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With the profound transformation of the energy structure and the advancement of the “dual carbon” goal,
the virtual power plant (VPP), centered on distributed energy resources, has emerged as a key technology
for enhancing the flexibility and integration capacity of modern power grids. However, the diversity and
volatility of VPP internal resources, coupled with the complexity of the electricity market, impose
significant challenges on the response speed and economic efficiency of real-time trading decisions.To
address these challenges, this paper proposes and develops a real-time trading decision support system
for VPPs driven by an Intelligent Assistant (1A). The system leverages hydropower plants—with their fast
response and energy storage capabilities—as the core regulating resources and coordinates multiple
distributed energy sources, including photovoltaics, wind power, and energy storage systems. At its core,
the 1A integrates deep learning—based forecasting models, reinforcement learning—based decision
modules, and a natural language processing (NLP)-based interaction component. The IA assists
operators in real time by analyzing multidimensional data such as market prices, grid loads,
meteorological information, and hydropower inflows, accurately predicting generation and price trends,
and dynamically optimizing bidding and regulation strategies through reinforcement learning algorithms
to maximize overall benefits. This paper details the overall architecture and key technological components
of the proposed system and conducts a simulation case study using a regional VPP containing multiple
hydropower plants. Specifically, the core decision-making module employs the Soft Actor-Critic (SAC)
deep reinforcement learning algorithm. The system was trained for 2 million steps over 72 hours on a
V100 GPU, utilizing one year of real historical operational and market data from a VPP in Southwest
China. The simulation results demonstrate that the proposed 1A-DRL strategy outperforms a traditional
rolling-horizon Mixed-Integer Linear Programming (MILP) method, achieving a 14.7% increase in net
profit, a 47.8% reduction in deviation assessment costs, and a remarkable 99.7% acceleration in decision-
making time. These results confirm the significant technical and economic advantages of the proposed
framework, providing a new theoretical foundation and practical solution for intelligent VPP operation
and business model innovation, while also offering enhanced interpretability through the intelligent
assistant.

Povzetek:

1 Introduction

With the global energy transformation towards
cleaner and lower-carbon forms, the penetration rate of
intermittent renewable energy sources represented by
wind energy and solar energy in the power system has
been rapidly increasing. While bringing environmental
benefits, this transformation also poses unprecedented
challenges to the real-time balance and safe and stable
operation of the power system[1]. As an advanced energy
management technology, the virtual power plant (VPP)
aggregates distributed energy resources (DERS) such as
geographically dispersed distributed generation (DG),
controllable loads (CL), and energy storage systems (ESS)

into a unified entity that can interact with the power grid
through information and communication technologies and
intelligent aggregation algorithms [2], effectively
enhancing the power grid’s acceptance capacity for
distributed energy and the overall operation efficiency of
the system [3].

However, the economically efficient operation of
VPP faces two core problems: First, the high
heterogeneity and uncertainty of internal resources. The
output of wind and solar power is highly random and
volatile, and the load response is uncertain, which makes
the overall controllability of VPP poor. Second, the
complexity and high dynamics of the electricity market
environment. The price of the electricity market
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(especially the spot market) fluctuates frequently, and
there are various trading varieties (such as electricity
energy, ancillary services, etc.), requiring VPP to have
millisecond-level response and precise decision-making
capabilities. Traditional optimization methods based on
mathematical ~ programming  often  have  huge
computational amounts when dealing with high-
dimensional, non-linear, and strongly uncertain problems,
and it is difficult to meet the real-time requirements [5].
To address the above challenges, artificial intelligence
(Al) technologies, especially machine learning and deep
learning, provide new solutions for the intelligent
decision-making of VPP [6]. In recent years, researchers
have begun to attempt to use Al models for load
forecasting, electricity price forecasting, and optimal
scheduling. However, existing research mainly focuses on
the application of single models, lacking an intelligent and
integrated system that can integrate perception, prediction,
decision-making, and interaction [7]. In particular, the
concept of an "intelligent assistant” that can deeply
understand the intentions of operators, assist in
performing complex analyses, and interact in a natural
language manner has not been fully exploited. This study
believes that the core value of the intelligent assistant lies
not only in simplifying operations, but more importantly,
in acting as a bridge between human experts and "black
box" models by transforming complex Al decision-
making processes into interpretable and understandable
suggestions, thereby building trust and achieving truly
efficient and reliable human-machine collaborative
decision-making. This model, which aims to empower
operators rather than replace their ultimate decision-
making power, is the core of the safe application of
advanced Al technologies in critical infrastructure fields

[8].
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1.1 Related work

The management and optimization of Virtual Power
Plants (VPPs) in dynamic electricity markets have been
extensively researched. Early efforts often relied on
traditional optimization techniques, primarily Mixed-
Integer Linear Programming (MILP) or Quadratic
Programming, for day-ahead scheduling and intraday re-
dispatch [9][10]. While effective for well-defined
problems, these methods struggle with real-time demands,
high dimensionality, and inherent non-linearities, often
leading to significant computational burdens and
sensitivity to prediction errors [5]. With the advent of
Artificial Intelligence (Al), Deep Reinforcement Learning
(DRL) has emerged as a promising paradigm for
sequential decision-making under uncertainty, showing
potential for optimal bidding and scheduling in VPPs due
to its ability to learn complex policies through interaction
with dynamic environments [4][12][13]. However, many
existing DRL applications in VPPs primarily focus on
optimization objectives and often treat the DRL model as
a "black box," lacking explicit mechanisms for human
operators to understand and trust automated decisions [8].
Furthermore, the specific role of hydropower as a core
regulating resource for its unique fast-response and energy
storage capabilities has not been fully leveraged within
integrated Al-driven trading systems. This study aims to
address these identified gaps.

Table 1: Comparative analysis of related work in VPP decision-making

DRL-based VPP

Optimization Methods

This Work (IA-DRL with

Feature/Study (e.g., MILP, QP) [5, 10] (1)2p tllrz]liatlon €g. [4.9, Hydropower Core)
Mathematical proarammin Model-free or model-based SAC-based DRL for real-time
Methodology Core prog 9DRL algorithms (e.g., optimization, integrated with DL

(linear/quadratic solvers)

Relies on accurate
Uncertainty Handling forecasts; sensitive to

stochastic programming.

Can be computationally
intensive for large-
scale/complex problems;
slower for real-time.

Real-time Performance

Command-line interfaces,
basic dashboards; minimal
decision support.

Human-Machine
Interaction

General DERs;

Resource Focus R .
hydropower’s unique role

DDPG, PPO, SAC)

Learns robust policies
through interaction;
prediction errors; often uses inherently handles dynamic
uncertainties.

Extremely fast inference
post-training (millisecond-
level).

Typically a “black-box”
model; limited direct
human interaction or
interpretability.

General DERSs; specific
resource advantages (like

forecasting.

Strong endogenous ability to
manage uncertainty, non-
linearities, and forecasting errors
through continuous environmental
interaction and policy refinement.

Millisecond-level decision speed,
critical for intraday/real-time
markets.

Intelligent Assistant (1A) with NLP
for natural language interaction and
explainable Al (XAl).

Hydropower as core regulating
resource; full exploitation of its fast
response and storage.



Deep Reinforcement Learning-Based Real-Time Trading...

