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With the profound transformation of the energy structure and the advancement of the “dual carbon” goal, 

the virtual power plant (VPP), centered on distributed energy resources, has emerged as a key technology 

for enhancing the flexibility and integration capacity of modern power grids. However, the diversity and 

volatility of VPP internal resources, coupled with the complexity of the electricity market, impose 

significant challenges on the response speed and economic efficiency of real-time trading decisions.To 

address these challenges, this paper proposes and develops a real-time trading decision support system 

for VPPs driven by an Intelligent Assistant (IA). The system leverages hydropower plants—with their fast 

response and energy storage capabilities—as the core regulating resources and coordinates multiple 

distributed energy sources, including photovoltaics, wind power, and energy storage systems. At its core, 

the IA integrates deep learning–based forecasting models, reinforcement learning–based decision 

modules, and a natural language processing (NLP)–based interaction component. The IA assists 

operators in real time by analyzing multidimensional data such as market prices, grid loads, 

meteorological information, and hydropower inflows, accurately predicting generation and price trends, 

and dynamically optimizing bidding and regulation strategies through reinforcement learning algorithms 

to maximize overall benefits.This paper details the overall architecture and key technological components 

of the proposed system and conducts a simulation case study using a regional VPP containing multiple 

hydropower plants. Specifically, the core decision-making module employs the Soft Actor-Critic (SAC) 

deep reinforcement learning algorithm. The system was trained for 2 million steps over 72 hours on a 

V100 GPU, utilizing one year of real historical operational and market data from a VPP in Southwest 

China. The simulation results demonstrate that the proposed IA-DRL strategy outperforms a traditional 

rolling-horizon Mixed-Integer Linear Programming (MILP) method, achieving a 14.7% increase in net 

profit, a 47.8% reduction in deviation assessment costs, and a remarkable 99.7% acceleration in decision-

making time. These results confirm the significant technical and economic advantages of the proposed 

framework, providing a new theoretical foundation and practical solution for intelligent VPP operation 

and business model innovation, while also offering enhanced interpretability through the intelligent 

assistant. 

Povzetek:  

 

 

1 Introduction 
With the global energy transformation towards 

cleaner and lower-carbon forms, the penetration rate of 

intermittent renewable energy sources represented by 

wind energy and solar energy in the power system has 

been rapidly increasing. While bringing environmental 

benefits, this transformation also poses unprecedented 

challenges to the real-time balance and safe and stable 

operation of the power system[1]. As an advanced energy 

management technology, the virtual power plant (VPP) 

aggregates distributed energy resources (DERs) such as 

geographically dispersed distributed generation (DG), 

controllable loads (CL), and energy storage systems (ESS) 

into a unified entity that can interact with the power grid 

through information and communication technologies and 

intelligent aggregation algorithms [2], effectively 

enhancing the power grid’s acceptance capacity for 

distributed energy and the overall operation efficiency of 

the system [3]. 

However, the economically efficient operation of 

VPP faces two core problems: First, the high 

heterogeneity and uncertainty of internal resources. The 

output of wind and solar power is highly random and 

volatile, and the load response is uncertain, which makes 

the overall controllability of VPP poor. Second, the 

complexity and high dynamics of the electricity market 

environment. The price of the electricity market 
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(especially the spot market) fluctuates frequently, and 

there are various trading varieties (such as electricity 

energy, ancillary services, etc.), requiring VPP to have 

millisecond-level response and precise decision-making 

capabilities. Traditional optimization methods based on 

mathematical programming often have huge 

computational amounts when dealing with high-

dimensional, non-linear, and strongly uncertain problems, 

and it is difficult to meet the real-time requirements [5]. 

To address the above challenges, artificial intelligence 

(AI) technologies, especially machine learning and deep 

learning, provide new solutions for the intelligent 

decision-making of VPP [6]. In recent years, researchers 

have begun to attempt to use AI models for load 

forecasting, electricity price forecasting, and optimal 

scheduling. However, existing research mainly focuses on 

the application of single models, lacking an intelligent and 

integrated system that can integrate perception, prediction, 

decision-making, and interaction [7]. In particular, the 

concept of an "intelligent assistant" that can deeply 

understand the intentions of operators, assist in 

performing complex analyses, and interact in a natural 

language manner has not been fully exploited. This study 

believes that the core value of the intelligent assistant lies 

not only in simplifying operations, but more importantly, 

in acting as a bridge between human experts and "black 

box" models by transforming complex AI decision-

making processes into interpretable and understandable 

suggestions, thereby building trust and achieving truly 

efficient and reliable human-machine collaborative 

decision-making. This model, which aims to empower 

operators rather than replace their ultimate decision-

making power, is the core of the safe application of 

advanced AI technologies in critical infrastructure fields 

[8]. 

1.1 Related work 

The management and optimization of Virtual Power 

Plants (VPPs) in dynamic electricity markets have been 

extensively researched. Early efforts often relied on 

traditional optimization techniques, primarily Mixed-

Integer Linear Programming (MILP) or Quadratic 

Programming, for day-ahead scheduling and intraday re-

dispatch [9][10]. While effective for well-defined 

problems, these methods struggle with real-time demands, 

high dimensionality, and inherent non-linearities, often 

leading to significant computational burdens and 

sensitivity to prediction errors [5]. With the advent of 

Artificial Intelligence (AI), Deep Reinforcement Learning 

(DRL) has emerged as a promising paradigm for 

sequential decision-making under uncertainty, showing 

potential for optimal bidding and scheduling in VPPs due 

to its ability to learn complex policies through interaction 

with dynamic environments [4][12][13]. However, many 

existing DRL applications in VPPs primarily focus on 

optimization objectives and often treat the DRL model as 

a "black box," lacking explicit mechanisms for human 

operators to understand and trust automated decisions [8]. 

Furthermore, the specific role of hydropower as a core 

regulating resource for its unique fast-response and energy 

storage capabilities has not been fully leveraged within 

integrated AI-driven trading systems. This study aims to 

address these identified gaps. 

 

 

 

 

Table 1: Comparative analysis of related work in VPP decision-making 

 

Feature/Study 
Optimization Methods 

(e.g., MILP, QP) [5, 10] 

DRL-based VPP 

Optimization (e.g., [4, 9, 

12, 14]) 

This Work (IA-DRL with 

Hydropower Core) 

Methodology Core 
Mathematical programming 

(linear/quadratic solvers) 

Model-free or model-based 

DRL algorithms (e.g., 

DDPG, PPO, SAC) 

SAC-based DRL for real-time 

optimization, integrated with DL 

forecasting. 

Uncertainty Handling 

Relies on accurate 

forecasts; sensitive to 

prediction errors; often uses 

stochastic programming. 

Learns robust policies 

through interaction; 

inherently handles dynamic 

uncertainties. 

Strong endogenous ability to 

manage uncertainty, non-

linearities, and forecasting errors 

through continuous environmental 

interaction and policy refinement. 

Real-time Performance 

Can be computationally 

intensive for large-

scale/complex problems; 

slower for real-time. 

Extremely fast inference 

post-training (millisecond-

level). 

Millisecond-level decision speed, 

critical for intraday/real-time 

markets. 

Human-Machine 

Interaction 

Command-line interfaces, 

basic dashboards; minimal 

decision support. 

Typically a “black-box” 

model; limited direct 

human interaction or 

interpretability. 

Intelligent Assistant (IA) with NLP 

for natural language interaction and 

explainable AI (XAI). 

Resource Focus 
General DERs; 

hydropower’s unique role 

General DERs; specific 

resource advantages (like 

Hydropower as core regulating 

resource; full exploitation of its fast 

response and storage. 
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Feature/Study 
Optimization Methods 

(e.g., MILP, QP) [5, 10] 

DRL-based VPP 

Optimization (e.g., [4, 9, 

12, 14]) 

This Work (IA-DRL with 

Hydropower Core) 

often simplified or not 

central. 

hydropower’s regulation) 

not always highlighted. 

