USL: Towards Precise Specification of Use Cases
for Model-Driven Development

ABSTRACT

Use cases have been widely employed as an efficient means to
capture and structure software requirements. A use case model
is often represented by a loose combination between a UML use
case diagram and a textual description in natural language. The
use case model expressed in such a form often contains ambiguous
and imprecise parts. This prevents integrating it into model-driven
approaches, where use case models are often taken as the source of
transformations. This paper introduces a domain specific language
named the Use case Specification Language (USL) to precisely spec-
ify use cases with two main features: (1) The USL has a concrete
syntax in graphical form that allows us to achieve the usability
goal; (2) The precise semantics of USL that is defined by mapping
the USL to a Labelled Transition System (LTS) opens a possibility
for transformations from USL models to other artifacts such as test
cases and analysis class models.

CCS CONCEPTS

+ Software and its engineering — Domain specific languages;

KEYWORDS

use cases, model transformation, labelled transition systems, do-
main specific languages, pre and postcondition.

ACM Reference Format:

Minh-Hue Chu, Duc-Hanh Dang, Ngoc-Binh Nguyen, and Minh-Duc Le,
and Thi-Hanh Nguyen. 2017. USL: Towards Precise Specification of Use
Cases for Model-Driven Development. In SoICT ’17: Eighth International
Symposium on Information and Communication Technology, December 7—
8, 2017, Nha Trang City, Viet Nam. ACM, New York, NY, USA, 8 pages.
https://doi.org/10.1145/3155133.3155194

*Also with Faculty of Information Technology,

Hung Yen University of Technology and Education

My Hao, Hung Yen,Vietnam.

The author is a visiting professor, Hosei University, Japan

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

SoICT ’17, December 7-8, 2017, Nha Trang City, Viet Nam

© 2017 Association for Computing Machinery.

ACM ISBN 978-1-4503-5328-1/17/12...$15.00

1 INTRODUCTION

Use cases have achieved wide use for capturing and structuring
software requirements. A use case is typically represented as a com-
bination between an informal UML use case diagram and loosely
structured textual descriptions [15]. Such a use case specification is
quite convenient for the users as they could express requirements
in their own language. However, use cases expressed in the current
form often contain ambiguous and imprecise parts. This prevents
integrating them into model-driven approaches, where they are
often taken as the source of model transformations.

A use case is defined as “the specification of sequences of actions,
including variant sequences and error sequences, that a system,
subsystem, or class can perform by interacting with outside objects
to provide a service of value” [9]. Many research [23] have been
attempted to introduce rigor into use case descriptions. In [24],
the authors proposed adding keywords and restriction rules into
use case descriptions and then using natural language processing
techniques in order to specify and analyze use cases. The works
in [7, 14] proposed a formal semantics for use cases. The works
in [1, 12, 21, 22] proposed using UML activity and sequence di-
agrams in order to represent the control structures of use cases.
Several other works [13, 18, 20] proposed defining Domain Spe-
cific Languages (DSLs) in order to specify use cases. However, as
mentioned in [23], it still lacks a method to precisely capture the
relevant information of use cases including control flows, steps,
system actions, actor actions, and constraints on the use case and its
flows. In addition, the use case specification must be precise enough
for transformations as well as understandable for non-technique
stakeholders.

In this paper, we introduce a DSL named the Use case Speci-
fication Language (USL) to precisely specify use cases. Here, as
explained in [8] we refer to a DSL as a language designed to be
useful for a specific set of task domains. The set of tasks w.r.t the
USL is to build use case models to represent the system behaviour.
To define the abstract syntax of USL we extend the meta models of
UML use case and activity diagrams. The new meta-concepts are
defined for the following purposes: (1) to describe the elements for
a typical use-case-description template; (2) to represent the basic
and alternate flows of a use case in form of sequential, branched,
or repeating steps; (3) to categorize use case steps and actions
based on the interactive subjects including the system, actors,

SolCT 17, December 7-8, 2017, Nha Trang City, Viet Nam

and included/extending use cases; and (4) to represent con-
straints on the use case, actions and flows. The main contributions
of our work are as follows:

e To propose a DSL to precisely specify use cases. The USL
language has a concrete syntax in graphical form that allows
us to achieve the usability goal.

e To map the USL to a Labelled Transition System (LTS)
for a precise semantics. Use cases in USL are now precise
enough for transformations to obtain other artifacts such as
test cases and analysis class models.

The rest of this paper is organized as follows. Section 2 presents
an example for our work. Section 3 overviews our approach and
then explains the abstract syntax and formal semantics of the USL.
Section 4 introduces our support tool and discusses the potential
usability of the USL. Section 5 comments on related works. The
paper is closed with conclusions and future work.

2 A RUNNING EXAMPLE

According to Pohl [17], software-intensive systems are divided into
information systems and embedded systems. In our research, we
only focus on the use case description of information systems.
Figure 1 shows a simplified requirements model of a Library
system including a use case model depicted in the part (A) and a
corresponding conceptual domain presented in the part (B). Here,
the main use case Lend book describes a book-loan function. The
use case is represented in a typical template as illustrated in Table 1.

Boaok BookCopy
- Bkid 1 - Beid
<<Include>> /| - Title 0..¥|- Bkid
e - Quantity - State
0.
. Borrower BookLoan Librarian
Librarian <<Extend>> i - Bid - Blid - Lid
H - Name 1 - Lid 1|- Name
Search book - Bday 0..%[- Beid 0. - Bday
- Bid - Pword
- Ldate
@) ®) - Payes

Figure 1: The simplified use case and conceptual domain
model of the Library system.

