Value-Based Retweet Prediction on Twitter
Abstract
Retweeting is an online activity done on the twitter social network. This activity leads to sharing of opinions and ideas from one person to another. Predicting retweet decision has been an interesting and challenging task since the past decade. Past studies have shown that emotions, sentiments and topic specific emotions can influence the retweet decision of the user. However, value systems of an individual can also be an important and crucial aspect in predicting the decision of user. Hence, through our work, we propose to study retweet prediction as a function of value systems. Our work also presents an experimental comparative study with the features used in previous studies. The experimental results using the different machine learning algorithms shows that value-systems have a higher performance in predicting retweet decision of the user as compared to emotions, sentiments and topic-specific emotions.
Full Text:
PDFReferences
Abel, F., Gao, Q., Houben, G. J., Tao, K. 2011. Analyzing user modeling on twitter for personalized news recommendations. In international conference on user modeling, adaptation, and personalization, pages 1–12. Springer.
Ali, S., Katoma, V., Tyobeka, E. 2015. Identification of key values and behaviours influencing leadership orientation in Southern Africa. Journal of Emerging Trends in Educational Research and Policy Studies, 6(1):6–12.
Bonsón, E., Perea, D., Bednárová, M. 2019. Twitter as a tool for citizen engagement: An empirical study of the Andalusian municipalities. Government Information Quarterly, 36(3):480–489.
Boyd, D., Golder, S., Lotan, G. 2010. Tweet, tweet, retweet: Conversational aspects of retweeting on twitter.
In 2010 43rd Hawaii International Conference on System Sciences, pages 1–10. IEEE.
Can, E. F., Oktay, H., & Manmatha, R. (2013, October). Predicting retweet count using visual cues. In Proceedings of the 22nd ACM international conference on information & knowledge management (pp. 1481-1484).
Chawla, N. V., Bowyer, K. W., Hall, L. O., Kegelmeyer, W. P. 2002. SMOTE: Synthetic Minority Over- sampling Technique. Journal of Artificial Intelligence Research, 16:321–357.
Chen, J., Hsieh, G., Mahmud, J. U., Nichols, J. 2014. Understanding individuals’ personal values from social media word use. In Proceedings of the 17th ACM conference on Computer supported cooperative work & social computing, pages 405–414. ACM.
Chen, K., Chen, T., Zheng, G., Yao, J. O., Yu, E., Y 2012. Collaborative personalized tweet recommendation. Proceedings of the 35th international ACM SIGIR conference on Research and development in information retrieval 2012, ACM, pages 661–670.
Dehghani, M., Gratch, J., Sachdeva, S., Sagae, K. 2011. Analyzing conservative and liberal blogs related
to the construction of the ‘Ground Zero Mosque’. Proceedings of the Annual Meeting of the Cognitive Science Society, 33.
Deng, Z., Yan, M., Sang, J., Xu, C. 2015. Twitter is faster: personalized time-aware video recommendation from Twitter to YouTube. ACM Trans Multimed Comput Commun Appl (TOMM), 11(2):31–31.
Firdaus, S. N., Ding, C., Sadeghian, A. 2019. Topic specific emotion detection for retweet prediction.
International Journal of Machine Learning and Cybernetics, 10(8):2071–2083.
Fleischmann, K. R., Oard, D. W., Cheng, A.-S., Wang, P., Ishita, E. 2009. Automatic classification of human values: Applying computational thinking to information ethics. Proceedings of the American Society for Information Science and Technology, 46(1):1–4.
Griffiths, T. L. Steyvers, M. 2004. Finding scientific topics. Proceedings of the National Academy of Sciences, 101(Supplement 1):5228–5235.
Hong, O., Dan, B. D., Davison 2011. Predicting popular messages in twitter. Proceedings of the 20th international conference companion on World wide web, pages 57–58.
