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Automatic human facial recognition has been an active reasearch topic with various po-
tential applications. In this paper, we propose effective multi-task deep learning frame-
works which can jointly learn representations for three tasks: smile detection, emotion
recognition and gender classification. In addition, our frameworks can be learned from
multiple sources of data with different kinds of task-specific class labels. The extensive
experiments show that our frameworks achieve superior accuracy over recent state-of-
the-art methods in all of three tasks on popular benchmarks. We also show that the
joint learning helps the tasks with less data considerably benefit from other tasks with
richer data.

Povzetek:

1 Introduction

In recent years, we have witnessed a rapid boom of
artificial intelligence (AI) in various fields such as
computer vision, speech recognition and natural
language processing. A wide range of AI prod-
ucts have boosted labor productivity, improved
the quality of human life, and saved human and
social resources. Many artificial intelligence ap-
plications have reached or even surpassed human
levels in some cases.

Automatic human facial recognition has be-
come an active research area that plays a key role
in analyzing emotions and human behaviors. In
this work, we study different human facial recog-
nition tasks including smile detection, emotion
recognition and gender recognition. All of three
tasks use facial images as input. In smile detec-
tion task, we have to detect if the people appear-
ing in a given image are smiling or not. We then
classify their emotions into seven classes: angry,
disgust, fear, happy, sad, surprise and neutral in

emotion recognition task. Finally, we determine
who are males and who are females in gender clas-
sification task.

In general, these tasks are often solved as sep-
arate problems. This may lead to many diffi-
culties in learning models, especially, when the
training data is not large enough. On the other
hand, the data of different facial analysis tasks
often shares many common characteristics of hu-
man faces. Therefore, joint learning from multiple
sources of face data can boost the performance of
each individual task.

In this paper, we introduce effective deep con-
volutional neural networks (CNNs) to simulta-
neously learn common features for smile detec-
tion, emotion recognition and gender classifica-
tion. Each task takes input data from its cor-
responding source, but all the tasks share a big
part of the networks with many hidden layers.
At the end of each network, these tasks are sep-
arated into three branches with different task-
specific losses. We combine all the losses to form
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a common network objective function, which al-
lows us to train the networks end-to-end via the
back propagation algorithm.

The main contributions of this paper are as fol-
lows:

1. We propose effective architectures of CNNs
that can learn joint representations from dif-
ferent sources of data to simultaneously per-
form smile detection, emotion recognition
and gender classification.

2. We conduct extensive experiments and
achieve new state-of-the-art accuracies in dif-
ferent tasks on popular benchmarks.

The rest of the paper is organized as follows. In
section 2, we briefly review related work. In sec-
tion 3, we present our proposed multi-task deep
learning frameworks and describe how to train
the networks from multiple data sources. Finally,
in section 4, we show the experimental results
on popular datasets and compare our proposed
frameworks with recent state-of-the-art methods.

2 Related work

2.1 Deep convolutional neural
networks

In recent years, deep learning has been proven to
be effective in many fields, and particularly, in
computer vision. Deep CNNs are one of the most
popular models in the family of deep neural net-
works. LeNet [21], and AlexNet [20] are known to
be the earliest CNN architectures with not much
hidden layers.

Latest CNNs such as VGG [33], Inception [35],
ResNet [13] and DenseNet [16] tend to be deeper
and deeper. In ResNet, residual blocks can be
stacked on top of each other with over 1000 lay-
ers. Meanwhile, some other CNN architectures
like WideResNet [41] or ResNeXt [40] tend to
be wider. All these effective CNNs have demon-
strated their impressive performances in one of
the biggest and the most prestigious competitions
in computer vision - the annual ImageNet Large
Scale Visual Recognition Challenge (ILSVRC).

