Automatic Question Generation Monolingual Multilingual pre-trained Models using RNN and Transformer in Low Resource Indonesian Language

Karissa Vincentio, Derwin Suhartono

Abstract


Although Indonesian is the fourth most frequently used language on the internet, the development of NLP in Indonesian has not been studied intensively. One form of NLP application classified as an NLG task is the Automatic Question Generation task. Generally, the task has proven well, using rule-based and cloze tests, but these approaches depend heavily on the defined rules. While this approach is suitable for automated question generation systems on a small scale, it can become less efficient as the scale of the system grows. Many NLG model architectures have recently proven to have significantly improved performance compared to previous architectures, such as generative pre-trained transformers, text-to-text transfer transformers, bidirectional autoregressive transformers, and many more. Previous studies on AQG in Indonesian were built on RNN-based architecture such as GRU, LSTM, and Transformer. The performance of models in previous studies is compared with state-of-the-art models, such as multilingual models mBART and mT5, and monolingual models such as IndoBART and IndoGPT. As a result, the fine-tuned IndoBART performed significantly higher than either BiGRU and BiLSTM on the SQuAD dataset. Fine-tuned IndoBART on most of the metrics also performed better on the TyDiQA dataset only, which has fewer population than the SQuAD dataset.

Full Text:

PDF

References


G. Kurdi, J. Leo, B. Parsia, U. Sattler, and

S. Al-Emari, “A systematic review of automatic question generation for educational purposes,” International Journal of Artificial Intelligence in Education, vol. 30, 11 2019.

N.-T. Le, T. Kojiri, and N. Pinkwart, “Automatic question generation for educational

applications – the state of art,” Advances in

Intelligent Systems and Computing, vol. 282,

pp. 325–338, 01 2014.

J. Jamiluddin and V. Ramadayanti, “Developing Students’ Reading Comprehension

Through Question Generation Strategy,” eJournal of ELTS (English Language Teaching

Society), vol. 8, no. 1, Apr. 2020.

S. Cahyawijaya, G. I. Winata, B. Wilie,

K. Vincentio, X. Li, A. Kuncoro, S. Ruder,

Z. Y. Lim, S. Bahar, M. L. Khodra,

A. Purwarianti, and P. Fung, “IndoNLG:

Benchmark and Resources for Evaluating Indonesian Natural Language Generation,” arXiv:2104.08200 [cs], Oct. 2021,

arXiv: 2104.08200. [Online]. Available:

http://arxiv.org/abs/2104.08200

C. A. Nwafor and I. E. Onyenwe, “An

automated multiple-choice question generation using natural language processing

techniques,” International Journal on Natural Language Computing, vol. 10, no. 02,

p. 1–10, Apr 2021. [Online]. Available:

http://dx.doi.org/10.5121/ijnlc.2021.10201

A. D. Lelkes, V. Q. Tran, and C. Yu, “Quizstyle question generation for news stories,”

A. Graesser, V. Rus, S. D’Mello, and G. Jackson, “Autotutor: Learning through natural

language dialogue that adapts to the cognitive

and affective states of the learner,” Current

Perspectives on Cognition, Learning and Instruction: Recent Innovations in Educational

Technology that Facilitate Student Learning,

pp. 95–125, 01 2008.

N.-T. Le, T. Kojiri, and N. Pinkwart, “Automatic question generation for educational

applications – the state of art,” Advances in

Intelligent Systems and Computing, vol. 282,

pp. 325–338, 01 2014.

J. H. Wolfe, “Automatic question generation

from text - an aid to independent study,” in

SIGCSE ’76, 1976.

W. Yuan, T. He, and X. Dai,

“Improving Neural Question Generation using Deep Linguistic Representation,” in Proceedings of the Web Conference

Ljubljana Slovenia: ACM, Apr.

, pp. 3489–3500. [Online]. Available:

https://doi.org/10.1145/3442381.3449975

K. Vachev, M. Hardalov, G. Karadzhov,

G. Georgiev, I. Koychev, and P. Nakov,

“Leaf: Multiple-choice question generation,”

CoRR, vol. abs/2201.09012, 2022. [Online].