A typical use case description template [3] often includes two
parts, the overview information elements of use case and the de-
tailed description of use case flows. The first part consists of the
following elements: the use case name, the brief description of
use case, the actors participating in the use case, the precondition
and postcondition of the use case, and the trigger that initiates
the use case. The second part contains two types of event flows,
the basic flow and alternative flows. The basic flow covers
what normally happens when the use case is performed. The alter-
native flows cover optional or exceptional behaviour as well as the
variations of the normal behaviour. Both the basic and alternative
flows are often further structured into steps or subflows [9, 10].
Each step consists of actions performed either by the system or
actors. We refer to actors, the system, and other relation use cases
as interactive subjects of a use case. For example, Step 1 of
the basic flow is carried out by the Librarian actor, while Step 2

Table 1: A typical use-case-description template

Use case name: Lend book
Brief description: The Librarian processes a book loan.
Actors: Librarian.
Precondition: There is no constraints to start the use case.
Postcondition: If the use case successfully ends, the book loan is saved and a complete mes-
sage is shown. In the other case, the system displays an error message.
Trigger: The Librarian requests a book-loan process.
Special requirement: There is no special requirement.
Basic flow
1. The Librarian selects the Lend Book function.
2. The system gets the Librarian id. If it is null, it goes to step 2a.
3. The system shows the lend-book window and sets the book-loan date.
4. The Librarian enters a book copy id.
5. The system checks the book copy id. If it is invalid, it goes to step 5a.
6. The Librarian enters a borrower id.
7. The system validates the borrower id. If it is invalid, it goes to step 7a.
8. The Librarian clicks the save-book-loan button.
9. The system validates the conditions to lend book. If it is invalid, the system goes to step 9a.
10. The system saves the book loan record, then executing two steps 11 and 12 concurrently.
11. The system shows a complete message.
12. The system prints the borrowing bill.
Alternate flows
E1. request searched book
1. The Librarian clicks the search-book button after step 5a.1.
2. The system executes the extending use case Search book.
2a. The Librarian does not Login
. The system executes the included use case Login, if it is successful, it goes to step 3.
. The system shows an error message.
. The use case ends.
5a. The book copy id is invalid
1. The system shows an error message, then it goes to step 4.
7a. The Borrower id is invalid
1. The system shows an error message, then it goes to step 6.
9a. The lending condition is invalid
. The system shows an error message.
. The system ends the use case.

[SN O

-

N}

is performed by the system. A step may also contain the informa-
tion to decide the next moving is another step or another flow or
the starting of concurrent actions. As illustrated in Table 1, Step 3
includes two system actions, “The system shows the Lend book
window" and “The system assigns the current time to the date lend-
ing book". Step 5 contains a branching decision, “If it is invalid,
the system goes to step 5a". Step 10 contains the starting point of
two concurrent actions: “The system executes two step 11 and 12
concurrently”.

Apart from the seven types of use case actions proposed in [20,
24], we introduce two other types of actions: one is for extending
and the other is for including another use case into a given use
case.

Actor-Input is an actor action to enter data, e.g., the action
“The Librarian enters a book copy id” at Step 4 in Table 1 is an
Actor-Input.

Actor-Request is an actor action to send requests, e.g., the
action “The Librarian clicks the save-book-loan button” at Step 8
in Table 1 is an Actor-Request.

System-Display is a system action to send outputs to the actors,
e.g., the action “The system shows the lend-book window” at Step 3
in Table 1 is a System-Display.

System-Input is a system action to validate or update input
data, e.g., the action “The system sets the book-loan date” at Step 3
in Table 1 is a System-Input.

System-State is a system action to query or update current
system state, e.g., the action “The system saves the book loan record”
at Step 10 in Table 1 is a System-State.

System-Output is a system action to send outputs to the actors,
e.g., the action “The system shows an error message” at Step 1 of
the alternate flow 5a in Table 1 is a System-Output.

USL: Towards Precise Specification of Use Cases
for Model-Driven Development

System-Request is a system action to send a request to the
actors, e.g., the action “The system prints the borrowing bill” at
Step 12 shown in Table 1 is a System-Request.

System-Include is a system action to include another use case
e.g., the action “The system executes the included use case Login”
at Step 1 of the alternate flow 2a in Table 1 is a System-Include.

System-Extend is a system action to extend with another use
case e.g., the action “The system executes the extending use case
Search book” within Step 2 of the alternate flow E1 in Table 1 is a
System-Extend.

A use case is successfully executed only if the pre and postcon-
dition of its are satisfied. Furthermore, the pre and postcondition
of the actions of current flow need to be fulfilled also.

3 USE CASE SPECIFICATION IN USL

This section first overviews our approach. The basic idea is to
propose a domain specific language named USL to specify use cases.
Next, the section presents the abstract syntax of the USL and then
provides a formal semantics for it.

3.1 Overview of the USL Approach

Figure 2 illustrates our approach. First, we take as input a set of
use case diagrams, the textual descriptions of some use cases in
these diagrams and a class diagram presenting the domain concepts.
Then, we aim to represent each use case specification as a model
element of a so-called use-case domain. In order to define the use-
case domain, we define meta-concepts w.r.t (with regard to) the
structural elements of the typical use-case-description template and
the use case concepts as explained in Sect. 2. The meta-concepts
allow us (1) to represent the basic and alternate flows of a use case in
form of sequential, branched, or repeating steps, (2) to categorize use
case steps and actions based on the interactive subjects including
the system and actors, and (3) to represent constraints on the use
case and its flows.

Specifying use case Transforming
with USL USL models
- 4
el F34

Analysis class
Usecase || -] -
descriptions]

Modeler USL Approach

Figure 2: Overview of the USL Approach.

In order to represent textual descriptions of actions or constraints
within a use case specification, we consider them as operations on
an object-oriented model w.r.t the input conceptual model of the
system. In that way, we could employ pairs of pre and postcon-
dition as contracts on actions in order to obtain a more precise
specification of use case. The constraints are often expressed using
constraint languages such as the OCL [6], JML [19], and event nat-
ural language as mentioned in [20]. In this research, we employ the
OCL in order to present the constraints. Specifically, our approach is
realized as follows. We propose a domain specific language named
USL in order to represent use cases within the use-case domain.
Further, we define a formal semantics of the USL so that we could
transform USL models in to other artifacts such as test cases and
analysis class models.

SolCT ’17, December 7-8, 2017, Nha Trang City, Viet Nam

Table 2: List of utility functions w.r.t USL concepts

Utility function

Description

firstAct: FlowStep — Action

lastAct: FlowStep — Action

actions: FlowStep — Actions

firstAct: ControlNode — ControlNode
lastAct: ControlNode — ControlNode
source: FlowEdge — USLNode

target: FlowEdge — USLNode

guardE: FlowEdge — Constraint

guardE: USLNode — USLNode — Constraint

isCompleted: FlowEdge — Boolean

preA: Action — Constraint
preA: ControlNode — Constraint

postA: Action — Constraint
postA: ControlNode — Constraint

preC: USLModel — Constraint
postC: USLModel — Constraint
postC: USLModel — FinalNode — Constraint

Returning the first Actions of a FlowStep.
Returning the last Actions of a FlowStep.
Returning a set of Actions of a FlowStep.
Returning the ControlNode itself.

