in features is via a 

partial dependency plot. One way to define the partial 

dependency function is as follows: 

 

f̂(xf) =
1

n
∑  n

i=1 f̂(xf, x−f, i)        (16) 

 

A partial dependence of xj can be described as the mean 

value of forecasted values obtained from f ̂force when x_i 

is fixed and x_(-j) changes within its range. Here, f  ̂

represents the trained model, n is the number of samples in 

the training set, and x_(-j) represents other features except 

for xj. 

 

3.6 Dynamic association modeling using 

SHAP  
Complex, time-varying model predictions, like those used 

for financial or industrial power demand forecasting, may 

be made more understandable and comprehensible using 

this combination. At each one time, the problem is to figure 

out which factors are driving the forecast. The roles of 

SHAP and LIME become apparent here. Using the 

Shapley Value, a technique borrowed from cooperative 

game theory, SHAP determines how important each 

characteristic is for making a certain prediction. SHAP 

enables both local and global explanations, allowing one 

to explain a single prediction and summarizing the 

relevance of features throughout the whole time series, 

respectively. Results of the compressor station's short-term 

power consumption projection were analyzed using the 
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SHAP algorithm. This approach may be used to determine 

how ACU and GCU, which are operational characteristics 

of the equipment, affect the predicted power consumption. 

Analyzing the impact of each feature on the output results 

(power consumption anticipated) with input data Z_j, 

taking into account all possible feature combinations, is 

how the significance of the j-th feature (e.g., gas 

transportation strategy or the daily power consumption of 

GCU) for the model's outcome f is calculated. This process 

is detailed in: 

 

𝜑𝑗(𝑓, 𝑍𝑙) = ∑  𝑆⊆𝑃{𝑓}
|𝑆|!(|𝑃|−|𝑆|−1)!

|𝑃|!
[𝑓𝑆∪{𝑓}(𝑍𝑙,𝑆∪{𝑓}) −

𝑓𝑆(𝑍𝑙,𝑆)]                                             

(17) 

 

given that P is the set that includes every feature, S is the 

set of features that are subset of all features, and Z is the 

set of all conceivable features i is the data instance index, 

and S,j is a feature. It is possible to compute SHAP for each 

time series forecast in a dynamic association model. Every 

input characteristic (such as temperature, production 

status, and price) has an effect on the expected power 

demand at time t, and it informs you how big that effect is 

and whether it's positive or negative. 

 

• Association analysis: The most powerful 

linkages may be dynamically seen by monitoring 

the Shapley values over time. Consider the 

possibility that, for instance: 

o It seems that intelligence-demand is the 

main driver during the night shift, as 

textual data characteristics (such as a 

high-priority manufacturing order) have 

the greatest positive SHAP value. 

o  Numbers (such as temperature) have 

the strongest positive SHAP value 

during the day, suggesting that 

environmental influences are the most 

important. 

3.7 Feature Importance Matrix (FIM) 
A feature significance matrix is a two-variable matrix that 

contains the feature significance coefficients (in the feature 

significance matrix between the two variables (here, load 

consumption and weather characteristics) is a matrix of 

feature importance coefficients (see Table 1). The numbers 

might be anything from -1 to 1. Here are the values that 

feature significance matrices represent: 

• A value of +1 indicates that the two 

variables grow in direct proportion to the 

value of 1. 

• The presence of a complete negative 

feature significance, shown by -1, means 

that the second variable reduces 

proportionately as the first variable grows. 

• A feature significance of 0 indicates that the 

variables do not have a linear connection. 

But another nonlinear link could still exist. 

• The best feature is the one with the lowest 

"actual load—feature" values. Table 1 

displays the computed feature significance 

matrix. 

