
https://doi.org/10.31449/inf.v45i1.1234 Informatica 45 (2021) 501–505 501

USAGE OF INFORMATION ENTROPY IN SOLVING THE

WORDLE GAME

Bsc. Shkodran Hasani1, Cand. PhD Besart Prebreza1*, Dr.Sc Arianit Krypa1*, Cand.PhD Rrezart

Prebreza1*

 E-mail: shkodran.hasani@universum-ks.org,

besart.prebreza@universum-ks.org,

arianit.krypa@universum-ks.org,

rrezart.prebreza@universum-ks.org

* Corresponding author

1 Computer Science, UNI-

Universum International

College, Pristine, Kosovo

Keywords: Information Entropy, Probability, Frequency analysis, Wordle, Wordle Solver, Javascript

Received: November 21, 2021

Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna

aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat.

Duis aute irure dolor in reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla pariatur. Excepteur sint

occaecat cupidatat non proident, sunt in culpa qui officia deserunt mollit anim id est laborum.

Povzetek: Kratek povzetek povzetka v slovenščini.

1. INTRODUCTION

Wordle is a web-based game created and developed by

software engineer Josh Wardle and published by The New

York Times Company in early 2022. Conceptually Wordle

is similar to the 1970 game Mastermind (Machkovech ,

2022), but which uses letters (Wordle) instead of colors

(Mastermind). Wordle has a single daily solution where all

players have six chances to find a five-letter word which

is selected as the answer, after each guess the player is

provided with clues indicating when the letters match or

occupy the correct position.

Although the rules are easy to understand, and no prior

knowledge is needed, the main challenge lies in reaching

the final answer in as few trials as possible. This has led

many people around the world to try to build different

algorithms and techniques with the sole purpose of finding

the final answer in as few trials as possible.

Taking into account the facts mentioned above, in this

mathematical concepts in a more comprehensive and fun way.

Finally, we will cover Wordle's algorithm from a

programming perspective (projects made in JavaScript 1),

where we will understand the function that each piece of

code performs, the results it provides us, and testing the

performance of the algorithm in comparison to other

algorithms used to solve Wordle.

2. LITERATURE REVIEW

When building the algorithm for solving Wordle, we

used the formula for measuring information entropy,

developed by Claude Shannon. During the 1940s

Shannon was trying to develop a way to quantitatively

measure information, its compression 2, and the impact of

the deterministic nature of language on information

entropy. In 1948, he published his findings in a book called

"A Mathematical Theory of Communication”.

paper we will mainly talk about information entropy and

its use in the algorithm for solving Wordle, in this way we

will be able to reinforce our knowledge in some

mailto:shkodran.hasani@universum-ks.org
mailto:shkodran.hasani@universum-ks.org
mailto:besart.prebreza@universum-ks.org
mailto:besart.prebreza@universum-ks.org
mailto:arianit.krypa@universum-ks.org
mailto:rrezart.prebreza@universum-ks.org

https://doi.org/10.31449/inf.v45i1.1234 Informatica 45 (2021) 501–505 501

Later in 1963, the book was reprinted together with

Warren Weaver's article called "The Mathematical Theory

of Communication" on which this paper is based.

Information theory

Communication is the process where through sounds,

signs or actions we transmit information from the sender

to the receiver. This information can be reflected in

different forms (through speech, musical notes, pictures,

etc.) by different people, with the main purpose of sharing

information [7].

Just like using scales to measure the weight of different

things, information regardless of the communication

method can be measured using a type of measure, which

is entropy, and the way of its quantitative representation

is realized using the unit of measure bit (abbreviated from

the word "binary digit"), where one bit represents the

information we can extract from a question that accepts

only two possible values as an answer: yes or no. [7].

Information

An example through which we can understand how we

can measure information would be flipping a coin.

Suppose person A flips a coin, how many yes or no

questions must person B be asked in order to find the

result of the coin flip?

Since the coin has only two possible outcomes: "heads"

or "tails", person B can find the result by asking only one

question: Is the result "head"? If the answer of person A

is "yes", then he has come to the conclusion that the result

was "head", while if the answer is "no", then the result was

"tail". From this example we conclude that the coin flip

contains one bit of information.

