Advances in Machine Learning Framework for Near-Infrared Spectroscopy: A Taxonomic Review on Food Quality Assessment
Abstract
This review taxonomically analyzes and evaluates recent advances in machine learning (ML) frameworks applied to near-infrared spectroscopy (NIRS) for food quality assessment. Through a comprehensive literature search across IEEE Explore, ScienceDirect, and Springer (2021-2024), we examine key framework components: data acquisition, public datasets, preprocessing, wavelength selection, and advanced ML architectures. Our analysis reveals the current state: miniaturized devices and multi-device data collection are expanding spectral coverage, while public datasets focus mainly on nutritional indices, lacking safetyrelated data. Framework-wide challenges persist in device compatibility, dataset comprehensiveness, and model interpretability. Recent advances show promising developments through: specialized deep learning architectures achieving 97-100% accuracy, data transformation techniques (2D-COS, GAFD) enhancing interpretability, hybrid traditional-deep learning models, and effective transfer learning for cross-device applications. Based on these insights, we propose three critical research directions: expanding food safety datasets through regulatory partnerships, developing multi-level fusion for heterogeneous device data, and creating automated techniques for model optimization and interpretability. These directions are vital for advancing ML-NIRS applications in food quality assessment, improving both efficiency and reliability
Full Text:
PDFReferences
H. Pu, J. Yu, D.-W. Sun, et al. "Feature construction methods for processing and analysing spectral images and their applications in food quality inspection". In: Trends in Food Science & Technology 138 (2023), pp. 726–737. doi: 10.1016/j.tifs.2023.06.036.
S. M. Pires, H. G. Redondo, J. Pessoa, et al. "Risk ranking of foodborne diseases in Denmark: Reflections on a national burden of disease study". In: Food Control 158 (2024), p. 110199. doi: 10.1016/j.foodcont.2023.110199.
W. Tian, Y. Li, C. Guzman, et al. "Quantification of food bioactives by NIR spectroscopy: Current insights, long-lasting challenges, and future trends". In: Journal of Food Composition and Analysis 124 (2023), p. 105708. doi: 10.1016/j.jfca.2023.105708.
Y. Ozaki et al. Near-Infrared Spectroscopy: Theory, Spectral Analysis, Instrumentation, and Applications. Singapore: Springer Singapore, 2021.
A. Hassoun, S. Jagtap, G. Garcia-Garcia, et al. "Food quality 4.0: From traditional approaches to digitalized automated analysis". In: Journal of Food Engineering 337 (2023), p. 111216. doi: 10.1016/j.jfoodeng.2022.111216.
I. Latreche, S. Slatnia, O. Kazar, et al. "A Review on Deep Learning Techniques for EEG-Based Driver Drowsiness Detection Systems". In: Informatica 48.3 (2024). doi: 10.31449/inf.v48i3.5056.
H. A. Mohammed and I. M. Husien. "A Deep Transfer Learning Framework for Robust IoT Attack Detection". In: Informatica 48.12 (2024). doi: 10.31449/inf.v48i12.5955.
J. Ravniˇcan et al. "A Prestudy of Machine Learning in Industrial Quality Control Pipelines". In: Informatica 46.2 (2022). doi: 10.31449/inf.v46i2.3938.
P. Mishra, D. Passos, F. Marini, et al. "Deep learning for near-infrared spectral data modelling: Hypes and benefits". In: TrAC Trends in Analytical Chemistry 157 (2022), p. 116804. doi: 10.1016/j.trac.2022.116804.
H. Nobari Moghaddam, Z. Tamiji, M. Akbari Lakeh, et al. "Multivariate analysis of food fraud: A review of NIR based instruments in tandem with chemometrics". In: Journal of Food Composition and Analysis 107 (2022), p. 104343. doi: 10.1016/j.jfca.2021.104343.