Huang, D., Zhou, J., Mu, D., Yang, F. 2014. Retweet behavior prediction in twitter. 2014 IEEE Seventh international symposium computational intelligence and design (ISCID), 2:30–33.
Ishita, E., Oard, D. W., Fleischmann, K. R., Cheng, A.-S., Templeton, T. C. 2010. Investigating multi- label classification for human values. Proceedings of the American Society for Information Science and Technology, 47(1):1–4.
Jenders, M., Kasneci, G., Naumann, F. 2013. Analyzing and predicting viral tweets. Proceedings of the 22nd international conference on world wide web 2013, ACM, pages 657–664.
Jiang, B., Lu, Z., Li, N., Wu, J., Jiang, Z. 2018. Retweet prediction using social-aware probabilistic matrix factorization. International Conference on Computational Science, pages 316–327.
Jiang, B., Yi, F., Wu, J., Lu, Z. 2019. Retweet prediction using context- aware coupled matrix-tensor factorization. International Conference on Knowledge Science, Engineering and Management, pages 185– 196.
Kakar, S., Dhaka, D., Mehrotra, M. 2020. Value-Based Behavioral Analysis of Users Using Twitter. In Inventive Communication and Computational Technologies, Lecture Notes in Networks and Systems, Springer, volume 145.
Kanavos, A., Perikos, I., Vikatos, P., Hatzilygeroudis, I., Makris, C., Tsakalidis, A. 2014. Modeling retweet diffusion using emotional content. In IFIP International conference on artificial intelligence applications and innovations, pages 101–110. Springer.
Kaufmann, E. 2016. It’s NOT the economy, stupid: Brexit as a story of personal values. British Politics and Policy at LSE.
Lee, K., Mahmud, J., Chen, J., Zhou, M., & Nichols, J. 2015. Who will retweet this? detecting strangers from twitter to retweet information. ACM Transactions on Intelligent Systems and Technology (TIST), 6(3), 1-25.
Lee, W. J., Oh, K. J., Lim, C. G., Choi, H. J. 2014. User profile extraction from twitter for personalized news recommendation. 16th International conference on advanced communication technology, pages 779–783.
Lu, C., Lam, W., Zhang, Y. 2012. Twitter user modeling and tweets recommendation based on Wikipedia concept graph. Workshops at the Twenty-Sixth AAAI conference on artificial intelligence.
Luo, Z., Osborne, M., Tang, J., Wang, T. 2013. Who will retweet me? Finding retweeters in Twitter. Proceedings of the 36th international ACM SIGIR conference on Research and development in information retrieval, pages 869–872.
Ma, R., Hu, X., Zhang, Q., Huang, X., Jiang, Y. G. 2019. Hot topic-aware retweet prediction with masked self-attentive model. Proceedings of the 42nd International ACM SIGIR Conference on Research and Development in Information Retrieval, pages 525–534.
Macskassy, S. A. Michelson, M. 2011. Why do people retweet? Anti-homophily wins the day! In 5th international AAAI conference on weblogs and social media, pages 209–216.
Mazzi, M. A., Rimondini, M., van der Zee, E., Boerma, W., Zimmermann, C., Bensing, J. 2018. Which patient and doctor behaviours make a medical consultation more effective from a patient point of view. Re- sults from a European multicentre study in 31 countries. Patient Education and Counseling, 101(10):1795-1803.
Mikolov, T., Chen, K., Corrado, G., Dean, J. 2013. Efficient estimation of word representations in vector space.
Mohammad, S. M. Turney, P. D. 2013. CROWDSOURCING A WORD-EMOTION ASSOCIATION LEXICON. Computational Intelligence, 29(3):436–465.
Naveed, N., Gottron, T., Kunegis, J., Alhadi, A. C. 2011. Bad news travel fast: A content-based analysis of interestingness on twitter. In Proceedings of the 3rd international web science conference, pages 1–7. ACM.
Peng, H. K., Zhu, J., Piao, D., Yan, R., Zhang, Y. 2011. Retweet modeling using conditional random fields.