But what if instead of flipping a coin it was rolling a dice,

how many questions are needed to correctly identify the

winning number?

Let's assume that person A got the number "5" when

rolling the dice, since we have six possible values as a

result, then in order to ask the minimum number of

questions, person B needs to halve the number of

outcomes during each question. Person B asks: Is the

result greater than "3" ? The answer from person A will

be " no ", this leaves us with only three possible outcomes

(4, 5 or 6) the next question should be: Is the result "4" ?

the answer from person A will be " no ", which leaves us

with only two possibilities (5 or 6), where with the next

question person B can undoubtedly find the correct result.

To find the number "5" three questions are needed, but

when throwing the dice we have cases when we may need

only two questions (example: finding the number

"4") . Measuring information in such cases would be

easier by referring to a formula.

From the observation of different events we come to the

conclusion that if we have two possible solutions, one

question is needed to find the answer, if we have four

possible solutions two questions are needed, for eight

possible solutions three questions are needed and so on.

For:

𝑘 = 2, 4, 8, 16 … ⇒ 𝐼 = 1, 2, 3, 4 …
From where we derive the formula:

𝑘 = 2𝐼
𝐼 = 𝑙𝑜𝑔2 𝑘 (1)

I - information (number of questions)

k - number of possible outcomes (space of posibilities)

Therefore we can say that the throw of the dice contains

𝑙𝑜𝑔2 6 ≈ 2.6bits of information.

Entropy of information

But does an event produce the same information if the

probabilities between the possible events are not equal?

Suppose we have two applications, each generating a string

of characters consisting of 4 letters (example : A, B, C,

and D) [4]. Application 1 generates letters completely

randomly (25% 𝐴, 25% 𝐵, 25% 𝐶, 25% 𝐷) , while

application 2 generates letters according to probability

(50% 𝐴, 12.5% 𝐵, 12.5% 𝐶, 25% 𝐷) , to understand how

many bits of information each letter contains, we use the

above method (halving the probability during each

question):

Figure 1. Visual representation of measuring information

In the case of application 1, we can say that each letter

contains exactly two bits of information, since a minimum

of two questions are needed to identify each letter, but in

application 2, the letter A has one bit of information, the

letter D has two bits of information, while the letters B and

C have three bits of information each.

If we calculate the average:

𝐼 = 𝑝𝑎 ⋅ 𝐼𝑎 + 𝑝𝑏 ⋅ 𝐼𝑏 + 𝑝𝑐 ⋅ 𝐼𝑐 + 𝑝𝑑 ⋅ 𝐼𝑑

𝐼 = 0.5 ⋅ 1 + 0.125 ⋅ 3 + 0.125 ⋅ 3 + 0.25 ⋅ 2
𝐼 = 1.75 𝑏𝑖𝑡

p – probability

https://doi.org/10.31449/inf.v45i1.1234 Informatica 45 (2021) 501–505 501

From this example we understand that the less random the

letter generation is, the less information a given event

contains. From this conclusion Shannon gave his formula

for calculating the entropy of information or as he called

it: "the freedom of choice" [7].

𝐻 = 𝑝1 ⋅ 𝐼1 + 𝑝2 ⋅ 𝐼2 + ⋯ + 𝑝𝑛 ⋅ 𝐼𝑛

𝐻 = ∑𝑖 𝑝𝑖 ⋅ 𝐼𝑖
𝐻 = ∑𝑖 𝑝𝑖 ⋅ log2(1⁄𝑝𝑖)

Game rules

At the beginning of the game, the player finds himself

in front of a table 5 × 6 with empty cells, in which he

will place the words he sees as correct, after each attempt

each letter is marked with green, yellow or gray color, the

green cell means that the letter placed in it is correct and

in the correct position, the yellow cell means that the

corresponding letter is found in the final answer but in a

different position, while the gray cell means that such

𝐻 = − ∑𝑖 𝑝𝑖 ⋅ log2 𝑝𝑖
H – information entropy (bit).

Entropy of language

 letters are not part of the final answer.

Also words that have more than one letter of the same will

be marked in green or yellow color only if the final answer

also has more than one such letter, otherwise only

If we analyze the frequency of the letters of a language

we can notice that the selection of letters for the formation

of words is not completely random, since not all letters are

used in the same frequency in the sentence, a concrete

example can be seen by analyzing the English language

(chart below).