2.2 Smile detection

Traditional methods often detect smile based on a
strong binary classifier with low-level face descrip-

tors. Shan et al. [32] propose a simple method
that uses the intensity differences between pixels
in the gray-scale facial images and then combines
them with AdaBoost classifier [39] for smile de-
tection. In order to represent faces, Liu et al. [23]
use histograms of oriented gradients (HOG) [10],
meanwhile, An et al. [3] use local binary pat-
tern (LBP) [2], local phase quantization (LPQ)
[25] and HOG. Both of them [23, 3] then apply
SVM classifier [9] to detect smiles. Jain et al.
[18] propose to use Multi-scale Gaussian Deriva-
tives (MGD) and SVM classifier as well for smile
detection.

Some recent methods focus on applying deep
neural networks to smile detection. Chen at al.
[6] use deep CNNs to extract high-level features
from facial images and then use SVM or Ad-
aBoost classifiers to detect smiles as a classifica-
tion task. Zhang et al. [42] introduce two effi-
cient CNN models called CNN-Basic and CNN 2-
Loss. The CNN-2Loss is a improved variant of the
CNN-Basic, that tries to learn features by using
two supervisory signals. The first one is recogni-
tion signal that is responsible for the classification
task. The second one is expression verification
signal, which is effective to reduce the variation of
features which are extracted from the images of
the same expression class. [30] propose an effec-
tive VGG-like network, called BKNet, to detect
smiles. BKNet achieves better results than many
other state-of-the-art methods in smile detection.

2.3 Emotion recognition

Classical approaches to facial expression recogni-
tion are often based on Facial Action Coding Sys-
tem (FACS) [11]. FACS includes a list of Action
Units (AUs) that describe various facial muscle
movements causing changes in facial appearance.
Cootes et al. [38] propose a model based on an
approach called the Active Appearance Model [8]
that creates over 500 facial landmarks. Next, the
authors apply PCA algorithm to the set of land-
marks and derive Action Units (AUs). Finally, a
single layered neural network is used to classify
facial expressions.

In Kaggle facial expression recognition compe-
tition [1], the winning team [36] propose an effec-
tive CNN, which uses the multi-class SVM loss
instead of the usual cross-entropy loss. In [31],
Sang et al. propose the so-called BKNet architec-
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ture for emotion recognition and achieve better
performance compared to previous methods.

2.4 Gender classification

Conventional methods for gender classification of-
ten take image intensities as input features. [26]
combines the 3D structure of the head with image
intensities. [15] uses image intensities combined
with SVM classifier. [4] tries to use AdaBoost in-
stead of SVM classifier. [12] introduces a neural
network trained on a small set of facial images.
[37] uses the Webers Local texture Descriptor [7]
for gender classification. More recently, Levi et
al. [22] present an effective CNN architecture that
yields fairly good performance in gender classifi-
cation.

2.5 Multi-task learning

Multi-task learning aims to solve multiple classi-
fication tasks at the same time by learning them
jointly, while exploiting the commonalities and
differences across the tasks. Recently, Kaiser et
al. [19] propose a big model to learn simulta-
neously many tasks in nature language process-
ing and computer vision and achieve promising
results. Rothe et al. [28] propose a multi-task
learning model to jointly learn age and gender
classification from images. Zhang et al. [43] pro-
pose a cascaded architecture with three stages of
carefully designed deep convolutional networks to
jointly detect faces and predict landmark loca-
tions. Ranjan et al. [27] introduce a multi-task
learning framework called hyperface for face de-
tection, landmark localization, pose estimation,
and gender recognition. Nevertheless, the hyper-
face is only trained from a unique source of data
with full annotations for all tasks.

3 Our proposed frameworks

3.1 Overall architecture

In this work, we propose effective deep CNNs that
can learn joint representations from multiple data
sources to solve different tasks at the same time.
The merged dataset (Fig. 1) is fed into a block
called “CNN Shared Network”, which can be de-
signed by using an arbitrary CNN architecture
such as VGG [33], ResNet [13] and so on. The

motivation of the CNN Shared Network is to help
the networks learn the shared features from mul-
tiple datasets across different tasks. It is thought
that the features learned in the shared block can
generalize better and make more accurate predic-
tions than a single-task model. Moreover, thanks
to joint representation learning, the tasks with
less data can largely benefit from other tasks with
more data.

After the shared block, each network is sepa-
rated into three branches associated with three
different tasks. Each branch learns task-specific
features and has its own loss function correspond-
ing to each task.