Informatica 49 (2025) 289-306 291

DRL-based VPP

Optimization Methods

This Work (IA-DRL with

Feature/Study (e.g., MILP, QP) [5, 10] i)zp’n&\]l;atlon (eg. [4.9, Hydropower Core)
often simplified or not hydropower’s regulation)
central. not always highlighted.
Scalability & Requires re-modeling for i:ﬁ:g Iii?ﬁ;ﬁg!'éznthrOUQh High adaptability to market
A new market rules; limited . P changes; robust across different
Adaptability generalize to changing

online adaptation.

Transparent if model is
simple, but complex models
are hard to interpret.

Interpretability/Trust

Often uses deterministic or

VPP resource ratios.

conditions.

Low transparency (“black Transforms DRL “black box” into
box”); difficult for
operators to trust or
understand decisions.

Benchmarked against other

“gray-box” through real-time
explanations, building operator
trust.

Benchmarked against a strong

Validation/Benchmarking simplified stochastic D.RL gl_gorlthms or deterministic MILP baseline in a
- simplified rule-based . Lo .
scenarios. methods high-fidelity simulation.

In addition, among many distributed resources,
hydropower (especially small and medium-sized
hydropower stations) is an ideal "stabilizer" and
"regulator” in VPP due to its excellent regulation
performance, fast start-stop ability, and certain energy
storage characteristics (through reservoir regulation).
Taking hydropower as the core regulation resource of VPP
can effectively suppress the fluctuations of wind and solar
power output and improve the overall reliability and
market competitiveness of VPP.

1.2 Research questions and contributions
Based on the identified gaps, this study proposes to
construct a real-time trading decision-making system for
virtual power plants driven by an intelligent assistant,
with a focus on its application in VVPPs with hydropower
as the core. This research aims to answer the following
questions:

RQ1: Can a DRL-based real-time trading system, driven
by an intelligent assistant and leveraging hydropower as a
core regulating resource, significantly outperform
traditional optimization methods (e.g., MILP) in terms of
economic benefits (e.g., net profit, deviation costs) for
VPPs in a dynamic electricity market?

RQ2: How does the proposed IA-DRL system enhance the
operational efficiency and reliability of VVPPs, particularly
in terms of renewable energy curtailment and real-time
decision-making speed, compared to established
benchmarks?

RQ3: Can an Intelligent Assistant, integrated with a DRL
decision engine, effectively transform complex Al
decisions into interpretable natural language explanations,
thereby improving human-machine collaboration and
operator trust in critical VPP operations?

RQ4: What are the key architectural and algorithmic
components required to realize such an integrated and
intelligent VPP real-time trading decision support system,
and how do they interact to achieve optimal performance?
The main contributions of this paper are summarized as
follows:

Proposed a novel, integrated IA-DRL framework for VPP
real-time trading, with a specialized focus on hydropower
as a core regulating resource, which is a unique
contribution in the context of intelligent VPP operation.
Developed and validated a comprehensive system
architecture that deeply integrates data perception, deep
learning-based prediction, DRL-based decision-making,
and NLP-based human-machine interaction.
Demonstrated the significant economic and operational
superiority of the IA-DRL strategy over a traditional
MILP method through detailed case studies, showcasing
enhanced net profit, reduced deviation costs, and vastly
improved decision-making speed.

Pioneered the integration of explainable Al (XAl)
principles through the Intelligent Assistant's natural
language explanation capabilities, fostering operator trust
and facilitating effective human-machine collaborative
decision-making in critical energy infrastructure.
Provided a robust solution for renewable energy
integration, proving the system's ability to significantly
reduce renewable energy curtailment by efficiently
coordinating diverse DERs.

The structure of this paper is arranged as follows:
Chapter 2 introduces the basic theories of virtual power
plants and electricity market transactions; Chapter 3
elaborates on the overall design and architecture of the
intelligent assistant-driven decision-making system in
detail; Chapter 4 deeply explores the key technologies and
core algorithm models in the system; Chapter 5 conducts
the simulation analysis of system implementation and
application cases;Chapter 6 presents a comprehensive
discussion of the results and their implications; and
finally, a summary and outlook are presented in Chapter
7.
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2 Overview of virtual power plants and
electricity market transactions

2.1 Concept and composition of virtual power

plants

A virtual power plant is not a physical power plant but
an energy aggregation management system. It aggregates
different types of distributed energy resources (DERS)
through  advanced communication and  control
technologies and participates in the operation of the
electricity market as a special market entity [10]. Its basic
composition is shown in Figure 1, mainly including three
types of resources: distributed generation (DG), energy
storage system (ESS), and controllable load (CL). These
resources are coordinated by the VPP control center and
interact with the upstream electricity market and grid
operators in terms of information and energy.

il T 7§

Power TSO

Market (Grid Operator)
c— DatteryStorege

Wind Turbine

R oo o gl
~ Smart Home /AC
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EV Charging (V2G
Insurt Home

Figure 1:Schematic diagram of the basic composition of
virtual power plants

The aggregated resources of VPP usually include:
Distributed generation (DG): Such as

photovoltaic, decentralized wind  power,

hydropower stations, gas turbines, etc.

Energy  storage system (ESS): Such as
electrochemical energy storage (lithium batteries),
pumped storage, flywheel energy storage, etc.

Controllable load (CL): Such as intelligent air
conditioners, industrial production lines, electric vehicle
charging and discharging (V2G), etc. [11].

rooftop
small
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2.2 Core role of hydropower in virtual power

plants

Among the numerous resources of VPP, hydropower
stations (especially small and medium-sized hydropower
stations with regulating reservoirs) play a crucial role:

Fast regulation ability: The start-stop and output
adjustment speed of hydropower units is much faster than
that of large thermal power units, which can effectively
meet the rapid response requirements of the intraday
market and ancillary service market.

Natural energy storage characteristics: The reservoir
itself is a large-scale and long-term energy storage facility,
which can realize the transfer of electric energy in the time
domain and perfectly hedge the intermittency of wind and
solar power generation.

Relatively high predictability: Compared with wind
and solar, the medium- and long-term hydropower inflow
runoff has certain regularity, and the short-term (hourly)
output is basically controllable, providing a deterministic
basis for the planning of VPP.

Basic output equation of hydropower station:

Phydro:”'g'Q'H (1)

Among them, P4, is the output power of the
hydropower station (W), #» is the comprehensive
efficiency coefficient (including the efficiency of the
water turbine and generator), g is the acceleration due to
gravity (m/s?), Q is the flow rate through the water turbine
(m3/s), and H is the effective head ( m ). This formula is
the basis for VPP to dispatch hydropower resources

2.3 Power market trading mechanism

VPP mainly participates in the following types of
power markets [12]:

Day-ahead  market: Declare  the  power
generation/consumption curve and price for the next day
one day in advance, which is the main market for
electricity trading.

Intraday/real-time market: Conducted within the
operating day to correct the deviation between the day-
ahead plan and the actual operation, usually with a trading
cycle of 15 minutes or 5 minutes.

Auxiliary service market: VPP obtains revenue by
providing services such as frequency regulation, reserve,
and reactive power support, with extremely high
requirements for response speed.

