https://doi.org/10.31449/inf.v45i1.1234

Informatica 45 (2021) 501-505 501

USAGE OF INFORMATION ENTROPY IN SOLVING THE

WORDLEGAME

Bsc. Shkodran Hasanit, Cand. PhD Besart Prebreza!®, Dr.Sc Arianit Krypa®®, Cand.PhD Rrezart

Prebreza'

E-mail: shkodran.hasani@universum-ks.org,
besart.prebreza@universum-ks.org,
arianit.krypa@universum-ks.org,
rrezart.prebreza@universum-ks.org

* Corresponding author

1 Computer Science, UNI-
Universum International
College, Pristine, Kosovo

Keywords: Information Entropy, Probability, Frequency analysis, Wordle, Wordle Solver, Javascript

Received: November 21, 2021

Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna
aliqua. Utenim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquipex ea commodo consequat.
Duis aute irure dolor in reprehenderit in voluptate velit esse cillum dolore eufugiat nulla pariatur. Excepteur sint
occaecat cupidatat non proident, sunt in culpa qui officia deserunt mollit anim id est laborum.

Povzetek: Kratek povzetek povzetka v slovenscini.

1. INTRODUCTION

Wordle is a web-based game created and developed by
software engineer Josh Wardle and published by The New
York Times Company in early 2022. Conceptually Wordle
is similar to the 1970 game Mastermind (Machkovech ,
2022), but which uses letters (Wordle) instead of colors
(Mastermind). Wordle has a single daily solution where all
players have six chances to find a five-letter word which
is selected as the answer, after each guess theplayer is
provided with clues indicating when the letters match or
occupy the correct position.

Although the rules are easy to understand, and no prior
knowledge is needed, the main challenge lies in reaching
the final answer in as few trials as possible. This has led
many people around the world to try to build different
algorithms and techniques with the sole purpose of finding
the final answer in as few trials as possible.

Taking into account the facts mentioned above, in this
paper we will mainly talk about information entropy and
its use in the algorithm for solving Wordle, in this way we
will be able to reinforce our knowledge in some

mathematical concepts in a more comprehensive and fun way.

Finally, we will cover Wordle's algorithm from a
programming perspective (projects made in JavaScript 1),
where we will understand the function that each piece of
code performs, the results it provides us, and testing the
performance of the algorithm in comparison to other
algorithms used to solve Wordle.

2. LITERATURE REVIEW

When building the algorithm for solving Wordle, we
used the formula for measuring information entropy,
developed by Claude Shannon. During the 1940s
Shannon was trying to develop a way to quantitatively
measure information, its compression 2, and the impact of
the deterministic nature of language on information
entropy. In 1948, he published his findings in a book called
"A Mathematical Theory of Communication ”.

mailto:shkodran.hasani@universum-ks.org
mailto:shkodran.hasani@universum-ks.org
mailto:besart.prebreza@universum-ks.org
mailto:besart.prebreza@universum-ks.org
mailto:arianit.krypa@universum-ks.org
mailto:rrezart.prebreza@universum-ks.org

https://doi.org/10.31449/inf.v45i1.1234

Later in 1963, the book was reprinted together with
Warren Weaver's article called "The Mathematical Theory
of Communication" on which this paper is based.

Information theory

Communication is the process where through sounds,

signs or actions we transmit information from the sender
to the receiver. This information can be reflected in
different forms (through speech, musical notes, pictures,
etc.) by different people, with the main purpose of sharing
information [7].
Just like using scales to measure the weight of different
things, information regardless of the communication
method can be measured using a type of measure, which
is entropy, and the way of its quantitative representation
is realized using the unit of measure bit (abbreviatedfrom
the word "binary digit"), where one bit represents the
information we can extract from a question that accepts
only two possible values as an answer: yes or no. [7].

Information

An example through which we can understand how we
can measure information would be flipping a coin.
Suppose person A flips a coin, how many yes or no
guestions must person B be asked in order to find the
result of the coin flip?