S. Othman, N. R. Mavani, M. A. Hussain, et al. "Artificial intelligence-based techniques for adulteration and defect detections in food and agricultural industry: A review". In: Journal of Agriculture and Food Research 12 (2023), p. 100590. doi: 10.1016/j.jafr.2023.100590.
S. A. D. M. Zahir, A. F. Omar, M. F. Jamlos, et al. "A review of visible and near-infrared (Vis-NIR) spectroscopy application in plant stress detection". In: Sensors and Actuators A: Physical 338 (2022), p. 113468. doi: 10.1016/j.sna.2022.113468.
S. A. D. M. Zahir, M. F. Jamlos, A. F. Omar, et al. "Review – Plant nutritional status analysis employing the visible and near-infrared spectroscopy spectral sensor". In: Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 304 (2024), p. 123273. doi: 10.1016/j.saa.2023.123273.
H. Ni, W. Fu, J. Wei, et al. "Non-destructive detection of polysaccharides and moisture in Ganoderma lucidum using near-infrared spectroscopy and machine learning algorithm". In: LWT 184 (2023), p. 115001. doi: 10.1016/j.lwt.2023.115001.
M. I. S. Mohd Hilmi Tan, M. F. Jamlos, A. F. Omar, et al. "Ganoderma boninense classification based on near-infrared spectral data using machine learning techniques". In: Chemometrics and Intelligent Laboratory Systems 232 (2023), p. 104718. doi: 10.1016/j.chemolab.2022.104718.
D. Wang et al. "Determination of polysaccharide content in shiitake mushroom beverage by NIR spectroscopy combined with machine learning: A comparative analysis". In: Journal of Food Composition and Analysis 122 (2023), p. 105460. doi: 10.1016/j.jfca.2023.105460.
Y.-Q. Zhong, J.-Q. Li, X.-L. Li, et al. "Near infrared spectroscopy for simultaneous quantification of five chemical components in Arnebiae Radix (AR) with partial least squares and support vector machine algorithms". In: Vibrational Spectroscopy 127 (2023), p. 103556. doi: 10.1016/j.vibspec.2023.103556.
Z. Guo, Y. Zhang, J. Wang, et al. "Detection model transfer of apple soluble solids content based on NIR spectroscopy and deep learning". In: Computers and Electronics in Agriculture 212 (2023), p. 108127. doi: 10.1016/j.compag.2023.108127.
C. Saenphon, S. Ditcharoen, C. Malai, et al. "Total soluble solids, dry matter content prediction and maturity stage classification of durian fruit using long-wavelength NIR reflectance". In: Journal of Food Composition and Analysis 124 (2023), p. 105667. doi: 10.1016/j.jfca.2023.105667.
S. Nawoya, F. Ssemakula, R. Akol, et al. "Computer vision and deep learning in insects for food and feed production: A review". In: Computers and Electronics in Agriculture 216 (2024), p. 108503. doi: 10.1016/j.compag.2023.108503.
S. Zhang, S. Liu, L. Shen, et al. "Application of near-infrared spectroscopy for the non-destructive analysis of wheat flour: A review". In: Current Research in Food Science 5 (2022), pp. 1305–1312. doi: 10.1016/j.crfs.2022.08.006.
M. M. Nagy, S. Wang, and M. A. Farag. "Quality analysis and authentication of nutraceuticals using near IR (NIR) spectroscopy: A comprehensive review of novel trends and applications". In: Trends in Food Science & Technology 123 (2022), pp. 290–309. doi: 10.1016/j.tifs.2022.03.005.
L. Shuai, Z. Li, Z. Chen, et al. "A research review on deep learning combined with hyperspectral Imaging in multiscale agricultural sensing". In: Computers and Electronics in Agriculture 217 (2024), p. 108577. doi: 10.1016/j.compag.2023.108577.
Y. Liu, H. Pu, and D.-W. Sun. "Efficient extraction of deep image features using convolutional neural network (CNN) for applications in detecting and analysing complex food matrices". In: Trends in Food Science & Technology 113 (2021), pp. 193–204. doi: 10.1016/j.tifs.2021.04.042.