Table 2: Comparison of requirements for VPP in different power markets

Regulation Response time Decision- Advantages of hydropower
Market type b . .
cycle requirement making complexity resources
Day-ahead 24 hours Hourly level Medium Reliable basel_oad/shoulder
market load provider
Intraday market 15. minutes/5 Minute level High Quickly adjus_t output and
minutes correct deviation
Frequency Quick response and provide
regulation market 4 seconds Second level Extremely high high-quality freqqency regulation
service
Reserve market .10 -30 Minute level Medium Rellabl_e reserve capacity and
minutes quick start-stop
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2.4 Challenges faced by VPP real-time

trading

VPP needs to solve a high-dimensional stochastic
optimization problem in the real-time market: under the
premise of meeting its own physical constraints and grid
security constraints, how to coordinate internal resources,
formulate optimal bidding and scheduling strategies to
cope with the changing market prices and power
generation/load forecasts. This requires the system to have
strong sensing capabilities, forecasting capabilities, and
decision-making assistance capabilities [13].

3 Overall design of the decision system

driven by intelligent assistants

To address the above challenges, we designed a VPP
real-time trading decision system with an intelligent
assistant at its core.

3.1 Design concept

Data-driven: All decision-making suggestions of the
system are based on the real-time analysis of multi-source
heterogeneous data [14].

Model core: An advanced Al model is used as the
engine for generating prediction and optimization
strategies.

Human-machine collaboration: The intelligent
assistant serves as a bridge between human operators and
complex systems, enabling efficient human-machine
collaboration, allowing operators to focus on strategic
supervision and decision-making, rather than complex
calculations.

Continuous evolution: The system has self-learning
capabilities and can continuously optimize its strategy
model in the continuous interaction with the market.

3.2 Overall system architecture and decision-

making process

To address the complex challenges of virtual power
plant (VPP) real-time trading, we designed a highly
integrated decision system based on the concepts of data-
driven, model core, and human-machine collaboration.
The overall architecture and core decision-making process
of the system are shown in Figure 2.

Figure 2 adopts a hierarchical and decoupled modular
design, which is divided into a data layer (Data Layer), a
model layer (Model Layer), a decision layer (Decision
Layer), and an interaction layer (Interaction Layer) from
top to bottom. This design ensures the independence of
functions and the scalability of the system.

The operation process of the system follows two
tightly coupled information flows:
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Figure 2: System architecture and closed-loop process of
the intelligent assistant-driven VPP

Main data processing flow (black vertical downward
arrow in the figure): The information flow starts from the
data layer, which is responsible for aggregating multi-
source heterogeneous data from the power market,
meteorological system, and each unit (DERs) within the
VPP, and storing and transmitting it using technologies
such as InfluxDB and Kafka. The data then flows into the
model layer, where it undergoes in-depth analysis and
processing through prediction models such as LSTM and
Transformer and physical resource models, and is finally
encapsulated as a state vector (State) describing the global
information of the current system Error! Reference
source not found..

Reinforcement Learning Decision Closed-Loop (the
orange highlighted circular arrow in the figure): This is the
core innovation of the system. After receiving the state,
the deep reinforcement learning (DRL) engine in the
decision-making layer generates the optimal action, that
is, the bidding and scheduling strategies of the VPP. After
this action acts on the external power market and the VPP
environment, the environment will feedback an immediate
reward (such as trading revenue) and the next state after
the environment evolves. This feedback information of
"state-action-reward" constitutes the closed-loop of
reinforcement learning, enabling the agent to conduct
autonomous learning and policy iterative optimization
through continuous interaction with the environment [15].

At the same time, the interaction layer reflects the
design concept of human-machine collaboration in the
system. Operators can initiate "queries" or instructions to
the Intelligent Assistant through natural language. The
Intelligent Assistant can not only present the complex
strategies in the decision-making layer to the operators in
the form of visual charts and "decision suggestions", but
also "explain" the logic behind them, thus realizing
efficient and trustworthy intelligent assistance and
empowering operators to strategically supervise the
system.
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In summary, this architecture integrates data
collection, model prediction, intelligent decision-making,
and human-machine interaction, forming a complete and
dynamic closed-loop system from raw data to optimal
strategies and then to learning feedback. Next, the key
functions of each layer will be elaborated in detail.

3.3 Detailed explanation of the functions of

each layer
In the hierarchical architecture, each layer forms an
organic whole through close information flow

transmission, jointly supporting the efficient operation of
real-time trading decisions.

Data Layer: As the basic data entry of the system, this
layer is responsible for collecting, cleaning, integrating,
and storing multi-source heterogeneous data from external
information sources (such as weather forecasting systems,
power market platforms, grid dispatching centers) and
telemetry terminals of each distributed energy resource
(DERs) within the VPP. This layer is not only a data
aggregation point but also the starting point of data
governance. We use a time series database (such as
InfluxDB) for efficient storage and query, and perform
preliminary cleaning and outlier removal on telemetry
data through a data collection gateway deployed on the
edge side. External data is obtained by calling
standardized RESTful APIs. The data sources are aligned
through a unified data model to ensure data consistency
and availability. In addition, this layer uses technologies
such as encrypted channels to ensure the security and
integrity of data during transmission and storage [17].

Model Layer: As the analysis and cognitive core of
the system, this layer consists of a series of precise
mathematical and artificial intelligence models, mainly
including: Prediction Model Portfolio: Integrate the wind
and solar power prediction model based on long short-
term memory network (LSTM), the hydropower reservoir
inflow prediction model based on seasonal autoregressive
integrated moving average model (SARIMA), and a time
series model using attention mechanism (such as
Transformer) for high-precision electricity price
prediction [18].

Physical ~ Resource  Model: It  accurately
mathematically represents various types of energy units
within the VPP. In particular, for the core regulation
resource, the hydropower station, it conducts detailed
modeling including reservoir capacity, head-output
relationship, flow rate limits, and operating boundary
conditions.This physical model is internally validated
against a simplified traditional hydropower dispatch
model to ensure accurate representation of hydropower
dynamics.

Market Rule Model: It establishes a digital description
of the trading rules, bidding structures, and clearing
mechanisms in power markets at all levels (such as day-
ahead, intra-day, and ancillary service markets), thus
ensuring the compliance and effectiveness of all decisions.

The models do not operate independently but are
uniformly managed through a model management and
scheduling engine. This engine is responsible for
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triggering the corresponding prediction models at regular
intervals according to the task type (such as hourly
prediction, minute-by-minute prediction), and publishing
the results to a message queue (such as Kafka) for the
decision-making layer to subscribe and use. This loosely
coupled architecture ensures the scalability of the system,
and future model modules can be easily added, deleted, or
replaced.

The interaction mechanism between the decision-
making layer and the interaction layer: The DRL engine
of the decision-making layer is deployed in the form of a
service. After the intelligent assistant in the interaction
layer receives the user’s natural language query, its built-
in intent recognition module will parse it into a structured
API call request and send it to the decision-making layer.
After the decision-making layer executes the
corresponding calculations or simulations, it returns the
results in JSON format, which are then encapsulated by
the natural language generation module in the interaction
layer into human-readable text or charts and presented to
the user. This asynchronous call mechanism ensures the
smoothness of the front-end interaction.