IEEE 11th International conference on data mining workshops (ICDMW), pages 336–343.
Perikos, I. Hatzilygeroudis, I. 2013. Recognizing emotion presence in natural language sentences. In Inter- national conference on engineering applications of neural networks 2013, pages 30–39. Springer.
Petrovic, S., Osborne, M., & Lavrenko, V. (2011, July). Rt to win! predicting message propagation in twitter. In Proceedings of the International AAAI Conference on Web and Social Media (Vol. 5, No. 1).
Pfitzner, R., Garas, A., Schweitzer, F. 2012. Emotional divergence influences information spreading in Twitter. Sixth international AAAI conference on weblogs and social media, 12.
Plutchik, R. 2001. The Nature of Emotions. American Scientist, 89(4):344–344.
Rao, Y., Li, Q., Wenyin, L., Wu, Q., Quan, X. 2014. Affective topic model for social emotion detection.
Neural Networks, 58:29–37.
Rathbun, B. C., Kertzer, J. D., Reifler, J., Goren, P., Scotto, T. J. 2016. Taking Foreign Policy Personally: Personal Values and Foreign Policy Attitudes. International Studies Quarterly, 60(1):124–137.
Roberts, K., Roach, M. A., Johnson, J., Guthrie, J., Harabagiu, A. M. 2012. Empatweet: annotating and detecting emotions on Twitter. LREC 12, 12:3806–3813.
Schwartz, S. H. 1994. Are there universal aspects in the structure and contents of human values? Journal of social issues, 50(4):19–45.
Suh, B., Hong, L., Pirolli, P., Chi, E. H. 2010. Want to be retweeted? large scale analytics on factors impacting retweet in twitter network. In and others, editor, IEEE Second International Conference on Social Computing.
Templeton, T. C., Fleischmann, K. R., Boyd-Graber, J. 2011. Simulating audiences: Automating analysis of values, attitudes, and sentiment. 2011 IEEE Third International Conference on Privacy, Security, Risk and Trust and 2011 IEEE Third International Conference on Social Computing, pages 734–737.
Wang, Q., Li, L., Wang, D. D., Zeng 2017. Incorporating message embedding into co-factor matrix factorization for retweeting prediction. International Joint Conference on Neural Networks (IJCNN), pages 1265–1272.
Wang, W., Zuo, Y., Wang 2015. A multidimensional nonnegative matrix factorization model for retweeting behavior prediction. Mathematical Problems in Engineering.
Xu, Z. Yang, Q. 2012. Analyzing user retweet behavior on twitter. Proceedings of the 2012 international conference on advances in social networks analysis and mining, pages 46–50.
Yang, Z. 2010. Understanding retweeting behaviors in social networks. CIKM, pages 1633–1636.
Ye, S., Soutar, G. N., Sneddon, J. N., Lee, J. A. 2017. Personal values and the theory of planned behaviour: A study of values and holiday trade-offs in young adults. Tourism Management, 62:107–109.
Zacharias, C. 2017. Twint-twitter intelligence tool.
Zhang, J., Tang, J., Li, J., Liu, Y., Xing, C. 2015a. Who influenced you? predicting retweet via social influence locality. ACM Trans. Knowl. Disc. Data (TKDD), 9(3):25–25.
Zhang, K., Yun, X., Liang, J., Zhang, X. Y., Li, C., Tian, B. 2016. Retweeting behavior prediction using probabilistic matrix factorization. IEEE Symposium on Computers and Communication (ISCC).
Zhang, Q., Gong, Y., Guo, Y., Huang, X. 2015b. Retweet behavior prediction using hierarchical dirichlet process. Twenty-Ninth AAAI Conference on Artificial Intelligence., AAAI, pages 403–409.
DOI: https://doi.org/10.31449/inf.v45i2.3465
This work is licensed under a Creative Commons Attribution 3.0 License.