Table 1: Feature importance by FIM 

 

Features Feature 

importance 

Value 

Feature 

importance 

Value 

Features 

Humidity −0.1216 0.052651 Temperat

ure 

Precipitation 3 0.0039776 Actual 

Load 

Dispatch 

rate 

−0.029344 0.39887 Condition 

Wind Speed −0.091288 0.1355 Pressure 

Wind Gust −0.10344 0.1675 Dew 

Point 

 

4   Experimental setup 

Here is the hardware setup of a workstation that was set up 

for information processing:  The following components are 

used in this computer: central processing unit (CPU): an 

AMD 7773X from AMD (Santa Clara, CA, USA), a 

graphics card from AMD (New Taipei City, Taiwan): an 

AMD RADEON PRO W7800 32 GB GDDR6 RDNA3, 

random access memory (ROM): 32 G DDR4 3200 RECC 

from KINGSTON (Fountain Valley, CA, USA), and a hard 

drive from Samsung (Seoul, Republic of Korea): a 1 TB 

M2 NVME device. 

 Here was the program configuration:  Windows 10 Pro 

(WA, USA, Microsoft, Redmond) and Anaconda 3 

(Anaconda, Austin, TX, USA) are the operating system 

and environment components, respectively, that must be 

configured. 

 

4.1 Training and testing dataset 
The model of the dataset's classification into its training, 

validation, and test sets. For the purpose of learning, a 

dataset known as the training dataset is used to find the 

best possible combinations of variables to employ in a 

forecasting model and to fit the network's parameters, 

including the weights. To gauge the model's performance 

while adjusting its hyperparameters to prevent overfitting, 

researchers employ a subset of the data set that was not 

used for training the model; this subset is called the 

validation dataset. As a last point, competing models are 



334 Informatica 49 (2025) 325–340                                                                                                                            F. Zhichun et al. 

 

often evaluated using the test set. The training set accounts 

for 80% of the total dataset in this study. Therefore, we test 

our model with various ratios before settling on this 

proportion since it yields the most precise projected 

numbers. It is true that the training group served as the 

basis for developing the prediction model. Twenty percent 

of all of the data is reserved as the test set to evaluate the 

model. In most cases, the RNN model may be justified 

using a variety of train/test splits, including 90:10, 80:20, 

70:30, 10:90, and so on. For the prediction, this model then 

chooses the optimal train-to-test. Several variables, 

including the model's design, the data type, and the 

prediction horizon, determine the ratio. In order to train the 

LSTM, GRU, and Drop-GRU algorithms for one-day, 

three-day, and week-long predictions, respectively, we use 

280, 600, and 750 hidden units. Since load forecasts are 

based on time intervals, both the input and the output 

parameter windows are time-dependent. In our 

investigation, we additionally optimize using the Adam 

approach. Every 50 epochs, the learning rate decays from 

its initial value of 0.01. Because different Dropouts could 

have different outcomes, we use the experimental test to 

determine which Dropout is most suitable. 

 

Table 2: (a) LSTM forecasting design. 

 
Number of 

Days to 

Predict 

1 Day 3 

Days 

7 

Days 

15 Days 

Data size 

(measure) 

299 744 1745 3560 

Number of 

training data 

255 588 1766 1988 

Number of 

data to 

predict 

49 123 322 745 

Number of 

units 

(LSTM 

/GRU) in 

the hidden 

layer (h) 

290 650 775 1050 

Number of 

inputs for 

the 

LSTM/GRU 

network (n) 

200 330 300 700 

Number of 

outputs for 

the 

LSTM/GRU 

network (m) 

1 1 1 1 

       Number 

of trainable 

weights 

(NTW) for 

the LSTM 

network        

539,233  2,233 

,001  

 3,977 

,758 

 6,677,001  

Number of 

iterations 

100 100 100 200 

 

 

Table 2: (b) Hyperparameters for the GRU and LSTM 

models. 