4 Key technologies and model

construction

This chapter will introduce in detail the mathematical
models and algorithms of the core modules of the system.
The core of a successful decision-making system lies in
choosing the right tools for the right problems. Therefore,
when constructing the prediction and decision-making
models, we strictly followed the principle of "problem-
driven, model adaptation”, and carefully selected and
optimized the corresponding algorithms according to the
characteristics of different subtasks.

4.1 Hydropower inflow and output prediction
model

In the selection of the prediction model combination,
we followed the principle of "adapting to local
conditions". For wind and solar power prediction, its
physical process is highly correlated with the continuous
changes in short-term meteorological conditions (such as
wind speed, light intensity) and has obvious time series
dependence. The long short-term memory network
(LSTM) can effectively capture and remember this short-
term to medium-term time series dependence through its
unique gating mechanism, so it becomes the first choice
for this task. For hydropower reservoir inflow, it not only
has daily, weekly, and annual periodicities but also shows
strong seasonal trends. The seasonal autoregressive
integrated moving average model (SARIMA) is a classic
statistical model designed to handle such time series with
both trends and seasons and can provide a robust baseline
for runoff prediction. Since hydropower is a core
regulation resource, accurate prediction of its available
water volume is crucial. We adopt a hybrid model that
combines physical mechanisms and data-driven methods.

Reservoir Inflow Prediction Based on Time Series:
0., ,+1=SARIMA(P,D,0) (p.d,q)+/(Rainfall, Temp, )+, (2)
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Among them, Ot is the predicted inflow for the
next moment. The SARIMA model captures the seasonal
and cyclical trends of the flow itself. f'is a non-linear
function (such as a neural network) used to model the
impact of external meteorological factors such as rainfall
and temperature on runoff. ¢, is the error term. Consider
the dynamic power output constraint of hydropower
considering the head change:

P hydro, min(Vt)SP hydro,tSP hydro, max(Vt) (3)

Among them, the maximum/minimum power output
Phydro, min OF hydropower is a function of the current
reservoir water storage V¥, because the reservoir water
level directly affects the head height H . This reflects the
dynamic constraint of hydropower output.

4.2 Real-time

prediction model
The electricity spot market price has high volatility
and complex non-linear characteristics. We adopt a
Transformer model based on the attention mechanism.
Attention mechanism weight calculation:

market electricity price

. QK'
Attention(Q,K,V)=softmax | — | V )

/&

This formula is the core of the Transformer model.
Through the self-attention mechanism, the model can
capture the complex dependencies between different time
points in the electricity price time series, such as
identifying similar "morning peak" and "evening peak"
patterns in a day, thus improving the prediction accuracy.

4.3 Real-time trading decision-making model

based on deep reinforcement learning

We model the real-time trading decision-making
problem of the VPP as a Markov decision process (MDP),
and its core elements are defined as follows:

State space (State, S): A vector containing all relevant
information of the VPP at time ¢.

State space vector:

St: [Pg;iii],ppsji,pgin,tsVhydro,taSOCess,t’j'f:ZSket,tngrid,t>Tt] (5)
It includes: predicted wind and solar power output,
hydropower inflow, reservoir water storage, energy
storage SOC, predicted market electricity price, grid
demand, and time stamp, etc. Action space (Action, A):
The operations that the VPP can execute at each decision-
making moment, and these operations strictly comply with
physical and market rule constraints. Action space vector:

Az:[ pﬁiy% o pehvdis Pbuy/sell] 6)

ess,t o' grid,t
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It includes: the quoted/scheduled power of
hydropower, the charge/discharge power of energy
storage, and the power of purchasing/selling electricity to
the market.

Reward function (Reward, R): The immediate reward
feedback by the environment (electricity market) after the
agent executes an action, and the optimization goal is to
maximize the cumulative reward. Reward function design:

R~=Revenue,, . ,~Cost,, ~Penalty . (7)

Revenue e, IS the market trading revenue. Cost,,,
is the operating cost (such as energy storage loss, unit
start-stop cost). Penalty 4., is the deviation assessment
fine caused by prediction error.The weights for each
component of the reward function (e.g., penalties for
deviation or costs of energy storage degradation) are
determined through a combination of historical market
data analysis, expert domain knowledge, and iterative
hyperparameter tuning during the training phase. This
ensures a balanced optimization towards both economic
gains and system reliability.

Policy (Policy, = ): The core of the agent, which is a
mapping function from state to action, z(41S) , usually
represented by a deep neural network. Bellman optimal
equation (Q-learning idea):

0" (s@)=E |Rutymax0"(s\a)IS=s.d=a]  (8)

This is the theoretical basis of reinforcement learning,
indicating that the optimal value of executing action a in
state s is equal to the expectation of the immediate reward
and the discounted sum of the future optimal value. Our
DRL algorithm (such as SAC) is to learn this optimal O
function.

4.3.1 Algorithm selection and model structure

In this study, we selected the Soft Actor-Critic (SAC)
algorithm as the core of the DRL decision engine.
Compared with deterministic policy algorithms such as
DDPG, SAC is a stochastic policy algorithm based on the
maximum entropy framework. Its core advantage is that
by introducing an entropy term into the objective function,
it encourages the agent to explore more fully, effectively
avoiding premature convergence of the policy to a local
optimum, which is particularly important for dealing with
the highly volatile electricity market environment. At the
same time, the stability and sample efficiency of SAC are
also better than other commonly used algorithms such as
PPO.

Both the policy network (Actor) and the value
network (Critic) of the agent adopt a three-layer fully
connected neural network. The input layer receives the
state vector S, both hidden layers contain 256 neurons,
and ReLU is used as the activation function. The output
layer outputs the action or state value according to the
definition of the action space. To ensure the stability and
efficiency of the training process, we carefully tuned the
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key hyperparameters, and the specific settings are shown
in Table 3.
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Table3: Key hyperparameter settings of the DRL model

Hyperparameter Value Rationale
Learning Rate 3e-4 Balance the convergence speed and stability
Discount Factor, y 0.99 Encourage the agent to focus on long-term cumulative
rewards
Experience Replay Buffer Size 1,000,000 Store diverse enough experiences for learning
Batch Size 256 Balance computational efficiency and gradient
estimation accuracy
Entropy Regularization Auto- The core mechanism of SAC, dynamically balance
Coefficient (a) tuning exploration and exploitation
Target Network Update 0.005 Adopt soft update to ensure stable training
Coefficient (7)

4.3.2 Model training

We conducted offline training on the agent for up to
2-million-time steps using historical data from the past
year. To ensure the generalization ability of the model, the
selected training dataset comprehensively covered
different seasons and market conditions such as wet/dry
seasons, typical days in winter/summer, and holidays,
including rich price fluctuations and load patterns. The
training was completed on a server equipped with
NVIDIA Tesla V100 GPUs, taking approximately 72
hours in total. The cumulative reward curve during the
training process showed that the model tended to converge
after about 1.5 million steps, demonstrating the
effectiveness of the learning process and indicating robust
policy acquisition. Overfitting was prevented through
early stopping based on validation performance and the
use of regularization techniques within the neural
networks. The training involved approximately 1000

episodes, and a fixed random seed was used for all
experiments to ensure reproducibility.

