Comparing Evolutionary Operators, Search Spaces, and Evolutionary Algorithms in the Construction of Facial Composites

Joseph James Mist, Stuart James Gibson, Christopher John Solomon

Abstract


Facial composite construction is one of the most successful applications of interactive evolutionary computation. In spite of this, previous work in the area of composite construction has not investigated the algorithm design options in detail. We address this issue with four experiments. In the first experiment a sorting task is used to identify the 12 most salient dimensions of a 30-dimensional search space. In the second experiment the performances of two mutation and two recombination operators for interactive genetic algorithms are compared. In the third experiment three search spaces are compared: a 30-dimensional search space, a mathematically reduced 12-dimensional search space, and a 12-dimensional search space formed from the 12 most salient dimensions. Finally, we compare the performances of an interactive genetic algorithm to interactive differential evolution. Our results show that the facial composite construction process is remarkably robust to the choice of evolutionary operator(s), the dimensionality of the search space, and the choice of interactive evolutionary algorithm. We attribute this to the imprecise nature of human face perception and differences between the participants in how they interact with the algorithms.

Full Text:

PDF


Creative Commons License
This work is licensed under a Creative Commons Attribution 3.0 License.