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Accurate classification of cardiotocographic (CTG) signals plays a critical role in the early detection of
fetal health conditions, enabling timely and appropriate medical interventions. A more precise under-
standing of cardiotocography patterns, particularly in suspicious cases, can help minimize unnecessary
interventions and reduce healthcare costs. This study proposes a multiclass classification framework us-
ing 552 expert-annotated CTG records containing fetal heart rate (FHR) and uterine contraction (UC)
signals. Time-domain augmentation, including cyclic temporal shifting, Gaussian noise, and segmented
Gaussian noise, was applied to address class imbalance. The augmented FHR and UC signals were then
transformed into scalograms using Continuous Wavelet Transform (CWT), producing dual-channel RGB-
encoded images. Data were split into 90% for stratified five-fold cross-validation and 10% for independent
testing. The proposed ResNet50, enhanced with SE-based channel attention and dropout layers, was com-
pared against several baselines, including CNN, MobileNet, EfficientNet-B0, ResNet18, and ResNet50. It
achieved the best performance with an F1-score of 0.7267 and AUC of 0.7489 on the test set, outperforming
all baselines. These results highlight its potential for integration into intelligent clinical decision support
systems in prenatal care.

Povzetek: Članek obravnava klasifikacijo fetalnega stanja iz kardiotokografije v povezavi s subjektivnimi
ocenami in prekrivanjem vzorcev, zlasti pri sumljivih primerih. Predlaga metodo SE-ResNet-50, ki FHR in
UC signale pretvori v skalograme s CWT. Model doseže najboljši rezultat med primerjanimi pristopi.

1 Introduction

Ensuring fetal well-being is critical to maintaining the
health and safety of babies during pregnancy and childbirth.
The World Health Organization (WHO) reports that more
than 800 women die every day from complications of preg-
nancy and childbirth, especially in areas with limited ac-
cess to quality health services [1]. Furthermore, accord-
ing to the WHO report, effective monitoring of maternal
and fetal health can lower newborn mortality rates by up
to 20% in regions where adequate healthcare services are
available [2].
Health care professionals can take precautions to reduce

the risk if fetal complications arise from antenatal care eval-
uations [3]. Cardiotocography (CTG) is a widely used tool
for assessing fetal conditions during pregnancy and labor
by recording fetal heart rate (FHR) and uterine contraction
(UC) signals. A key advantage of CTG is its ability to pro-
vide continuous and real-time monitoring, allowing early
detection of fetal distress and uterine activity changes [4].
By identifying fetal hypoxia, CTG monitoring reduces the
risk of newborn asphyxia and lowers perinatal mortality
rates [5, 6].

CTG interpretation follows three main guidelines from
NICE (National Institute of Health and Care Excellence),
FIGO (International Federation of Gynecology and Ob-
stetrics), and ACOG (American College of Obstetricians
and Gynecologists) [7]. However, CTG assessment of-
ten varies due to subjectivity and differences in expertise
among healthcare professionals. Fatigue, stress, complex
cases, and time constraints can further hinder accurate and
timely decision-making [8]. To address these challenges,
artificial intelligence (AI) and machine learning (ML) tech-
niques have been integrated into CTG analysis. ML en-
hances diagnostic accuracy by detecting disease patterns
and risk factors, enabling early fetal distress detection and
proactive interventions [9, 10]. AI-driven models allow
healthcare providers to analyze large volumes of fetal mon-
itoring data, leading to faster and more informed decisions,
while also reducing unnecessary interventions such as ce-
sarean sections [11, 12].
The classification of the fetal state in CTG is essential

for early detection, particularly when rapid intervention is
required during pregnancy or labor [13]. This classification
includes normal, suspicious, and pathological states. Dis-
tinguishing between these categories is inherently
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challenging, as suspicious cases often present intermediate
features between normal and pathological patterns, causing
overlaps in FHR and UC characteristics that obscure de-
cision boundaries and hinder classification accuracy [14].
Misclassification can lead to unnecessary interventions or
delayed responses, affecting maternal and fetal safety.A
deeper understanding of borderline CTG patterns can help
optimize clinical decisions, reduce unnecessary procedures,
and lower healthcare costs.
This study aims to address existing gaps in CTG analysis

and presents two key contributions in advancing fetal state
classification using deep learning and signal processing:
(1) Multiclass fetal state classification with expert anno-

tations. Unlike previous studies that classify fetuses into
only normal and pathological categories, this study intro-
duces a suspicious category, creating a three-class classi-
fication (normal, suspicious, pathological). Expert annota-
tions are used instead of relying solely on biochemical indi-
cators like cord blood pH values, ensuring a more clinically
relevant and interpretable classification.
(2) Combining FHR and UC signals as input for a SE-

ResNet-50 model in scalogram-based CTG classification.
This study combines FHR and UC signals, transforming
them into scalograms using ContinuousWavelet Transform
(CWT) to capture temporal and frequency domain features
which allows a detailed representation of signal variations
critical for accurate fetal state classification. The scalo-
grams are represented in RGB format, enabling the model
to leverage multi-channel color information for richer fea-
ture extraction. An SE-ResNet50 model with squeeze and
excitation attention blocks is used to enhance feature ex-
traction and improve generalization in the classification of
three classes of fetal state.