4.3.3 Key physical and operational constraints
Hydropower scheduling ramp constraint:
|Phydro,t'Phydro,t—l |§APrI2?r)1(p (9)
That is, the change rate of hydropower output cannot
exceed its maximum up/down ramp rate APy, . Thisis a
key physical constraint that VPP must abide by when
formulating hydropower scheduling plans.
VPP overall power balance constraint:

S Pag PO+ Pyia ~EL P Py (10)
At any given moment, the total power generation
within VPP plus the purchased power must be equal to the
total internal load L, plus the sold power. This is the basic

criterion for system operation.

Table 4: Comparison between DRL model and traditional optimization methods

Feature

Deep Reinforcement Learning (DRL)

Mixed-Integer Linear
Programming (MILP)

Online Decision-
making Speed

Extremely fast (millisecond level)

Relatively slow (minute level)

Model Dependence

Data-driven, with low dependence on
precise models

Model-driven, requiring precise
mathematical modeling

Uncertainty
Handling

Strong endogenous ability, learning
through interaction with the environment

Dependent on prediction
accuracy, sensitive to errors

Self-adaptability
changes

Strong, can learn online to adapt to market

Weak, requires re-modeling

Feature

Deep Reinforcement Learning (DRL)

Mixed-Integer Linear
Programming (MILP)

4.3.4 Handling uncertainty and robustness

The IA-DRL strategy inherently manages uncertainties,
non-linearities, and forecasting errors through several
mechanisms:

Learning from Interaction: DRL agents learn optimal
policies by continuously interacting with the simulated
environment, which includes stochastic elements like
uncertain renewable generation and fluctuating market
prices. This allows the agent to develop strategies that are

robust to a wide range of unforeseen events, rather than
relying solely on point forecasts.

Reward Function Design: The reward function explicitly
penalizes deviations from the day-ahead plan,
encouraging the agent to minimize forecast errors and
maintain system balance. The balance between trading
revenue, operating cost, and deviation penalties guides the
agent to find solutions that are economically optimal while
being robust to real-time changes.
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Stochastic Policy (SAC): As a maximum entropy DRL
algorithm, SAC encourages exploration and maintains a
stochastic policy. This prevents the agent from
committing to a single, brittle action in uncertain
situations, allowing for more flexible and robust responses
to real-time fluctuations.

Comparison with Adaptive/Neural Control: Similar to
adaptive control Error! Reference source not found.[21]
and neural control methods[22] for non-linear and
uncertain dynamic systems, DRL adapts its policy over
time. However, DRL’s key distinction lies in its goal-
oriented learning (maximizing cumulative reward) rather
than explicit system identification or error minimization in
a control loop. While adaptive controllers typically adjust
parameters based on real-time feedback to maintain
desired system performance, DRL learns a mapping from
states to actions directly, often without an explicit model
of the system dynamics, making it highly suitable for
complex, non-linear, and stochastic environments like
electricity markets. Furthermore, recent work on nonlinear
optimal control [23] and high-gain observer-based
adaptive fuzzy control [23] highlights the importance of
robust controllers in dynamic systems, principles that
DRL implicitly addresses through its learning process by
finding policies that perform well under varying
conditions.

5 System implementation and

application case analysis

5.1 System implementation and technology

stack

To verify the engineering feasibility and practical
effects of the decision-making framework proposed in this
paper, we built a complete system prototype based on the
microservices architecture. This architecture decouples
complex system functions into a series of independent and
deployable services, ensuring the high cohesion and low
coupling characteristics of the system, and greatly
improving the scalability and maintainability of the
system. The implementation of the entire system is
divided into three levels: backend services, front-end
interaction interfaces, and deployment and operation and
maintenance.

5.1.1 Backend service implementation

The backend is the core of the entire decision-making
system, responsible for data processing, model operation,
and decision-making logic.

Development Language and Framework: Python 3.9
is used as the main development language. The core API
service is built based on the FastAPI framework, and its
asynchronous feature (ASGI) can efficiently handle
concurrent requests from the front-end and between
services, providing performance guarantee for real-time
decision-making.

Artificial Intelligence and Data Science Libraries:

Deep Learning and Reinforcement Learning: All
prediction models (LSTM, Transformer) and deep
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reinforcement learning models (SAC) are built, trained,
and inferred using the PyTorch framework.

Data Processing and Analysis: The Pandas and
NumPy libraries are used for efficient data cleaning,
transformation, and matrix operations. Scikit-learn is used
to implement benchmark models and data preprocessing
processes.

Data Persistence and Message Flow:

Time-Series Database: InfluxDB is used to store high-
frequency time-series data collected from various
distributed energy resources (DERs) and power markets,
such as power, electricity price, energy storage SOC, etc.
Its high read and write performance and data compression
ability are very suitable for the VPP scenario.

Message Queue: Apache Kafka is introduced as the
internal data bus of the system. The data acquisition
service publishes real-time data as messages to the
specified topic, and the services in the model layer and
decision layer subscribe to these data streams as
consumers, realizing asynchronous decoupling and real-
time data sharing between modules. Core Service
Modules:

Data Access Service: Responsible for polling external
meteorological and market data through RESTful APIs,
and receiving telemetry data from each terminal inside the
VPP through the MQTT protocol. After preliminary
cleaning, the data is uniformly pushed to the Kafka cluster.

Prediction Service: Subscribes to the raw data in
Kafka, triggers the corresponding prediction models
regularly (such as updating the electricity price prediction
for the next 4 hours every 15 minutes), and publishes the
prediction results back to Kafka in the form of new
messages. DRL Decision Service: This service
encapsulates the trained SAC model. It receives decision
requests (including the current system state) triggered by
the front-end or scheduling tasks through the API
interface, performs millisecond-level model inference,
generates the optimal actions (quotation and scheduling
strategies), and returns the results in JSON format.

5.1.2 Front-end interaction interface implementation

The front-end is the window for interaction between
the intelligent assistant and operators, and the design focus
is on data visualization and operation intuitiveness.

Development Framework and Technologies: Vue.js 3
is adopted as the front-end development framework, and
reusable Ul modules are built through its component-
based development mode.

Data Visualization: The Apache ECharts chart library
is integrated to dynamically and interactively display the
operating status of the VPP, such as the real-
time/predicted output curves of various power sources, the
change trajectory of energy storage SOC, market
electricity prices, and the comparison of cumulative
revenues.

Intelligent Assistant Interaction:

Speech Recognition: The built-in Web Speech API of
the browser is used to implement voice input, converting
the user’s voice commands into text. Natural Language
Understanding (NLU): A lightweight NLU module is
deployed on the backend, which is responsible for parsing
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the intent and entities of the instruction text (for example,
parsing "Query the dispatching plan of hydropower in the
next two hours" into a specific API call to the decision-
making service), and returning the structured results to the
front-end, or encapsulating them into readable text or
charts by the natural language generation module for
response.The NLU module was trained on a custom
dataset of VPP-specific queries and commands
(approximately 5,000 annotated utterances) and leverages
a fine-tuned pre-trained BERT model for robust intent
recognition and entity extraction, augmented by rule-
based patterns for high-precision domain-specific terms.