Since the coin has only two possible outcomes: "heads"
or "tails", person B can find the result by asking only one
question: Is the result "head"? If the answer of person A
is "yes", then he has come to the conclusion that the result
was "head", while if the answer is "no", then the result was
"tail". From this example we conclude that the coin flip
contains one bit of information.

But what if instead of flipping a coin it was rolling a dice,
how many questions are needed to correctly identify the
winning number?

Let's assume that person A got the number "5" when
rolling the dice, since we have six possible values as a
result, then in order to ask the minimum number of
questions, person B needs to halve the number of
outcomes during each question. Person B asks: Is the
result greater than "3" ? The answer from person A will
be " no ", this leaves us with only three possible outcomes
(4,5 or 6) the next question should be: Is the result "4" ?
the answer from person A will be " no ", which leaves us
with only two possibilities (5 or 6), where with the next
question person B can undoubtedly find the correct result.
To find the number "5" three questions are needed, but
when throwing the dice we have cases when we may need
only two questions (example: finding the number

Informatica 45 (2021) 501-505 501

"4") . Measuring information in such cases would be
easier by referring to a formula.
From the observation of different events we come to the
conclusion that if we have two possible solutions, one
question is needed to find the answer, if we have four
possible solutions two questions are needed, for eight
possible solutions three questions are needed and so on.
For:
k=24816..>1=1,2,3,4..

From where we derive the formula:

k =2!

I =log2k 1)
I - information (number of questions)
k - number of possible outcomes (space of posibilities)

Therefore we can say that the throw of the dice contains
log2 6 = 2.6bits of information.

Entropy of information

But does an event produce the same information if the
probabilities between the possible events are not equal?
Suppose we have two applications, each generating astring
of characters consisting of 4 letters (example : A, B, C,
and D) [4]. Application 1 generates letters completely
randomly (25% A4, 25% B, 25% C, 25% D) , while
application 2 generates letters according to probability
(50% A, 12.5% B, 12.5% C, 25% D) , to understand how
many bits of information each letter contains, we use the
above method (halving the probability during each
question):

a éshté A ose B? ABCD a éshté A? ABCD
po jo po jo
AB a éshté A? a éshté C? CcD A agshteD? BCD
po jo po jo po jo
A B C D D agshieB? CD

|>/\>

B C
Figure 1. Visual representation of measuring information

In the case of application 1, we can say that each letter
contains exactly two bits of information, since a minimum
of two questions are needed to identify each letter, but in
application 2, the letter A has one bit of information, the
letter D has two bits of information,while the letters B and
C have three bits of information each.
If we calculate the average:
I=pg-lo+ pp-lp+pc-Ic+pa-la
I=05-14+0125-34+0.125-3+0.25-2
I =175 bit
p — probability

https://doi.org/10.31449/inf.v45i1.1234

From this example we understand that the less random the
letter generation is, the less information a given event
contains. From this conclusion Shannon gave his formula
for calculating the entropy of information or as he called
it: "the freedom of choice" [7].
H=pi-litp-Io+-+pn-In

H=Ypi I

H = ¥;p;-log,(1/py)

H=—Y;p;log;p;
H — information entropy (bit).

Entropy of language

If we analyze the frequency of the letters of a language
we can notice that the selection of letters for theformation
of words is not completely random, since not all letters are
used in the same frequency in the sentence,a concrete
example can be seen by analyzing the English language
(chart below).

112

e
o

6771

55
‘ I3II II36
0.2 03
lII I I mE_ l_

ABCDEFGHIJKLMNOPQRSTUVWXYZ
Letters

Frequency (%)

Figure 2. Frequency of letters in the English language [8]

By reading the graph, we see that the most used letter in
the English language is "E", while "Q" is the least used
letter, or from a frequency perspective; the letter E occurs
56 times more in sentences than the letter Q. From another
point of view, we see that the use of vowels is higher than
that of consonants. This is due to the fact thatdespite the
small number of vowels (only five) after every one or two
consonants the next letter in the sentence will most likely
be a vowel.