Figure 2. Frequency of letters in the English language [8]

By reading the graph, we see that the most used letter in

the English language is "E", while "Q" is the least used

letter, or from a frequency perspective; the letter E occurs

56 times more in sentences than the letter Q. From another

point of view, we see that the use of vowels is higher than

that of consonants. This is due to the fact that despite the

small number of vowels (only five) after every one or two

consonants the next letter in the sentence will most likely

be a vowel.

We encounter such things with letters and words in

particular, for example: The possibility that a word that

begins with the letter j is followed by the letter: c, f, g, j, q,

v, w, x or z ; is almost zero, since there are only a few such

words that meet this condition, it is also very unusual that

after the word "tradition" come the words "pink" since

their meaning is not related.[7]

From the facts mentioned above, we can say that the

selection of letters and words in forming sentences and

messages is not completely independent, since the

language itself limits us in our selection.

the first letter of this type will be marked with the color

green/yellow while other letters will be marked in gray.

Figure 3. Color marking of the letters of the word "Happy"

for different answers

The game contains the possibility of changing the view

from bright to dark and vice versa (light mode / dark mode)

as well as offers the possibility of using the high contrast

color set, for people with daltonism (color blindness)

where the green color is replaced by the orange color,

while the yellow color is replaced by the blue color.

The game contains 12972 words of which 2315 are

possible answers, the player during each guess can try one

of these 12972 words, while if the player chooses the hard

mode option then the player is obliged to use all letters

marked with green and yellow colors detected during

preliminary guesses in its subsequent answers.

Applying entropy to Wordle

So far we have discussed information entropy and the

Wordle game, but we have not yet discussed how we can

incorporate information entropy into solving Wordle, and

how efficient this method is.

Measuring word information

Earlier we mentioned that the unit for measuring

information is the bit , where we also mentioned the

formula equation (1) which means that if an event halves

the total number of possible cases, then we say that there

is a bit of information. In our case the total number of cases

represents the list of 12972 words and it turns out that

about half of these words contain the letter "S", therefore

this event provides us with about a bit of

11.2

8.5
7.5

6.7 7.1
7.6

5.5 5.7

4.5
3.4

2.5
3
 3 3.2

6.9

 3.6

2.1 1.8
1.1 1 1.3

0.2 0.2

1.8

0.3 0.3

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

Letters

F
re

q
u
en

cy
 (

%
)

https://doi.org/10.31449/inf.v45i1.1234 Informatica 45 (2021) 501–505 501

information, also a quarter of the words contain the letter

"T" which means that such events have two bits of

information[6].

Unlike probability, where the final result is the product of

the probability of all events, the information on the other

side has the result of the sum, example: if the word

selected by the player contains the letter S and T, then the

probability of the event is:

𝑝𝑠&𝑡 = 𝑝𝑠 ⋅ 𝑝𝑡 = (1⁄2) ⋅ (1⁄4) = 1/8
While the information it provides is:

𝐼𝑠&𝑡 = 𝐼𝑠 + 𝐼𝑡 = 1 + 2 = 3 𝑏𝑖𝑡
In this way, the information contained in a word is 3

In the chart above, we've sorted the patterns from left to

right by the number of words that match them, and we've

only shown the first 50 patterns. In the word "focus" in

the most frequent case (21% of cases) when all the letters

are marked in gray, the information we get is only 2.23

bits, which means that at least from 12972 possible words

we reduce the possibilities space to 2773 words, while

there are cases when we get 6.71 bits of information from

this word, this happens when the letter "C" is marked in

green and "S" in yellow, only 124 words fit this pattern,

but we only encounter it 1% of cases.

calculated by iterating to each letter in the corresponding

word, we find how many bits of information each one of

them holds, and finally we calculate the total amount.

Using patterns4

Another feature of the game that helps us find the

optimal word are the patterns that show us which words

are found or not in the final answer. By marking each letter

of the corresponding word in green, yellow or gray, we can

precisely eliminate from the list all the words that do not

adhere to the given pattern, thus reducing the possibility of

selecting the unwanted word.