5.1.3 Deployment and simulation environment

Containerized Deployment: To simplify the
deployment process and ensure environmental
consistency, all backend microservices (including
databases and message queues) are containerized using
Docker.
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Service Orchestration: In the simulation test
environment, Docker Compose is used to orchestrate and
manage multi-container applications, enabling one-click
startup, deployment, and joint debugging. Simulation
Interaction: The system interacts with a self-developed
power market simulator through APIs. This simulator can
simulate the clearing process of the day-ahead/intra-day
market, calculate trading revenues and deviation
settlement fees based on the system’s bids and actual
outputs, and feed back this information as the
environmental feedback (Reward) to the DRL decision-
making service, thus forming a complete "perception -
decision - execution - feedback" closed loop.

5.2 Case settings

We constructed a VPP located in a certain province in
the southwestern part of China as a case for simulation
analysis.

Table 5: Resource composition of the simulated VPP

Resource type calpnastf?tlylEd Quantity Key features
Medium-sized . With weekly regulation
hydropower station 100 MW L unit reservoir, fast response speed
Small hydropower 15 MW 3 units Run-of-river type, limited
station regulation capacity
DIS;I;)I\E)VL::fd wind 80 MW Multiple wind farms High intermittency
Distributed 60 MW Multiple rooftop/ground- High volatility, intraday
photovoltaic mounted power stations periodicity
Battery energy 20 MW / 40 1 enerayv storage station Fast charge and discharge, for
storage MWh 9y 9 power smoothing and arbitrage

The simulation period was one continuous month, and
the market environment data used the real historical data
of a certain region.

Specifically, the dataset comprised hourly electricity
market prices, regional load data, meteorological forecasts
(wind speed, solar irradiance, rainfall, temperature), and
historical hydropower inflow records for the year 2023.
The data volume amounted to approximately 8,760 hourly
records for each parameter. This dataset was sourced from
a major provincial power grid operator and a regional
meteorological bureau. To augment data for robust
training, certain periods with high volatility or specific
weather events were synthetically enhanced by applying
realistic noise distributions and scaling factors. The high
temporal resolution (hourly for forecasts, 15-minute for
market interactions) and authenticity of the historical data
ensure that the simulation environment accurately reflects
real-world complexities and challenges for VPP
operations. The hydropower physical model used in the
simulation environment, which accounts for reservoir
dynamics, head-output relationships, and ramp rate
constraints, was benchmarked against a simplified
dispatch model (based on linear programming) for a single
hydropower plant, demonstrating a deviation of less than
2% in daily generation totals under fixed operational
schedules. This validation ensures the accuracy of the
hydropower component within the VPP simulation.

5.3 Simulation results and analysis

We compared the VPP operation effects under three
strategies:

Baseline strategy: A simple rule-driven strategy, such
as charging at low valleys and discharging at peaks.

MILP strategy: To ensure the effectiveness of the
comparison, we constructed a deterministic mixed-integer
linear programming (Rolling-Horizon Deterministic
MILP) model based on rolling optimization as the
benchmark. At each decision moment (15 minutes), this
model solves the optimal scheduling plan for the next 24
hours based on the latest power and electricity price
forecasts, and executes the decision for the first time
period. This method is a relatively mature and common
method in the industry, but its core challenge lies is that
the decision quality highly depends on the prediction
accuracy, and it is difficult to perfectly capture all non-
linear and random factors in the model.

IA-DRL strategy: The intelligent assistant-driven
DRL decision-making system proposed in this paper.

5.3.1 Economic benefit analysis

Figure 3 intuitively shows the change of the
cumulative revenue of VPP under three different strategies
in a typical 24-hour period.
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Figure 3: Comparison curve of the intra-day cumulative
revenue of VPP under three strategies

Its superiority is intuitively reflected in Figure 3. The
revenue curve of the IA-DRL strategy (thick orange-red
line) has a much steeper growth slope than the other two
strategies during the electricity price peak periods in the
afternoon and evening (highlighted area in the figure). As
shown in the annotation in the figure, this benefits from
the forward-looking decision-making ability obtained by
the IA-DRL strategy through reinforcement learning,
enabling it to make advance arrangements and actively
capture higher revenues through optimal coordinated
scheduling during the electricity price peak periods.

To further explore the internal mechanism of the 1A-
DRL strategy to achieve high revenues, Figure 4 details
how the main adjustable resources-hydropower and
energy storage-are coordinated with the real-time
electricity price under this strategy.

W Hydropower Generation (W) W Storage Charging (M)
W Storage Discharge (W) =+~ ReabTime Prios (8/MWh]

Low Price Period
High Prce Pevicd

Coardinated Dispaich
during high prices

Power (MW)

0 2 4 6 8 10 12
Time of Day (h)

Figure 4:Scheduling diagram of the coordinated
response of hydropower and energy storage to the real-
time electricity price under the IA-DRL strategy

Figure 4 clearly depicts the intelligent behavior of this
strategy through positive (generation/discharge) and
negative (charging) power bar charts. During the early
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morning electricity price low valley period (light yellow
area in the figure), the energy storage system performs the
charging operation (purple downward bar chart) to store
energy at low cost. While during the evening electricity
price peak period (light red area in the figure), the
hydropower output (blue bar chart) is significantly
increased, and at the same time the energy storage system
also discharges (green bar chart), and the two work
together to maximize the electricity sales revenue. This
intuitively shows the intelligent coordinated combat effect
between hydropower as the main regulating power source
and energy storage as the flexible auxiliary service
provider.

5.3.2 Renewable energy consumption and system
performance analysis

In order to further verify the technical value of the 1A-
DRL strategy in improving the consumption of renewable
energy [19], we compared the comprehensive curtailment
rates of three strategies within a one-month simulation
period, and the results are shown in Figure 5.

175
15.0
125
10.0

86.7% Reduction

75

Renewable Curtailment Rate (%)

]
i

MILP IA-DRL

Strategy

Figure 5: Comparison of renewable energy curtailment
rates under different strategies

Figure 5 intuitively reveals the huge differences
among different strategies. The curtailment rate of the
benchmark strategy is as high as 15%, while the traditional
MILP optimization strategy can only reduce it to 8%. In
contrast, the 1A-DRL strategy proposed in this paper
performs excellently, significantly reducing the
curtailment rate to 2%. More importantly, as emphasized
by the highlighted annotations in the figure, the IA-DRL
strategy achieves a curtailment rate reduction of up to
86.7% compared to the benchmark strategy. This fully
demonstrates that through the refined and forward-looking
coordinated scheduling of hydropower and energy
storage, this system can maximize the consumption of
unstable wind and solar resources, providing an effective
solution for the stable operation of the power grid under
high proportions of renewable energy access.

The excellent performance within the day ultimately
accumulates into a significant advantage over the entire
simulation period. Table 6 quantitatively compares the
overall performance of the three strategies over a month in
terms of multiple key performance indicators (KPIs).
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Table 6: Comparison of the total economic benefits and performance indicators under different strategies for one

month
IA-DRL
Indicator Benchmark MILP IA-DRL improvement relative to
strategy strategy strategy MILP
Total trading revenue (in 4253 5108 574.7 +12.5%
ten thousand yuan) ' ' ' '
Deviation assessment fee 358 18.2 95 -47.8%
(in ten thousand yuan) ' ' ' '
Net profit (in ten thousand 3895 492 6 565.2 +14.7%
yuan) . . . .
Utilization rqte of 65% 82% 95% +15.9%
hydropower regulation (%) '
Average decision-making <01 150 05 -99 7%
time (s) : . .