We encounter such things with letters and words in
particular, for example: The possibility that a word that
begins with the letter j is followed by the letter: c, f, g, j, q,
Vv, W, X or z ; is almost zero, since there are only a few such
words that meet this condition, it is also very unusual that
after the word "tradition" come the words "pink™ since
their meaning is not related.[7]

From the facts mentioned above, we can say that the
selection of letters and words in forming sentences and
messages is not completely independent, since the
language itself limits us in our selection.

Informatica 45 (2021) 501-505 501

Game rules

At the beginning of the game, the player finds himself
in front of a table 5 x 6 with empty cells, in which he
will place the words he sees as correct, after each attempt
each letter is marked with green, yellow or gray color, the
green cell means that the letter placed in it is correct and
in the correct position, the yellow cell means that the
corresponding letter is found in the final answer but in a
different position, while the gray cell means that such

letters are not part of the final answer.

Also words that have more than one letter of the same will
be marked in green or yellow color only if the final answer
also has more than one such letter, otherwise only

the first letter of this type will be marked with the color
green/yellow while other letters will be marked in gray.

33 donnts
@ 0ogeo
ﬁ#ﬁ 0 ooDOD

Figure 3. Color marking of the letters of the word ""Happy"
for different answers

The game contains the possibility of changing the view
from bright to dark and vice versa (light mode / dark mode)
as well as offers the possibility of using the high contrast
color set, for people with daltonism (color blindness)
where the green color is replaced by the orange color,
while the yellow color is replaced by the blue color.

The game contains 12972 words of which 2315 are
possible answers, the player during each guess can try one
of these 12972 words, while if the player chooses the hard
mode option then the player is obliged to use all letters
marked with green and yellow colors detected during
preliminary guesses in its subsequent answers.

Applying entropy to Wordle

So far we have discussed information entropy and the
Wordle game, but we have not yet discussed how we can
incorporate information entropy into solving Wordle, and
how efficient this method is.

Measuring word information

Earlier we mentioned that the unit for measuring
information is the bit , where we also mentioned the
formula equation (1) which means that if an event halves
the total number of possible cases, then we say that there
is a bit of information. In our case the total number of cases
represents the list of 12972 words and it turns out that
about half of these words contain the letter "'S",therefore
this event provides us with about a bit of

https://doi.org/10.31449/inf.v45i1.1234

information, also a quarter of the words contain the letter
"T" which means that such events have two bits of
information[6].
Unlike probability, where the final result is the product of
the probability of all events, the information on the other
side has the result of the sum, example: if the word
selected by the player contains the letter S and T, then the
probability of the event is:
Dsae=Ds " P = (1/2) - (1/4) = 1/8
While the information it provides is:
Isge=1Is+1,=14+2=3bit
In this way, the infoymation contained in a word is

calculated by iterating to each letter in the corresponding
word, we find how many bits of information each one of
them holds, and finally we calculate the total amount.

Using patterns*

Another feature of the game that helps us find the

optimal word are the patterns that show us which words
are found or not in the final answer. By marking each letter
of the corresponding word in green, yellow or gray,we can
precisely eliminate from the list all the words thatdo not
adhere to the given pattern, thus reducing thepossibility of
selecting the unwanted word.
To analyze the quality of the word selected by us, when it
is known that the pattern of this word depends on the
final answer, it is through the generation of all possible
patterns and the calculation of the number of words that
fits in them, Since a letter can be marked with one of three
colors (green, yellow or gray) and a word contains five
letters, then in total we have 35 = 243 patterns. If our
selected word is "focus" then the distribution of words in
the given patterns will look like:

0.25 2773

p(EmmEm) =

2972 =0.2138

0.2

[(mEEEE) = log:(1/p) = 2.23

EEEE =
p()= 072

[(MEEET) = log:(1/p) = 6.71

=0.0096

Probability (%)

Patterns

Figure 4. Presentation of the probability for each pattern of
the word "*focus™

% Iteration means executing a piece of code repeatedly until
a certain condition is met

“Pattern/s (here) means the way of presentation of the
result depending on the marking of the letters in green,
yellow or gray

Informatica 45 (2021) 501-505 501

In the chart above, we've sorted the patterns from left to
right by the number of words that match them, and we've
only shown the first 50 patterns. In the word "focus"” in
the most frequent case (21% of cases) when all the letters
are marked in gray, the information we get is only 2.23
bits, which means that at least from 12972 possible words
we reduce the possibilities space to 2773 words, while
there are cases when we get 6.71 bits of information from
this word, this happens when the letter "C" is marked in
green and "S" in yellow, only 124 words fit this pattern,
but we only encounter it 1% of cases.