W. Zhang, L. C. Kasun, Q. J. Wang, et al. "A Review of Machine Learning for Near-Infrared Spectroscopy". In: Sensors 22 (2022), p. 9764. doi: 10.3390/s22249764.
P. Mishra, R. Nikzad-Langerodi, F. Marini, et al. "Are standard sample measurements still needed to transfer multivariate calibration models between near-infrared spectrometers? The answer is not always". In: TrAC Trends in Analytical Chemistry 143 (2021), p. 116331. doi: 10.1016/j.trac.2021.116331.
H. Ji, D. Pu, W. Yan, et al. "Recent advances and application of machine learning in food flavor prediction and regulation". In: Trends in Food Science & Technology 138 (2023), pp. 738–751. doi: 10.1016/j.tifs.2023.07.012.
Y. Zhang and Y. Wang. "Machine learning applications for multi-source data of edible crops: A review of current trends and future prospects". In: Food Chemistry: X 19 (2023), p. 100860. doi: 10.1016/j.fochx.2023.100860.
C. A. Nunes, M. N. Ribeiro, T. C. de Carvalho, et al. "Artificial intelligence in sensory and consumer studies of food products". In: Current Opinion in Food Science 50 (2023), p. 101002. doi: 10.1016/j.cofs.2023.101002.
B. Debus et al. "Deep learning in analytical chemistry". In: TrAC Trends in Analytical Chemistry 145 (2021), p. 116459. doi: 10.1016/j.trac.2021.116459.
M. Zareef, M. Arslan, M. M. Hassan, et al. "Recent advances in assessing qualitative and quantitative aspects of cereals using nondestructive techniques: A review". In: Trends in Food Science & Technology 116 (2021), pp. 815–828. doi: 10.1016/j.tifs.2021.08.012.
M. Hernández-Jiménez, I. Revilla, A. M. Vivar-Quintana, et al. "Performance of benchtop and portable spectroscopy equipment for discriminating Iberian ham according to breed". In: Current Research in Food Science 8 (2024), p. 100675. doi: 10.1016/j.crfs.2024.100675.
L. Yuan, X. Meng, K. Xin, et al. "A comparative study on classification of edible vegetable oils by infrared, near infrared and fluorescence spectroscopy combined with chemometrics". In: Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 288 (2023), p. 122120. doi: 10.1016/j.saa.2022.122120.
Widyaningrum, Y. A. Purwanto, S. Widodo, et al. "Rapid assessment of vanilla (Vanilla planifolia) quality parameters using portable near-infrared spectroscopy combined with random forest". In: Journal of Food Composition and Analysis 133 (2024), p. 106346. doi: 10.1016/j.jfca.2024.106346.
R. Chen, S. Li, H. Cao, et al. "Rapid quality evaluation and geographical origin recognition of ginger powder by portable NIRS in tandem with chemometrics". In: Food Chemistry 438 (2024), p. 137931. doi: 10.1016/j.foodchem.2023.137931.
J. P. Cruz-Tirado, M. S. S. Vieira, O. O. V. Correa, et al. "Detection of adulteration of Alpaca (Vicugna pacos) meat using a portable NIR spectrometer and NIR-hyperspectral imaging". In: Journal of Food Composition and Analysis 126 (2024), p. 105901. doi: 10.1016/j.jfca.2023.105901.
R. Zhu et al. "High-accuracy classification and origin traceability of peanut kernels based on near-infrared (NIR) spectroscopy using Adaboost - Maximum uncertainty linear discriminant analysis". In: Current Research in Food Science 8 (2024), p. 100766. doi: 10.1016/j.crfs.2024.100766.
J. Liang et al. "Integrating portable NIR spectrometry with deep learning for accurate Estimation of crude protein in corn feed". In: Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 314 (2024), p. 124203. doi: 10.1016/j.saa.2024.124203.
