Gender Classification on Twitter Based on Feeds and User Descriptions Using Xlnet-Fasttext
Abstract
Full Text:
PDFReferences
Delić, D. (2022). Are women at more risk of online scams, the latest 2024 statistics. Retrieved from https://proprivacy.com/blog/women-and-online-scams-latest-statistics-2022
Susandra, A. (2022). Erayani Pelaku Penipuan nikah Sesama Jenis dilaporkan ke Polresta Jambi : Okezone Video. Retrieved from https://video.okezone.com/play/2022/06/30/1/149948/erayani-pelaku-penipuan-nikah-sesama-jenis-dilaporkan-ke-polresta-jambi
Yang, L., Li, Y., Wang, J., & Sherratt, R. S. (2020). Sentiment analysis for e-commerce product reviews in Chinese based on sentiment lexicon and deep learning. IEEE Access, 8, 23522–23530. https://doi.org/10.1109/access.2020.2969854
Bazzaz Abkenar, S., Haghi Kashani, M., Akbari, M., & Mahdipour, E. (2023). Learning textual features for Twitter Spam Detection: A systematic literature review. Expert Systems with Applications, 228, 120366. https://doi.org/10.1016/j.eswa.2023.120366
Adhikari, A., Ram, A., Tang, R., Hamilton, W. L., & Lin, J. (2020). Exploring the limits of simple learners in knowledge distillation for document classification with DocBERT. Proceedings of the 5th Workshop on Representation Learning for NLP. https://doi.org/10.18653/v1/2020.repl4nlp-1.10
Joshi, S., & Abdelfattah, E. (2021). Multi-class text classification using machine learning models for online drug reviews. 2021 IEEE World AI IoT Congress (AIIoT). https://doi.org/10.1109/aiiot52608.2021.9454250
Suleymanov, U., Kiani Kalejahi, B., Amrahov, E., & Badirkhanli, R. (2020). Text classification for azerbaijani language using machine learning. Computer Systems Science and Engineering, 35(6), 467–475. https://doi.org/10.32604/csse.2020.35.467
Garcia-Mendez, S., Fernandez-Gavilanes, M., Juncal-Martinez, J., Gonzalez-Castano, F. J., & Seara, O. B. (2020). Identifying banking transaction descriptions via support vector machine short-text classification based on a specialized labelled corpus. IEEE Access, 8, 61642–61655. https://doi.org/10.1109/access.2020.2983584
Zhong, B., Xing, X., Love, P., Wang, X., & Luo, H. (2019). Convolutional Neural Network: Deep learning-based classification of building quality problems. Advanced Engineering Informatics, 40, 46–57. https://doi.org/10.1016/j.aei.2019.02.009
Wani, A., Joshi, I., Khandve, S., Wagh, V., & Joshi, R. (2021). Evaluating deep learning approaches for covid19 fake news detection. Combating Online Hostile Posts in Regional Languages during Emergency Situation, 153–163. https://doi.org/10.1007/978-3-030-73696-5_15
Gupta, A., Chugh, D., Anjum, & Katarya, R. (2022). Automated News summarization using Transformers. Retrieved from https://link.springer.com/chapter/10.1007/978-981-16-9012-9_21
Anwar, M. T., Permana, A. K., Ambarwati, L., & Agustin, D. (2021). Analyzing public opinion based on emotion labeling using Transformers. 2021 2nd International Conference on Innovative and Creative Information Technology (ICITech). https://doi.org/10.1109/icitech50181.2021.9590110
Anwar, M. T., Permana, A. K., Ambarwati, L., & Agustin, D. (2021). Analyzing public opinion based on emotion labeling using Transformers. 2021 2nd International Conference on Innovative and Creative Information Technology (ICITech). https://doi.org/10.1109/icitech50181.2021.9590110
Kumar, D., Kumar, N., & Mishra, S. (2021). NLP@NISER: Classification of covid19 tweets containing symptoms. Proceedings of the Sixth Social Media Mining for Health (#SMM4H) Workshop and Shared Task. https://doi.org/10.18653/v1/2021.smm4h-1.19
Lan, Z., Chen, M., Goodman, S., Gimpel, K., Sharma, P., &; Soricut, R. (2020). Albert: A lite bert for self-supervised learning of language representations. arXiv.org. https://doi.org/10.48550/arXiv.1909.11942
Yao, T., Zhai, Z., & Gao, B. (2020). Text classification model based on fasttext: IEEE Conference Publication: IEEE Xplore. Retrieved from https://doi.org/10.1109/ICAIIS49377.2020.9194939
Nia, Z. M., Ahmadi, A., Mellado, B., Wu, J., Orbinski, J., Agary, A., & Kong, J. D. (2022). Twitter-based gender recognition using Transformers. Retrieved from https://arxiv.org/abs/2205.06801
Vashisth, P., &; Meehan, K. (2020). Gender classification using Twitter Text Data. 2020 31st Irish Signals and Systems Conference (ISSC). https://doi.org/10.1109/issc49989.2020.9180161
Puertas, E., Ureña-López, L. A., Pomares-Quimbaya, A., Alvarado-Valencia, J. A., Plaza-del-Arco, F. M., & Moreno-Sandoval, L. G. (2019). Bots and gender profiling on Twitter using sociolinguistic features ... Bots and gender profiling on Twitter using sociolinguistic features. https://www.researchgate.net/publication/335611800_Bots_and_Gender_Profiling_on_Twitter_using_Sociolinguistic_Features_Notebook_for_PAN_at_CLEF_2019
Staykovski, T. (2019). Stacked bots and gender prediction from Twitter feeds - CEUR-WS.org. Stacked Bots and Gender Prediction from Twitter Feeds. https://ceur-ws.org/Vol-2380/paper_197.pdf
Alroobaea, R., Aldahass, A., Alhomidi, S., Alafif, S., Hamed, R., Mulla, R., &; Alotaibi, B. (2020). A decision support system for detecting age and gender from Twitter feeds based on a comparative experiments. International Journal of Advanced Computer Science and Applications, 11(12). https://doi.org/10.14569/ijacsa.2020.0111245
Saeed, U., &; Shirazi, F. (2019). Bots and gender classification on Twitter - Webis. Notebook for PAN at CLEF 2019. https://pan.webis.de/downloads/publications/papers/saeed_2019.pdf
Ouni, S., Fkih, F., &; Omri, M. N. (2022). Bots and gender detection on twitter using stylistic features. Advances in Computational Collective Intelligence, 650–660. https://doi.org/10.1007/978-3-031-16210-7_53
Soldevilla, I., &; Flores, N. (2021). Natural language processing through Bert for identifying gender-based violence messages on social media. 2021 IEEE International Conference on Information Communication and Software Engineering (ICICSE). https://doi.org/10.1109/icicse52190.2021.9404127
Hashempour, R., Amorim, R., Villavicencio, A., & Plank, B. (2019). A deep learning approach to language-independent gender prediction on Twitter. ACL Anthology. https://aclanthology.org/W19-3630/
Eight, F. (2016). Twitter User Gender Classification. Retrieved from https://www.kaggle.com/datasets/crowdflower/twitter-user-gender-classification
DOI: https://doi.org/10.31449/inf.v48i20.5761
This work is licensed under a Creative Commons Attribution 3.0 License.