The Use of Collaboration Distance in Scheduling Conference Talks
Abstract
Full Text:
PDFReferences
A.L Barabási and R Albert. Emergence of scaling in random networks. Science, vol. 286 (1999), no. 5439, pp. 509–512. https://doi.org/10.1126/science.286.5439.509
T. Bartol, K. Stopar, and G. Budimir. Visualization and knowledge discovery in metadata enriched aggregated data repositories harvesting from Scopus and Web of Science. Information management in the big data era: for a better world : Selected IMCW2015 Papers. Sun Yat-sen University North: Hacettepe University, 2015. pp 1–5.
T. Bartol, et al. Mapping and classification of agriculture in Web of Science: other subject categories and research fields may benefit. Scientometrics, vol. 109 (2016), no. 2, pp. 979–996. https://doi.org/10.1007/s11192-016-2071-6
V. Batagelj. On Fractional Approach to Analysis of Linked Networks, arxiv (2019) https://arxiv.org/abs/1903.00605.
V. Batagelj and A. Mrvar. Some analyses of Erdos˝collaboration graph. Social Networks, vol. 22 (2000),no. 2, pp. 173–186. https://doi.org/10.1016/S0378-8733(00)00023-X
J.A. Bondy and U.S.R. Murty. Graph theory, (2008) Graduate Texts in Mathematics, 244. Springer, New York. https://doi.org/10.1007/978-1-84628-970-5
M. M. Deza and E. Deza. Encyclopedia of distances. Fourth edition. (2016), Springer, Berlin. https://doi.org/10.1007/978-3-662-52844-0
A.A. Dobrynin. On 2-connected transmission irregular graphs Diskretn. Anal. Issled. Oper., vol. 25 (2018), no. 4, pp. 5–14.
A. Ferligoj et al. Scientific collaboration dynamics in a national scientific system. Scientometrics, vol. 104 (2015), no. 3, pp. 985–1012. https://doi.org/10.1007/s11192-015-1585-7
C. Goffman. And what is your Erdos number?, ˝ Amer. Math. Monthly, vol. 76 (1979), p. 791. https://doi.org/10.2307/2317868
L. Kronegger, F. Mali, A. Ferligoj, and P. Doreian. Collaboration structures in Slovenian scientific communities. Scientometrics, vol. 90 (2012), no.2, pp. 631–647. https://doi.org/10.1007/s11192-011-0493-8
J. Leskovec, A. Rajaraman, and J. Ullman. Mining of Massive Datasets (2014), Cambridge University Press. https://doi.org/10.1017/CBO9781139924801
MathSciNet: https://mathscinet.ams.org/mathscinet/index.html
SICRIS: https://www.sicris.si/public/jqm/cris.aspx?lang=eng
zbMATH: https://zbmath.org/
DOI: https://doi.org/10.31449/inf.v43i4.2832
This work is licensed under a Creative Commons Attribution 3.0 License.