2 Related works

Several studies have applied machine learning algorithms
to predict fetal abnormalities by extracting features from
CTG signals [15, 16]. These studies have primarily fo-
cused on classifying fetal conditions into normal and ab-
normal (pathological) categories, as well as predicting spe-
cific complications such as fetal hypoxia and preterm birth
[17–21]. Previous studies have used different labelling ap-
proaches based on data availability. Expert annotations
involves obstetricians clinically assessing fetal conditions,
while biochemical indicators such as cord blood pH and
Base Excess (BE) evaluate acid-base balance and hypoxia
risk. The Apgar score is also used to validate fetal distress
predictions based on newborn health.
Previous studies have classified fetal status into three

classes: normal, suspicious, and pathological as shown in
Table 1. However, most of these studies are based on tradi-
tional machine learning models trained in the UCI Machine
Learning Repository dataset [22]. These studies applied a
variety of algorithms, including Artificial Neural Networks
(ANN), Rough Neural Networks, Naïve Bayes, Logistic

Regression (LR), K-Nearest Neighbors (KNN), Decision
Tree (DT), Classification and Regression Tree (CART),
RandomForest (RF), Support VectorMachine (SVM), Gra-
dient Boosting (GB), and Light Gradient BoostingMachine
(LGBM). Although these models achieve high accuracy
(0.89-0.99) [23–28], the dataset has significant limitations,
as it contains only 21 static features and lacks the tempo-
ral information necessary to capture the dynamic nature
of CTG signals. This limitation hinders the ability of the
model to fully assess fetal conditions, which depend on
time-dependent variations in FHR and uterine contractions
for a more accurate and reliable classification.
Deep learning offers a more robust approach by eliminat-

ing the need for manual feature selection and enabling au-
tomatic extraction of important features directly from raw
signals [29]. Several studies have explored deep learning
for CTG classification [17,19,29–31]. Despite these devel-
opments, most studies only use FHR signals, ignoring UC
signals, which play a crucial role in assessing fetal response
to labour stress. The combination of FHR and UC provides
a more comprehensive view of fetal well-being, particu-
larly in detecting late or variable decelerations, which are
early indicators of fetal distress and hypoxia [16, 32]. Ta-
ble 2 shows the summary of related work using CTU-UHB
dataset.
A number of research employ both FHR and UC signals

with varying outcome predictions utilizing various signal
processing approaches. For instance, Zeng, et al. classi-
fied fetal state in normal and abnormal classes based on
pH values and Base Excess (BE) values used to assess the
oxygenation status and acid-base balance of the fetus for
indications of hypoxia. They used the Time-Frequency
(TF) and Ensemble Cost-Sensitive Support VectorMachine
(ECSVM) features which resulted in a sensitivity of 0.852,
a specificity of 0.661, and a quality index of 0.75.0 [33].
Liang et al. utilized a CNN-RNN model to detect fetal hy-
poxia based on pH values, achieving an accuracy of 0.9515
[34]. Similarly, Ogasawara et al. developed CTG-Net,
a CNN-based model that classifies fetal conditions using
Apgar scores and umbilical artery pH, resulting in an F1
score of 0.67 [35]. Meanwhile, Saini et al. applied a 2D-
CNN model to classify fetal conditions into normal, mild
hypoxia, and severe hypoxia, obtaining an accuracy of 0.70
[36].
Deep learning shows promise for improving fetal state

classification, but challenges remain in accuracy and clini-
cal reliability. Most studies use binary classification (nor-
mal vs. abnormal) and rely on biochemical markers for la-
beling, often overlooking the suspicious class, which can
lead to unnecessary interventions or delayed responses.
Furthermore, a large proportion of existing work processes
CTG as raw time-series signals, which may not capture im-
portant frequency-domain features, and often relies solely
on FHR without incorporating UC. The use of scalograms
(TF representations) offers richer feature extraction, en-
hancing deep learning performance. In particular, CWT-
based scalograms provide high-resolution localization of
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Table 1: Summary of related studies using UCI CTG dataset