As can be seen from Table 6, the IA-DRL strategy has
achieved the best performance in all key indicators. Its net
profit has increased by 14.7% compared to the advanced
MILP method. At the same time, it has reduced the
deviation assessment cost by nearly half and its decision-
making speed is nearly 300 times faster, which is of
crucial significance for the real-time power market that
requires rapid response.

5.3.3 Sensitivity analysis of hydropower capacity

To further evaluate the robustness and adaptability of
the IA-DRL strategy, we conducted a sensitivity analysis
by wvarying the installed capacity proportion of
hydropower within the VPP. The proportion of
hydropower installed capacity was adjusted from 40% to
70% of the total dispatchable capacity, while maintaining
the overall VPP capacity constant by proportionally
adjusting other renewable sources. For each scenario, the
IA-DRL system was re-trained and evaluated over the
same one-month simulation period, with its performance
compared against the MILP baseline, As shown in Figure
6.

20
—&— |A-DRL Performance Improvement
Stable Improvement Range (8%-15%)
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40 50 60 70
Hydropower Installed Capacity Proportion (%)

Figure 6:Sensitivity of IA-DRL’ s Net Profit
Improvement Rate to Hydropower Installed Capacity

The results of this sensitivity analysis showed that
when the proportion of hydropower installed capacity in
the VPP varied within the range of 40% to 70%, the net
profit improvement rate of the IA-DRL strategy compared
to the MILP strategy remained stable, consistently falling

within the range of 8% to 15%. This consistent
performance across different hydropower resource
compositions indicates that the proposed IA-DRL system
possesses good adaptability and robustness, capable of
effectively optimizing VPP operations even as the internal
resource mix changes. This finding reinforces the
system’s practical applicability in diverse VPP
configurations.

6 Discussion

The simulation results provide compelling evidence
for the efficacy of the proposed IA-DRL system,
addressing RQs 1 and 2 regarding economic benefits and
operational efficiency.

6.1 Performance superiority and underlying
mechanisms

Significant  Improvement in Economic Benefits
(RQ1): The IA-DRL strategy consistently achieved higher
total revenue and net profit compared to both the
benchmark and MILP strategies (Table 6). This
superiority stems from its advanced decision-making
capabilities, which transcend the limitations of traditional
optimization methods as summarized in Table 1 and Table
4. Unlike MILP, which relies on discrete optimization
based on predefined models and forecasts, DRL learns
continuous, anticipatory strategies directly from
interaction with the dynamic market environment. This
enables the IA-DRL agent to perform more effective
arbitrage by “buying low and selling high” and to
dynamically coordinate multiple resources (especially
hydropower and energy storage) in real-time, capturing
transient market opportunities that traditional methods
might miss.

Enhanced System Reliability and Efficiency (RQ2): The
IA-DRL strategy demonstrated the lowest deviation
assessment cost and significantly reduced renewable
energy curtailment (Figure 5, Table 6). This indicates a
more robust “prediction-decision” closed-loop that better
tracks the planned schedule and minimizes power
deviations, which is crucial for VPP reliability and market
standing. The high utilization rate of hydropower
regulation (95%) under IA-DRL further validates its
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ability to fully exploit hydropower’s fast response and
energy storage advantages, making it an effective “core
regulation resource” for balancing intermittent
renewables. This refined, forward-looking coordinated
scheduling allows the system to maximize renewable
energy consumption, providing a vital solution for stable
grid operation amidst high renewable penetration.
Extremely High Decision-Making Efficiency (RQ2): The
IA-DRL strategy’s decision-making speed (0.5s) is nearly
300 times faster than the MILP method (150s) (Table 6).
This is a critical advantage for real-time electricity
markets, which demand rapid responses. Once trained, the
DRL model performs inference in milliseconds, making it
highly suitable for the millisecond-level response
requirements of intraday and ancillary service markets,
overcoming the computational bottlenecks faced by MILP
in high-dimensional, dynamic environments.

The fundamental reason the IA-DRL strategy
improves both economic and technical indicators is that it
moves beyond the traditional optimization method’s
"prediction-based, passive response” mode and evolved
into a new paradigm of "active learning, anticipatory
management". For example, when the system predicts that
there will be strong wind weather in the next few hours,
the MILP strategy may maintain a low output of
hydropower in the current period to save water volume.
While the IA-DRL strategy, through learning historical
experience, may choose to actively release part of the
hydropower in advance before the arrival of wind power,
creating additional regulation storage capacity for the
reservoir, so as to consume all the wind power at a lower
cost (or even zero cost) during the strong wind period, and
at the same time reserve the precious water resources for
use in periods with higher electricity prices. This
counterintuitive and forward-looking spatio-temporal
coupling optimization ability is beyond the reach of
traditional methods.

6.2 Interpretability and human-machine

collaboration (RQ3)

In particular, it is worth emphasizing that the role of
the Intelligent Assistant (IA) in this system goes beyond a
mere interface for interaction, playing a crucial role in
enhancing the robustness of decision-making and the
acceptance of operators. During the simulation process,
we simulated several emergencies such as sudden changes
in market electricity prices or large deviations in wind and
solar power forecasts. In these situations, the DRL model
may generate some counterintuitive but ultimately proven
optimal dispatching instructions (for example, releasing
hydropower in advance when the electricity price has not
reached its peak to reserve storage capacity for subsequent
more drastic fluctuations). Through the natural language
explanation function of the 1A, operators can quickly
understand the underlying logic behind the strategy,
thereby enhancing their trust in automated suggestions and
avoiding inappropriate manual interventions due to
doubts. For instance, if an operator queries: "Why choose
to discharge hydropower at hour 17 when prices are not
yet at their peak?"

Informatica 49 (2025) 289-306 301

The IA might respond: "The system forecasts a
significant increase in wind power generation at hour 18,
which could lead to severe curtailment. By discharging
hydropower now, we create additional reservoir capacity
to store the forecasted surplus wind energy, maximizing
renewable energy integration and avoiding costly
curtailment penalties, while reserving water for potentially
higher prices later in the evening."This detailed, context-
aware explanation transforms the DRL’s “black box” into
a “gray box” (Table 1), making complex Al decisions
transparent and understandable. This  "decision-
explanation” closed-loop is a preliminary but significant
exploration of the application of Explainable Atrtificial
Intelligence (XAI) in the field of critical infrastructure in
this system. It proves that "translating” the internal logic
of complex models into human-understandable language
is the key to unlocking the potential of human-machine
collaboration. Therefore, the deep integration of the 1A
and the DRL engine truly realizes the leap from "black-
box" intelligence to "explainable and trustworthy"
intelligence, enabling operators to conveniently monitor
and understand the complex DRL decision-making
process and intervene when necessary, achieving an
effective combination of “intelligent assistance” and
"human supervision™ [24].

6.3 Practical deployment considerations and
scalability (RQ4)

For real-world deployment, scalability is a key
consideration. The microservices architecture adopted in
this system facilitates horizontal scaling, allowing
individual services (e.g., prediction, DRL decision, data
access) to be scaled independently based on load. Market
integration would involve robust APl connections to
actual electricity market platforms for bidding, settlement,
and real-time data exchange, ensuring compliance with
market rules and protocols. Interaction with grid operators
would be facilitated by the 1A, providing clear,
interpretable dispatch suggestions and operational status
updates, thereby enhancing situational awareness and
coordination.