Scalability & 

Adaptability 

Requires re-modeling for 

new market rules; limited 

online adaptation. 

Strong adaptability through 

online learning; can 

generalize to changing 

conditions. 

High adaptability to market 

changes; robust across different 

VPP resource ratios. 

Interpretability/Trust 

Transparent if model is 

simple, but complex models 

are hard to interpret. 

Low transparency (“black 

box”); difficult for 

operators to trust or 

understand decisions. 

Transforms DRL “black box” into 

“gray-box” through real-time 

explanations, building operator 

trust. 

Validation/Benchmarking 

Often uses deterministic or 

simplified stochastic 

scenarios. 

Benchmarked against other 

DRL algorithms or 

simplified rule-based 

methods. 

Benchmarked against a strong 

deterministic MILP baseline in a 

high-fidelity simulation. 

 

In addition, among many distributed resources, 

hydropower (especially small and medium-sized 

hydropower stations) is an ideal "stabilizer" and 

"regulator" in VPP due to its excellent regulation 

performance, fast start-stop ability, and certain energy 

storage characteristics (through reservoir regulation). 

Taking hydropower as the core regulation resource of VPP 

can effectively suppress the fluctuations of wind and solar 

power output and improve the overall reliability and 

market competitiveness of VPP. 

 

1.2 Research questions and contributions 
Based on the identified gaps, this study proposes to 

construct a real-time trading decision-making system for 

virtual power plants driven by an intelligent assistant, 

with a focus on its application in VPPs with hydropower 

as the core. This research aims to answer the following 

questions: 

RQ1: Can a DRL-based real-time trading system, driven 

by an intelligent assistant and leveraging hydropower as a 

core regulating resource, significantly outperform 

traditional optimization methods (e.g., MILP) in terms of 

economic benefits (e.g., net profit, deviation costs) for 

VPPs in a dynamic electricity market? 

RQ2: How does the proposed IA-DRL system enhance the 

operational efficiency and reliability of VPPs, particularly 

in terms of renewable energy curtailment and real-time 

decision-making speed, compared to established 

benchmarks? 

RQ3: Can an Intelligent Assistant, integrated with a DRL 

decision engine, effectively transform complex AI 

decisions into interpretable natural language explanations, 

thereby improving human-machine collaboration and 

operator trust in critical VPP operations? 

RQ4: What are the key architectural and algorithmic 

components required to realize such an integrated and 

intelligent VPP real-time trading decision support system, 

and how do they interact to achieve optimal performance? 

The main contributions of this paper are summarized as 

follows: 

 

Proposed a novel, integrated IA-DRL framework for VPP 

real-time trading, with a specialized focus on hydropower 

as a core regulating resource, which is a unique 

contribution in the context of intelligent VPP operation. 

Developed and validated a comprehensive system 

architecture that deeply integrates data perception, deep 

learning-based prediction, DRL-based decision-making, 

and NLP-based human-machine interaction. 

Demonstrated the significant economic and operational 

superiority of the IA-DRL strategy over a traditional 

MILP method through detailed case studies, showcasing 

enhanced net profit, reduced deviation costs, and vastly 

improved decision-making speed. 

Pioneered the integration of explainable AI (XAI) 

principles through the Intelligent Assistant's natural 

language explanation capabilities, fostering operator trust 

and facilitating effective human-machine collaborative 

decision-making in critical energy infrastructure. 

Provided a robust solution for renewable energy 

integration, proving the system's ability to significantly 

reduce renewable energy curtailment by efficiently 

coordinating diverse DERs. 

 

The structure of this paper is arranged as follows: 

Chapter 2 introduces the basic theories of virtual power 

plants and electricity market transactions; Chapter 3 

elaborates on the overall design and architecture of the 

intelligent assistant-driven decision-making system in 

detail; Chapter 4 deeply explores the key technologies and 

core algorithm models in the system; Chapter 5 conducts 

the simulation analysis of system implementation and 

application cases;Chapter 6 presents a comprehensive 

discussion of the results and their implications; and 

finally, a summary and outlook are presented in Chapter 

7. 
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2 Overview of virtual power plants and 

electricity market transactions 

2.1 Concept and composition of virtual power 

plants 
A virtual power plant is not a physical power plant but 

an energy aggregation management system. It aggregates 

different types of distributed energy resources (DERs) 

through advanced communication and control 

technologies and participates in the operation of the 

electricity market as a special market entity [10]. Its basic 

composition is shown in Figure 1, mainly including three 

types of resources: distributed generation (DG), energy 

storage system (ESS), and controllable load (CL). These 

resources are coordinated by the VPP control center and 

interact with the upstream electricity market and grid 

operators in terms of information and energy. 

 

                    

 
 

Figure  1:Schematic diagram of the basic composition of 

virtual power plants 

    

The aggregated resources of VPP usually include: 

Distributed generation (DG): Such as rooftop 

photovoltaic, decentralized wind power, small 

hydropower stations, gas turbines, etc. 

Energy storage system (ESS): Such as 

electrochemical energy storage (lithium batteries), 

pumped storage, flywheel energy storage, etc. 

Controllable load (CL): Such as intelligent air 

conditioners, industrial production lines, electric vehicle 

charging and discharging (V2G), etc. [11]. 

2.2 Core role of hydropower in virtual power 

plants 
Among the numerous resources of VPP, hydropower 

stations (especially small and medium-sized hydropower 

stations with regulating reservoirs) play a crucial role: 

Fast regulation ability: The start-stop and output 

adjustment speed of hydropower units is much faster than 

that of large thermal power units, which can effectively 

meet the rapid response requirements of the intraday 

market and ancillary service market. 

Natural energy storage characteristics: The reservoir 

itself is a large-scale and long-term energy storage facility, 

which can realize the transfer of electric energy in the time 

domain and perfectly hedge the intermittency of wind and 

solar power generation. 

Relatively high predictability: Compared with wind 

and solar, the medium- and long-term hydropower inflow 

runoff has certain regularity, and the short-term (hourly) 

output is basically controllable, providing a deterministic 

basis for the planning of VPP. 

Basic output equation of hydropower station: 

Phydro=η⋅g⋅Q⋅H （1） 

Among them, Phydro  is the output power of the 

hydropower station (W), η  is the comprehensive 

efficiency coefficient (including the efficiency of the 

water turbine and generator), g is the acceleration due to 

gravity (m/s²), Q is the flow rate through the water turbine 

( m3/s ), and H is the effective head ( m ). This formula is 

the basis for VPP to dispatch hydropower resources 

. 

2.3 Power market trading mechanism 
VPP mainly participates in the following types of 

power markets [12]: 

Day-ahead market: Declare the power 

generation/consumption curve and price for the next day 

one day in advance, which is the main market for 

electricity trading. 

Intraday/real-time market: Conducted within the 

operating day to correct the deviation between the day-

ahead plan and the actual operation, usually with a trading 

cycle of 15 minutes or 5 minutes. 

Auxiliary service market: VPP obtains revenue by 

providing services such as frequency regulation, reserve, 

and reactive power support, with extremely high 

requirements for response speed. 