Work Input Label Type Classes Method Performance
[23] 21 statistical fea-

tures
Expert Annotations Normal, Suspi-

cious, Pathological
Rough Neural Net-
work

Accuracy = 0.905

[24] 21 statistical fea-
tures

Expert Annotations Normal, Suspi-
cious, Pathological

AdaBoost with RF Accuracy = 0.976

[25] 21 statistical fea-
tures

Expert Annotations Normal, Suspi-
cious, Pathological

LR, KNN, RF, and
GBM

Highest accuracy =
0.99 (RF)

[26] 21 statistical fea-
tures

Expert Annotations Normal, Suspi-
cious, Pathological

RF, Naïve Bayes,
SVM

Highest accuracy =
0.9993 (RF)

[27] 21 statistical fea-
tures

Expert Annotations Normal, Suspi-
cious, Pathological

RF, LR, DT, SVM,
Voting Classifier,
KNN

Highest accuracy =
0.9751 (RF)

[28] 21 statistical fea-
tures

Expert Annotations Normal, Suspi-
cious, Pathological

Classification and
Regression Tree
(CART)

Accuracy=0.945

Table 2: Summary of related studies using CTU-UHB dataset

Work Input Label Type Classes Method Performance
[17] FHR Signals Delivery mode & pH Normal (vaginal de-

livery), Pathological
1DCNN-MLP Sensitivity=0.80,

Specificity=0.791
[19] FHR Signals pH Normal, Hypoxia Ensemble Learning,

CNN, DenseNet
CNN: F1-score=0.9
(Normal), 0.23
(Hypoxia); Bagging
Tree + NB: F1-
score=0.76 & 0.45

[29] FHR Signals pH Normal, Distressed TF Morse Wavelet,
ResNet

Accuracy=0.987,
Sens=0.97,
Spec=0.100

[30] FHR Signals pH Normal, Hypoxia DenseNet Precision=0.50,
Sensitivity=0.43,
F1-score=0.46

[31] FHR Signals pH Normal, Abnormal SE-ResNet50, XG-
Booster

Accuracy=0.9634,
Precision=0.967,
Sens=0.973,
Spec=0.96

[33] FHR and UC pH & BE Normal, Abnormal TF, ECSVM Sens=0.852,
Spec=0.661

[34] FHR and UC pH Normal, Abnormal CNN, RNN Accuracy=0.9515,
Sens=0.962,
Spec=0.9409

[35] FHR and UC Apgar Score & pH Normal, Abnormal CTG-Net F1-score=0.67
[36] FHR and UC pH Normal, Mild Hy-

poxia, Severe Hy-
poxia

2D-CNN Accuracy=0.70

signal patterns in both time and frequency domains [29],
allowing the detection of subtle and transient variations in
FHR and UC that are clinically relevant for distinguishing
fetal states. Our study addresses these gaps by integrating
both FHR and UC signals, encoding them as RGB scalo-
gram images, adopting a three-class scheme according to
FIGO guidelines, and applying time-frequency represen-
tations based on scalograms through CWT for fully auto-

mated feature learning with a deep learning model.

3 Methods

In this study, expert labeling was chosen over physiologi-
cal metrics such as the pH value of cord blood, as it con-
siders multiple clinical factors for a more comprehensive
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fetal evaluation. By using both FHR and UC for a com-
prehensive assessment and employing multiclass classifi-
cation, this study enhances the detection of the suspicious
category for early risk identification. This study employs a
systematic methodology, as shown in Figure 1 to classify
fetal conditions using CTG signals and deep learning.
The research methodology consists of three main stages:

(1) data selection and annotation analysis, (2) data pre-
processing and feature extraction, and (3) model training
and evaluation. In the first stage, CTG data from the pub-
licly available CTU-UHB dataset [37] is annotated by ex-
perts, with consistency assessed using Pearson correlation
and Fleiss’ kappa. The second stage involves cleaning and
augmenting FHR and UC signals, transforming them into
scalograms via ContinuousWavelet Transform (CWT), and
encoding them into dual-channel RGB format. In the fi-
nal stage, scalogram images and annotations are split into
a 10% independent test set and a 90% training–validation
set, with stratified five-fold cross-validation to preserve
class balance. An SE-ResNet50 model with ImageNet-
pretrained weights and Squeeze-and-Excitation blocks is
trained using focal loss, class weighting, and dropout regu-
larization. Evaluation includes comparison with baseline
models, performance assessment on cross-validation and
test sets, statistical significance testing, ablation studies,
and Grad-CAM interpretability analysis. The following de-
scribes the algorithm used for the classification of CTG sig-
nals.
We hypothesize that combining fetal heart rate (FHR)

and uterine contraction (UC) signals in scalogram form, en-
coded as dual-channel RGB images, and training a modi-
fied SE-ResNet50 model with focal loss and class weight-
ing will improve multiclass CTG classification perfor-
mance compared to baseline models.