Returning the ControlNode itself.

Returning the source USLNodes of a FlowEdge.
Returning the target USLNodes of a FlowEdge.
Returning the guard condition.

Taking the source and target
USLNodes as input and returning the guard
condition.

Determining whether or not
lastAct(source(e)) has completed its
execution.

Returning the precondition of an Action.

If the ControlNode is not a InitialNode, re-
turning true, else returning the Constraint of
the InitialNode

Returning the postcondition of an Action.

If the ControlNode is not a FinalNode, return-
ing true, else returning the Contraint of the
FinalNode.

Returning the precondition of a USLModel.
Returning the postcondition of a USLModel.
Returning the postcondition of a particular

FinalNode of a USLModel.

3.2 The Abstract Syntax of USL

We define the USL metamodel w.r.t the use-case domain based on
(1) UML use case specification (Chapt. 18 of [15]), (2) the Use Case
Descriptions (UCDs) [3, 9, 10] and (3) the UML activity specification
(Chapt.s 15,16 of [15]). We will refer to these as the domain sources
(1), (2), and (3), respectively.

Figure 3 shows the metamodel of USL. For brevity, we divide
the metamodel into four blocks: (A), (B), (C), and (D). Figure 3-A
(i.e., block (A)) presents the top-level concepts. Figure 3-B presents
the FlowStep hierarchy. Figure 3-C presents the ControlNode hi-
erarchy. Figure 3-D presents the Action hierarchy and how it is
related to the FlowStep hierarchy. Figure 3-E presents the concept
Constraint and how it is used to specify Action, InitialNode,
FinalNode, and FlowEdge.

To conserve space, we will not repeat here the definitions of all of
the USL concepts that are described in the three domain sources. We
will instead focus on a key sub-set of the concepts - those that will
be used later to define the transformation of USL model. Figure 4
presents the USL model of the Lend book use case as shown in
Table 1. We will use this example USL model in order to illustrate
our definitions.

Action (domain sources (1,3)) represents a use case action that
is performed either by an actor or by the system. An Action is char-
acterised by the following attributes: actionName and parameters.
The parameters are represented by concept Parameter inherited
the concept Parameter of UML (as presented in Sect. 19.9.13 of [15]).
Action is specialized into two main types (as illlustrated in Fig. 3-D):
ActorAction and SystemAction. ActorAction is further special-
ized into ActorRequest and ActorInput. SystemAction is special-
ized into SystemInput, SystemOutput, SystemDisplay,
SystemState, SystemInclude, and SystemExtend that were ex-
plained in Sect. 2.

FlowStep (domain source (2)) is a sequence of Actions that rep-
resents a step in a basic flow or an alternate flow of the use case. It
is characterised by the following attributes: number (order number
of step), description (the content of the step) and maxloop (the

SolCT 17, December 7-8, 2017, Nha Trang City, Viet Nam

814 9
d! .m_mﬁaauw e [oogpuplewenp 0z &
i 2AES UEO] Jo0q =ssawW 50| © [ssom]memed ‘[soysjouene TH S
. 25Essaw] 614
i 212]dmoo & samoys wasds ayT []=maysig>|
red
1=02715<-((PIT TR0 TA=PIT) pue (pamonoq, = 914 § anba “?wcqnmﬂ.m - 1
e . e i [1:ymd]isenbeyo ‘[md]smene 8
i 23msq) pUE (PIgUR0Tq=PIg) pUE (PLOGTEOTY 5 11e TTq Fmsomioq |71
— 6= POg Q)a)esps < (sounsuIe W0 FoOg 50dy _ 14 a1 syvmd weisAs sy [7]=marsig=
mu Tre[1a]wesrd ToeoFooglideouos “[eaesewenE B8 1
k3 Apuennauog] 12
W 71 pue 11 5da1s om) Smnoaws uat) ‘procar| od| ~ = !
M o UEO] Jooq 2 S2aEs walsds AT ([or]l=maisig | SR=TRIpRIE 150
] 2 ST IE| %6
Wu m hmm =r{Rms(p=pafed i —F14 [FO0gPU=EFmERD i3
”m L | puE (PJa=DIq) UE0 THoOS) 102135 < {JS20URISU e TRO T 00 prengy | [ssaumons]wesed ‘[Mols|swenE T |
M ®. £10 UELRIQVT 211 0] 25ESSAM| S
JOLR WE 520005 We1sAs sy [1]=<masig=
ot [weoTqJwered]t 1
[z ‘[weopyoog]idzouc ‘[aieprEalswenE EF | |
] % 3 o 21 PHEAT 5131 J] 3004 PUS] 0] SUCHIPUOY 03 T 100 S st 21 —ssInz jso g} pd
w mr M 11 SRUEPIEA WA1SAS YT [g]=ma1sAg| H
k]] i
El il I — :aﬁ I 0<ezis<-{(p=pakedT) P (PIA=PIE D]
[Ted @ ol ™ i UEO THOOE)I3R]S <-()SIOURISU]|[E TR0 OO (PIENL)
@ m m m = m e[[meoToogeargingewene [oRlRweNE o
° Al I - P I T [Tonmqweo]| | iod
ol Py o 5] It I ! 00 Op P] J2MO1I00 =SSANZ 1150}
m m. mu £ M g m _..m H — -}00q-3ABG A1 SYA]D UELrRIqET A ([§l=103oy= i i
& i
%] £ = Rl I] ;) H
N] i - OO TS0,
m. 3 M mm, % = . =l |&E ..m 8 . ¥ . g m e Tmaﬂsuﬁﬁﬂm&mwg i;ﬂn?uwf.n ot
AR EH 3 - k5 {____-()seoumISUIE 12010 PUE (-p[q) ‘prenni £, T 3 OIS |amENE X
m i[5 O =l | LA [v BL 4 9 da1s 03 s20f 1 v ‘vRLEIQT 23 03 Fessaw|BIF
ElE] (% o1 I 1
m : m m .m 3032 UE spUss WRlsAs Sy []=wansig=
S — o (] L £
= m m L ‘[rasonog]idzouco’ 2y
o AR] N & _.u - Is E 0215 0152 En&nﬁmﬁAﬁﬁnnﬁ_m qghaepEs<)
r E | m <— Nm w J2:M01104 BT SSIEPIEA WRSAS 2UT [/]=ma)sAg=| e I2mo110g) 30 (=p]q) prency
]) G
2| & / g
g £ m A g ..me 5 ! g e
3 m)LL) =L L= = i weps< st Adogyood) Jo (=pIDA) prELD}
m] — e Toomﬁﬁdunﬂn?ﬁnﬁﬁﬂﬂwin BSJRENE o