3.2 Multi-task BKNet

Our first multi-task deep learning framework
called Multi-task BKNet has been previously de-
scribed in [29] (Fig. 3), which is based on the
BKNet architecture [30, 31]. We construct the
CNN shared network by eliminating three last
fully-connected layers of BKNet (Fig. 2).

Figure 2: The CNN shared network in Multi-task
BKNet is just the top part (marked by red lines)
of the BKNet architecture [30], excluding the last
three fully-connected layers.

CNN Shared Network. In this part, we use
four convolutional (conv) blocks. The first conv
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Figure 1: Merged dataset

Figure 3: Our proposed Multi-task BKNet

block includes two conv layers with 32 neurons
3×3 with the stride 1, followed by a max pooling
layer 2 × 2 with the stride 2. The second conv
block includes two conv layers with 64 neurons
3×3 with the stride 1, followed by a max pooling
layer 2×2 with the stride 2. The third conv block
includes two conv layers with 128 neurons 3 × 3
with the stride 1, followed by a max pooling layer
2 × 2 with the stride 2. Finally, the last conv

block includes three conv layers with 256 neurons
3×3 with the stride 1, followed by a max pooling
layer 2 × 2 with the stride 2. Each conv layer is
followed by a Batch normalization layer [17] and a
ReLU (Rectified Linear Unit) activation function
[24]. The Batch normalization layer reduces the
internal covariant shift, and, hence, allows us to
use higher learning rate when applying the SGD
algorithm to accelerate the training process.

Branch Network. After the CNN shared net-
work, we split the network into three branches
corresponding to separate tasks, i.e., smile detec-
tion, emotion recognition and gender classifica-
tion. While the CNN shared network can learn
joint representations across three tasks from mul-
tiple datasets, each branch tries to learn individ-
ual features corresponding to each specific task.

Each branch consists of two fully connected lay-
ers with 256 neurons and a final fully connected
layer with C neurons, where C is the number of
classes in each task (C = 2 for smile detection
and gender classification branch, and C = 7 for
emotion recognition branch). Note that, after the
last fully connected layer, we can either use an
additional softmax layer as a classifier or not, de-
pending on what kind of loss function is being
used. These kinds of loss function are described
in detail in the next section. Similar with the
CNN shared network, each fully connected layer
in all branches (except the last one) is followed by
a Batch Normalization layer and ReLU. Dropout
[34] is also utilized in all fully connected layers to
reduce overfitting.
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3.3 Multi-task ResNet

ResNet [13] is known as one of the most efficient
CNN architectures so far. In order to enhance
the information flow between layers, ResNet uses
shortcut connections between layers. The orig-
inal variant of ResNet is proposed by He et al.
in [13] with different numbers of hidden layers:
ResNet-18, ResNet-34 or ResNet-50, ResNet-101
and ResNet-152. He et al. then introduce an
improved variant of ResNet (called ResNet v2)
in [14] which shows that the pre-activation or-
der “conv - batch normalization - ReLU” is con-
sistently better then post-activation order “batch
normalization - ReLU - conv”.

Inspire by the design concept of ResNet v2, we
propose a multi-task ResNet framework to jointly
learn three tasks: smile detection, emotion recog-
nition and gender classification. Since the amount
of facial data is not large, we choose ResNet-50
(with bottleneck layer) as the base architecture
to design our multi-task ResNet framework. In
the original ResNet v2-50 architecture, there are
4 residual blocks, each of which consists of some
sub-sampling blocks and identity blocks. The ar-
chitectures of identity blocks and sub-sampling
blocks are shown in Fig. 4a and Fig. 4b. For both
these two kinds of blocks, we use the bottleneck
architecture with base depth m that consists of
three conv layers: a 1×1 conv layer with m filters
followed by a 3× 3 conv layer with m filters and
a 1 × 1 conv layers with 4m filters. The identity
blocks and sub-sampling blocks are distinguished
by the stride value in the second conv layer and
the shortcut connection. In sub-sampling blocks,
we use a conv layer with stride 2 instead of stride
1 as in identity blocks. The first residual block
of ResNet-50 contains only 3 identity blocks and
has no sub-sampling block. The next three resid-
ual blocks of ResNet-50 have a sub-sampling block
at the top, followed by 3, 5 and 2 identity blocks,
respectively.