 

Table 2: Comparison of requirements for VPP in different power markets 

Market type 
Regulation 

cycle 

Response time 

requirement 

Decision-

making complexity 

Advantages of hydropower 

resources 

Day-ahead 

market 
24 hours Hourly level Medium 

Reliable baseload/shoulder 

load provider 

Intraday market 
15 minutes/5 

minutes 
Minute level High 

Quickly adjust output and 

correct deviation 

Frequency 

regulation market 
4 seconds Second level Extremely high 

Quick response and provide 

high-quality frequency regulation 

service 

Reserve market 
10 - 30 

minutes 
Minute level Medium 

Reliable reserve capacity and 

quick start-stop 
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2.4 Challenges faced by VPP real-time 

trading 
VPP needs to solve a high-dimensional stochastic 

optimization problem in the real-time market: under the 

premise of meeting its own physical constraints and grid 

security constraints, how to coordinate internal resources, 

formulate optimal bidding and scheduling strategies to 

cope with the changing market prices and power 

generation/load forecasts. This requires the system to have 

strong sensing capabilities, forecasting capabilities, and 

decision-making assistance capabilities [13]. 

 

3 Overall design of the decision system 

driven by intelligent assistants 
To address the above challenges, we designed a VPP 

real-time trading decision system with an intelligent 

assistant at its core. 

 

3.1 Design concept 
Data-driven: All decision-making suggestions of the 

system are based on the real-time analysis of multi-source 

heterogeneous data [14]. 

Model core: An advanced AI model is used as the 

engine for generating prediction and optimization 

strategies. 

Human-machine collaboration: The intelligent 

assistant serves as a bridge between human operators and 

complex systems, enabling efficient human-machine 

collaboration, allowing operators to focus on strategic 

supervision and decision-making, rather than complex 

calculations. 

Continuous evolution: The system has self-learning 

capabilities and can continuously optimize its strategy 

model in the continuous interaction with the market. 

 

3.2 Overall system architecture and decision-

making process 
To address the complex challenges of virtual power 

plant (VPP) real-time trading, we designed a highly 

integrated decision system based on the concepts of data-

driven, model core, and human-machine collaboration. 

The overall architecture and core decision-making process 

of the system are shown in Figure 2. 

Figure 2 adopts a hierarchical and decoupled modular 

design, which is divided into a data layer (Data Layer), a 

model layer (Model Layer), a decision layer (Decision 

Layer), and an interaction layer (Interaction Layer) from 

top to bottom. This design ensures the independence of 

functions and the scalability of the system. 

The operation process of the system follows two 

tightly coupled information flows: 

 

 

 

 
 

Figure 2: System architecture and closed-loop process of 

the intelligent assistant-driven VPP 

 

Main data processing flow (black vertical downward 

arrow in the figure): The information flow starts from the 

data layer, which is responsible for aggregating multi-

source heterogeneous data from the power market, 

meteorological system, and each unit (DERs) within the 

VPP, and storing and transmitting it using technologies 

such as InfluxDB and Kafka. The data then flows into the 

model layer, where it undergoes in-depth analysis and 

processing through prediction models such as LSTM and 

Transformer and physical resource models, and is finally 

encapsulated as a state vector (State) describing the global 

information of the current system Error! Reference 

source not found.. 

Reinforcement Learning Decision Closed-Loop (the 

orange highlighted circular arrow in the figure): This is the 

core innovation of the system. After receiving the state, 

the deep reinforcement learning (DRL) engine in the 

decision-making layer generates the optimal action, that 

is, the bidding and scheduling strategies of the VPP. After 

this action acts on the external power market and the VPP 

environment, the environment will feedback an immediate 

reward (such as trading revenue) and the next state after 

the environment evolves. This feedback information of 

"state-action-reward" constitutes the closed-loop of 

reinforcement learning, enabling the agent to conduct 

autonomous learning and policy iterative optimization 

through continuous interaction with the environment [15]. 

At the same time, the interaction layer reflects the 

design concept of human-machine collaboration in the 

system. Operators can initiate "queries" or instructions to 

the Intelligent Assistant through natural language. The 

Intelligent Assistant can not only present the complex 

strategies in the decision-making layer to the operators in 

the form of visual charts and "decision suggestions", but 

also "explain" the logic behind them, thus realizing 

efficient and trustworthy intelligent assistance and 

empowering operators to strategically supervise the 

system. 
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In summary, this architecture integrates data 

collection, model prediction, intelligent decision-making, 

and human-machine interaction, forming a complete and 

dynamic closed-loop system from raw data to optimal 

strategies and then to learning feedback. Next, the key 

functions of each layer will be elaborated in detail. 

 

3.3 Detailed explanation of the functions of 

each layer 
In the hierarchical architecture, each layer forms an 

organic whole through close information flow 

transmission, jointly supporting the efficient operation of 

real-time trading decisions. 

Data Layer: As the basic data entry of the system, this 

layer is responsible for collecting, cleaning, integrating, 

and storing multi-source heterogeneous data from external 

information sources (such as weather forecasting systems, 

power market platforms, grid dispatching centers) and 

telemetry terminals of each distributed energy resource 

(DERs) within the VPP. This layer is not only a data 

aggregation point but also the starting point of data 

governance. We use a time series database (such as 

InfluxDB) for efficient storage and query, and perform 

preliminary cleaning and outlier removal on telemetry 

data through a data collection gateway deployed on the 

edge side. External data is obtained by calling 

standardized RESTful APIs. The data sources are aligned 

through a unified data model to ensure data consistency 

and availability. In addition, this layer uses technologies 

such as encrypted channels to ensure the security and 

integrity of data during transmission and storage [17]. 

Model Layer: As the analysis and cognitive core of 

the system, this layer consists of a series of precise 

mathematical and artificial intelligence models, mainly 

including: Prediction Model Portfolio: Integrate the wind 

and solar power prediction model based on long short-

term memory network (LSTM), the hydropower reservoir 

inflow prediction model based on seasonal autoregressive 

integrated moving average model (SARIMA), and a time 

series model using attention mechanism (such as 

Transformer) for high-precision electricity price 

prediction [18]. 

Physical Resource Model: It accurately 

mathematically represents various types of energy units 

within the VPP. In particular, for the core regulation 

resource, the hydropower station, it conducts detailed 

modeling including reservoir capacity, head-output 

relationship, flow rate limits, and operating boundary 

conditions.This physical model is internally validated 

against a simplified traditional hydropower dispatch 

model to ensure accurate representation of hydropower 

dynamics. 

Market Rule Model: It establishes a digital description 

of the trading rules, bidding structures, and clearing 

mechanisms in power markets at all levels (such as day-

ahead, intra-day, and ancillary service markets), thus 

ensuring the compliance and effectiveness of all decisions. 

The models do not operate independently but are 

uniformly managed through a model management and 

scheduling engine. This engine is responsible for 

triggering the corresponding prediction models at regular 

intervals according to the task type (such as hourly 

prediction, minute-by-minute prediction), and publishing 

the results to a message queue (such as Kafka) for the 

decision-making layer to subscribe and use. This loosely 

coupled architecture ensures the scalability of the system, 

and future model modules can be easily added, deleted, or 

replaced. 

The interaction mechanism between the decision-

making layer and the interaction layer: The DRL engine 

of the decision-making layer is deployed in the form of a 

service. After the intelligent assistant in the interaction 

layer receives the user’s natural language query, its built-

in intent recognition module will parse it into a structured 

API call request and send it to the decision-making layer. 

After the decision-making layer executes the 

corresponding calculations or simulations, it returns the 

results in JSON format, which are then encapsulated by 

the natural language generation module in the interaction 

layer into human-readable text or charts and presented to 

the user. This asynchronous call mechanism ensures the 

smoothness of the front-end interaction. 

 

4  Key technologies and model 

construction 
This chapter will introduce in detail the mathematical 

models and algorithms of the core modules of the system. 

The core of a successful decision-making system lies in 

choosing the right tools for the right problems. Therefore, 

when constructing the prediction and decision-making 

models, we strictly followed the principle of "problem-

driven, model adaptation", and carefully selected and 

optimized the corresponding algorithms according to the 

characteristics of different subtasks. 