0.25

p(EEEEm) = 328

12972
[(MEEEE) = log,(1/p) = 3.92

=0.0661

o
N

o
o
@

176
EEEm) = ——=0.0136
p() 12972

[(CMEEN) =log(1/p) =6.2
, Ih-ﬁ

Patterns

o
=

Probabilities (%)
°
o

Figure 5. Presentation of the probability for each pattern of
the word "tares"

Another word that provides us with more information is
the word "tares", if we look at its graph we can see that the
distribution of words in the pattern is greater, since even
in the worst case (when all the letters are marked gray) the
minimum information we get is 3.92 bits (reducing the
number of possible words to 858), but this pattern is
encountered in only 7% of cases, which means that usually
we get more information than that.
From the graphs above, we see that the more information
a certain word contains, the lower its probability is,
therefore, for the selection of the optimal word, we refer to
the formula of equation (2) where we calculate the product
between the probability of a corresponding pattern and the
information provided by that pattern, their total sum
represents the average value of the information provided
by that word.
By calculating the entropy for the words focus and tares,
we see that the word focus provides an average of 4.54 bits
of information, while the word tares provides 6.19 bits.
From these results we see that using the word tares instead
of the word focus reduces the list of words by about three
times more.
To understand the limitation that language made us in the
selection of words, we can compare the entropy of the
word with the highest value (tares - 6.19) with the
maximum entropy that a word can have:

log; 35 =7.92 bit and the number of possible words
from (26° =
11,881,376 words (23.5 bits) to 12972 words (13.66 bits).

https://doi.org/10.31449/inf.v45i1.1234

3. APPLICATION

Building the Wordle algorithm

Generating solutions to the Wordle game requires
discovering strategies that lead to the final answer in as
few guesses as possible. Eliminating as many words as
possible and analyzing the remaining words are the keys
to these strategies.
During the construction of such algorithms, we must take
into account several main elements such as: the accuracy
of the algorithm, the time complexity and the space it
occupies in the memory. Since our game is about selecting
words from a pre-written list, some of the optimal
techniques are:

— Filtering incorrect words

— Using predefine words

— Letter frequency analysis

— Analyzing the frequency of letters and their

positions in words
— Calculating information entropy
— Calculating information entropy (using the
answer list)

The main reason why | have used Javascript in my project
work is the ease of access. Javascript is a web scripting
language ° , so there is no need to install additional
software since the code is executed in your browser, while
applications like text-editor (such as Notepad) can be used
to write the code.
In this section, we'll look at building code for the
Calculating information entropy and Calculating
information entropy (using the answer list) algorithms.

Application structure
The files will be divided into several main folders:

— data where the list of words and answers will be
stored (words.js, answers.js),

— scripts where the code for building the game
(index.js, game.js) and the code for building the
algorithms will be stored,

— testing code for testing the performance of algorithms

— styles code for designing the web page (.css files)

— index.html main file through which the result of the
application is displayed

Calculating information entropy

This method is based on the selection of words that
contains the most information and at the same time
reducing the list of possible words to its minimum. The

> (Eng. Scripting language) means programming
language which interprets and executes commands one by
one

Informatica 45 (2021) 501-505 501

algorithm starts by calculating the entropy of each word
for each possible pattern, and finds their sum, the word
with the highest value is selected as an valid answer.

1 import { possibleWords } from
2 './../data/words.js';

3 import { matchedWords } from './filter.js';

4 let wordsLength = 5;

5 let bestWord;

6

7

let patterns = [];
const numberOfPatterns = Math.pow(3, wordsLength);

To begin with, we imported the list possiblelWords,
which contains all possible words, and the list
matchedWords, which will store the words that meet the
condition of the pre-discovered patterns, we declared the
variable wordsLength which holds the value of the
number of letters in a word (five) and the variable
bestWord in which to store the optimal word for the
answer.