Based on the aforementioned ResNet v2-50 ar-
chitecture, we propose two versions of multi-task
ResNet framework. In the first version, which is
abbreviated as Multi-task ResNet ver1, we use all
of 4 residual blocks to build the CNN shared net-
work to learn joint representations for three tasks.
Like in multi-task BKNet, for each task in branch
network, we use two fully connected layers with
256 neurons combined with a softmax classifier.

Fig. 5a illustrates the architecture of Multi-task
ResNet ver1.

In the second version, which is abbreviated as
Multi-task ResNet ver2, we only use first three
residual blocks to build the CNN shared network.
For each task in the branch network, we use a sep-
arate residual block combined with global average
pooling layer and a softmax classifier. Fig. 5b
illustrates the architecture of Multi-task ResNet
ver2.

3.4 Multi-source Multi-task training

In this paper, we propose effective deep networks
that can learn to perform multi tasks from dif-
ferent data sources. All data sources are mixed
together and form a large common training set
(Fig. 1). Generally, each sample in the mixing
training set is only related to some of the tasks.

Suppose that:

– T is the number of tasks (T = 3 in this pa-
per);

– Lt is the individual loss corresponding to the
tth task, t = 1, 2, ..., T .

– N is the number of samples from all training
datasets;

– Ct is the number of classes corresponding to
the tth task (C1 = C3 = 2 for smile detec-
tion and gender classification task, C2 = 7
for emotion recognition task);

– sti is the vector of class scores corresponding
to i-th sample in tth task;

– lti is the correct class label of i-th sample in
tth task;

– yt
i is the one-hot encoding of the correct class

label of i-th sample in tth task (yti(l
t
i) = 1);

– ŷt
i is the probability distribution over the

classes of i-th sample in tth task, which can
be obtained by applying the softmax function
to sti.

– αt
i ∈ {0, 1} is the sample type indicator (αt

i =
1 if the ith sample is related to the tth task,
and αt

i = 0 otherwise).
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(a) Identity block (b) Subsampling block

Figure 4: The architectures of identity blocks and sub-sampling blocks in our Multi-task ResNet
framework.

Note that, if the ith sample is not related to tth

task, then the true label does not exist, and we
can ignore lti and yt

i. To ensure the mathematical
correctness in this case, we can set them to arbi-
trary values, for instance, lti = 0 and yt

i is a zero
vector.

In this paper, we try two kinds of loss: soft-max
cross entropy or multi-class SVM loss.

The cross-entropy loss requires to use a softmax
layer after the last fully-connected layer of each
branch. The cross-entropy loss Lt corresponding
to tth task is defined as follows:

Lt = − 1

N

N∑
i=1

αt
i

Ct∑
j=1

yt
i(j)log(ŷt

i(j))

 , (1)

where yt
i(j) ∈ {0, 1} indicates whether j is the

correct label of i-th sample; ŷt
i(j) ∈ [0, 1] ex-

presses the probability that j is the correct label
of i-th sample.

The multi-class SVM loss function is used when
the last fully connected layer in each task-specific

branch accompanies with no activation function.
The multi-class SVM loss function corresponding
to the tth task can be defined as follows:

Lt =
1

N

N∑
i=1

αt
i

Ct∑
j=1
j 6=lti

max(0, sti(j)− sti(l
t
i) + 1)2

 ,

(2)

where sti(j) indicates the score of class j in the
i-th sample; sti(l

t
i) defines the score of true label

lti in the i-th sample.

The total loss of the network is computed as
the weighted sum of the three individual losses.
In addition, we also add L2 weight decay term
associated with all network weights W to the total
network loss to reduce overfitting. The overall loss
can be defined as follows:

Ltotal =

T∑
1

µtLt + λ‖W‖22, (3)
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(a) First version with fully connected layers in
the branch network

(b) Second version with residual blocks in the branch
network

Figure 5: Our proposed Multi-task ResNet framework. The notation “Identity block, m” means the
identity block with base depth m.

where µt is the importance level of the tth task in
the overall loss; λ is the weight decay coefficient.