Hyperparameters Value 

num_layers 3 

epochs 100 

best_loss 0 

learning_rate 0.0005 

timestep 1 

batch_size 37 

feature_size 1 

hidden_size 277 

output_size 1 

 

Table 2 (b) displays the hyperparameter setup options for 

the LSTM and GRU models. From 2018.01.01 to 

2021.04.19, 1206 data points make up the training set, and 

from 2021.04.20 to 2021.08.31, 134 data points are used 

for testing. A total of 1340 data points are employed in this 

research, covering the period from 2018.01.01 to 

2021.08.31. 

 We foresaw the needs for future power consumption, 

facility capacity, and supply. Using varying values for the 

past and future, we evaluated the three built tools: CNN, 

GRU, or the hybrid model. Table 2 displays the optimal 

model together with its historical and prospective settings 

for the three research characteristics. When you see a '-' in 

Table 2, it indicates that the model completely failed to 

match the data. Compared to GRU and hybrid models, 

CNN model performs much better. Unfortunately, no 

matter how hard we looked, we could not find the optimal 

hyperparameters or GRU model designs that would allow 

the models to converge. The primary cause is that the 

training dataset is too little to adequately train the GRU 

model. Since this is the case, we want to train more precise 

forecasting models in the future by obtaining more data 

from the Korean Power Exchange. For this reason, we will 

think about using the CNN model to predict future power 

needs. 

 

4.2  Performance .etrics 

Calculations of Deviation, MSE, MAE, MAPE, and 

RMSE are performed using Equations (1) through (4), with 

A representing actual loads and F representing anticipated 

loads, in order to assess the approaches. Displayed in 

Figure 6 are the findings. 
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 MSE: 𝑀𝑆𝐸 =
1

𝑁
∑  

𝑁

𝑡=1

  (𝐴𝑡 − 𝐹𝑡)2               (18)

𝑀𝐴𝐸: 𝑀𝐴𝐸 =
1

𝑁
∑  

𝑁

𝑡=1

  |𝐹𝑡 − 𝐴𝑡|                    (19)

𝑀𝐴𝑃𝐸: 𝑀𝐴𝑃𝐸 =
1

𝑁
∑  

𝑁

𝑡=1

  |
𝐴𝑡 − 𝐹𝑡

𝐴𝑡

| × 100%

𝑅𝑀𝑆𝐸: 𝑅𝑀𝑆𝐸 = √
1

𝑁
× ∑  

𝑁

𝑡=1

  (𝐹𝑡 − 𝐴𝑡)2       (21)

(20) 

For each set of predicted outcomes, we computed 

the absolute difference and compared it to the threshold to 

see whether the deviations were tolerable. By using this 

approach, we were able to systematically and 

quantitatively evaluate the prediction alignment; we set a 

threshold at which two of the three models had to agree 

within this margin. Incorporating an agreement 

mechanism into our forecasting system guarantees its 

reliability and improves the predictions' validity by 

reducing the effect of outlier forecasts while improving the 

accuracy of the system as a whole *see Table 3. 

 

Table 3: RMSE, MAE, MAPE, and MAE generated by 

the methodologies being examined 

 

Metric CM-

SARIMAX-

SVM-DC 

CM-

LSTM-

DC 

CM-

SARIMAX-

DC 

RMSE 0.0211 0.0977 0.0877 

MAPE 0.87% 1.67% 2.00% 

MAE 0.0455 0.0566 0.0866 

MSE 0.0788 0.0034 0.0023 

 

Table 4shows the MAE Performance. The suggested 

approach improves forecasting accuracy and dependability 

by using sophisticated analytical techniques that can adapt 

to different data patterns and seasonal swings. The system 

can now manage outliers and anomalies more precisely 

thanks to this integration, guaranteeing that projections 

will be resilient under varying situation, which is given in 

fig 3.  