We have also declared the patterns list which will carry
the value of all possible patterns of a word (humbers 2, 1
or 0 will be used for the potential marking of green, yellow
or gray letters). We have also created the
numberOfPatterns variable which shows the possible
number of patterns: 243 ©,

8 for(let i = 0; i < numberOfPatterns; i++) {

9 patterns[i] = [];

10 let temp =
11 i.toString(3).padStart(wordsLength,®);

12 for(let j = 0; j < wordsLength; j++) {

13 patterns[i][j] = parseInt(temp[j]);
14 }
15}
16
17 function informationEntropy() {
79 ... // algorithm code
}

The generation of these patterns is done automatically
using the toString() method, which converts a decimal
number (with base 10) into a number with base 3(since it
has the number 3 as a parameter). In parallelwith the
generation of numbers, the padStart()method is used,
which has the task of converting each generation of the
pattern into a five-digit value by adding zero to the
beginning of the number as needed.

® Three marking options: green, yellow, gray - for every
five letters in a word; 3> = 243pattern in total

https://doi.org/10.31449/inf.v45i1.1234 Informatica 45 (2021) 501-505 501

17 let matches = matchedWords.length; 37 else {

18 let entropyValue = 0; 38 if(matchedWords[j].includes(possibleWords[h][k]))
19 1let entropyArray = []; {

20 for(let h = 9; h < possibleWords.length; h++) { 39 matches--;

21 for(let i = @; i < numberOfPatterns; i++) { 40 break;

22 for(let j = @; j < matchedWords.length; j++) { 41 ¥

23 for(let k = 0; k < wordsLength; k++) { 42 }

24 ... // if statements

43 } If pattern is zero, then remove all words containing this er
44 } lei(since the word possiblelWords[h] does not ntain
45 -+. // reset matches cothis letter at all).

51 }

52 ... // reset entropyValue

45 if(matches > 0) {
46 let probability = matches / matchedWords.length;

- . . 47 let information = Math.log2(matchedWords.length
inside informationEntropy() method we have J mEEEes):

declared the variable matches which will contain the 45 entropyValue += probability * information;
number of words that match a certain pattern, the 49 4

entropyValue variable which will contain the average s5e matches = matchedwWords.length;

entropy value of a given word and the entropyArray list
in which the entropy values of all words will bestored.
This is achieved by iterating over four nestedloops.

55}

After finishing the elimination of the words that do not
match, we start with the entropy calculation for each
possible pattern, if the value of the words that match this
pattern is at least one (matches >). The entropy of

24 if(patterns[i][k] === 2) { thz word is obtained by calculating the total sum of the
25 if(possibleWords[h][k]!==matchedWords[j][k]) { product between the probability of a pattern and the
26 matches--; information that this pattern provides (see equation (2)).
27 break; Tten, the variable matches is reset for entropy lculation
is) } caof the next word.

n 52 entropyValue =
If the specified pattern has the value two then every word 53 arseFloat(entropyVvalue.toFixed(2));

is eliminated from the matchedWords list which does 54 entr\opyAr\ray[h] = entropyValue;

not contain the specified letter in current position (since entropyValue = 0;

the word; possibleWords[h] in which the entropy is

being calculated contains this letter in this position). Using the toFixed() method the calculated entropy

values are rounded to two decimal places and stored in

30 else if(patterns[i][k] === 1) { the entropyArray list, as well as the entropyValue
31 value is reset at the end, as it will be used to store the
32 if(!matchedWords[j].includes(possibleWords[h][k]) entropy!value of the next word.

33 || possibleWords[h][k] === matchedWords[j][k]) {

34 matches--;

56 indexArray = [];

35 b el 57 for(let i = ©; i < possibleWords.length; i++) {
36 } 58 if(matchedWords.includes(possibleWords[i])) {
} 59 indexArray.push(i);

60 }
If the pattern has the value one then every word that does 51 3

not contain the given letter or even the words that contain 62 let maxvalue = entropyArray[0];

the letter in the same position is eliminated (because the 63 bestWord = possibleWords[0];

word possibleWords[h] contains this letter but ina 64 let tempIndex = 0;

different position).
After we have calculated the information entropy for all
the words, we need to find the maximum value of entropy.
In advance, for all the words that can be

https://doi.org/10.31449/inf.v45i1.1234

potential answers of the game (matchedWords), westore
their indexes in a list called indexArray.