We train the network end-to-end via the stan-
dard back propagation algorithm.

3.5 Data pre-processing

All the images from the datasets that we use later
are portraits. Nevertheless, our networks works
with facial regions only. Thus, we have to perform
data pre-processing to crop faces from the original
images in the datasets. Here we use Multi-task
Cascaded al Networks (MTCNN) [43] to detect
faces in each image. Fig. 6 shows some examples
of using MTCNN for cropping faces.

After that, the cropped images are converted
to grayscale and resized to 48× 48 ones.

Figure 6: MTCNN for face detection. The top
row is original images. The bottom row are
cropped faces using MTCNN.

3.6 Data augmentation

Due to small amount of samples in the dataset,
we use data augmentation techniques to generate
more new data for the training phase. These tech-
niques help us to reduce overfitting and, hence, to
learn more robust networks.

We used three following popular ways for data



8 Informatica 37 page 501–yyy D. Sang et al.

augmentation:
- Randomly crop: We add margins to each im-

age in the datasets and then crop a random area
of that image with the same size as the original
image;

- Randomly flip an image from left to right;
- Randomly rotate an image by a random angle

from −15◦ to 15◦. The space around the rotated
image is then filled with black color.

In practice, we find that applying augmentation
techniques greatly improves the performance of
the model.

4 Experiments and evaluation

4.1 Datasets

4.1.1 GENKI-4K dataset

GENKI-4K is a well-known dataset used in smile
detection task. This dataset includes 4000 la-
belled images of human face from different ages,
and races. Among these pictures, 2162 images
were labeled as smile and 1838 images were la-
beled as non-smile. The images in this dataset
are taken from the internet with different real-
world contexts (unlike other face data sets, of-
ten taken in the same scene), which makes the
detection more challenging. However, some im-
ages in the dataset are unclear (not sure whether
smile or not). In some previous works, some un-
clear images are eliminated during the training
and testing phases. It is obviously that keeping
wrong samples in the dataset intuitively makes
the model more likely to be confused during the
training phase. In the testing phase, the wrong
samples might considerably reduce the overall ac-
curacy, when the model makes true predictions
but the data says no. Despite that fact, in this
work we still retain all the images in the original
dataset in both phases. Fig. 7 shows some exam-
ples from GENKI-4K dataset.

4.1.2 FERC-2013 dataset

FERC-2013 dataset is provided on the Kaggle fa-
cial expression competition. The dataset consists
of 35,887 gray images of 48x48 resolution. Kaggle
has divided into 28,709 training images, 3589 pub-
lic test images and 3589 private test images. Each
image contains a human face that is not posed (in

Figure 7: Some samples in the GENKI-4K
dataset. The top two rows are examples of smile
faces and the bottom two rows are examples of
non-smile faces.

the wild). Each image is labeled by one of seven
emotions: angry, disgust, fear, happy, sad, sur-
prise and neutral. Some images of the FERC-2013
dataset are showed in Fig. 8.

Figure 8: Some samples in the FERC-2013
dataset.

4.1.3 IMDB and Wiki dataset

In this work, we use IMDB and Wiki datasets as
data sources for gender classification task.

The IMDB dataset is a large face dataset that
includes data from celebrities. The authors take
the list of the most popular 100,000 actors as
listed on the IMDB website and (automatically)
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crawl from their profiles date of birth, name,
gender and all images related to that person.
The IMDB dataset contains about 470.000 im-
ages. In this paper, we only use 170.000 im-
ages from IMBD. The Wiki dataset also includes
data from celebrities, which are crawled data from
Wikipedia. The Wiki dataset contains about
62.000 images and in this work we will use about
34.000 images from this dataset. Fig. 9 shows
some samples from IMDB and Wiki datasets.

Figure 9: Some samples in the IMDB and Wiki
datasets.