 

 

 

 

 

 

 

 

 

 

 

Table 4: A comparison of the suggested model's 

performance with respect to mean absolute error (MAE) 

 

Feature SVM LSTM SHAP-

LSTM-

GRU 

Power 

Consumption 

(MW) 

0.322 0.323 0.311 

Facility Capacity 

(MW) 

1.211 0.045 0.567 

Supply Capacity 

(MW) 

3.267 0.222 0.275 

    

 
 

Figure 3: Accuracy analysis 

 

 
 

Figure 4: .Detection rate vs. simulation time 

75

80

85

90

95

100

50 100 150

D
et

ec
ti

o
n

 R
a

te
 (

%
)

Simulation Time (s)

Proposed [25]



336 Informatica 49 (2025) 325–340                                                                                                                            F. Zhichun et al. 

 

 

 
 

Figure 5: False alarm rate vs. simulation time 

 

In addition, the system's capacity to handle data in real-

time allows it to continually update its prediction models 

with the most recent trends, which in turn makes the 

forecasts more reliable. Machine learning algorithms 

improve energy management decision-making by letting 

the system learn from previous disparities and 

automatically change its settings for future projections, 

decreasing the chance of major forecasting mistakes. This 

comprehensive method improves the effectiveness of 

energy systems and the accuracy and dependability of 

predictions, making it a useful tool for both short-term and 

long-term planning, which is given in Fig 4 to Fig 7. 

 

 

 
 

Figure 7: Demand detection rate vs.training ratio 

superiority over SOTA benchmarks 

 

Compared to the stated conventional and hybrid SOTA 

models, our model is clearly and quantitatively better. This 

includes models like Parallel LSTM-MLP, ALO+KNN, 

standard LSTM, or standard GRU. 

 

Table 5: State of the art methods 

 

SOTA 

Benchmark 

Primary 

Limitation 

How SHAP-

GRU-LSTM 

Achieves 

Improvement 

ALO+KNN External 

optimization 

(ALO) occurs 

outside of the 

prediction 

process; KNN is 

vulnerable to 

feature scaling 

while local data 

density; and 

dynamic 

temporal 

modeling is 

absent. 

The GRU-LSTM 

recurrent core of 

our model 

naturally records 

intricate, long-

term temporal 

sequences and 

relationships, 

which is critical 

for business 

cycles. 

Parallel 

LSTM-MLP 

 Does not have a 

real, deep feature 

alignment 

method; handles 

multimodal 

features 

independently; 

uses basic 

 To optimize the 

flow of 

information, we 

use a specialized 

Feature Alignment 

Layer to discover 

the best non-linear 

latent link 
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concatenation or 

voting. 

between diverse 

characteristics 

before they reach 

the temporal core. 

Standard 

LSTM/GRU 

 Lack of 

transparency; 

difficulty 

integrating many 

modalities when 

features are 

multiple and 

unrelated (non-

temporal). 

 Engineers may 

have faith in and 

verify the 

accuracy of the 

predictions thanks 

to the SHAP 

integration's 

crucial 

explainability.  

The hybrid 

architecture 

preserves both the 

efficiency of the 

GRU and the 

long-term 

memory of the 

LSTM. 

5   Conclusions 

Predicting future power needs is a difficult but crucial task. 

We presented many deep learning models in this study for 

demand, supply, and power consumption predictions in the 

future. The research looked at a variety of deep learning 

architectures, including LSTM, GRU, and a hybrid model 

that uses both. According to the findings of the 

experiments, the proposed model performed far better than 

the GRU and hybrid models. In addition, we evaluated the 

proposed model alongside SVM and ANN algorithms to 

see how well they performed. Overall proposed performed 

better in the comparison. Because it is only capable of 

making one-day predictions, the created proposed model 

is only useful for predicting power demands for the near 

future. To improve the forecasting model's ability to 

predict electricity consumption in the medium to long 

term, further training data will be collected from the 

Kaggle dataset in the future. Furthermore, security model 

will be executed. Predicting future power needs is a 

difficult but crucial task. We presented many deep learning 

models in this study for demand, supply, and power 

consumption predictions in the future. 
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