 

4.1 Hydropower inflow and output prediction 

model 
In the selection of the prediction model combination, 

we followed the principle of "adapting to local 

conditions". For wind and solar power prediction, its 

physical process is highly correlated with the continuous 

changes in short-term meteorological conditions (such as 

wind speed, light intensity) and has obvious time series 

dependence. The long short-term memory network 

(LSTM) can effectively capture and remember this short-

term to medium-term time series dependence through its 

unique gating mechanism, so it becomes the first choice 

for this task. For hydropower reservoir inflow, it not only 

has daily, weekly, and annual periodicities but also shows 

strong seasonal trends. The seasonal autoregressive 

integrated moving average model (SARIMA) is a classic 

statistical model designed to handle such time series with 

both trends and seasons and can provide a robust baseline 

for runoff prediction. Since hydropower is a core 

regulation resource, accurate prediction of its available 

water volume is crucial. We adopt a hybrid model that 

combines physical mechanisms and data-driven methods. 

Reservoir Inflow Prediction Based on Time Series: 

Q
in,t+1

=SARIMA(P,D,Q)(p,d,q)s+f(Rainfallt,Temp
t
)+εt（2） 
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Among them, Q
in,t+1

 is the predicted inflow for the 

next moment. The SARIMA model captures the seasonal 

and cyclical trends of the flow itself. f  is a non-linear 

function (such as a neural network) used to model the 

impact of external meteorological factors such as rainfall 

and temperature on runoff. εt is the error term. Consider 

the dynamic power output constraint of hydropower 

considering the head change: 

 
Phydro, min(Vt)≤Phydro,t≤Phydro, max(Vt) (3) 

 

Among them, the maximum/minimum power output 

Phydro, min  of hydropower is a function of the current 

reservoir water storage Vt  because the reservoir water 

level directly affects the head height H . This reflects the 

dynamic constraint of hydropower output. 

 

4.2 Real-time market electricity price 

prediction model 
The electricity spot market price has high volatility 

and complex non-linear characteristics. We adopt a 

Transformer model based on the attention mechanism. 

Attention mechanism weight calculation: 

 

Attention(Q,K,V)=softmax (
QKT

√dk

)V (4) 

 

This formula is the core of the Transformer model. 

Through the self-attention mechanism, the model can 

capture the complex dependencies between different time 

points in the electricity price time series, such as 

identifying similar "morning peak" and "evening peak" 

patterns in a day, thus improving the prediction accuracy. 

 

4.3 Real-time trading decision-making model 

based on deep reinforcement learning 
We model the real-time trading decision-making 

problem of the VPP as a Markov decision process (MDP), 

and its core elements are defined as follows: 

State space (State, S): A vector containing all relevant 

information of the VPP at time t . 

State space vector: 

 

St= [Pwind,t

pred
,Psolar,t

pred
,Q

in,t
,Vhydro,t,SOCess,t,λmarket,t

pred
,Dgrid,t,Tt] (5) 

 

It includes: predicted wind and solar power output, 

hydropower inflow, reservoir water storage, energy 

storage SOC, predicted market electricity price, grid 

demand, and time stamp, etc. Action space (Action, A): 

The operations that the VPP can execute at each decision-

making moment, and these operations strictly comply with 

physical and market rule constraints. Action space vector: 

 

At=[Phydro,t
bid ,Pess,t

ch/dis,Pgrid,t

buy/sell
] （6） 

 

It includes: the quoted/scheduled power of 

hydropower, the charge/discharge power of energy 

storage, and the power of purchasing/selling electricity to 

the market. 

Reward function (Reward, R): The immediate reward 

feedback by the environment (electricity market) after the 

agent executes an action, and the optimization goal is to 

maximize the cumulative reward. Reward function design: 

 

Rt=Revenuemarket,t-Costop,t-Penalty
dev,t

（7） 

 

Revenue market,t is the market trading revenue. Costop,t 

is the operating cost (such as energy storage loss, unit 

start-stop cost). Penalty dev,t  is the deviation assessment 

fine caused by prediction error.The weights for each 

component of the reward function (e.g., penalties for 

deviation or costs of energy storage degradation) are 

determined through a combination of historical market 

data analysis, expert domain knowledge, and iterative 

hyperparameter tuning during the training phase. This 

ensures a balanced optimization towards both economic 

gains and system reliability. 

Policy (Policy, π ): The core of the agent, which is a 

mapping function from state to action, π(A∣S) , usually 

represented by a deep neural network. Bellman optimal 

equation (Q-learning idea): 

 

Q*(s,a)=E [Rt+1+γmax
a'

Q*(s',a')∣St=s,At=a] （8） 

 

This is the theoretical basis of reinforcement learning, 

indicating that the optimal value of executing action a in 

state s is equal to the expectation of the immediate reward 

and the discounted sum of the future optimal value. Our 

DRL algorithm (such as SAC) is to learn this optimal Q 

function. 

 

4.3.1 Algorithm selection and model structure 

In this study, we selected the Soft Actor-Critic (SAC) 

algorithm as the core of the DRL decision engine. 

Compared with deterministic policy algorithms such as 

DDPG, SAC is a stochastic policy algorithm based on the 

maximum entropy framework. Its core advantage is that 

by introducing an entropy term into the objective function, 

it encourages the agent to explore more fully, effectively 

avoiding premature convergence of the policy to a local 

optimum, which is particularly important for dealing with 

the highly volatile electricity market environment. At the 

same time, the stability and sample efficiency of SAC are 

also better than other commonly used algorithms such as 

PPO. 

Both the policy network (Actor) and the value 

network (Critic) of the agent adopt a three-layer fully 

connected neural network. The input layer receives the 

state vector S , both hidden layers contain 256 neurons, 

and ReLU is used as the activation function. The output 

layer outputs the action or state value according to the 

definition of the action space. To ensure the stability and 

efficiency of the training process, we carefully tuned the 
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key hyperparameters, and the specific settings are shown 

in Table 3. 

Table3: Key hyperparameter settings of the DRL model 

Hyperparameter Value Rationale 

Learning Rate 3e-4 Balance the convergence speed and stability 

Discount Factor, γ 0.99 Encourage the agent to focus on long-term cumulative 

rewards 

Experience Replay Buffer Size 1,000,000 Store diverse enough experiences for learning 

Batch Size 256 Balance computational efficiency and gradient 

estimation accuracy 

Entropy Regularization 

Coefficient (α) 
Auto-

tuning 

The core mechanism of SAC, dynamically balance 

exploration and exploitation 

Target Network Update 

Coefficient ( τ ) 

0.005 Adopt soft update to ensure stable training 

4.3.2 Model training 

We conducted offline training on the agent for up to 

2-million-time steps using historical data from the past 

year. To ensure the generalization ability of the model, the 

selected training dataset comprehensively covered 

different seasons and market conditions such as wet/dry 

seasons, typical days in winter/summer, and holidays, 

including rich price fluctuations and load patterns. The 

training was completed on a server equipped with 

NVIDIA Tesla V100 GPUs, taking approximately 72 

hours in total. The cumulative reward curve during the 

training process showed that the model tended to converge 

after about 1.5 million steps, demonstrating the 

effectiveness of the learning process and indicating robust 

policy acquisition. Overfitting was prevented through 

early stopping based on validation performance and the 

use of regularization techniques within the neural 

networks. The training involved approximately 1000 

episodes, and a fixed random seed was used for all 

experiments to ensure reproducibility. 

 

4.3.3 Key physical and operational constraints 

Hydropower scheduling ramp constraint: 

|Phydro,t-Phydro,t-1|≤ΔPramp
max （9） 

That is, the change rate of hydropower output cannot 

exceed its maximum up/down ramp rate ΔPramp
max  . This is a 

key physical constraint that VPP must abide by when 

formulating hydropower scheduling plans. 