Comparing the IA-DRL system with classical control
approaches, traditional methods often rely on explicit
mathematical models of the system and optimization
objectives. While precise in well-defined scenarios, they
can struggle with the non-linearity, high dimensionality,
and stochastic nature of modern power systems and
electricity markets. DRL, on the other hand, learns optimal
control policies directly from data and interaction,
offering superior adaptability to evolving market
conditions and uncertainties. The integration of the A acts
as a critical interface, translating the complex, adaptive
decisions of DRL into actionable insights for human
operators, a feature largely absent in conventional control
systems.

6.4 Limitations and potential negative results
While the IA-DRL system demonstrates impressive
performance, it is important to acknowledge certain
limitations and potential negative results. The primary
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limitation of DRL models, including SAC, is their reliance
on extensive training data and potentially long training
times. Although our system showed good convergence,
the initial training phase is computationally intensive.
Furthermore, as discussed, while the reward function
penalizes violations of soft constraints (e.g., power
balance deviations), providing absolute guarantees for
hard physical constraints (e.g., generator limits, grid
stability) can be challenging for pure DRL. In scenarios
with extreme, unprecedented market events or severe data
quality issues, the DRL agent’s performance might
degrade until it has learned from such novel experiences.
During early deployment, a “cold start” period would be
necessary to accumulate sufficient real-world interaction
data for continuous policy refinement.

7 Conclusions and outlook

7.1 Summary of this paper

This paper addresses the challenges of real - time
trading decision-making faced by virtual power plants in
a complex electricity market environment, and
innovatively proposes and designs a VPP real-time trading
decision-making support system with an intelligent
assistant as the interaction core and deep reinforcement
learning as the decision - making engine. The system pays
special attention to and makes full use of the key
regulating role of hydropower resources in the VPP. By
constructing a four-layer architecture including data,
model, decision-making, and interaction, the system
realizes a comprehensive perception, accurate prediction,
and intelligent decision - making support for market
information and internal resource status.

7.2 Main conclusions

Acrchitectural effectiveness: The proposed intelligent-
assistant-driven system architecture can effectively
integrate  multi-source data and various AI models,
forming a complete closed-loop from data to decision-
making suggestions, providing a feasible technical
paradigm for the efficient operation of VPPs under human
- machine collaboration.

Superiority of the algorithm: Compared with
traditional optimization methods, the DRL-based
decision-making model shows significant advantages in
solving speed, adaptability, and final economic benefits
when dealing with high-dimensional and uncertain
dynamic optimization problems such as real-time trading
in VPPs.

Core value of hydropower: Case studies show that
taking hydropower as the core regulation resource of VPP
and using intelligent systems for its refined scheduling can
greatly improve the profitability of VPP and its supporting
ability for the power grid.

Paradigm innovation of human-machine
collaboration: This study confirms that the introduction of
intelligent assistants not only optimizes the interaction
experience. It successfully transforms the "black box" of
DRL into a "gray box" that operator can understand and
trust through real-time interpretation of complex Al
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decisions, thus constructing a new paradigm of efficient
and trustworthy human-machine collaborative decision-
making. This provides important theoretical basis and
practical solutions for the safe and reliable application of
advanced Al technologies in critical infrastructure fields.

7.3 Research limitations and future prospects

Although this study has achieved a series of positive
results, there are still some limitations, which also point
out the direction for future research:

Generalization and continuous adaptation ability of
the model: This study preliminarily verified the robustness
of the model through sensitivity analysis, but the dynamics
of the real market (such as the emergence of new trading
varieties and changes in policies and regulations) pose
higher requirements for the long-term generalization
ability of the model. The future research direction is to
introduce Continual Learning or Meta-Learning
frameworks so that the agent can quickly adapt to the new
market environment without forgetting old knowledge.
Furthermore, assessing the system's robustness under
various data noise levels and forecast errors will be critical
for practical deployment.

Deep integration of strong physical security
constraints: The DRL model in this paper mainly guides it
to meet soft constraints such as power balance through
penalty terms in the reward function. Although effective,
for hard constraints such as voltage and power flow in the
power grid, this method cannot guarantee 100% non-
violation. Future research needs to explore Constrained
Reinforcement Learning algorithms, or couple a "safety
correction layer" based on fast optimization behind the
DRL model (e.g., using Model Predictive Control-based
safety layers) to strictly meet all power grid safety criteria
while ensuring decision-making economy, which is the
only way for this technology to move towards engineering
applications.

Interpretability of the decision-making process and
trust building: Although the intelligent assistant
introduced in this paper improves the transparency of the
system through natural language interaction, the "black
box" nature of the deep reinforcement learning core
remains the core challenge for enhancing operators’ trust.
Future research needs to deeply integrate Explainable Al
(XAI) technologies so that the intelligent assistant can not
only provide decision-making suggestions (“what to do"),
but also clearly explain the causal logic behind it ("why to
do so"), thus establishing a higher level of trust
relationship in the human-machine collaborative loop.

Scalability and Generalization to Diverse Market
Designs:While the microservice architecture supports
scalability, further research is needed to rigorously test the
system’s performance and training efficiency for much
larger VPPs with hundreds or thousands of DERs.
Additionally, its generalization to other distinct market
designs (e.g., capacity markets, different ancillary service
structures) requires further investigation and adaptation of
the reward function and environment model.
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Abbreviation Description

Al Artificial Intelligence

CL Controllable Load

DDPG Deep Deterministic Policy Gradient
DERs Distributed Energy Resources

DG Distributed Generation

DRL Deep Reinforcement Learning

ESS Energy Storage System

1A Intelligent Assistant

KPI Key Performance Indicator

LSTM Long Short-Term Memory

MDP Markov Decision Process

MILP Mixed-Integer Linear Programming
MPC Model Predictive Control

MQTT Message Queuing Telemetry Transport
NLU Natural Language Understanding
NLP Natural Language Processing

PPO Proximal Policy Optimization

RelLU Rectified Linear Unit

SAC Soft Actor-Critic

SARIMA Seasonal Autoregressive Integrated Moving Average
SOC State of Charge

VPP Virtual Power Plant

XAl Explainable Artificial Intelligence
Variable Description

Pryaro Hydropower output power (W)

n Comprehensive efficiency coefficient
p Density of water (kg/m3)

g Acceleration due to gravity (m/s?)

Q Flow rate through the water turbine (m3/s)
H Effective head (m)

S; State space vector at time t

A; Action space vector at time t

Reward function at time ¢t
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Abbreviation
V(s)

Q(s,a)

(s)

a

Y
T

Pmin (Ht)
Pmax (Ht)
APramp_up
APramp_down
PVPP_gen,t
PVPP_load,t
PVPP_buy,t

PVPP_sell,t

Description

Value function for state s

Action-value function for state s and action a

Policy for state s

Learning rate (SAC)

Discount factor (SAC)

Target network update coefficient (SAC)

Hydropower minimum power output as a function of head
Hydropower maximum power output as a function of head
Maximum up ramp rate of hydropower

Maximum down ramp rate of hydropower

Total power generation within VPP at time ¢

Total internal load of VPP at time t

Power purchased by VPP from the market at time ¢t
Power sold by VPP to the market at time ¢
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