un_ “Pl 13401104 B 518108 URLRIQFT S ‘[9]=<1013Y=|

5163 10T 0p P1 oo —ssamu1sogied

(0<0ems 5 (PIoa=pIoq 4d) [Hoogpua T emeNp__|oT®

(4)
[Parameier
Hon
action ame: Estring [~ |
I
SystemOuiput |
-displayHame: Estung| |-
Figure 3:

gpu=plewenp [proqJwend RmelueE & [FeogyareagingJsweno TRIERWENE ¢ [LT2
1eC d=1s J=2yE voing Yooq|grs
-Y3TEas U] SYIMD UBLRIq] 2T []]=1009%|

FE

L

5| pr Ados yooq e 13108 WRLRIQET ST [§]<10)3%=

[
|t
5;

3| ; x
.m € i 18]35.-()saouersuqe Adoyoog) pue (<>pIIq)PIEND ‘[ssamuz]wered ‘[moyslawene -
= Q i 01 5308 I} U1} WELRRIT] 31 0 SGessa (<[5
I .W JoHR UE SPURS WAIsAS AL .EAEEM»MV
: & o\m\n - Em T op R T o [Adoyyeog]idzouo[212py | e
g Nm_ £] 4 5 BC U205 015203 31 PIEALE 51 IH] Y _
=1 M mm o m 4 § Ados jooq o s wa1sAs 2y [c]=masig= g I EC
2
At A
i & |3k 3 = &
=]
- 53 ¥
- 2

| el H sre| [eemmz]wered [uoys [FweNE o= m&_, RE 12
o B 11 [Tl 23EsSar 10113 [oogpuslawenp _ -
mu o b m. m_um M - gm m m I UE sM0S WRIsAS By [7]=maisig= [uisselauene @ L e
GHE & R4l wm& FIkd & [H00GPUA T |sENp MO PWENE 5 |ge [§000 qarsg[eses 351 <T-|81E
e T e T 1
= g B Z & .m El m £ g = i = Nu _ 213 521002 WRIsAs A [[]=mapsig=|
_,um.uWMWQQWm Mnh 2 Fam / vop JuemRAnbagEReds
= m g% & mwn R = 5 & +IE [WEoTlese2 50 =T, IR booad veol-Nooq € sisenbel WeREIq] SYL REENL <
il A A ' — 1131 W50 33E3 250 peppm A | [, =
£l seinoexe washs oyl [[]=wasig=| - - . s
7 /papmenlamy Torueed PSR ¢ E o we shejdsip wRlsds 2 SSE) RO SR UL,

T s e py| 0TS S afessam a1a]dmoo € pUE pases 51 UE] Jooq

e7 d215 01 52038

&1 IO T g o s warsds ey [rlemensig| S SPUS Ausseosns 35e) ssn oy 1] TOMPUOISO
] 0 asE
ﬂmm ~PIPRELD c % 250 33 WIS 0} SIUIRNSUOD OU ST RIS [UOIpUROalg
T2 [menp Tieogpusjnumsweno TiaeEssuRNE ¢ EO] §00q € 5255209 yeeIqr ST wonduassg <
ERREE e ;
- 0 J00q PR RWEN AN ¢

¥oOg pua ey} 5198fes URLEIQET 2 [1]<:103Y>=

and JoinNode. These respectively repre-

sent the starting and ending points of use case, the branching points

5

is specialized into InitialNode, FinalNode,

>

Control Node (domain source (3)) represents a control action
-C

that regulates the flows across other USLNodes. A ControlNode, as

SystemState a6. Step s12 contains the SystemRequest al3. Step
illustrated in Fig. 3

s13 contains the SystemInclude al4. Step s16 contains the
SystemExtend al7. Action a5 has a the Parameter “bCId”.

Figure 4: The USL model of Lend book use case.
DecisionNode, ForkNode
of steps, and the starting and ending points of concurrent actions

, the s1is an ActorStep, and

s2 is a SystemStep. Step s4 contains the ActorInput a5. Step s1
contains the ActorRequest al. Step s2 contains the SystemInput

-B): ActorStep and SystemStep,
a2. Step s11 contains the SystemOutput al2. Step s5 contains the

as mentioned in Sect. 2. We define three utility functions as shown

in Table 2.

maximum iteration of the step if existing). FlowStep is specialized
., s19. Among these

Example 3.2.1. The USL model shown in Fig. 4 consists of the

into two types (as shown in Fig. 3

FlowSteps sli, ..

USL: Towards Precise Specification of Use Cases
for Model-Driven Development

in steps. To ease notation, we define two overloading functions
w.r.t ControlNode and a function w.r.t DecisionNode as shown in
Table 2.

Example 3.2.2. The USL model as shown in Fig. 4 contains twelve
ControlNodes, the c0, ..., c11.In particular the cOis an InitialNode,
the ¢9, c10 and c11 are different FinalNodes, thecl, ..., c4,c7,and c8
are DecisionNodes, the ¢5 is a ForkNode, and the c6 is a JoinNode.

USLNode represents all the nodes FlowStep or ControlNode
that make up a USL model.

FlowEdge (domain source (3)) is a binary directed edge between
two USLNodes. If both steps are part of a basic flow, we call the tran-
sition a BasicFlowEdge. On the other hand, if both steps are part
of an alternate flow, we call the transition an AlternateFlowEdge.
As shown in Table 2, we define two utility functions source and
target, two overloading functions guardE, and a function
isCompleted w.r.t the concept FlowEdge.