3.1 Dataset

We utilized the public CTG dataset from the Czech Tech-
nical University (CTU), containing 552 CTG recordings
[37], available at: https://physionet.org/content/ctu-uhb-
ctgdb/1.0.0/. This CTGdatawas annotated by nine obstetri-
cians following FIGO guidelines at each evaluation step as
shown in Figure 2. The CTG dataset annotation is available
at https://people.ciirc.cvut.cz/ spilkjir/data.html [38]. In the
CTU-CHB Intrapartum Cardiotocography dataset, the col-
lected signals focused mainly on the first- and second-stage
labor phases of the labour process. The first stage labour
includes the opening of the cervix from the beginning of
contraction to the full opening of the cervix, reflecting vari-
ations in the fetal heart rate as the intensity of contractions
increases. The dataset also includes the second phase of la-
bor, when the cervix has fully opened and the birth process
begins, showing an FHR response to stronger contractions
as the mother strains.
In this study, data annotations were determined based on

the majority voting technique of nine experts on each CTG
recording. A technique in data labeling in which the fi-

Algorithm 1 CTG_Classification
1: Input: Selected Raw CTG signals (FHR, UC) with
expert-validated labels

2: Output: Classified fetal state (Normal, Suspicious,
Pathological)

3: Step 1: Preprocessing Data
4: Denoise and clean FHR and UC signals
5: Remove outliers, fill missing value
6: Apply augmentation: cyclic shift, Gaussian noise, seg-
mented Gaussian noise

7: Step 2: Continuous Wavelet Transform (CWT)
8: Convert each FHR and UC signal into separate scalo-
grams

9: Step 3: Dual-Channel RGB Encoding
10: Map FHR→R, UC→G, B=0 to form RGB scalogram

11: Step 4: Model Training ( SE-ResNet-50)
12: Initialize SE-ResNet50 with Squeeze-and-Excitation

blocks + dropout
13: Compile with Adam, Focal Loss, and class weights
14: Perform stratified five-fold cross-validation on 90%

data
15: Select fold with highest validation F1-score

16: Step 5: Testing and Evaluation
17: Test best fold on 10% hold-out data
18: Report Accuracy, Precision, Sensitivity, F1-Score, and

AUC

19: End Algorithm

nal decision is determined based on the label that is most
chosen among several experts [39]. This technique is of-
ten used when there are multiple evaluations from different
sources or individuals, for example, in a situation where a
number of experts label the data, and we need to determine
a single consensus label to use. To evaluate annotation con-
sistency, each step was assessed using two complementary
agreement metrics: (1) average pairwise Pearson correla-
tion between expert ratings, which reflects the similarity in
scoring tendencies; and (2) Fleiss’ kappa, which measures
exact categorical agreement while accounting for chance
agreement. For the correlation analysis, a 9×9 matrix was
generated for each step, where each element represents the
correlation between a pair of experts, and the average value
was calculated across all pairs. Fleiss’ kappa was calcu-
lated based on the categorical labels assigned by the nine
experts for each case. By combining these two metrics,
we identified the step with the highest and most consistent
agreement across both scoring trends and categorical label
matches, ensuring that the final dataset is derived from the
most reliable annotation stage.
To prevent data leakage during model training and eval-
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Figure 1: Proposed methodology for CTG classification

Figure 2: CTG evaluation step in CTG CTU-UHB dataset

uation, the dataset was split using a unique identifier
(base_id) for each original CTG signal, ensuring that all
augmented versions of the same signal remained within a
single subset. Splits were stratified by base_id to preserve
class balance, and the same strategy was applied in cross-
validation to maintain independence between subsets.
After determining the most reliable annotation stage (de-

tailed in Section 4.1), the dataset was prepared for model
development. The selected step was used as the basis for
data augmentation and splitting. Table 3 summarizes the
dataset distribution before and after augmentation, includ-

ing the number of samples in the training, validation, and
test sets, as well as the cases excluded from the study.

3.2 Preprocessing steps

Preprocessing techniques in this study include data clean-
ing and augmentation. The data cleaning process consists
of several stages. First, all zero values in the dataset are re-
placed with NaN (Not a Number) to indicate to indicate po-
tentially invalid or unrecorded data. If NaN values occur for
more than 15 consecutive seconds, they are retained to pre-
vent excessive interpolation across long missing segments.
Next, outlier detection is applied to remove physiologically
implausible values. For FHR, values outside the range of
50–200 bpm are discarded [29], while for UC, values out-
side 0–100 mmHg are excluded [40]. Spike detection is
also performed to identify sudden unrealistic changes, de-
fined as variations greater than 25 bpm for FHR [29] or 40
mmHg for UC [40] between consecutive samples. Such
spikes are assumed to be artifacts and are replaced with
NaN. Then the proportion of missing data is calculated.
If the NaN ratio exceeds 20% of the total signal length,
the recording is discarded to maintain data quality. For
signals that pass this threshold, missing values are inter-
polated using a two-step approach: linear interpolation to
preserve local trends, followed by cubic spline interpola-
tion for smooth transitions. Any remaining NaN values are
filled using backward and forward filling methods. Finally,
all NaN and infinite values are replaced with zero to ensure
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Table 3: Dataset distribution before and after augmentation (Step 1 only), including uninterpretable cases, and split into
train/validation/test sets.