VPP overall power balance constraint: 

∑Pdg,t+Pess,t
dis +Pgrid,t

buy
=∑Lt+Pess,t

ch +Pgrid,t
sell （10） 

At any given moment, the total power generation 

within VPP plus the purchased power must be equal to the 

total internal load Lt plus the sold power. This is the basic 

criterion for system operation. 

 

Table 4: Comparison between DRL model and traditional optimization methods 

 

Feature Deep Reinforcement Learning (DRL) 

Mixed-Integer Linear 

Programming (MILP) 

Online Decision-

making Speed 

Extremely fast (millisecond level) Relatively slow (minute level) 

Model Dependence Data-driven, with low dependence on 

precise models 

Model-driven, requiring precise 

mathematical modeling 

Uncertainty 

Handling 

Strong endogenous ability, learning 

through interaction with the environment 

Dependent on prediction 

accuracy, sensitive to errors 

Self-adaptability Strong, can learn online to adapt to market 

changes 

Weak, requires re-modeling 

Feature Deep Reinforcement Learning (DRL) Mixed-Integer Linear 

Programming (MILP) 

4.3.4 Handling uncertainty and robustness 

The IA-DRL strategy inherently manages uncertainties, 

non-linearities, and forecasting errors through several 

mechanisms: 

Learning from Interaction: DRL agents learn optimal 

policies by continuously interacting with the simulated 

environment, which includes stochastic elements like 

uncertain renewable generation and fluctuating market 

prices. This allows the agent to develop strategies that are 

robust to a wide range of unforeseen events, rather than 

relying solely on point forecasts. 

Reward Function Design: The reward function explicitly 

penalizes deviations from the day-ahead plan, 

encouraging the agent to minimize forecast errors and 

maintain system balance. The balance between trading 

revenue, operating cost, and deviation penalties guides the 

agent to find solutions that are economically optimal while 

being robust to real-time changes. 
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Stochastic Policy (SAC): As a maximum entropy DRL 

algorithm, SAC encourages exploration and maintains a 

stochastic policy. This prevents the agent from 

committing to a single, brittle action in uncertain 

situations, allowing for more flexible and robust responses 

to real-time fluctuations. 

Comparison with Adaptive/Neural Control: Similar to 

adaptive control Error! Reference source not found.[21] 

and neural control methods[22]  for non-linear and 

uncertain dynamic systems, DRL adapts its policy over 

time. However, DRL’s key distinction lies in its goal-

oriented learning (maximizing cumulative reward) rather 

than explicit system identification or error minimization in 

a control loop. While adaptive controllers typically adjust 

parameters based on real-time feedback to maintain 

desired system performance, DRL learns a mapping from 

states to actions directly, often without an explicit model 

of the system dynamics, making it highly suitable for 

complex, non-linear, and stochastic environments like 

electricity markets. Furthermore, recent work on nonlinear 

optimal control [23] and high-gain observer-based 

adaptive fuzzy control [23] highlights the importance of 

robust controllers in dynamic systems, principles that 

DRL implicitly addresses through its learning process by 

finding policies that perform well under varying 

conditions. 

 

5 System implementation and 

application case analysis 

5.1 System implementation and technology 

stack 
To verify the engineering feasibility and practical 

effects of the decision-making framework proposed in this 

paper, we built a complete system prototype based on the 

microservices architecture. This architecture decouples 

complex system functions into a series of independent and 

deployable services, ensuring the high cohesion and low 

coupling characteristics of the system, and greatly 

improving the scalability and maintainability of the 

system. The implementation of the entire system is 

divided into three levels: backend services, front-end 

interaction interfaces, and deployment and operation and 

maintenance. 

 

5.1.1 Backend service implementation 

The backend is the core of the entire decision-making 

system, responsible for data processing, model operation, 

and decision-making logic. 

Development Language and Framework: Python 3.9 

is used as the main development language. The core API 

service is built based on the FastAPI framework, and its 

asynchronous feature (ASGI) can efficiently handle 

concurrent requests from the front-end and between 

services, providing performance guarantee for real-time 

decision-making. 

Artificial Intelligence and Data Science Libraries: 

Deep Learning and Reinforcement Learning: All 

prediction models (LSTM, Transformer) and deep 

reinforcement learning models (SAC) are built, trained, 

and inferred using the PyTorch framework. 

Data Processing and Analysis: The Pandas and 

NumPy libraries are used for efficient data cleaning, 

transformation, and matrix operations. Scikit-learn is used 

to implement benchmark models and data preprocessing 

processes. 

Data Persistence and Message Flow: 

Time-Series Database: InfluxDB is used to store high-

frequency time-series data collected from various 

distributed energy resources (DERs) and power markets, 

such as power, electricity price, energy storage SOC, etc. 

Its high read and write performance and data compression 

ability are very suitable for the VPP scenario. 

Message Queue: Apache Kafka is introduced as the 

internal data bus of the system. The data acquisition 

service publishes real-time data as messages to the 

specified topic, and the services in the model layer and 

decision layer subscribe to these data streams as 

consumers, realizing asynchronous decoupling and real-

time data sharing between modules. Core Service 

Modules: 

Data Access Service: Responsible for polling external 

meteorological and market data through RESTful APIs, 

and receiving telemetry data from each terminal inside the 

VPP through the MQTT protocol. After preliminary 

cleaning, the data is uniformly pushed to the Kafka cluster. 

Prediction Service: Subscribes to the raw data in 

Kafka, triggers the corresponding prediction models 

regularly (such as updating the electricity price prediction 

for the next 4 hours every 15 minutes), and publishes the 

prediction results back to Kafka in the form of new 

messages. DRL Decision Service: This service 

encapsulates the trained SAC model. It receives decision 

requests (including the current system state) triggered by 

the front-end or scheduling tasks through the API 

interface, performs millisecond-level model inference, 

generates the optimal actions (quotation and scheduling 

strategies), and returns the results in JSON format. 

 

5.1.2 Front-end interaction interface implementation 

The front-end is the window for interaction between 

the intelligent assistant and operators, and the design focus 

is on data visualization and operation intuitiveness. 

Development Framework and Technologies: Vue.js 3 

is adopted as the front-end development framework, and 

reusable UI modules are built through its component-

based development mode. 

Data Visualization: The Apache ECharts chart library 

is integrated to dynamically and interactively display the 

operating status of the VPP, such as the real-

time/predicted output curves of various power sources, the 

change trajectory of energy storage SOC, market 

electricity prices, and the comparison of cumulative 

revenues. 

Intelligent Assistant Interaction: 

Speech Recognition: The built-in Web Speech API of 

the browser is used to implement voice input, converting 

the user’s voice commands into text. Natural Language 

Understanding (NLU): A lightweight NLU module is 

deployed on the backend, which is responsible for parsing 
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the intent and entities of the instruction text (for example, 

parsing "Query the dispatching plan of hydropower in the 

next two hours" into a specific API call to the decision-

making service), and returning the structured results to the 

front-end, or encapsulating them into readable text or 

charts by the natural language generation module for 

response.The NLU module was trained on a custom 

dataset of VPP-specific queries and commands 

(approximately 5,000 annotated utterances) and leverages 

a fine-tuned pre-trained BERT model for robust intent 

recognition and entity extraction, augmented by rule-

based patterns for high-precision domain-specific terms. 

 

5.1.3 Deployment and simulation environment 

Containerized Deployment: To simplify the 

deployment process and ensure environmental 

consistency, all backend microservices (including 

databases and message queues) are containerized using 

Docker. 

Service Orchestration: In the simulation test 

environment, Docker Compose is used to orchestrate and 

manage multi-container applications, enabling one-click 

startup, deployment, and joint debugging. Simulation 

Interaction: The system interacts with a self-developed 

power market simulator through APIs. This simulator can 

simulate the clearing process of the day-ahead/intra-day 

market, calculate trading revenues and deviation 

settlement fees based on the system’s bids and actual 

outputs, and feed back this information as the 

environmental feedback (Reward) to the DRL decision-

making service, thus forming a complete "perception - 

decision - execution - feedback" closed loop. 