4.2 Implementation detail

In the experiments, we use GENKI-4K dataset for
smile detection, FERC-2013 for emotion recogni-
tion. We separately use one of the two IMDB and
Wiki datasets for gender classification task.

Our experiments are conducted using Python
programing-language on computers with the fol-
lowing specifications: Intel Xeon E5-2650 v2
Eight-Core Processor 2.6GHz 8.0GT/s 20MB,
Ubuntu Operating System 14.04 64 bit, 32GB
RAM, GPU NVIDIA TITAN X 12GB.

Preparing data set: Firstly, we merge
three datasets (GENKI-4K, FERC-2013, gender
dataset IMDB/Wiki) to make a large dataset.
We then create a marker vector to define sam-
ple type indicators αt

i. We always keep the num-
ber of training data for each task equally to help
the learning process stability. For example, if we
train our model with two dataset: dataset A with
3000 samples, dataset B with 30000 samples, we
will duplicate dataset A 10 times to make a big
dataset with total 60000 samples.

In our work, we divide each dataset into train-
ing set and testing set. With GENKI-4K dataset,
we use 3000 samples for training and 1000 samples
for testing. With FERC-2013 dataset we use data
split as provided by Kaggle. With Wiki dataset,
we use 30000 samples for training and about 4200
samples for testing. With IMDB dataset, we use
150000 samples for training and about 20000 sam-
ples for testing.

Training phase: With Multi-task BKNet ar-
chitecture, our model is trained end-to-end by
using SGD algorithm with momentum 0.9. We
set the batch size equal to 128. We initialize all
weights using a Gaussian distribution with zero
mean and standard deviation 0.01. The L2 weight
decay is λ = 0.01. All the tasks have the same im-
portance level µ1 = µ2 = µ3 = 1. The dropout
rate for all fully connected layers is set to 0.5.
Moreover, we apply an exponential decay func-
tion to decay the learning rate through time. The
learning rate at step k is calculated as follows:

curLr = initLr ∗ decayRatem/decayStep, (4)

where curLr is the learning rate at step m; initLr
is the initialization learning rate at the begin-
ning of training phase; decayStep is the number
of steps when the learning rate decayed.

In our experiment, we set initLr = 0.01,
decayRate = 0.8 and decayStep = 10000. We
train our Multi-task BKNet model in 250 epochs.

Similar to Multi-task BKNet, we train our
Multi-task ResNet end-to-end by using SGD al-
gorithm with momentum 0.9. We set the batch
size equal to 128. We initialize all weights using
variance scaling initializer (He initializer). The L2
weight decay is 10−4. All the tasks have the same
important level µ1 = µ2 = µ3 = 1. We train the
Multi-task ResNet ver1 in 100 epochs and train
the Multi-task ResNet ver2 in 80 epochs. The ini-
tial learning rate is 0.05 and then decreased by 10
times whenever the training loss stops improving.

Testing phase: In the testing phase, our
model is evaluated by k-fold cross-validation algo-
rithm. This method splits our original data into
k parts of the same size. The model evaluation is
performed through loops, each loop selects k − 1
parts of data as training data and the rest is used
for testing model. For the convenience of doing
comparison between different methods, we use 4-
fold cross-validation algorithm as previous works.
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We will report the average accuracy and the stan-
dard deviation after 4 iterations. Moreover, we
test our model with two different loss functions
mentioned above.

Furthermore, we ensemble different checkpoints
obtained during the training phases to infer test
samples. In the paper, we keep 10 last check-
points corresponding to 10 last training epochs
for inference.

4.3 Experimental result

4.3.1 Multi-task BKNet

In this work, we set up two experiment cases. The
first one, we train our model with GENKI-4K,
FERC-2013 and Wiki dataset. The second one,
we train our model with GENKI-4K, FERC-2013
and IMDB dataset. Table 1 shows our experiment
setup.

We report our results and compare with pre-
vious methods in Table 2. As we can see, us-
ing cross-entropy loss function gives better result
than using SVM loss function in all cases.