Class Before Aug. After Aug. Test Set Train+Val Set Note
Normal 296 636 66 570 Used
Suspicious 220 606 66 540 Used
Pathological 30 210 15 195 Used
Uninterpretable 6 – – – Excluded
Total 552 1452 147 1305

numerical stability before time–frequency transformation.
Data augmentation in the time domain employed three

techniques: cyclic temporal shifting, Gaussian noise injec-
tion, and segmented Gaussian noise injection. For normal
and suspicious classes, cyclic shifts equivalent to 5 and 10
minutes (corresponding to 1,200 and 2,400 sample points at
4 Hz) and Gaussian noise (noise factor = 0.1) were applied
to the original and shifted signals. For the pathological
class, more extensive augmentation was applied, consisting
of cyclic shifts of 5, 10, 15, and 20 minutes (1,200, 2,400,
3,600, and 4,800 sample points), the addition of Gaussian
noise, and segmented Gaussian noise with varying noise
levels (0.05, 0.1, 0.5) applied to both the original and shifted
signals. This strategy enhanced data diversity andmitigated
class imbalance.

3.3 Continuous wavelet transform
The next stage is the signal transformation into the time-
frequency domain using continuous wavelet transformation
(CWT). ContinuousWavelet Transform (CWT) is a method
for analyzing signals by breaking them into different parts
based on scale or frequency [41]. CWT is very useful for
signals whose frequency changes over time. CWT works
by shifting and changing the size of the mother wavelet
along the signal and seeing how similar the signal is to the
wavelet at each point. The result is numbers (coefficients)
that show how similar the signal is to a wavelet at a given
scale and position. In this way, changes in the frequency of
the signal overtime can be seen, providing a more complete
picture compared to traditional Fourier analysis, which as-
sumes the signal does not change. The mathematical equa-
tion for the wavelet function (1) is as follows [42]:

ψa,b(t) =
1√
a
ψ

(
t− b

a

)
(1)

With a representing the scaling parameter for dilation
and b representing the moving parameter for translation
across the signal location. CWT follows two properties
which are represent in equation (2) and (3) [43]:∫ ∞

−∞
ψ(t) dt = 0 (2)

∫ ∞

−∞
[ψ(t)]

2
dt = 0 (3)

For CWT, the mathematical equation C(a, b) is obtained
by integrating the input function with the wavelet which is
stated in equation (4) [42]:

C(a, b) =

∫ ∞

−∞
f(t)

1√
|a|
ψ

(
t− b

a

)
dt (4)

In this study, a Morse wavelet in the frequency domain is
used with the following formulation, as shown in equation
(5) [43]:

ψβ,γ(ω) = U(ω)aβ,γω
βeω

γ

(5)

β and γ are parameters that control the shape of the
wavelet. β controls the shape and width of the wavelet
while γ controls the asymmetry or shift of the wavelet
shape. ω is a variable frequency in the frequency domain,
which indicates the frequency analyzed at each point in
time. The central frequency ( ωo) of the wavelet that regu-
lates the number of oscillations. If we put Morse wavelets
into the CWT formula, then the formula becomes as shown
in equation (6) [43]:

C(a, b) =
∫∞
−∞ f(t) 1√

|a|
U
(
t−b
a

)
aβ,γ

(
t−b
a

)β
e−(

t−b
a )

γ

eiωo
t−b
a dt (6)