K. Yao, J. Sun, B. Zhang, et al. "On-line monitoring of egg freshness using a portable NIR spectrometer combined with deep learning algorithm". In: Infrared Physics & Technology 138 (2024), p. 105207. doi: 10.1016/j.infrared.2024.105207.
S. Ghidini, M. O. Varrà, D. Bersellini, et al. "Real-time and non-destructive control of the freshness and viability of live mussels through portable near-infrared spectroscopy". In: Food Control 160 (2024), p. 110353. doi: 10.1016/j.foodcont.2024.110353.
Z. Wu, C. Li, H. Liu, et al. "Quantification of caffeine and catechins and evaluation of bitterness and astringency of Pu-erh ripen tea based on portable near-infrared spectroscopy". In: Journal of Food Composition and Analysis 125 (2024), p. 105793. doi: 10.1016/j.jfca.2023.105793.
K. B. Béc, J. Grabska, and C. W. Huck. "Miniaturized NIR Spectroscopy in Food Analysis and Quality Control: Promises, Challenges, and Perspectives". In: Foods 11 (2022), p. 1465. doi: 10.3390/foods11101465.
J. M. Netto et al. "Authenticity of almond flour using handheld near infrared instruments and one class classifiers". In: Journal of Food Composition and Analysis 115 (2023), p. 104981. doi: 10.1016/j.jfca.2022.104981.
X. Chu et al. Chemometric Methods in Analytical Spectroscopy Technology. Singapore: Springer Nature Singapore, 2022.
J. A. Diaz-Olivares, A. Van Nuenen, M. J. Gote, et al. "Near-infrared spectra dataset of milk composition in transmittance mode". In: Data in Brief 51 (2023), p. 109767. doi: 10.1016/j.dib.2023.109767.
D. Li et al. "Research on Data Fusion and Sharing Based on Power Big Data". In: 2023 9th Annual International Conference on Network and Information Systems for Computers (ICNISC). Wuhan, China, 2023, pp. 287–290. doi: 10.1109/ICNISC60562.2023.00070.
L. Zhang et al. "Multi-source heterogeneous data fusion". In: 2018 International Conference on Artificial Intelligence and Big Data (ICAIBD). Chengdu, China, 2018, pp. 47–51. doi: 10.1109/ICAIBD.2018.8396165.
Tianzhe Jiao et al. "A Comprehensive Survey on Deep Learning Multi-Modal Fusion: Methods, Technologies and Applications". In: Computers, Materials and Continua 80.1 (2024), pp. 1–35. doi: 10.32604/cmc.2024.053204.
G. Van Kollenburg, Y. Weesepoel, H. Parastar, et al. "Dataset of the application of handheld NIR and machine learning for chicken fillet authenticity study". In: Data in Brief 29 (2020), p. 105357. doi: 10.1016/j.dib.2020.105357.
I. Malounas, W. Vierbergen, S. Kutluk, et al. "SpectroFood dataset: A comprehensive fruit and vegetable hyperspectral meta-dataset for dry matter estimation". In: Data in Brief 52 (2024), p. 110040. doi: 10.1016/j.dib.2024.110040.
G. Bonifazi et al. "A dataset of visible – Short wave InfraRed reflectance spectra collected on pre-cooked pasta products". In: Data in Brief 36 (2021), p. 106989. doi: 10.1016/j.dib.2021.106989.
M. Ryckewaert, D. Héran, C. Feilhes, et al. "Dataset containing spectral data from hyperspectral imaging and sugar content measurements of grapes berries in various maturity stage". In: Data in Brief 46 (2023), p. 108822. doi: 10.1016/j.dib.2022.108822.
A. A. Munawar, Kusumiyati, and D. Wahyuni. "Near infrared spectroscopic data for rapid and simultaneous prediction of quality attributes in intact mango fruits". In: Data in Brief 27 (2019), p. 104789. doi: 10.1016/j.dib.2019.104789.