 

5.2 Case settings 
We constructed a VPP located in a certain province in 

the southwestern part of China as a case for simulation 

analysis. 

Table 5: Resource composition of the simulated VPP 

Resource type 
Installed 

capacity 
Quantity Key features 

Medium-sized 

hydropower station 
100 MW 1 unit 

With weekly regulation 

reservoir, fast response speed 

Small hydropower 

station 
15 MW 3 units 

Run-of-river type, limited 

regulation capacity 

Distributed wind 

power 
80 MW Multiple wind farms High intermittency 

Distributed 

photovoltaic 
60 MW 

Multiple rooftop/ground-

mounted power stations 

High volatility, intraday 

periodicity 

Battery energy 

storage 

20 MW / 40 

MWh 
1 energy storage station 

Fast charge and discharge, for 

power smoothing and arbitrage 

The simulation period was one continuous month, and 

the market environment data used the real historical data 

of a certain region. 

Specifically, the dataset comprised hourly electricity 

market prices, regional load data, meteorological forecasts 

(wind speed, solar irradiance, rainfall, temperature), and 

historical hydropower inflow records for the year 2023. 

The data volume amounted to approximately 8,760 hourly 

records for each parameter. This dataset was sourced from 

a major provincial power grid operator and a regional 

meteorological bureau. To augment data for robust 

training, certain periods with high volatility or specific 

weather events were synthetically enhanced by applying 

realistic noise distributions and scaling factors. The high 

temporal resolution (hourly for forecasts, 15-minute for 

market interactions) and authenticity of the historical data 

ensure that the simulation environment accurately reflects 

real-world complexities and challenges for VPP 

operations. The hydropower physical model used in the 

simulation environment, which accounts for reservoir 

dynamics, head-output relationships, and ramp rate 

constraints, was benchmarked against a simplified 

dispatch model (based on linear programming) for a single 

hydropower plant, demonstrating a deviation of less than 

2% in daily generation totals under fixed operational 

schedules. This validation ensures the accuracy of the 

hydropower component within the VPP simulation. 

5.3 Simulation results and analysis 
We compared the VPP operation effects under three 

strategies: 

Baseline strategy: A simple rule-driven strategy, such 

as charging at low valleys and discharging at peaks. 

MILP strategy: To ensure the effectiveness of the 

comparison, we constructed a deterministic mixed-integer 

linear programming (Rolling-Horizon Deterministic 

MILP) model based on rolling optimization as the 

benchmark. At each decision moment (15 minutes), this 

model solves the optimal scheduling plan for the next 24 

hours based on the latest power and electricity price 

forecasts, and executes the decision for the first time 

period. This method is a relatively mature and common 

method in the industry, but its core challenge lies is that 

the decision quality highly depends on the prediction 

accuracy, and it is difficult to perfectly capture all non-

linear and random factors in the model. 

IA-DRL strategy: The intelligent assistant-driven 

DRL decision-making system proposed in this paper. 

 

5.3.1 Economic benefit analysis 

Figure 3 intuitively shows the change of the 

cumulative revenue of VPP under three different strategies 

in a typical 24-hour period. 
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Figure  3: Comparison curve of the intra-day cumulative 

revenue of VPP under three strategies 

 

Its superiority is intuitively reflected in Figure 3. The 

revenue curve of the IA-DRL strategy (thick orange-red 

line) has a much steeper growth slope than the other two 

strategies during the electricity price peak periods in the 

afternoon and evening (highlighted area in the figure). As 

shown in the annotation in the figure, this benefits from 

the forward-looking decision-making ability obtained by 

the IA-DRL strategy through reinforcement learning, 

enabling it to make advance arrangements and actively 

capture higher revenues through optimal coordinated 

scheduling during the electricity price peak periods. 

To further explore the internal mechanism of the IA-

DRL strategy to achieve high revenues, Figure 4 details 

how the main adjustable resources-hydropower and 

energy storage-are coordinated with the real-time 

electricity price under this strategy. 

 

 
 

Figure  4:Scheduling diagram of the coordinated 

response of hydropower and energy storage to the real-

time electricity price under the IA-DRL strategy 

                  

Figure 4 clearly depicts the intelligent behavior of this 

strategy through positive (generation/discharge) and 

negative (charging) power bar charts. During the early 

morning electricity price low valley period (light yellow 

area in the figure), the energy storage system performs the 

charging operation (purple downward bar chart) to store 

energy at low cost. While during the evening electricity 

price peak period (light red area in the figure), the 

hydropower output (blue bar chart) is significantly 

increased, and at the same time the energy storage system 

also discharges (green bar chart), and the two work 

together to maximize the electricity sales revenue. This 

intuitively shows the intelligent coordinated combat effect 

between hydropower as the main regulating power source 

and energy storage as the flexible auxiliary service 

provider. 

 

5.3.2 Renewable energy consumption and system 

performance analysis 

In order to further verify the technical value of the IA-

DRL strategy in improving the consumption of renewable 

energy [19], we compared the comprehensive curtailment 

rates of three strategies within a one-month simulation 

period, and the results are shown in Figure 5. 

 
 

Figure 5: Comparison of renewable energy curtailment 

rates under different strategies 

 

Figure 5 intuitively reveals the huge differences 

among different strategies. The curtailment rate of the 

benchmark strategy is as high as 15%, while the traditional 

MILP optimization strategy can only reduce it to 8%. In 

contrast, the IA-DRL strategy proposed in this paper 

performs excellently, significantly reducing the 

curtailment rate to 2%. More importantly, as emphasized 

by the highlighted annotations in the figure, the IA-DRL 

strategy achieves a curtailment rate reduction of up to 

86.7% compared to the benchmark strategy. This fully 

demonstrates that through the refined and forward-looking 

coordinated scheduling of hydropower and energy 

storage, this system can maximize the consumption of 

unstable wind and solar resources, providing an effective 

solution for the stable operation of the power grid under 

high proportions of renewable energy access. 

The excellent performance within the day ultimately 

accumulates into a significant advantage over the entire 

simulation period. Table 6 quantitatively compares the 

overall performance of the three strategies over a month in 

terms of multiple key performance indicators (KPIs). 
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Table 6: Comparison of the total economic benefits and performance indicators under different strategies for one 

month 

Indicator 
Benchmark 

strategy 

MILP 

strategy 

IA-DRL 

strategy 

IA-DRL 

improvement relative to 

MILP 

Total trading revenue (in 

ten thousand yuan) 
425.3 510.8 574.7 +12.5% 

Deviation assessment fee 

(in ten thousand yuan) 
35.8 18.2 9.5 -47.8% 

Net profit (in ten thousand 

yuan) 
389.5 492.6 565.2 +14.7% 

Utilization rate of 

hydropower regulation (%) 
65% 82% 95% +15.9% 

Average decision-making 

time (s) 
< 0.1 150 0.5 -99.7% 

As can be seen from Table 6, the IA-DRL strategy has 

achieved the best performance in all key indicators. Its net 

profit has increased by 14.7% compared to the advanced 

MILP method. At the same time, it has reduced the 

deviation assessment cost by nearly half and its decision-

making speed is nearly 300 times faster, which is of 

crucial significance for the real-time power market that 

requires rapid response. 

 

5.3.3 Sensitivity analysis of hydropower capacity 

To further evaluate the robustness and adaptability of 

the IA-DRL strategy, we conducted a sensitivity analysis 

by varying the installed capacity proportion of 

hydropower within the VPP. The proportion of 

hydropower installed capacity was adjusted from 40% to 

70% of the total dispatchable capacity, while maintaining 

the overall VPP capacity constant by proportionally 

adjusting other renewable sources. For each scenario, the 

IA-DRL system was re-trained and evaluated over the 

same one-month simulation period, with its performance 

compared against the MILP baseline，As shown in Figure 

6. 