In smile detection task, the best accuracy we
achieve is 96.23± 0.58% when we train our model
with GENKI-4K, FERC-2013 and IMDB dataset.
In all experiment cases, we achieve better re-
sults than previous state-of-the-art methods. Es-
pecially, the Multi-task BKNet clearly outper-
forms the single-task BKNet [30]. This fact proves
that the smile detection task largely benefits from
other tasks thanks to sharing the commonalities
between data.

In emotion recognition task, the best accuracy
we achieve is 71.03± 0.11% for public test and
72.18± 0.23% for private test. This result con-
siderably outperforms all of previous methods.

In gender classification task, to the best of
our knowledge, there are no previous results on
the Wiki and IMDB datasets for gender clas-
sification. In this paper, we apply the single-
task BKNet model [30] and achieve the accuracy
95.82±0.44% and 91.17±0.27% on the Wiki and
IMDB datasets, respectively. The best accuracy
we get on Wiki is 96.33± 0.16% when we train
our Multi-task BKNet model on Wiki. The best
accuracy we get on IMDB is 92.20± 0.11% when
we train our model on IMDB. We also report the
test accuracy on IMDB when we train the model
on Wiki, and the test accuracy on Wiki when we

train the model on IMDB.
In all tasks, the Multi-task BKNet yields com-

parative results and even better than the single-
task BKNet in many cases. Furthermore, it
should be emphasized that the Multi-task net-
work can effectively solve all the three tasks by us-
ing only a common network instead of three sep-
arate ones, which would requires approximately
three times more memory storage and computa-
tional complexity.

Figure 10: Some samples that our Multi-task
BKNet gives wrong predictions.

4.3.2 Multi-task ResNet

Based on the experimental results of Multi-task
BKNet, we will choose the best config B4 in Ta-
ble 1 to evaluate our Multi-task ResNet frame-
work.

The results of our Multi-task ResNet are also
shown in Table 2. As one can see, our first version
yield better results than the second version in all
three tasks.

In smile detection task, the first version
of multi-task ResNet achieves 95.55± 0.28%
accuracy, while the second version achieves
95.30± 0.34% accuracy. With the same con-
fig B4, our Multi-task BKNet model achieves
95.70± 0.25% accuracy, which is slightly better
then Multi-task ResNet.

In emotion recognition task, the accuracy of the
first version of Multi-task ResNet is 70.09± 0.13%
for public test set and 71.55± 0.19% for pri-
vate test set. The accuracy of the second ver-
sion is a little bit lower with 69.33± 0.31% and
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Table 1: Experiment setup
Name Datasets Loss function Use ensemble?

Config A1 GENKI-4K, FERC-2013, IMDB SVM loss No

Config A2 GENKI-4K, FERC-2013, IMDB Cross-entropy loss No

Config A3 GENKI-4K, FERC-2013, IMDB SVM loss Yes

Config A4 GENKI-4K, FERC-2013, IMDB Cross-entropy loss Yes

Config B1 GENKI-4K, FERC-2013, Wiki SVM loss No

Config B2 GENKI-4K, FERC-2013, Wiki Cross-entropy loss No

Config B3 GENKI-4K, FERC-2013, Wiki SVM loss Yes

Config B4 GENKI-4K, FERC-2013, Wiki Cross-entropy loss Yes

Table 2: Accuracy comparison on four datasets

Method GENKI-4K
FERC-2013

Wiki IMDB
Public

test
Private

test

Chen et al [6] 91.8± 0.95 - - - -

CNN Basic [42] 93.6± 0.47 - - - -

CNN 2-Loss [42] 94.6± 0.29 - - - -

Single-task BKNet + Softmax [30]
95.08±

0.29
- -

95.82±
0.44*

91.16±
0.27*

CNN (team Maxim Milakov - rank
3 Kaggle)

- 68.2 68.8 - -

CNN (team Unsupervised - rank 2
Kaggle)