R. Hayati, A. A. Munawar, and F. Fachruddin. "Enhanced near infrared spectral data to improve prediction accuracy in determining quality parameters of intact mango". In: Data in Brief 30 (2020), p. 105571. doi: 10.1016/j.dib.2020.105571.
Agussabti et al. "Data analysis on near infrared spectroscopy as a part of technology adoption for cocoa farmer in Aceh Province, Indonesia". In: Data in Brief 29 (2020), p. 105251. doi: 10.1016/j.dib.2020.105251.
A. Zgouz, D. Héran, B. Barthès, et al. "Dataset of visible-near infrared handheld and micro-spectrometers – comparison of the prediction accuracy of sugarcane properties". In: Data in Brief 31 (2020), p. 106013. doi: 10.1016/j.dib.2020.106013.
K. Kusumiyati et al. "Enhanced visible/near-infrared spectroscopic data for prediction of quality attributes in Cucurbitaceae commodities". In: Data in Brief 39 (2021), p. 107458. doi: 10.1016/j.dib.2021.107457.
I. Malounas et al. "Evaluation of a hyperspectral image pipeline toward building a generalisation capable crop dry matter content prediction model". In: Biosystems Engineering 247 (2024), pp. 153–161. doi: 10.1016/j.biosystemseng.2024.09.009.
H. Parastar et al. "Integration of handheld NIR and machine learning to "Measure & Monitor" chicken meat authenticity". In: Food Control 112 (2020), p. 107149. doi: 10.1016/j.foodcont.2020.107149.
J.-L. Z. Zaukuu, A. A. Nkansah, E. T. Mensah, et al. "Non-destructive authentication of melon seed (Cucumeropsis mannii) powder using a pocket-sized near-infrared (NIR) spectrophotometer with multiple spectral preprocessing". In: Journal of Food Composition and Analysis 134 (2024), p. 106425. doi: 10.1016/j.jfca.2024.106425.
Tôi sẽ tiếp tục liệt kê một cách chính xác:
S. Wang, M. Lin, Y. Meng, et al. "Self-expansion full information optimization strategy: Convenient and efficient method for near infrared spectrum auto-analysis". In: Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 303 (2023), p. 123224. doi: 10.1016/j.saa.2023.123224.
S. Wang, P. Zhang, J. Chang, et al. "A powerful tool for near-infrared spectroscopy: Synergy adaptive moving window algorithm based on the immune support vector machine". In: Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 282 (2022), p. 121631. doi: 10.1016/j.saa.2022.121631.
U. Blazhko et al. "Comparison of augmentation and pre-processing for deep learning and chemometric classification of infrared spectra". In: Chemometrics and Intelligent Laboratory Systems 215 (2021), p. 104367. doi: 10.1016/j.chemolab.2021.104367.
A. Sitorus and R. Lapcharoensuk. "Development of automatic tuning for combined preprocessing and hyperparameters of machine learning and its application to NIR spectral data of coconut milk adulteration". In: Food Chemistry 457 (2024), p. 140108. doi: 10.1016/j.foodchem.2024.140108.
N. D. Arianti, E. Saputra, and A. Sitorus. "An automatic generation of pre-processing strategy combined with machine learning multivariate analysis for NIR spectral data". In: Journal of Agriculture and Food Research 13 (2023), p. 100625. doi: 10.1016/j.jafr.2023.100625.
J.-M. Roger, A. Biancolillo, and F. Marini. "Sequential preprocessing through ORThogonalization (SPORT) and its application to near infrared spectroscopy". In: Chemometrics and Intelligent Laboratory Systems 199 (2020), p. 103975. doi: 10.1016/j.chemolab.2020.103975.
Z. Wang, Q. Wu, and M. Kamruzzaman. "Portable NIR spectroscopy and PLS based variable selection for adulteration detection in quinoa flour". In: Food Control 138 (2022), p. 108970. doi: 10.1016/j.foodcont.2022.108970.