65 for(let i = 9; i < entropyArray.length; i++) {

66 if(entropyArray[i] > maxValue) {

67 maxValue = entropyArray[i];

68 bestWord = possibleWords[i];

69 tempIndex = i;

70 }

71 else if(entropyArray[i] === maxValue) {

72 if(indexArr.includes(i) &&
lindexArr.includes(tempIndex)) {

73 maxValue = entropyArray[i];

74 bestWord = possibleWords[i];

75 tempIndex = i;

76 }

77 }

78 }

By iterating through the entire list we find the maximum
value and store it in the maxValue variable and the
corresponding word in the bestWord variable. An extra
step we should take, also the reason for using the
indexArray listis the detection of equal values. Incase
two or more words have the same entropy values, then the
maximum value is selected based on which wordis found
in the list of possible answers.

Calculating information entropy (using the
answerlist)

A more efficient version of the algorithm is using the list
of answers instead of all possible words, thus increasing
the speed and accuracy of the algorithm

- // informationEntropy code
2 let matchedWords = [...possibleWords];

- // informationEntropyAdvance code
2 import { possibleAnswers }
from './../data/answers.js";
3 let matchedWords = [...possibleAnswers];

The implementation of the algorithm is also the same, it
is enough to import the list of possible answers
(possibleAnswers) and create the list
matchedWords which has this same list as a source,
unlike the previous algorithm (where matchedWordshas
been the source for the list possibleWords).

4. DATA ANALYSIS AND DISCUSSION
In order to analyze the performance of these algorithms,
we have built several pieces of code that test the
algorithms for all 2315 possible words as answers, | have
shown the obtained data below in the form of graphs and
tables.

In this part we will present the algorithm analysis Using
information entropy and Using information entropy (using

Informatica 45 (2021) 501-505 501

answer list).

1369

Number of words

0 8

503
409
. . -
3 4 5 6

Number of attempts

1 2

Figure 5: Test plot of the ""Using information entropy"’
algorithm

From the graph above, we see that the algorithm has
found the correct answer in the most frequent case in 4
attempts (1369 cases), it has never managed to find the
correct answer in the first case, while the maximum
number of cases required is 6 attempts (26 cases).

Has won Lost Average TOTAL

2315 0 3.97 2315

Table 1. Results from testing the algorithm **Using
information entropy™

From the table we conclude that the use of information
entropy as an average has achieved a significant
improvement with 3.97 attempts for answers, has not
failed in any case in finding the final answer (0 cases, or
expressed as a percentage of 0%) and has completed
successfully in 2315 cases or 100%.

1205

1003

Number of words

42 64

1 2 3 4 5 6

Number of attempts

Figure 6: Test plot of the algorithm "Using information
entropy (using response list)

From this graph we see that the use of the list of answers
by the algorithm has given more accurate results by
reducing the number of attempts in the most frequent
case to find the answer to 3 (1205 cases), also it has never
managed to find the answer correct in the first case, while
the maximum number of cases needed to find the answer
is 6 attempts (1 case).

https://doi.org/10.31449/inf.v45i1.1234

Has won Lost Average TOTAL

2315 0 3.47 2315

Table 2. Results from testing the algorithm *"Using
information entropy (using the list of answers)"

From the table we see that the use of the answer list
in the algorithm that uses entropy as an average has
performed in 3.47 attempts for answers, an
improvement on the average, while it has never
failed (0 cases or 0%) and ended successfully (2315
cases or 100%).

5. CONCLUSIONS AND
RECOMMENDATIONS

By testing the algorithms for finding the optimal
answer for the Wordle game, we can see in detail the
advantages and disadvantages that each algorithm
offers in terms of performance, accuracy, and
memory allocation.