- 69.1 69.3 - -

CNN+SVM Loss (team RBM) [36] - 69.4 71.2 - -

Single-task BKNet + SVM loss [31] - 71.0 71.9 - -

Our Multi-task BKNet (Config A1)
95.25±

0.43
68.10±

0.14
69.10±

0.57
93.33±

0.19
89.60±

0.22

Our Multi-task BKNet (Config A2)
95.56±

0.66
68.47±

0.33
69.40±

0.21
93.67±

0.26
90.50±

0.24

Our Multi-task BKNet (Config A3)
95.60±

0.41
70.43±

0.19
71.90±

0.36
93.70±

0.37
91.33±

0.42

Our Multi-task BKNet (Config A4)
96.23±
0.58

70.15±
0.19

71.62±
0.39

94.00±
0.24

92.20±
0.11

Our Multi-task BKNet (Config B1)
95.25±

0.44
68.60±

0.27
69.28±

0.41
95.25±

0.15
88.18±

0.26

Our Multi-task BKNet (Config B2)
95.13±

0.20
69.12±

0.18
69.40±

0.22
95.75±

0.18
88.68±

0.15

Our Multi-task BKNet (Config B3)
95.52±

0.37
70.63±

0.11
71.78±

0.08
95.95±

0.15
88.83±

0.18

Our Multi-task BKNet (Config B4)
95.70±

0.25
71.03±
0.11

72.18±
0.23

96.33±
0.16

89.34±
0.15

Our Multi-task ResNet ver1
(Config B4)

95.55±
0.28

70.09±
0.13

71.55±
0.19

96.03±
0.22

89.01±
0.18

Our Multi-task ResNet ver2
(Config B4)

95.30±
0.34

69.33±
0.31

71.27±
0.11

95.99±
0.14

88.88±
0.07
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71.27± 0.11% for public test set and private test
set, respectively. In this task, both versions of
Multi-task ResNet seem to clearly lose Multi-task
BKNet, which obtains higher approximately 1%
accuracy in each test set.

In gender classification task, both our variants
of multi-task ResNet yield pretty good results,
which compete with the results of of the multi-
task BKNet model. The first variant achieves
the accuracy of 96.03± 0.22% and 89.01± 0.18%
for Wiki dataset and IMDB dataset, respectively.
The second variant achieves the accuracy of
95.99± 0.14% for Wiki dataset and 88.88± 0.07%
for IMDB dataset.

The experiment results show that the Multi-
task ResNet is slightly worse than the Multi-task
BKNet in all tasks. The reason could be due
to that ResNet with a pretty deep architecture
and fairly large number of parameters tends to
be over-complex w.r.t the mixing training data
across the three tasks and leads to overfitting.
Meanwhile, BKNet is quite smaller than ResNet,
and is capable to fit the data better.

4.3.3 Speed performance comparison
between different frameworks

In Table 3 and Table 4, we show the inference time
and training time of three frameworks: Multi-task
BKNet, Multi-task ResNet ver1 and Multi-task
ResNet ver2 with Config B4 (from Table 1).

As one can see, the Multi-task ResNet ver2 ac-
quires the fastest convergence. Despite a little
longer in training time, Multi-task BKNet is sig-
nificantly faster in inference in comparison with
both versions of Multi-task ResNet. The fast in-
ference with high accuracy make the Multi-task
BKNet well suitable for real-time applications.

Table 3: Comparison of inference time between
different frameworks

Framework
Inference time

per image
(sec)

Multi-task BKNet 0.02

Multi-task ResNet ver1 0.065

Multi-task ResNet ver2 0.071

5 Conclusion

In this paper, we propose effective multi-souce
multi-task deep learning frameworks to jointly
learn three facial analysis tasks including smile
detection, emotion recognition and gender classifi-
cation. The extensive experiments in well-known
GENKI-4K, FERC-2013, Wiki, IMDB datasets
show that our frameworks achieve superior accu-
racy over recent state-of-the-art methods in all
tasks. We also show that the smile detection task
with few data largely benefit from the two other
tasks with richer data.

In the future, we would like to exploit some
new auxiliary loss function to regulate the model
learning process in order to improve the perfor-
mance accuracy of neural networks in various
computer vision tasks.

Figure 11: Some results of our Multi-task BKNet
framework. The blue box corresponds to females
and the red box corresponds to males.
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