Available: https://arxiv.org/abs/2201.09012

G. Lai, Q. Xie, H. Liu, Y. Yang, and

E. H. Hovy, “RACE: large-scale reading

comprehension dataset from examinations,”

CoRR, vol. abs/1704.04683, 2017. [Online].

Available: http://arxiv.org/abs/1704.04683

T. Mihaylov, P. Clark, T. Khot, and

A. Sabharwal, “Can a suit of armor

conduct electricity? A new dataset for

open book question answering,” CoRR, vol. abs/1809.02789, 2018. [Online]. Available:

http://arxiv.org/abs/1809.02789

P. Clark, O. Etzioni, D. Khashabi, T. Khot,

B. D. Mishra, K. Richardson, A. Sabharwal,

C. Schoenick, O. Tafjord, N. Tandon, S. Bhakthavatsalam, D. Groeneveld, M. Guerquin,

and M. Schmitz, “From ’f’ to ’a’ on

the N.Y. regents science exams: An

overview of the aristo project,” CoRR, vol.

abs/1909.01958, 2019. [Online]. Available:

http://arxiv.org/abs/1909.01958

P. Clark, I. Cowhey, O. Etzioni, T. Khot,

A. Sabharwal, C. Schoenick, and O. Tafjord,

“Think you have solved question answering?

try arc, the AI2 reasoning challenge,” CoRR,

vol. abs/1803.05457, 2018. [Online]. Available:

http://arxiv.org/abs/1803.05457

O. Tafjord, P. Clark, M. Gardner,

W. Yih, and A. Sabharwal, “Quarel: A

dataset and models for answering questions

about qualitative relationships,” CoRR, vol.

abs/1811.08048, 2018. [Online]. Available:

http://arxiv.org/abs/1811.08048

F. C. Akyon, D. Cavusoglu, C. Cengiz,

S. O. Altinuc, and A. Temizel, “Automated

question generation and question answering from Turkish texts using text-to-text

transformers,” arXiv:2111.06476 [cs], Nov.

, arXiv: 2111.06476. [Online]. Available:

http://arxiv.org/abs/2111.06476

F. J. Muis and A. Purwarianti, “Sequence-tosequence learning for indonesian automatic

question generator,” 2020 7th International

Conference on Advanced Informatics: Concepts, Theory and Applications, ICAICTA

, 9 2020.

P. Rajpurkar, J. Zhang, K. Lopyrev, and P. Liang, “SQuAD: 100,000+

questions for machine comprehension of

text,” in Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing. Austin, Texas: Association for Computational Linguistics, Nov.

, pp. 2383–2392. [Online]. Available:

https://aclanthology.org/D16-1264

J. H. Clark, E. Choi, M. Collins, D. Garrette, T. Kwiatkowski, V. Nikolaev, and J. Palomaki, “TyDi QA: A benchmark for

information-seeking question answering in typologically diverse languages,” Transactions

of the Association for Computational Linguistics, vol. 8, pp. 454–470, 2020. [Online]. Available: https://aclanthology.org/2020.tacl-1.30

M. Schuster and K. Paliwal, “Bidirectional

recurrent neural networks,” IEEE Transactions on Signal Processing, vol. 45, no. 11,

pp. 2673–2681, Nov. 1997. [Online]. Available:

http://ieeexplore.ieee.org/document/650093/

K. Kriangchaivech and A. Wangperawong, “Question Generation by Transformers,” arXiv:1909.05017 [cs], Sep. 2019,

arXiv: 1909.05017. [Online]. Available:

http://arxiv.org/abs/1909.05017

J. Hu, S. Ruder, A. Siddhant, G. Neubig,

O. Firat, and M. Johnson, “XTREME: A

massively multilingual multi-task benchmark

for evaluating cross-lingual generalization,”

CoRR, vol. abs/2003.11080, 2020. [Online].

Available: https://arxiv.org/abs/2003.11080

P. Colombo, N. Noiry, E. Irurozki, and

S. Cl´emen¸con, “What are the best systems?

new perspectives on NLP benchmarking,”

CoRR, vol. abs/2202.03799, 2022. [Online].