Y. Qin, K. Song, N. Zhang, et al. "Robust NIR quantitative model using MIC-SPA variable selection and GA-ELM". In: Infrared Physics & Technology 128 (2023), p. 104534. doi: 10.1016/j.infrared.2022.104534.
M. Marañón, J. Fernández-Novales, J. Tardaguila, et al. "NIR attribute selection for the development of vineyard water status predictive models". In: Biosystems Engineering 229 (2023), pp. 167–178. doi: 10.1016/j.biosystemseng.2023.04.001.
K. Yao, J. Sun, J. Cheng, et al. "Monitoring S-ovalbumin content in eggs during storage using portable NIR spectrometer and multivariate analysis". In: Infrared Physics & Technology 131 (2023), p. 104685. doi: 10.1016/j.infrared.2023.104685.
B. Mahanty. "Adaptive Bottom-Up Space Exploration in model population analysis: An agile variable selection algorithm for PLS models". In: Chemometrics and Intelligent Laboratory Systems 203 (2020), p. 104057. doi: 10.1016/j.chemolab.2020.104057.
J. Li, J. Deng, X. Bai, et al. "Quantitative analysis of aflatoxin B1 of peanut by optimized support vector machine models based on near-infrared spectral features". In: Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 303 (2023), p. 123208. doi: 10.1016/j.saa.2023.123208.
X. Miao, Y. Miao, Y. Liu, et al. "Measurement of nitrogen content in rice plant using near infrared spectroscopy combined with different PLS algorithms". In: Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 284 (2023), p. 121733. doi: 10.1016/j.saa.2022.121733.
C. Du, L. Sun, H. Bai, et al. "Quantitative detection of azodicarbonamide in wheat flour by near-infrared spectroscopy based on two-step feature selection". In: Chemometrics and Intelligent Laboratory Systems 219 (2021), p. 104445. doi: 10.1016/j.chemolab.2021.104445.
C. Du, L. Sun, H. Bai, et al. "Quantitative detection of talcum powder in wheat flour based on near-infrared spectroscopy and hybrid feature selection". In: Infrared Physics & Technology 123 (2022), p. 104185. doi: 10.1016/j.infrared.2022.104185.
R. Zheng, Y. Jia, C. Ullagaddi, et al. "Optimizing feature selection with gradient boosting machines in PLS regression for predicting moisture and protein in multi-country corn kernels via NIR spectroscopy". In: Food Chemistry 456 (2024), p. 140062. doi: 10.1016/j.foodchem.2024.140062.
Z. Guo, L. Zhai, Y. Zou, et al. "Comparative study of Vis/NIR reflectance and transmittance method for on-line detection of strawberry SSC". In: Computers and Electronics in Agriculture 218 (2024), p. 108744. doi: 10.1016/j.compag.2024.108744.
Z. Ji, J. Zhu, J. Deng, et al. "Quantitative determination of zearalenone in wheat by the CSA-NIR technique combined with chemometrics algorithms". In: Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy (2024), p. 124858. doi: 10.1016/j.saa.2024.124858.
J. Zhu et al. "Improve the accuracy of FT-NIR for determination of zearalenone content in wheat by using the characteristic wavelength optimization algorithm". In: Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 313 (2024), p. 124169. doi: 10.1016/j.saa.2024.124169.
A. Tan et al. "1D-inception-resnet for NIR quantitative analysis and its transferability between different spectrometers". In: Infrared Physics & Technology 129 (2023), p. 104559. doi: 10.1016/j.infrared.2023.104559.
X. Zhou, C. Zhao, J. Sun, et al. "Detection of lead content in oilseed rape leaves and roots based on deep transfer learning and hyperspectral imaging technology". In: Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 290 (2023), p. 122288. doi: 10.1016/j.saa.2022.122288.
X. Chen et al. "Rapid identification of total phenolic content levels in boletes by two-dimensional correlation spectroscopy combined with deep learning". In: Vibrational Spectroscopy 121 (2022), p. 103404. doi: 10.1016/j.vibspec.2022.103404.