 

Figure  6:Sensitivity of IA-DRL’s Net Profit 

Improvement Rate to Hydropower Installed Capacity 

        The results of this sensitivity analysis showed that 

when the proportion of hydropower installed capacity in 

the VPP varied within the range of 40% to 70%, the net 

profit improvement rate of the IA-DRL strategy compared 

to the MILP strategy remained stable, consistently falling 

within the range of 8% to 15%. This consistent 

performance across different hydropower resource 

compositions indicates that the proposed IA-DRL system 

possesses good adaptability and robustness, capable of 

effectively optimizing VPP operations even as the internal 

resource mix changes. This finding reinforces the 

system’s practical applicability in diverse VPP 

configurations. 

6  Discussion 
The simulation results provide compelling evidence 

for the efficacy of the proposed IA-DRL system, 

addressing RQs 1 and 2 regarding economic benefits and 

operational efficiency. 

 

6.1 Performance superiority and underlying 

mechanisms 

Significant Improvement in Economic Benefits 

(RQ1): The IA-DRL strategy consistently achieved higher 

total revenue and net profit compared to both the 

benchmark and MILP strategies (Table 6). This 

superiority stems from its advanced decision-making 

capabilities, which transcend the limitations of traditional 

optimization methods as summarized in Table 1 and Table 

4. Unlike MILP, which relies on discrete optimization 

based on predefined models and forecasts, DRL learns 

continuous, anticipatory strategies directly from 

interaction with the dynamic market environment. This 

enables the IA-DRL agent to perform more effective 

arbitrage by “buying low and selling high” and to 

dynamically coordinate multiple resources (especially 

hydropower and energy storage) in real-time, capturing 

transient market opportunities that traditional methods 

might miss. 

Enhanced System Reliability and Efficiency (RQ2): The 

IA-DRL strategy demonstrated the lowest deviation 

assessment cost and significantly reduced renewable 

energy curtailment (Figure 5, Table 6). This indicates a 

more robust “prediction-decision” closed-loop that better 

tracks the planned schedule and minimizes power 

deviations, which is crucial for VPP reliability and market 

standing. The high utilization rate of hydropower 

regulation (95%) under IA-DRL further validates its 
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ability to fully exploit hydropower’s fast response and 

energy storage advantages, making it an effective “core 

regulation resource” for balancing intermittent 

renewables. This refined, forward-looking coordinated 

scheduling allows the system to maximize renewable 

energy consumption, providing a vital solution for stable 

grid operation amidst high renewable penetration. 

Extremely High Decision-Making Efficiency (RQ2): The 

IA-DRL strategy’s decision-making speed (0.5s) is nearly 

300 times faster than the MILP method (150s) (Table 6). 

This is a critical advantage for real-time electricity 

markets, which demand rapid responses. Once trained, the 

DRL model performs inference in milliseconds, making it 

highly suitable for the millisecond-level response 

requirements of intraday and ancillary service markets, 

overcoming the computational bottlenecks faced by MILP 

in high-dimensional, dynamic environments. 

The fundamental reason the IA-DRL strategy 

improves both economic and technical indicators is that it 

moves beyond the traditional optimization method’s 

"prediction-based, passive response" mode and evolved 

into a new paradigm of "active learning, anticipatory 

management". For example, when the system predicts that 

there will be strong wind weather in the next few hours, 

the MILP strategy may maintain a low output of 

hydropower in the current period to save water volume. 

While the IA-DRL strategy, through learning historical 

experience, may choose to actively release part of the 

hydropower in advance before the arrival of wind power, 

creating additional regulation storage capacity for the 

reservoir, so as to consume all the wind power at a lower 

cost (or even zero cost) during the strong wind period, and 

at the same time reserve the precious water resources for 

use in periods with higher electricity prices. This 

counterintuitive and forward-looking spatio-temporal 

coupling optimization ability is beyond the reach of 

traditional methods. 

 

6.2 Interpretability and human-machine 

collaboration (RQ3) 
In particular, it is worth emphasizing that the role of 

the Intelligent Assistant (IA) in this system goes beyond a 

mere interface for interaction, playing a crucial role in 

enhancing the robustness of decision-making and the 

acceptance of operators. During the simulation process, 

we simulated several emergencies such as sudden changes 

in market electricity prices or large deviations in wind and 

solar power forecasts. In these situations, the DRL model 

may generate some counterintuitive but ultimately proven 

optimal dispatching instructions (for example, releasing 

hydropower in advance when the electricity price has not 

reached its peak to reserve storage capacity for subsequent 

more drastic fluctuations). Through the natural language 

explanation function of the IA，operators can quickly 

understand the underlying logic behind the strategy, 

thereby enhancing their trust in automated suggestions and 

avoiding inappropriate manual interventions due to 

doubts. For instance, if an operator queries: "Why choose 

to discharge hydropower at hour 17 when prices are not 

yet at their peak?"  

The IA might respond: "The system forecasts a 

significant increase in wind power generation at hour 18, 

which could lead to severe curtailment. By discharging 

hydropower now, we create additional reservoir capacity 

to store the forecasted surplus wind energy, maximizing 

renewable energy integration and avoiding costly 

curtailment penalties, while reserving water for potentially 

higher prices later in the evening."This detailed, context-

aware explanation transforms the DRL’s “black box” into 

a “gray box” (Table 1), making complex AI decisions 

transparent and understandable. This "decision-

explanation" closed-loop is a preliminary but significant 

exploration of the application of Explainable Artificial 

Intelligence (XAI) in the field of critical infrastructure in 

this system. It proves that "translating" the internal logic 

of complex models into human-understandable language 

is the key to unlocking the potential of human-machine 

collaboration. Therefore, the deep integration of the IA 

and the DRL engine truly realizes the leap from "black-

box" intelligence to "explainable and trustworthy" 

intelligence, enabling operators to conveniently monitor 

and understand the complex DRL decision-making 

process and intervene when necessary, achieving an 

effective combination of "intelligent assistance" and 

"human supervision" [24]. 

 

6.3 Practical deployment considerations and 

scalability (RQ4) 
For real-world deployment, scalability is a key 

consideration. The microservices architecture adopted in 

this system facilitates horizontal scaling, allowing 

individual services (e.g., prediction, DRL decision, data 

access) to be scaled independently based on load. Market 

integration would involve robust API connections to 

actual electricity market platforms for bidding, settlement, 

and real-time data exchange, ensuring compliance with 

market rules and protocols. Interaction with grid operators 

would be facilitated by the IA, providing clear, 

interpretable dispatch suggestions and operational status 

updates, thereby enhancing situational awareness and 

coordination. 

Comparing the IA-DRL system with classical control 

approaches, traditional methods often rely on explicit 

mathematical models of the system and optimization 

objectives. While precise in well-defined scenarios, they 

can struggle with the non-linearity, high dimensionality, 

and stochastic nature of modern power systems and 

electricity markets. DRL, on the other hand, learns optimal 

control policies directly from data and interaction, 

offering superior adaptability to evolving market 

conditions and uncertainties. The integration of the IA acts 

as a critical interface, translating the complex, adaptive 

decisions of DRL into actionable insights for human 

operators, a feature largely absent in conventional control 

systems. 

 

6.4 Limitations and potential negative results 
While the IA-DRL system demonstrates impressive 

performance, it is important to acknowledge certain 

limitations and potential negative results. The primary 
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limitation of DRL models, including SAC, is their reliance 

on extensive training data and potentially long training 

times. Although our system showed good convergence, 

the initial training phase is computationally intensive. 