Example 3.2.3. The USL model as shown in Fig. 4 contains the
bi, ..., b20 as BasicFlowEdges and the al 1, ..., al_15 as
AlternateFlowEdges.

Variable (domain source (3)) represents variables that hold data
values during the execution of a use case scenario. It is inherited
the concept Variable of UML presented Sect. 15.7.25 of [15].

DescriptionInfor (domain source (2)) maintains the other tex-
tual description of use case. Constraint (domain source (1,3)) rep-
resents constraints that are formed by use case variables: (1) the
precondition of use case associated with InitialNode; (2) the post-
condition of use case associated with FinalNodes; (3) guard condi-
tions of a transition; and (4) pre and postcondition of an Action.
This concept is inherited the concept Constraint in UML, shown
in Sect. 7.6 of [15]. As depicted in Table 2, we define utility functions
w.r.t Constraints to get the pre and postcondition of actions and
use case.

Example 3.2.4. The USL model as shown in Fig. 4 contains the
guard conditions g1, ..., g10 and the postcondition of Actions
pl, ..., p7.

We formally define a USL model as follows. Here, we consider
a USL model as a graph consisting of nodes and edges. A node
represents either a step or a control action performed by the system.
Further, we will take into account the fact that the underlying use
case references the domain concepts, which are captured in a UML
class diagram.

Definition 1. A USL Model of a use case is the tuple
D = (D¢, A, E,C) such that:

D¢ is a class diagram to present the underlying domain;

A is the set of USLNodes;

E is the set of FlowEdges;

C=GUCpreuc YU Cpostuc YU Cprea U Cposta is the set of
Constraints,

where:

e A=A¢Node UAf;

® AcNode = NI UNF U Ny UN;j U Ng, where
Nr ={a| a € A InitialNode(a)}
Np = {a| a € A FinalNode(a)},
Ny ={a| a € A, DecisionNode(a)},

Nj ={alae€ AJoinNode(a)}, Ny = {a | a € A ForkNode(a)};

e [N7| =1;|Np| > 1;

SolCT ’17, December 7-8, 2017, Nha Trang City, Viet Nam

° Ap = Ag U As, where
Af ={a| a € A FlowStep(a)}, Aq = {a | a € A, ActorStep(a)},
As ={a| a € A SystemStep(a)};

o |As| 2 1;Vs € Ap.Jactions(s)| = 1;

e E=E, UE; and E, N E,; = 0, where
Ep, = {e | e € E,BasicFlowEdge(e)},

Eq = {e | e € E, AlternateFlowEdge(e)}.

Example 3.2.5. The USL model as shown in Fig. 4 contains the
following elements: Ny = {c0}; Nr = {c9, c10, c11}; Acnode =

{c0, ..., cll}; Ay = {sl, s4,s6,s8,s16}; As = {s2, s3, s5, s7, s9,
.., s15,517, 518, s19}; Ep, = {b1, ..., b20}; Eq ={al_1, ..., al_15};
G = {91, ..., g10}; Cpreuc = 0; Cpostuc = 0; Cprea = 0; and

Cposta = {pl, ..., p7}. D¢ corresponds to the conceptual model
shown in the part (B) of Fig. 1. There are 16 constraints for guard
conditions and pre and postcondition, e.g., the postcondition p1 of
all is expressed by the following OCL contraint [16]:
BookLoan.allInstances()->select(b|(b.BCid= bLoan.BCid) and
(b.Bid=bLoan.Bid) and (b.payed="0") and
(b.Lid=bLoan.Lid))->size()=1.

3.3 Formal Semantics of USL

We use labelled transition system (LTS) [11] to formally define
the operational semantics of USL. Conceptually, the execution of a
USL model is modelled by an LTS, whose transitions are caused by
the execution of use case actions, and whose states are defined by
variable assignments during the execution. We define the LTS of a
USL model recursively from the basic USL concepts. The semantics
of these concepts are defined as summarized Table 3. Definition 2
formalizes the notion of the LTS of the USL model.

Definition 2. Given a USL model D = (D¢, A, E,C), an LTS that
results from the execution of D is the tuple (3(V),P(G X A X
P), T, Qinit> F) such that:

e V is a finite set of variables whose types include the basic
types and the classes of the D¢;

o X(V) is the set of states (), each of which is a set of value
assignments to a subset of variables in V;

® P C Cposta U Cpostuc is the set of constraints as the post-
conditions of D;

o A =A.Node YAact is the set of actions;

® G CGUCpreuc Y Cprea is the set of guard conditions of
the transitions;

o T CUV)XP(G X AXP)XZ(V) is the transition relation
defined as follows: A transition t = (a,(g,a,d),a’) € T,

written as o glil: o', where a € A is the action that causes
t, g = defGuard(a) € G is the guard condition to execute a,
r € P is the postcondition of a, and @, @’ € 3(V) are the
pre and post-states of ¢ (resp.) such that o’ satisfies r;

e ajniy € X(V) is the initial state;

e F C 3(V) is the set of final states,

where:

® Aget = UseAf actions(s);
e defGuard is defined as follows (summarized from Table 3).