To analyze the quality of the word selected by us, when it

is known that the pattern of this word depends on the

final answer, it is through the generation of all possible

patterns and the calculation of the number of words that

fits in them, Since a letter can be marked with one of three

colors (green, yellow or gray) and a word contains five

letters, then in total we have 35 = 243 patterns. If our

selected word is "focus" then the distribution of words in

the given patterns will look like:

Figure 4. Presentation of the probability for each pattern of

the word "focus"

3 Iteration means executing a piece of code repeatedly until

a certain condition is met
4Pattern/s (here) means the way of presentation of the

result depending on the marking of the letters in green,

yellow or gray

Figure 5. Presentation of the probability for each pattern of

the word "tares"

Another word that provides us with more information is

the word "tares", if we look at its graph we can see that the

distribution of words in the pattern is greater, since even

in the worst case (when all the letters are marked gray) the

minimum information we get is 3.92 bits (reducing the

number of possible words to 858), but this pattern is

encountered in only 7% of cases, which means that usually

we get more information than that.

From the graphs above, we see that the more information

a certain word contains, the lower its probability is,

therefore, for the selection of the optimal word, we refer to

the formula of equation (2) where we calculate the product

between the probability of a corresponding pattern and the

information provided by that pattern, their total sum

represents the average value of the information provided

by that word.

By calculating the entropy for the words focus and tares,

we see that the word focus provides an average of 4.54 bits

of information, while the word tares provides 6.19 bits.

From these results we see that using the word tares instead

of the word focus reduces the list of words by about three

times more.

To understand the limitation that language made us in the

selection of words, we can compare the entropy of the

word with the highest value (tares - 6.19) with the

maximum entropy that a word can have:

 log2 35 ≈7.92 𝑏𝑖𝑡 and the number of possible words

from (265 =
11,881,376 words (23.5 bits) to 12972 words (13.66 bits).

0.25
p (■■■■■) = = 0.2138

0.2

I (■■■■■) = log2(1/𝑝) = 2.23

0.15

0.1
p (■■■■■) = = 0.0096

0.05 I (■■■■■) = log2(1/𝑝) = 6.71

0

Patterns

p (■■■■■) = = 0.0661

0.2
I (■■■■■) = log2(1/𝑝) = 3.92

0.15

0.1

0.05

p (■■■■■) = = 0.0136

I (■■■■■) = log2(1/𝑝) = 6.2

0

Patterns

P
ro

b
ab

ili
ty

 (
%

)

P
ro

b
ab

ili
ti

es
 (

%
)

https://doi.org/10.31449/inf.v45i1.1234 Informatica 45 (2021) 501–505 501

3. APPLICATION

Building the Wordle algorithm

Generating solutions to the Wordle game requires

discovering strategies that lead to the final answer in as

few guesses as possible. Eliminating as many words as

possible and analyzing the remaining words are the keys

to these strategies.

During the construction of such algorithms, we must take

into account several main elements such as: the accuracy

of the algorithm, the time complexity and the space it

occupies in the memory. Since our game is about selecting

words from a pre-written list, some of the optimal

techniques are:

− Filtering incorrect words

− Using predefine words

− Letter frequency analysis

− Analyzing the frequency of letters and their

positions in words

− Calculating information entropy

− Calculating information entropy (using the

answer list)

The main reason why I have used Javascript in my project

work is the ease of access. Javascript is a web scripting

language 5 , so there is no need to install additional

software since the code is executed in your browser, while

applications like text-editor (such as Notepad) can be used

to write the code.

In this section, we'll look at building code for the

Calculating information entropy and Calculating

information entropy (using the answer list) algorithms.

Application structure

The files will be divided into several main folders:

− data where the list of words and answers will be

stored (words.js, answers.js),

− scripts where the code for building the game

(index.js, game.js) and the code for building the

algorithms will be stored,

− testing code for testing the performance of algorithms

− styles code for designing the web page (.css files)

− index.html main file through which the result of the

application is displayed

Calculating information entropy

This method is based on the selection of words that

contains the most information and at the same time

reducing the list of possible words to its minimum. The

algorithm starts by calculating the entropy of each word

for each possible pattern, and finds their sum, the word

with the highest value is selected as an valid answer.