Equation (7) shows how CWT uses Morse wavelets
for scale and frequency analysis of signals. Appropriate
wavelet parameters are selected to obtain optimal scalo-
gram representation. In this study, γ was set to 3 for both
signals, following recommendations that this value yields a
near Gaussian spectral shape and provides balanced time–
frequency localization suitable for biomedical signals. The
β parameter was set to 50 for FHR to capture rapid heart
rate variations and 100 for UC to emphasize slower sus-
tained contraction patterns, consistent with prior findings
on frequency localization characteristics [43]. While this
configuration is supported by literature, a more comprehen-
sive empirical evaluation using alternative wavelets and pa-
rameter settings could provide deeper insights into its opti-
mality. Sampling frequency was 4 Hz with a signal length
of 7200 and voices per octave of 12. Each signal was in-
dividually transformed into a scalogram using Continuous
Wavelet Transform (CWT) with its respective β value, en-
suring optimal time–frequency resolution for both modali-
ties while preserving essential information in both low and
high-frequency components.
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CWT can be used to decompose one-dimensional (1D)
signals into two-dimensional (2D) [44]. The 1D signal is
decomposed into wavelet coefficients, capturing similari-
ties at different scales and positions. This produces a 2D
scalogram, where time and frequency are represented, and
color indicates coefficient amplitude. Scalograms enhance
feature and frequency visualization, revealing details not
apparent in 1D representations [44].

3.4 Dual-channel RGB encoding
This RGB representation not only preserves the distinct
characteristics of both signals but also spatially separates
them into dedicated channels, reducing feature overlap and
enhancing the network’s ability to learn discriminative pat-
terns from each modality. Additionally, encoding them in
RGB format enables seamless integration with pre-trained
convolutional based architectures such as SE-ResNet50,
which are optimized for three-channel image inputs. The
resulting H×W×3 image was resized to 224×224×3 for
model input.

3.5 Squeeze-and-excitation residual network
Squeeze-and-Excitation ResNet50 (SE-ResNet50) is a vari-
ant of the ResNet50 architecture enhanced with Squeeze-
and-Excitation (SE) blocks, as proposed by Hu et al. [45].
While ResNet50 employs residual learning to address van-
ishing gradients and degradation issues in deep convolu-
tional networks [46], SE blocks introduce a channel-wise
attention mechanism that adaptively recalibrates feature re-
sponses. This mechanism allows the network to empha-
size informative features and suppress less relevant ones,
thereby improving representational power without signif-
icantly increasing computational cost. SE-ResNet50 has
been shown to enhance performance in various computer
vision tasks by combining the benefits of deep residual
learning and channel-wise attention.
The input to the model is a scalogram image with dimen-

sions 224×224×3. The model is trained using the Adam op-
timizer with a learning rate of 0.001. Formulticlass classifi-
cation into three categories (normal, suspicious, pathologi-
cal), the loss function is based on categorical cross-entropy.
To address class imbalance, we apply focal loss, which
modifies cross-entropy to focus more on hard-to-classify
samples, together with class weighting to reduce bias to-
ward the majority classes. To overcome class imbalance,
focal loss and class weight are used. Focal loss is a vari-
ant of the cross entropy loss function designed to focus on
examples that are difficult to classify [47]. In class imbal-
ance, models tend to focus on majority classes, neglecting
harder minority cases. Focal loss mitigates this by down-
weighting easy examples and emphasizing difficult ones,
improving learning for minority classes. Equation (7) pro-
vides the focal loss formula [47]:

FL(pt) = −αt(1− pt)
γ log(pt) (7)

Where pt is the correct prediction probability for a par-
ticular class, αt is a weighing factor for minority classes
(e.g., giving more weight to minority classes), and γ is a
parameter that controls how much attention is focused on
a difficult instance (the larger the γ, the greater the focus
on the difficult example). Focal loss helps the model learn
examples from more difficult minority classes by giving
more weight to the errors from those examples. In this
study, we addressed class imbalance by setting the focal
loss parameter αt according to the computed class weights,
while also experimenting with alternative αt values to as-
sess their impact. The focusing parameter γ was set at 2,
as this value has been reported to perform well in various
scenarios [48]. Class weighting assigns greater importance
to minority classes within the loss calculation, thereby im-
proving the model’s sensitivity to underrepresented cate-
gories [49].
Class weight is a technique that involves giving more

weight to aminority class in a standard loss function such as
cross entropy loss [49]. This approach adjusts weights for
sparse classes, ensuring the model treats minority class pre-
dictions as equally important. Class weights are computed
using equation (8) [49].

ωi =
N

ni
(8)

Where ωi is the weight for the i class,N is the total num-
ber of samples, and ni is the number of samples in class
i. Less frequent classes receive higher weights to balance
the loss function, ensuring the model considers minority
classes.
To further improve performance, dropout layers were

added to the SE-ResNet50 architecture, and early stopping
with a patience of 10 epochs was applied to prevent over-
fitting. Figure 3 illustrates the architecture of SE-ResNet50
proposed in this study.
Model performance evaluation involves a set of met-

rics that can measure certain aspects of the model’s per-
formance. Some common evaluation metrics used are ac-
curacy, precision, sensitivity, and F1-score [50]. Accu-
racy shown in equation (9), measures the proportion of the
number of correct predictions to the total number of sam-
ples [50].