SolCT 17, December 7-8, 2017, Nha Trang City, Viet Nam

Table 3: LTS-based semantics of the basic USL concepts

USL Notation LTS-based semantics
concepts
gilailr gnlanlrn
Step . (OD/N /_\‘ where g; = preA(a;), ri = postA(a;) (Vi=2,...,n).
gilailr g2laz|rz
Flow edge @/_\ where ap = firstAct(ny), g2 = guardE(nl, n2) A preA(az) rp = postA(az).
galaalra gele|true galalra .
Decision where ag = lastAct(ng); gc = guardE(ng, c¢), a = firstAct(n),
node ° @ e 0 ga = guardE(c, n) ApreA(a)stn € {ny,...,nm}.
Fork node . where ag = lastAct(ny): gc = gtfardE(nf, ¢), a;j = firstAct(n;),
gi = preA(a;), ri = postA(a;) (Vi=1,..., m)
o
gilailr
ni c|t jlaj|ri
. @ gwleftrue 9jlajlr where a; = lastAct(n;),(Vi=1,..., m);
Join node C s —] 9w = |/\(eeD.E, target(e)=c) isCompleted(e) A guardE(e));
¢ @ aj = firstAct(nj), gj = guardi(c, nj) A preA(aj), rj = postA(a;).
9
rulc|true glalr
Initial node c . “ where a = @jnir, ru = prec(D);
° e @ a = firstAct(n), g = guardi(c, n) A preA(a), r = postA(a).
glalr gelelry
Flow final ’ _ _ -
o n ¢ @/—\ where a’ € F,rp = postC(D, ¢), gc = guardE(n, c);a = lastAct(n),
r:]:) e SystemInclude(a) (a € actions(n)), t = (a, (galalra), a);
WII = —
include 1 = nIl,C(.b.; nr, € Dr.A ga = guardE(nl, n) A preA(a) A
action pre 1)
o D
n n n n n
st ot a e n € A, otions(n)] - 1.
with) — SystemExtend(a) (a € actions(n)), t = (a, (galalra), @');
extend - nxys -2 NXp, €Dx.A ga = preA(a) A preC(Dx),
action @ nx, nxXpm ga = guardE(nl, n) A preA(a) A preC(Dx), rq = postC(Dx)
Legend @ a action in a step; a step; ‘ use case; @ a state

Brrower
[Bid [Name[BDay |
[123 Jaoney| s/2/30 |
[128 Mary | 2/3/51 |

BookCopy
[Bcid [Bkid | state |
[oo1 | noz [o |
[oo2 |'no1 | 0]

BookLoan Librarian

[Blid] BCid [Bid [Lid [Ldate [Payed| [Lid [Name[BDay | Pword
"1 To02 123 [110[o/3/27] 0 | [110] Davi |5/z/s0] 12334
111| Bob [9/3/91] 12344

Figure 5: A snapshot w.r.t the Lend book use case.

preC(D), if InitialNode(a)

guardE(e)(e € D.E, target(e) = a), if DecisionNode(a)V ForkNode(a)V FinalNode(a)
A(eeD.E,target(e)=a) isCompleted(e) A guardE(e), if JoinNode(a)

preC(Dy) A preA(a) A guarde(e)(e € D.E, target(e) = a), if SystemInclude(a)
preC(Dx) A preA(a) A guardE(e)(e € D.E, target(e) = a), if SystemExtend(a)

preA(a) A guardE(e)(s € Ap, target(e) = s), if ((a € Ager) A (a = firstAct(s))
preA(a)(s € Ag, a € actions(s)), if otherwise

Example 3.3.1. We assume that the snapshot shown in Fig. 5 is cap-
tured when the USL model shown in Fig. 4 is executed at Step a9. We
have the following value assignments: (bCId, “001”) = bCId = “001”,

(IId, “110) = IId = “100%, (IDate, “25/8/17") = IDate = “25/8/17",

(bId, “1234”) = bCId = “1234”. The objects of the snapshot are as
follow: BookCopy:“001”, BookCopy:“002”, Borrower:“123”, Borrower:“124”,
Librarian:“100”, Librarian:“111”, BookLoan:“1”. Then, we have a9 =
{(bCId, “0017), (IDate, “0017), (11d, “110”), (bId, “1247),
(bLoan, (“2, “0017, “1247,“110", “25/8/17°,0)), BookCopy:“001”,
BookCopy:“002”, Borrower:“123”, Borrower:“124”, Librarian:“100,
Librarian:“111”, BookLoan:“17}.

Certain use case actions are concurrent actions, whose execu-
tions cause concurrent transitions between states. The next
two definitions define precisely what this means.

Definition 3. Given a current state « of an LTS L of a USL model
D, and a transition t = « gﬂr a’ € L.T, we define the following

terms:

e preT(t) = a, postT(t) = &, guard(t) = g, postC(t) = r, and
act(t) = a.
e eval(g) is the evaluation of Constraint g.

USL: Towards Precise Specification of Use Cases
for Model-Driven Development

USL Tool [P
Manage Models ~ Generate Aritifacts
£33 use case diagram 7] USL editor o B
- @Lend book —
=13 Lend book -> Logi) | | File Edit Diagram Window Help
B4 (Lend book -» Search LoanB.usim &2 = C|&
- & Librarian [eAetors [T Librarian requests he systemto proc ~ | @@ patete b B
~—(Librarizn -» Lend bog) |1~ Fl=
Lamiaons [:6 action objectNamellend bo-. = s cp >
- @Search book dor |0
- {#Jpomain dass [eSystern> 2] System informs the ibrarian that it | _idNdgicn ;‘
i EBook D) actionNamelshow], displeyName[Land koe | FlowStep. &
+ @ Bodkcony 2 & sctionNamelshow], Date:Dat 4 SystemAction
i [EBookLoan 1 = ——
i Esorroner ‘ i | * = ContiolN.. @ T
- B ibrarian C

Figure 6: USL tool.

e reachable(a) = {t | preT(t) = a} is the set of transitions
that start from a.

e firable(a) = {t € reachable(x), eval(guard(t)) = true}
is the set of transitions that can be fired from a.

Example 3.3.2. When the USL model shown in Fig. 4 executes
at Step al1, we have aq1; = {(bCId, “001”),(IDate, “0017),(I1d, “110”),
(bId, “124”),(bLoan, (“2”,“001”,“124”, “110”, “25/8/17”,0)), BookCopy:“0017,
BookCopy:“002”,Borrower:“123”, Borrower:“124”, Librarian:“100”,

Librarian:“111”, BookLoan:“1”, BookLoan:“2”}.

. truel|cs|true
The transition #,11,c5 = @an1

{ta11,cs} and firable(aqi1)={ta11,cs }-

Definition 4. Given a current state o of an LTS L of a USL model
D, a concurrent transition r € L.7 is a set of transitions
t1,t2,...,ty € firable(a).