1

2

3

4

5

6

7

import { possibleWords } from

'./../data/words.js';

import { matchedWords } from './filter.js';

let wordsLength = 5;

let bestWord;

let patterns = [];

const numberOfPatterns = Math.pow(3, wordsLength);

To begin with, we imported the list possibleWords,

which contains all possible words, and the list

matchedWords, which will store the words that meet the

condition of the pre-discovered patterns, we declared the

variable wordsLength which holds the value of the

number of letters in a word (five) and the variable

bestWord in which to store the optimal word for the

answer.

We have also declared the patterns list which will carry

the value of all possible patterns of a word (numbers 2, 1

or 0 will be used for the potential marking of green, yellow

or gray letters). We have also created the

numberOfPatterns variable which shows the possible

number of patterns: 243 6.

8

9

10

11

12

13

14

15

16

17

79

for(let i = 0; i < numberOfPatterns; i++) {

patterns[i] = [];

let temp =

i.toString(3).padStart(wordsLength,0);

for(let j = 0; j < wordsLength; j++) {

patterns[i][j] = parseInt(temp[j]);

}

}

function informationEntropy() {

... // algorithm code

}

The generation of these patterns is done automatically

using the toString() method, which converts a decimal

number (with base 10) into a number with base 3 (since it

has the number 3 as a parameter). In parallel with the

generation of numbers, the padStart() method is used,

which has the task of converting each generation of the

pattern into a five-digit value by adding zero to the

beginning of the number as needed.

5 (Eng. Scripting language) means programming

language which interprets and executes commands one by

one

6 Three marking options: green, yellow, gray - for every

five letters in a word; 35 = 243pattern in total

https://doi.org/10.31449/inf.v45i1.1234 Informatica 45 (2021) 501–505 501

inside informationEntropy() method we have

declared the variable matches which will contain the

number of words that match a certain pattern, the

entropyValue variable which will contain the average

entropy value of a given word and the entropyArray list

in which the entropy values of all words will be stored.

This is achieved by iterating over four nested loops.

After finishing the elimination of the words that do not

match, we start with the entropy calculation for each

possible pattern, if the value of the words that match this

pattern is at least one (matches > 0). The entropy of

If the specified pattern has the value two then every word

is eliminated from the matchedWords list which does

not contain the specified letter in current position (since

the word; possibleWords[h] in which the entropy is

being calculated contains this letter in this position).

If the pattern has the value one then every word that does

not contain the given letter or even the words that contain

the letter in the same position is eliminated (because the

word possibleWords[h] contains this letter but in a

different position).

Using the toFixed() method the calculated entropy

values are rounded to two decimal places and stored in

the entropyArray list, as well as the entropyValue
value is reset at the end, as it will be used to store the

entropy value of the next word.

56

57

58

59

60

61

62

63

64

After we have calculated the information entropy for all

the words, we need to find the maximum value of entropy.

In advance, for all the words that can be

17

18

19

20

21

22

23

24

43

44

45

51

52

55

let matches = matchedWords.length;

let entropyValue = 0;

let entropyArray = [];

for(let h = 0; h < possibleWords.length; h++) {

for(let i = 0; i < numberOfPatterns; i++) {

for(let j = 0; j < matchedWords.length; j++) {

for(let k = 0; k < wordsLength; k++) {

... // if statements

}

}

... // reset matches

}

... // reset entropyValue

}

indexArray = [];

for(let i = 0; i < possibleWords.length; i++) {

if(matchedWords.includes(possibleWords[i])) {

indexArray.push(i);

}

}

let maxValue = entropyArray[0];

bestWord = possibleWords[0];

let tempIndex = 0;

24

25

26

27

28

29

if(patterns[i][k] === 2) {

if(possibleWords[h][k]!==matchedWords[j][k]) {

matches--;

break;

}

}

30

31

32

33

34

35

36

else if(patterns[i][k] === 1) {

if(!matchedWords[j].includes(possibleWords[h][k])

|| possibleWords[h][k] === matchedWords[j][k]) {

matches--;

break;

}

}

37

38

39

40

41

42

If

lett

co

45

46

47

48

49

50

else {

if(matchedWords[j].includes(possibleWords[h][k]))

{

matches--;

break;