Available: https://arxiv.org/abs/2202.03799

B. Wilie, K. Vincentio, G. I. Winata,

S. Cahyawijaya, X. Li, Z. Y. Lim, S. Soleman, R. Mahendra, P. Fung, S. Bahar, and A. Purwarianti, “IndoNLU:

Benchmark and resources for evaluating

Indonesian natural language understanding,” in Proceedings of the 1st Conference

of the Asia-Pacific Chapter of the Association for Computational Linguistics and the

th International Joint Conference on Natural Language Processing. Suzhou, China:

Association for Computational Linguistics,

Dec. 2020, pp. 843–857. [Online]. Available:

https://aclanthology.org/2020.aacl-main.85

A. Wang, A. Singh, J. Michael, F. Hill,

O. Levy, and S. Bowman, “GLUE: A multitask benchmark and analysis platform for

natural language understanding,” in Proceedings of the 2018 EMNLP Workshop BlackboxNLP: Analyzing and Interpreting Neural Networks for NLP. Brussels, Belgium: Association for Computational Linguistics,

Nov. 2018, pp. 353–355. [Online]. Available:

https://aclanthology.org/W18-5446

S. Gehrmann, T. Adewumi, K. Aggarwal,

P. S. Ammanamanchi, A. Aremu, A. Bosselut, K. R. Chandu, M.-A. Clinciu, D. Das,

K. Dhole, W. Du, E. Durmus, O. Duˇsek,

C. C. Emezue, V. Gangal, C. Garbacea,

T. Hashimoto, Y. Hou, Y. Jernite, H. Jhamtani, Y. Ji, S. Jolly, M. Kale, D. Kumar,

F. Ladhak, A. Madaan, M. Maddela, K. Mahajan, S. Mahamood, B. P. Majumder,

P. H. Martins, A. McMillan-Major, S. Mille,

E. van Miltenburg, M. Nadeem, S. Narayan,

V. Nikolaev, A. Niyongabo Rubungo, S. Osei,

A. Parikh, L. Perez-Beltrachini, N. R. Rao,

V. Raunak, J. D. Rodriguez, S. Santhanam,

J. Sedoc, T. Sellam, S. Shaikh, A. Shimorina,

M. A. Sobrevilla Cabezudo, H. Strobelt,

N. Subramani, W. Xu, D. Yang, A. Yerukola,

and J. Zhou, “The GEM benchmark: Natural language generation, its evaluation and

metrics,” in Proceedings of the 1st Workshop

on Natural Language Generation, Evaluation,

and Metrics (GEM 2021). Online: Association for Computational Linguistics,

Aug. 2021, pp. 96–120. [Online]. Available:

https://aclanthology.org/2021.gem-1.10

M. Lewis, Y. Liu, N. Goyal, M. Ghazvininejad, A. Mohamed, O. Levy, V. Stoyanov, and

L. Zettlemoyer, “BART: Denoising sequenceto-sequence pre-training for natural language

generation, translation, and comprehension,”

in Proceedings of the 58th Annual Meeting of

the Association for Computational Linguistics.

Online: Association for Computational Linguistics, Jul. 2020, pp. 7871–7880. [Online].

Available: https://aclanthology.org/2020.aclmain.703

T. Wolf, L. Debut, V. Sanh, J. Chaumond,

C. Delangue, A. Moi, P. Cistac, T. Rault,

R. Louf, M. Funtowicz, J. Davison, S. Shleifer,

P. von Platen, C. Ma, Y. Jernite, J. Plu,

C. Xu, T. Le Scao, S. Gugger, M. Drame,

Q. Lhoest, and A. Rush, “Transformers:

State-of-the-art natural language processing,” in Proceedings of the 2020 Conference

on Empirical Methods in Natural Language Processing: System Demonstrations. Online:

Association for Computational Linguistics,

Oct. 2020, pp. 38–45. [Online]. Available: https://aclanthology.org/2020.emnlpdemos.6

Y. Liu, J. Gu, N. Goyal, X. Li,

S. Edunov, M. Ghazvininejad, M. Lewis,

and L. Zettlemoyer, “Multilingual Denoising Pre-training for Neural Machine

Translation,” Transactions of the Association for Computational Linguistics, vol. 8,

pp. 726–742, 11 2020. [Online]. Available:

https://doi.org/10.1162/tacl a 00343

P. Rajpurkar, R. Jia, and P. Liang, “Know

what you don’t know: Unanswerable questions for SQuAD,” in Proceedings of the

th Annual Meeting of the Association for

Computational Linguistics (Volume 2: Short

Papers). Melbourne, Australia: Association for Computational Linguistics, Jul.