The algorithm for filtering incorrect words is among
the easiest algorithms to build, has good time
performance and is an integral part of other
algorithms, but it does not perform well in accuracy.
The use of predefine words is mostly easy to build,
it alsooffers good performance in terms of time
(both duringthe game and during testing) since the
selection of words is done at the beginning of the
game and does not change until its completion.
There are no major improvements over the previous
algorithm in terms of accuracy, but it significantly
reduces the number of cases of failure to find the
correct answer within 6 possibilities.

The letter frequency analysis provides relatively
goodperformance in terms of time, but offers much
higher accuracy in finding answers, while the
algorithm for analyzing the frequency of letters in
the corresponding positions performs almost the
same in terms of time,while providing even higher
accuracy.

Using information entropy is more complicated to
construct and consumes more time and processing
power,but it provides the most accurate results and
never fails tofind the answer, also using a list of
answers increases accuracy even more of the
algorithm and significantly improves the time
performance.

As a final selection for solving the Wordle game, it
would be to use information entropy since it has the
highest accuracy, also the complexity of the algorithm
does not present a problem in terms of time.

(11

[2

31

[4

(5]

6]

[71

(8l

[

6.

Informatica 45 (2021) 501-505 501

REFERENCE

Cao, S., & Dahir, 1. (2022, January 16). How Wordle
Became The Internet's Omicron Pastime. Retrieved
from BuzzFeed News:
https://www.buzzfeednews.com/article/stefficao/how
-wordle-went-viral-strategy

Clark, M. (2022, January 24). Twitter suspends
Wordle-ruining bot. Retrieved from The Verge:
https://www.theverge.com/2022/1/24/22899339/wor
dle-twitter-spoilers-banned-word-puzzle-answers

Greenbaum, A., & Byrd, M. (2022, July 13). 20 Best
Wordle Clones For Your Daily Game Needs.
Retrieved from Den of Geek:
https://www.denofgeek.com/games/best-daily-
games-wordle-clones-spin-offs/

Khan Academy. (2014, April 28). Information
entropy. Retrieved from
https://www.khanacademy.org/computing/computer-
science/informationtheory/moderninfotheory/v/infor
mation-entropy.

Machkovech, S. (2022, March 25). Wordle creator
describes game's rise, says NYT sale was "a way to
walk away". Retrieved from arsTechnica:
https://arstechnica.com/gaming/2022/03/wordle-
creator-describes-games-rise-says-nyt-sale-was-a-
way-to-walk-away/

Sanderson, G. (2022, February 6). Solving Wordle
using information theory. Retrieved from
3bluelbrown:
https://www.3bluelbrown.com/lessons/wordle

Shannon, C., & Weaver, W. (1963). The
Mathematical Theory of Communication. Urbana,
United States of America: The University of Illinois
Press. Retrieved from
https://monoskop.org/images/b/be/Shannon_Claude

E_Weaver Warren The Mathematical Theory of
Communication_1963.pdf

University of Notre Dame. (1995). The frequency of
the letters of the alphabet in English. Retrieved from
Concise Oxford Dictionary:

https://www3.nd.edu/~busiforc/handouts/cryptograp
hy/letterfrequencies.html

http://www.buzzfeednews.com/article/stefficao/how
http://www.theverge.com/2022/1/24/22899339/wor
http://www.denofgeek.com/games/best-daily-
http://www.khanacademy.org/computing/computer-
https://www.3blue1brown.com/lessons/wordle
https://monoskop.org/images/b/be/Shannon_Claude_%20E_Weaver_Warren_The_Mathematical_Theory_of_%20Communication_1963.pdf
https://monoskop.org/images/b/be/Shannon_Claude_%20E_Weaver_Warren_The_Mathematical_Theory_of_%20Communication_1963.pdf
https://monoskop.org/images/b/be/Shannon_Claude_%20E_Weaver_Warren_The_Mathematical_Theory_of_%20Communication_1963.pdf
https://monoskop.org/images/b/be/Shannon_Claude_%20E_Weaver_Warren_The_Mathematical_Theory_of_%20Communication_1963.pdf