}

}

pattern is zero, then remove all words containing this er

(since the word possibleWords[h] does not ntain

this letter at all).

if(matches > 0) {

let probability = matches / matchedWords.length;

let information = Math.log2(matchedWords.length

/ matches);

entropyValue += probability * information;

}

matches = matchedWords.length;

th

pr

in

Th

ca

52

53

54

e word is obtained by calculating the total sum of the

oduct between the probability of a pattern and the

formation that this pattern provides (see equation (2)).

en, the variable matches is reset for entropy lculation

of the next word.

entropyValue =

parseFloat(entropyValue.toFixed(2));

entropyArray[h] = entropyValue;

entropyValue = 0;

https://doi.org/10.31449/inf.v45i1.1234 Informatica 45 (2021) 501–505 501

potential answers of the game (matchedWords), we store

their indexes in a list called indexArray.

By iterating through the entire list we find the maximum

value and store it in the maxValue variable and the

corresponding word in the bestWord variable. An extra

step we should take, also the reason for using the

indexArray list is the detection of equal values. In case

two or more words have the same entropy values, then the

maximum value is selected based on which word is found

in the list of possible answers.

Calculating information entropy (using the

answer list)

A more efficient version of the algorithm is using the list

of answers instead of all possible words, thus increasing

the speed and accuracy of the algorithm

The implementation of the algorithm is also the same, it

is enough to import the list of possible answers

(possibleAnswers) and create the list

matchedWords which has this same list as a source,

unlike the previous algorithm (where matchedWords has

been the source for the list possibleWords).

4. DATA ANALYSIS AND DISCUSSION

In order to analyze the performance of these algorithms,

we have built several pieces of code that test the

algorithms for all 2315 possible words as answers, I have

shown the obtained data below in the form of graphs and

tables.

In this part we will present the algorithm analysis Using

information entropy and Using information entropy (using

answer list).

Figure 5: Test plot of the "Using information entropy"

algorithm

From the graph above, we see that the algorithm has

found the correct answer in the most frequent case in 4

attempts (1369 cases), it has never managed to find the

correct answer in the first case, while the maximum

number of cases required is 6 attempts (26 cases).

Has won Lost Average TOTAL

2315 0 3.97 2315

Table 1. Results from testing the algorithm "Using

information entropy"

From the table we conclude that the use of information

entropy as an average has achieved a significant

improvement with 3.97 attempts for answers, has not

failed in any case in finding the final answer (0 cases, or

expressed as a percentage of 0%) and has completed

successfully in 2315 cases or 100%.

Figure 6: Test plot of the algorithm "Using information

entropy (using response list)

From this graph we see that the use of the list of answers

by the algorithm has given more accurate results by

reducing the number of attempts in the most frequent

case to find the answer to 3 (1205 cases), also it has never

managed to find the answer correct in the first case, while

the maximum number of cases needed to find the answer

is 6 attempts (1 case).

65

66

67

68

69

70

71

72

73

74

75

76

77

78

for(let i = 0; i < entropyArray.length; i++) {

if(entropyArray[i] > maxValue) {

maxValue = entropyArray[i];

bestWord = possibleWords[i];

tempIndex = i;

}

else if(entropyArray[i] === maxValue) {

if(indexArr.includes(i) &&

!indexArr.includes(tempIndex)) {

maxValue = entropyArray[i];

bestWord = possibleWords[i];

tempIndex = i;

}

}

}

-

2

-

-

2

3

// informationEntropy code

let matchedWords = [...possibleWords];

// informationEntropyAdvance code

import { possibleAnswers }

from './../data/answers.js';

let matchedWords = [...possibleAnswers];

https://doi.org/10.31449/inf.v45i1.1234 Informatica 45 (2021) 501–505 501

Has won Lost Average TOTAL

2315 0 3.47 2315

Table 2. Results from testing the algorithm "Using

information entropy (using the list of answers)"

From the table we see that the use of the answer list

in the algorithm that uses entropy as an average has

performed in 3.47 attempts for answers, an

improvement on the average, while it has never

failed (0 cases or 0%) and ended successfully (2315

cases or 100%).