Accuracy =
TP+ TN

TP+ TN+ FP+ FN
(9)

TP is the true positive (number of correct positive pre-
dictions) and FP is the false positive. TN is true negative
(number of correct negative predictions), FP is false posi-
tive (number of false positive predictions), and FN is false
negative (number of false negative predictions). The pre-
cision shown in equation (10) measures the proportion of
positive predictions that are truly positive.

Precision =
TP

TP+ FP
(10)

Sensitivity measures the model’s ability to identify all
positive samples. The formula is in (11) [50]:
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Figure 3: SE-ResNet50 architecture

Sensitivity =
TP

TP+ FN
(11)

F1-score is the harmonic means of precision and sensi-
tivity, providing a balance between the two. The formula is
shown in (12) [50]:

F1-score = 2× Precision× Sensitivity
Precision+ Sensitivity

(12)

The Area Under the Receiver Operating Characteris-
tic Curve (AUC-ROC) is a widely used performance met-
ric that evaluates a model’s ability to distinguish between
classes by measuring the area under the ROC curve. The
ROC curve plots the True Positive Rate (TPR) against the
False Positive Rate (FPR) at various classification thresh-
olds. The AUC is computed using the trapezoidal rule as
follows (13)(14) [50]:

AUC =

n−1∑
i=1

(FPRi+1 − FPRi)×
TPRi+1 + TPRi

2
(13)

TPR =
TP

TP+ FN
, FPR =

FP
FP+ TN

(14)

For multiclass evaluation, we adopted a one-vs-rest ap-
proach for each class (normal, suspicious, pathological),
computing precision, recall (sensitivity), F1-score, and
AUC individually, then averaging them equally to obtain
macro-averaged metrics.

4 Results
This section presents the findings from each stage of the
research methodology that has been conducted.

4.1 Data selection and annotation analysis
results

In the CTG-UHB dataset, annotations are assigned as fol-
lows: 1 (normal), 2 (suspicious), 3 (pathological), and -
1 (uninterpretable). Table 4 presents the data distribution
from the majority voting of nine experts across three eval-
uation steps. The sample count varies at each step, reflect-
ing differences in expert agreement and data interpretation.
The large number of uninterpretable cases in evaluation step
3 indicates that more cases were considered ambiguous or
difficult to categorize. Since this study only requires nor-
mal, suspicious, and pathological labels, the uninterpretable
category (-1) is ignored. A correlation matrix is calculated
for each step, as shown in Figure 4 for step 1, excluding the
uninterpretable label.

Table 4: Data distribution based on majority votes from
nine experts

Label Criteria CTG Evaluation
Step 1 Step 2 Step 3

1 Normal 296 229 127
2 Suspicious 220 251 153
3 Pathological 30 68 57
-1 Uninterpretable 6 4 215
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Figure 4: Expert correlation matrix step 1 excluding uninterpretable label (-1)

To assess the consistency of expert annotations, we eval-
uated inter-rater agreement using both average pairwise
correlation and Fleiss’ kappa across the three annotation
steps. The average correlation values were 0.62 (Step 1),
0.59 (Step 2), and 0.54 (Step 3), indicating a moderate
degree of similarity in experts’ rating patterns. However,
Fleiss’ kappa scores were notably lower, with values of 0.3
(fair agreement), 0.22 (slight agreement), and 0.185 (slight
agreement), respectively. This discrepancy arises because
correlation measures the similarity in score trends between
experts, while kappa evaluates exact label matches, ad-
justed for chance agreement. For this reason, CTG data
from step 1 will be used in this study because it has a high
correlation between experts that shows strong agreement,
which means that the labels on this data are more consis-
tent and reliable. Stable training data and minimal noise
are essential for machine learning models because it makes
it easier for models to find accurate patterns. The labels as-
signed to the data in evaluation step 1 tend to be uniform.
This reduces the risk of ambiguity in the training data, so the
model can learn from clearer patterns and not be affected by
inconsistent labels.

4.2 Data preprocessing and feature
extraction results

Both FHR and UC signals, in all categories (normal, sus-
picious, and pathological), Both FHR and UC signals, in
all categories (normal, suspicious, and pathological), were
processed through data cleaning process. Figure 5 shows
one of the results of the data cleaning stage in the suspicious
category. It shows how the signals are efficiently refined by

the data cleaning process, which eliminates artifacts and ir-
regularities that can obstruct precise analysis.

Following data cleaning, augmentation was performed
to address class imbalance among the normal, suspicious,
and pathological categories. After applying the time-
domain augmentation techniques consisting of cyclic tem-
poral shifting, Gaussian noise injection, and segmented
Gaussian noise injection, the dataset size increased from
522 to 1,452 samples. The final distribution consisted of
636 normal, 606 suspicious, and 210 pathological cases.
This process substantially reduced class imbalance, with
the pathological class, originally the smallest, experiencing
the largest relative growth due to the application of addi-
tional shift intervals and multiple noise levels.