, pp. 784–789. [Online]. Available:

https://aclanthology.org/P18-2124

J. Devlin, M.-W. Chang, K. Lee, and

K. Toutanova, “BERT: Pre-training of deep

bidirectional transformers for language understanding,” in Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long

and Short Papers). Minneapolis, Minnesota:

Association for Computational Linguistics,

Jun. 2019, pp. 4171–4186. [Online]. Available:

https://aclanthology.org/N19-1423

T. B. Brown, B. Mann, N. Ryder, M. Subbiah,

J. Kaplan, P. Dhariwal, A. Neelakantan,

P. Shyam, G. Sastry, A. Askell, S. Agarwal,

A. Herbert-Voss, G. Krueger, T. Henighan,

R. Child, A. Ramesh, D. M. Ziegler, J. Wu,

C. Winter, C. Hesse, M. Chen, E. Sigler,

M. Litwin, S. Gray, B. Chess, J. Clark,

C. Berner, S. McCandlish, A. Radford,

I. Sutskever, and D. Amodei, “Language

Models are Few-Shot Learners,” in Advances

in Neural Information Processing Systems,

H. Larochelle, M. Ranzato, R. Hadsell,

M. Balcan, and H. Lin, Eds., vol. 33.

Curran Associates, Inc., Jul. 2020, pp. 1877–1901, arXiv: 2005.14165. [Online]. Available:

https://arxiv.org/pdf/2005.14165.pdf

Y. Tang, C. Tran, X. Li, P.-J. Chen,

N. Goyal, V. Chaudhary, J. Gu, and

A. Fan, “Multilingual translation from

denoising pre-training,” in Findings of

the Association for Computational Linguistics: ACL-IJCNLP 2021. Online: Association for Computational Linguistics,

Aug. 2021, pp. 3450–3466. [Online]. Available: https://aclanthology.org/2021.findingsacl.304

C. Raffel, N. Shazeer, A. Roberts,

K. Lee, S. Narang, M. Matena, Y. Zhou,

W. Li, and P. J. Liu, “Exploring the

limits of transfer learning with a unified text-to-text transformer,” Journal of

Machine Learning Research, vol. 21, no.

, pp. 1–67, 2020. [Online]. Available:

http://jmlr.org/papers/v21/20-074.html

L. Xue, N. Constant, A. Roberts, M. Kale,

R. Al-Rfou, A. Siddhant, A. Barua,

and C. Raffel, “mT5: A massively

multilingual pre-trained text-to-text transformer,” in Proceedings of the 2021 Conference of the North American Chapter of

the Association for Computational Linguistics: Human Language Technologies. Online:

Association for Computational Linguistics,

Jun. 2021, pp. 483–498. [Online]. Available: https://aclanthology.org/2021.naaclmain.41

M. E. Peters, M. Neumann, M. Iyyer,

M. Gardner, C. Clark, K. Lee, and

L. Zettlemoyer, “Deep contextualized word

representations,” in Proceedings of the 2018

Conference of the North American Chapter

of the Association for Computational Linguistics: Human Language Technologies, Volume

(Long Papers). New Orleans, Louisiana:

Association for Computational Linguistics,

Jun. 2018, pp. 2227–2237. [Online]. Available:

https://aclanthology.org/N18-1202

A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L. Kaiser, and

I. Polosukhin, “Attention Is All You Need,” in

Proceedings of the 31st International Conference on Neural Information Processing Systems, ser. NIPS’17. Red Hook, NY, USA:

Curran Associates Inc., 2017, p. 6000–6010.




DOI: https://doi.org/10.31449/inf.v46i7.4236

Creative Commons License
This work is licensed under a Creative Commons Attribution 3.0 License.