Example 3.3.3. When the USL model shown in Fig. 4 executes at

acs. reachable(agi1) =

. truelal2|p2
Step ¢5, we have two transitions t¢5 412 = Qc5 — agq12 and
truelal3|p3
tes,al3 = Qcs —> Qq13, reachable(acs) = {tcs, a12, tes,a13}

and firable(acs) = {tcs,a12. tes,a13}. Hence, {tcs,12, tes13} is a
concurrent transition, and aq12, 2413 satisfy p2, p3, respectively.
Within our approach the LTS of a USL model may contain both
concurrent and non-concurrent transitions. We next define the
semantics of a use case scenario.
Definition 5. Given a use case scenario of a USL model D
that consists of the following sequence of actions (ag, . . ., ap—1)-
The execution of this scenario is realized as a path in the LTS L

to 4 Fpt gilailri
of Dip =0y > a1 = -+ — au, wheret; = o; " — aiy1

(Vi=0,...,n—=1), 2y = L.-init, @n € L.F,and t; € L.T.
Example 3.3.4. When the USL model shown in Fig.4 executes at
Step @411 as mentioned above, and the eval(gl), eval(g3), eval(gs),
and eval(g7) are true, then the use case scenario is as follows:

truelalltrue truela2|true truelcl|true glla3|true
P = Qinit — Aal — Xa2 — Oy —
truelad|true truelaS|true truelabltrue truel|c2|true
Qa3 - Xaq — a5 — Qa6 —

g3lalltrue truel|a8|true truel|c3|true g5|lad|true
Ac2 - Qa7 — [22°F3 — Ac3 — xa9
truelall|true g7lall|true truel|c5|true

— — [97551 —> s
true|c6|true truel|c9|true

alo
{truel|al2|p2,true|al3|p3}
> Qql12-al3 > Ac6 > Ac9

(aco € F).

4 TOOL SUPPORT AND DISCUSSIONS

We realize our USL approach with a support tool illustrated in Fig. 6.
The main functionality of the tool is to take as input UML models

SolCT ’17, December 7-8, 2017, Nha Trang City, Viet Nam

and to offer means for the modeler to produce a corresponding USL
model.

The left part of Fig. 6 illustrates the function loading as input
a UML use case diagram and a class diagram for the conceptual
domain. These diagrams are then displayed on a tree structure.
The right part of Fig. 6 corresponds to the function of USL Edi-
tor to create USL models. The function is realized using the EMF
project and the GMF project within the Eclipse tool. The former
helps us build the abstract syntax of USL, while the latter supports
the concrete syntax together with constraint rules expressed in
OCL expressions. The left part of the USL Editor is used to draw
USL models whereas the right part contains a palette containing
notations. The USL editor allows creating a USL model by dragging
and dropping the notations on the palette. The loaded elements
in the first part will help the created USL models in the second
part achieving consistences with the built elements into the UML
models.
Discussion The USL approach allows us to obtain the following
benefits:

e Consistency: With USL we can specify use cases for differ-
ent stakeholders in a whole model. Hence, the USL model
makes a consistency view for different stakeholders about
functional requirements of the system.

e Usability: The USL concepts correspond to the concepts of
the use case description domain. Therefore, non-technical
stakeholders an apply their own language when creating
USL models.

e Specification ability: USL models are used not only to doc-
ument functional requirements of the system but also to
manipulate them. The precise semantics of USL, defined by
mapping the USL to a Labelled Transition System (LTS),
opens a possibility for transformations from USL models to
other artifacts such as test cases and analysis class models.
The artifact generating transformations from USL models
will be part of our future works. Besides, use case descrip-
tions may contain constraints on the real time elements. The
ability presenting such constraints depend on choosing a
suitable constraint language. Within our approach, we use
the OCL to present constraints.

e Tool support: The graphical concrete syntax of the USL al-
lows creating models visually. The graphical syntax of USL
language might be not as flexible as a textual syntax. Thus,
it might be necessary to extend the USL editor in order to
specify USL models in a textual form.

5 RELATED WORKS

We position our work in the intersection between use case-driven
development [9] and model-driven development [2]. Within this
context, a use case model is usually represented as a combination of
a UML use case diagram and a textual description written in natural
language. Such a use case specification tends to be ambiguous,
unclear, and inconsistent. In order to precisely specify use cases
several approaches as in [13, 14, 18, 20, 24] have been proposed.
Tao Yue et al . [24] proposed a use case modeling language called
Restricted Use Case Modeling (RUCM), which is composed of a use
case template and a set of well-defined restrictions for a restricted

SolCT 17, December 7-8, 2017, Nha Trang City, Viet Nam

natural language to specify use cases. However, the RUCM is semi-
formal textual language and it does not mention some important
information such as concurrent actions, the pre and postcondition
of actions.

Murali et al. [14] proposed using a mathematical language w.r.t
Event-B in order to formalize the pre and postcondition of triggers
and actions within use case flows. However, other description of a
use case are still informal.

Misbhauddin et al. [13] extended the meta-model of UML use
case models in order to capture both the structural and behavioral
aspects of use cases. In order to specify a use case, they developed
a prototype tool called UCDest. However, concurrent actions, pre
and postcondition of actions have not been mention. In addition,
action types are defined inadequately.

Savic et al. [18] and Smialek et al. [20] proposed the DSLs named
SilabReq and RSL in order to capture use cases as the functional
requirements models. The DSLs only focus on flows describing use
case scenarios while other description information of use case is
omitted. In addition, the RSL does not define distinguish actions
inserting an extending use case and an included use case, both are
defined <invoke> action. Furthermore, the DSLs do not mention
concurrent actions, pre and postcondition of actions. They also lack
a formal semantics.

Our previous work in [4, 5] proposed a metamodel to specify use
cases. In that work we also tried to define a precise semantics for
use cases based on graph transformation.Our work here continues
it by enhancing the use case metamodel as well as proposing a
new LTS-based technique in order to characterize the operational
semantics of use case.

Furthermore, all above mentioned approaches still lack a method
specifying use cases satisfying all relevant information of use cases
including flows, steps, system actions, actor actions, control flows,
relationships and constraints on the use case and its flows.

The USL language, introduced in this work, aims to cover all
relevant information of a use case including both structural and
behavioral aspect. Comparing to the current works in literature, the
USL could obtain the following advantages: (1) to specify concurrent
actions in flows; (2) to capture and represent nine action types in
which there are the system action including another use case and
the system action extending another use case that have not been
mentioned in other research; (3) to present not only constraints on
the use case and its flows but pre and postcondition of each action
in flows; (4) to present control flows of steps within the use case.
In addition, in this paper we also defined operational semantics of
the USL to specify dynamic information when use case scenarios
execute. The result of that, USL models are precise source models
for transformations generating other artifacts in MDD.