5. CONCLUSIONS AND

RECOMMENDATIONS

By testing the algorithms for finding the optimal

answer for the Wordle game, we can see in detail the

advantages and disadvantages that each algorithm

offers in terms of performance, accuracy, and

memory allocation.

The algorithm for filtering incorrect words is among

the easiest algorithms to build, has good time

performance and is an integral part of other

algorithms, but it does not perform well in accuracy.

The use of predefine words is mostly easy to build,

it also offers good performance in terms of time

(both during the game and during testing) since the

selection of words is done at the beginning of the

game and does not change until its completion.

There are no major improvements over the previous

algorithm in terms of accuracy, but it significantly

reduces the number of cases of failure to find the

correct answer within 6 possibilities.

The letter frequency analysis provides relatively

good performance in terms of time, but offers much

higher accuracy in finding answers, while the

algorithm for analyzing the frequency of letters in

the corresponding positions performs almost the

same in terms of time, while providing even higher

accuracy.

Using information entropy is more complicated to

construct and consumes more time and processing

power, but it provides the most accurate results and

never fails to find the answer, also using a list of

answers increases accuracy even more of the

algorithm and significantly improves the time

performance.

As a final selection for solving the Wordle game, it

would be to use information entropy since it has the

highest accuracy, also the complexity of the algorithm

does not present a problem in terms of time.

6. REFERENCE

[1] Cao, S., & Dahir, I. (2022, January 16). How Wordle

Became The Internet's Omicron Pastime. Retrieved

from BuzzFeed News:

https://www.buzzfeednews.com/article/stefficao/how
-wordle-went-viral-strategy

[2] Clark, M. (2022, January 24). Twitter suspends

Wordle-ruining bot. Retrieved from The Verge:

https://www.theverge.com/2022/1/24/22899339/wor

dle-twitter-spoilers-banned-word-puzzle-answers

[3] Greenbaum, A., & Byrd, M. (2022, July 13). 20 Best

Wordle Clones For Your Daily Game Needs.

Retrieved from Den of Geek:

https://www.denofgeek.com/games/best-daily-

games-wordle-clones-spin-offs/

[4] Khan Academy. (2014, April 28). Information

entropy. Retrieved from

https://www.khanacademy.org/computing/computer-

science/informationtheory/moderninfotheory/v/infor

mation-entropy.

[5] Machkovech, S. (2022, March 25). Wordle creator

describes game's rise, says NYT sale was "a way to

walk away". Retrieved from arsTechnica:

https://arstechnica.com/gaming/2022/03/wordle-

creator-describes-games-rise-says-nyt-sale-was-a-

way-to-walk-away/

[6] Sanderson, G. (2022, February 6). Solving Wordle

using information theory. Retrieved from

3blue1brown:

https://www.3blue1brown.com/lessons/wordle

[7] Shannon, C., & Weaver, W. (1963). The

Mathematical Theory of Communication. Urbana,

United States of America: The University of Illinois

Press. Retrieved from

https://monoskop.org/images/b/be/Shannon_Claude

_

E_Weaver_Warren_The_Mathematical_Theory_of_

Communication_1963.pdf

[8] University of Notre Dame. (1995). The frequency of

the letters of the alphabet in English. Retrieved from

Concise Oxford Dictionary:

[9] https://www3.nd.edu/~busiforc/handouts/cryptograp

hy/letterfrequencies.html

http://www.buzzfeednews.com/article/stefficao/how
http://www.theverge.com/2022/1/24/22899339/wor
http://www.denofgeek.com/games/best-daily-
http://www.khanacademy.org/computing/computer-
https://www.3blue1brown.com/lessons/wordle
https://monoskop.org/images/b/be/Shannon_Claude_%20E_Weaver_Warren_The_Mathematical_Theory_of_%20Communication_1963.pdf
https://monoskop.org/images/b/be/Shannon_Claude_%20E_Weaver_Warren_The_Mathematical_Theory_of_%20Communication_1963.pdf
https://monoskop.org/images/b/be/Shannon_Claude_%20E_Weaver_Warren_The_Mathematical_Theory_of_%20Communication_1963.pdf
https://monoskop.org/images/b/be/Shannon_Claude_%20E_Weaver_Warren_The_Mathematical_Theory_of_%20Communication_1963.pdf