Furthermore, as discussed, while the reward function 

penalizes violations of soft constraints (e.g., power 

balance deviations), providing absolute guarantees for 

hard physical constraints (e.g., generator limits, grid 

stability) can be challenging for pure DRL. In scenarios 

with extreme, unprecedented market events or severe data 

quality issues, the DRL agent’s performance might 

degrade until it has learned from such novel experiences. 

During early deployment, a “cold start” period would be 

necessary to accumulate sufficient real-world interaction 

data for continuous policy refinement. 

 

7 Conclusions and outlook 

7.1 Summary of this paper 
This paper addresses the challenges of real - time 

trading decision-making faced by virtual power plants in 

a complex electricity market environment, and 

innovatively proposes and designs a VPP real-time trading 

decision-making support system with an intelligent 

assistant as the interaction core and deep reinforcement 

learning as the decision - making engine. The system pays 

special attention to and makes full use of the key 

regulating role of hydropower resources in the VPP. By 

constructing a four-layer architecture including data, 

model, decision-making, and interaction, the system 

realizes a comprehensive perception, accurate prediction, 

and intelligent decision - making support for market 

information and internal resource status. 

 

7.2 Main conclusions 
Architectural effectiveness: The proposed intelligent-

assistant-driven system architecture can effectively 

integrate multi-source data and various AI  models, 

forming a complete closed-loop from data to decision-

making suggestions, providing a feasible technical 

paradigm for the efficient operation of VPPs under human 

- machine collaboration. 

Superiority of the algorithm: Compared with 

traditional optimization methods, the DRL-based 

decision-making model shows significant advantages in 

solving speed, adaptability, and final economic benefits 

when dealing with high-dimensional and uncertain 

dynamic optimization problems such as real-time trading 

in VPPs. 

Core value of hydropower: Case studies show that 

taking hydropower as the core regulation resource of VPP 

and using intelligent systems for its refined scheduling can 

greatly improve the profitability of VPP and its supporting 

ability for the power grid. 

Paradigm innovation of human-machine 

collaboration: This study confirms that the introduction of 

intelligent assistants not only optimizes the interaction 

experience. It successfully transforms the "black box" of 

DRL into a "gray box" that operator can understand and 

trust through real-time interpretation of complex AI 

decisions, thus constructing a new paradigm of efficient 

and trustworthy human-machine collaborative decision-

making. This provides important theoretical basis and 

practical solutions for the safe and reliable application of 

advanced AI technologies in critical infrastructure fields. 

 

7.3 Research limitations and future prospects 
Although this study has achieved a series of positive 

results, there are still some limitations, which also point 

out the direction for future research: 

Generalization and continuous adaptation ability of 

the model: This study preliminarily verified the robustness 

of the model through sensitivity analysis, but the dynamics 

of the real market (such as the emergence of new trading 

varieties and changes in policies and regulations) pose 

higher requirements for the long-term generalization 

ability of the model. The future research direction is to 

introduce Continual Learning or Meta-Learning 

frameworks so that the agent can quickly adapt to the new 

market environment without forgetting old knowledge. 

Furthermore, assessing the system's robustness under 

various data noise levels and forecast errors will be critical 

for practical deployment. 

Deep integration of strong physical security 

constraints: The DRL model in this paper mainly guides it 

to meet soft constraints such as power balance through 

penalty terms in the reward function. Although effective, 

for hard constraints such as voltage and power flow in the 

power grid, this method cannot guarantee 100% non-

violation. Future research needs to explore Constrained 

Reinforcement Learning algorithms, or couple a "safety 

correction layer" based on fast optimization behind the 

DRL model (e.g., using Model Predictive Control-based 

safety layers) to strictly meet all power grid safety criteria 

while ensuring decision-making economy, which is the 

only way for this technology to move towards engineering 

applications.  

Interpretability of the decision-making process and 

trust building: Although the intelligent assistant 

introduced in this paper improves the transparency of the 

system through natural language interaction, the "black 

box" nature of the deep reinforcement learning core 

remains the core challenge for enhancing operators’ trust. 

Future research needs to deeply integrate Explainable AI 

(XAI) technologies so that the intelligent assistant can not 

only provide decision-making suggestions ("what to do"), 

but also clearly explain the causal logic behind it ("why to 

do so"), thus establishing a higher level of trust 

relationship in the human-machine collaborative loop. 

Scalability and Generalization to Diverse Market 

Designs:While the microservice architecture supports 

scalability, further research is needed to rigorously test the 

system’s performance and training efficiency for much 

larger VPPs with hundreds or thousands of DERs. 

Additionally, its generalization to other distinct market 

designs (e.g., capacity markets, different ancillary service 

structures) requires further investigation and adaptation of 

the reward function and environment model. 
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Nomenclature 

Abbreviation Description 

AI Artificial Intelligence 

CL Controllable Load 

DDPG Deep Deterministic Policy Gradient 

DERs Distributed Energy Resources 

DG Distributed Generation 

DRL Deep Reinforcement Learning 

ESS Energy Storage System 

IA Intelligent Assistant 

KPI Key Performance Indicator 

LSTM Long Short-Term Memory 

MDP Markov Decision Process 

MILP Mixed-Integer Linear Programming 

MPC Model Predictive Control 

MQTT Message Queuing Telemetry Transport 

NLU Natural Language Understanding 

NLP Natural Language Processing 

PPO Proximal Policy Optimization 

ReLU Rectified Linear Unit 

SAC Soft Actor-Critic 

SARIMA Seasonal Autoregressive Integrated Moving Average 

SOC State of Charge 

VPP Virtual Power Plant 

XAI Explainable Artificial Intelligence 

Variable Description                                                              

:------- :------------------------------------------------------------------------                                                              

𝑃ℎ𝑦𝑑𝑟𝑜 Hydropower output power (W)                                                              

𝜂 Comprehensive efficiency coefficient                                                              

𝜌 Density of water (kg/m³)                                                              

𝑔 Acceleration due to gravity (m/s²)                                                              

𝑄 Flow rate through the water turbine (m³/s)                                                              

𝐻 Effective head (m)                                                              

𝑆𝑡 State space vector at time 𝑡                                                              

𝐴𝑡 Action space vector at time 𝑡                                                              

𝑅𝑡 Reward function at time 𝑡                                                              
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Abbreviation Description 

𝑉(𝑠) Value function for state 𝑠                                                              

𝑄(𝑠, 𝑎) Action-value function for state 𝑠 and action 𝑎                                                              

𝜋(𝑠) Policy for state 𝑠                                                              

𝛼 Learning rate (SAC)                                                              

𝛾 Discount factor (SAC)                                                              

𝜏 Target network update coefficient (SAC)                                                              

𝑃min(𝐻𝑡) Hydropower minimum power output as a function of head                                                              

𝑃max(𝐻𝑡) Hydropower maximum power output as a function of head                                                              

Δ𝑃𝑟𝑎𝑚𝑝_𝑢𝑝 Maximum up ramp rate of hydropower                                                              

Δ𝑃𝑟𝑎𝑚𝑝_𝑑𝑜𝑤𝑛 Maximum down ramp rate of hydropower                                                              

𝑃𝑉𝑃𝑃_𝑔𝑒𝑛,𝑡 Total power generation within VPP at time 𝑡                                                              

𝑃𝑉𝑃𝑃_𝑙𝑜𝑎𝑑,𝑡 Total internal load of VPP at time 𝑡                                                              

𝑃𝑉𝑃𝑃_𝑏𝑢𝑦,𝑡 Power purchased by VPP from the market at time 𝑡                                                              

𝑃𝑉𝑃𝑃_𝑠𝑒𝑙𝑙,𝑡 Power sold by VPP to the market at time 𝑡                                                              
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