6 CONCLUSIONS AND FUTURE WORK

This paper proposed a DSL named USL for use case specification.
The USL allows specifying more complete and precise use cases.
A USL model can cover the relevant information of a use case
including flows, steps, system actions, actor actions, relationships,
control flows, and constraints on the use case. We built the abstract
syntax of the USL and a modeling tool to create the USL models.
We also defined a formal semantics for USL by mapping to an LTS.

Therefore, the USL model can be transformed into other artifacts
such as test cases and analysis class models.

In the future work, we focus on realizing transformations from
USL models in order to generate test cases as well as other model
artifacts automatically.

ACKNOWLEDGMENTS

We wish to thank the anonymous reviewers for their useful com-
ments.

REFERENCES

[1] Jests M. Almendros-Jiménez and Luis Iribarne. 2005. Describing Use Cases with
Activity Charts. In Proc. 2004th Int. Conf. on Metainformatics (MIS’04). Springer-
Verlag, Berlin, Heidelberg, 141-159.

Marco Brambilla, Jordi Cabot, and Manuel Wimmer. 2012. Model-Driven Software
Engineering in Practice (1st ed.). Morgan & Claypool Publishers.

Alistair Cockburn. 2000. Writing Effective Use Cases (1 edition ed.). Addison-
Wesley Professional, Boston.

Duc-Hanh Dang. 2008. Triple Graph Grammars and OCL for Validating System
Behavior. In Proc. 4th Int. Conf. Graph Transformations (ICGT), Vol. LNCS 5214.
Springer, 481-483.

Duc-Hanh Dang, Anh-Hoang Truong, and Martin Gogolla. 2010. Checking the
Conformance between Models Based on Scenario Synchronization. Journal of
Universal Computer Science 16, 17 (2010), 2293-2312.

Martin Giese and Rogardt Heldal. 2004. From informal to formal specifications
in UML. In Proc. of UML2004, Lisbon, volume 3273 of LNCS. Springer, 197-211.
Wolfgang Grieskamp and Markus Lepper. 2000. Using use cases in Executable
Z.In ICFEM 2000. Third IEEE International Conf. on Formal Engineering Methods.
IEEE, York, England, 111-119.

Richard C. Gronback. 2009. Eclipse Modeling Project: A Domain-Specific Language
(DSL) Toolkit (1 edition ed.). Addison-Wesley Professional, Boston.

Ivar Jacobson. 2004. Object-Oriented Software Engineering: A Use Case Driven
Approach. Addison Wesley Longman Publishing Co., Inc.

Ivar Jacobson, Ian Spence, and Kurt Bittner. 2011. USE-CASE 2.0 The Guide to
Succeeding with Use Cases. Ivar Jacobson International SA.

Robert M. Keller. 1976. Formal Verification of Parallel Programs. Commun. ACM
19, 7 (July 1976), 371-384. https://doi.org/10.1145/360248.360251

Liwu Li. 2000. Translating Use Cases to Sequence Diagrams. In Proc. 15th IEEE
Int. Conf. on Automated Software Engineering (ASE "00). IEEE Computer Society,
Washington, DC, USA, 293-298.

Mohammed Misbhauddin and Mohammad Alshayeb. 2015. Extending the UML
use case metamodel with behavioral information to facilitate model analysis and
interchange. Software & Systems Modeling 14, 2 (May 2015), 813-838.

Rajiv Murali, Andrew Ireland, and Gudmund Grov. 2016. UC-B: Use Case Mod-
elling with Event-B. In Abstract State Machines, Alloy, B, TLA, VDM, and Z (LNCS),
Michael Butler, Klaus-Dieter Schewe, Atif Mashkoor, and Miklos Biro (Eds.).
Springer International Publishing, Switzerland, 297-302.

OMG. 2005. UML 2.5. (May 2005). http://www.omg.org/spec/UML/2.5/

OMG. 2006. OCL 2.0. (May 2006). http://www.omg.org/spec/OCL/2.0/

Klaus Pohl. 2010. Requirements Engineering - Fundamentals, Principles, and | Klaus
Pohl | Springer. Springer-Verlag Berlin Heidelberg.

Dusan Savi¢, Sinisa Vlaji¢, Sasa Lazarevi¢, Ilija Antovi¢, Vojislav Stanojevi¢, Milo§
Mili¢, and Alberto Rodrigues da Silva. 2016. Use Case Specification Using the
SILABREQ Domain Specific Language. Computing and Informatics 34, 4 (Feb.
2016), 877-910.

Peter Schmitt, Isabel Tonin, Claus Wonnemann, Eric Jenn, Stéphane Leriche, and
James J. Hunt. 2006. A Case Study of Specification and Verification Using JML
in an Avionics Application. In Proc. 4th Int. Workshop on Java Technologies for
Real-time and Embedded Systems (JTRES "06). ACM, New York, NY, USA, 107-116.
Michal Smialek and Wiktor Nowakowski. 2015. From Requirements to Java in a
Snap: Model-Driven Requirements Engineering in Practice. Springer, Switzerland.
Jitendra Singh Thakur and Atul Gupta. 2014. Automatic Generation of Sequence
Diagram from Use Case Specification. In Proc. 7th India Software Engineering
Conf. (ISEC ’14). ACM, New York, NY, USA, 20:1-20:6.

Saurabh Tiwari and Atul Gupta. 2015. An Approach of Generating Test Re-
quirements for Agile Software Development. In Proc. 8th Conf. on India Software
Engineering (ISEC °15). ACM, New York, NY, USA, 186-195.

Saurabh Tiwari and Atul Gupta. 2015. A Systematic Literature Review of Use
Case Specifications Research. Inf. Softw. Technol. 67, C (Nov. 2015), 128-158.
Tao Yue, Lionel C. Briand, and Yvan Labiche. 2013. Facilitating the Transition
from Use Case Models to Analysis Models: Approach and Experiments. ACM
Trans. Softw. Eng. Methodol. 22, 1 (March 2013), 5:1-5:38.

e
o

(18

[19

[20

[21

~
5,

[23

[24