J. A. Martins, D. Rodrigues, A. M. Cavaco, et al. "Estimation of soluble solids content and fruit temperature in "Rocha" pear using Vis-NIR spectroscopy and the SpectraNet–32 deep learning architecture". In: Postharvest Biology and Technology 199 (2023), p. 112281. doi: 10.1016/j.postharvbio.2023.112281.
D. Saha, T. Senthilkumar, C. B. Singh, et al. "Rapid and non-destructive detection of hard to cook chickpeas using NIR hyperspectral imaging and machine learning". In: Food and Bioproducts Processing 141 (2023), pp. 91–106. doi: 10.1016/j.fbp.2023.07.006.
L. Wang, J. Liang, F. Li, et al. "Deep learning based on the Vis-NIR two-dimensional spectroscopy for adulteration identification of beef and mutton". In: Journal of Food Composition and Analysis 126 (2024), p. 105890. doi: 10.1016/j.jfca.2023.105890.
S. Castillo-Girones, R. Van Belleghem, N. Wouters, et al. "Detection of subsurface bruises in plums using spectral imaging and deep learning with wavelength selection". In: Postharvest Biology and Technology 207 (2024), p. 112615. doi: 10.1016/j.postharvbio.2023.112615.
J. Yang, X. Ma, H. Guan, et al. "A recognition method of corn varieties based on spectral technology and deep learning model". In: Infrared Physics & Technology 128 (2023), p. 104533. doi: 10.1016/j.infrared.2022.104533.
G. Wang, X. Jiang, X. Li, et al. "Determination of watermelon soluble solids content based on visible/near infrared spectroscopy with convolutional neural network". In: Infrared Physics & Technology 133 (2023), p. 104825. doi: 10.1016/j.infrared.2023.104825.
Z. Chen, X. Luan, and F. Liu. "Deep learning near-infrared quality prediction based on multi-level dynamic feature". In: Vibrational Spectroscopy 123 (2022), p. 103450. doi: 10.1016/j.vibspec.2022.103450.
W. He, H. He, F. Wang, et al. "Non-destructive detection and recognition of pesticide residues on garlic chive (Allium tuberosum) leaves based on short wave infrared hyperspectral imaging and one-dimensional convolutional neural network". In: Food Measure 15 (2021), pp. 4497–4507. doi: 10.1007/s11694-021-01012-7.
Fujia Dong et al. "Identification of the proximate geographical origin of wolfberries by two-dimensional correlation spectroscopy combined with deep learning". In: Computers and Electronics in Agriculture 198 (2022), p. 107027. issn: 0168-1699. doi: 10.1016/j.compag.2022.107027.
Z. Liu et al. "Detection of apple moldy core disease by fusing vibration and Vis/NIR spectroscopy data with dual-input MLP-Transformer". In: Journal of Food Engineering 382 (2024), p. 112219. doi: 10.1016/j.jfoodeng.2024.112219.
Y. Li et al. "Combined gramian angular difference field image coding and improved mobile vision transformer for determination of apple soluble solids content by Vis-NIR spectroscopy". In: Journal of Food Composition and Analysis 131 (2024), p. 106200. doi: 10.1016/j.jfca.2024.106200.
J. Yang et al. "TeaNet: Deep learning on Near-Infrared Spectroscopy (NIR) data for the assurance of tea quality". In: Computers and Electronics in Agriculture 190 (2021), p. 106431. doi: 10.1016/j.compag.2021.106431.
Xin Zhou et al. "Determination of lead content in oilseed rape leaves in silicon-free and silicon environments based on deep transfer learning and fluorescence hyperspectral imaging". In: Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 311 (2024), p. 123991. issn: 1386-1425. doi: 10.1016/j.saa.2024.123991.
DOI: https://doi.org/10.31449/inf.v49i11.7482

This work is licensed under a Creative Commons Attribution 3.0 License.