After the dataset was cleaned and augmented, each FHR
and UC signal was individually transformed into scalogram
images using Continuous Wavelet Transform (CWT) with
different β parameters (β = 50 for FHR and β = 100 for
UC) to optimize time–frequency resolution for each signal
type. Examples of the resulting scalograms for both sig-
nals are shown in Figure 6. These two scalograms were
then combined into an RGB-encoded image by assigning
the FHR scalogram to the red channel, the UC scalogram
to the green channel, and leaving the blue channel empty,
thereby preserving the modality-specific features while en-
abling simultaneous processing by the deep learningmodel.
An example of the resulting RGB-encoded representation is
shown in Figure 7. The resulting RGB-encoded image was
then resized to 224×224×3 before being fed into the model.
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Figure 5: Example of cleaned FHR and UC signals from the suspicious class

Figure 6: Scalogram representation (a) FHR signal (b) UC signal

4.3 Model training and evaluation results

The experiments were carried out on Google Colab Pro
with an NVIDIA GPU (16 GB VRAM) and 62.8 GB
RAM, using Python 3.10, PyTorch 2.2.2, and Torchvision
0.17.2. All runs were configured with deterministic set-
tings (random seed = 42) for reproducibility. In the first
experiment, the proposed SE-ResNet50 model enhanced
with dropout layers was evaluated using stratified five-
fold cross-validation. Performance metrics including accu-
racy, precision, recall, F1-score, and AUC were calculated
for each fold, with the mean values reported to assess the
model’s overall effectiveness as shown in Table 5 and Fig-
ure 8.
Across the five folds, the model achieved an average F1-

score of 0.6015 ± 0.0718, with Fold 1 yielding the highest
F1-score of 0.7073. This fold was then evaluated on the

independent test set, achieving an F1-score of 0.7267 and
an AUC of 0.7489. Figure 9 and Figure 10 present the per-
class performance metrics and the confusion matrix of the
final test set, respectively, while Table 6 summarizes the
precision, recall, and F1-score for each class.
The performance of the SE-ResNet-50 model was com-

pared with baseline models using CTG evaluation step 1
data, with the same number of epochs (100), early stop-
ping (patience = 10), dropout rate (0.6), and learning rate
(0.001), all initialized with ImageNet-pretrained weights.
Table 7 presents the mean ± standard deviation results from
five-fold cross-validation for all models. The overall per-
formance on the final test set is illustrated in Figure 11,
while Figures 12 and 13 show the relationship between
model complexity (number of parameters) and final test
set performance, as well as the trade-off between inference
time and final test set F1-score.
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Table 5: Performance of the proposed model across five folds

Fold Accuracy Precision Recall F1 AUC
1 0.6821 0.6495 0.7795 0.7073 0.7963
2 0.5375 0.5284 0.5258 0.5142 0.6700
3 0.5857 0.6175 0.6034 0.5966 0.7266
4 0.6091 0.6132 0.6089 0.5926 0.7302
5 0.6301 0.6510 0.6206 0.6268 0.8216

Mean ± Std 0.6089 ± 0.0535 0.6119 ± 0.0499 0.6276 ± 0.0928 0.6075 ± 0.0696 0.7489 ± 0.0604

Figure 7: RGB-encoded representation
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Figure 8: Variation of performance metrics across folds

To evaluate the effect of key hyperparameters on model
performance, an ablation study was conducted by varying
the learning rate, batch size, and dropout rate while keeping
other training settings constant. The learning rates tested
were 0.001 and 0.0001, batch sizes were set to 8, 16, and
32, and dropout rates were tested at 0.3, 0.5, and 0.6. All ex-
periments used the same number of epochs with early stop-
ping (patience = 10) to ensure a fair comparison. Table 8
summarizes the 5-fold cross-validationmean ± standard de-
viation results for F1-score and AUC, with the best results
highlighted in bold.
An ablation study compared cross-entropy and focal loss

with various class weight settings, using a fixed learning
rate of 0.001, dropout rate of 0.6, batch size of 32, and train-

Table 6: Per-class precision, recall, and F1-score for the
final test set

Class Precision Recall F1-score
Normal 0.5833 0.6364 0.6087
Suspicious 0.6000 0.5455 0.5714
Pathologic 1.0000 1.0000 1.0000
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Figure 9: Per-class performance metrics

ing for up to 100 epochs with early stopping (patience =
10). Focal loss parameters (γ and α) were varied as shown
in Table 9, which reports 5-fold cross-validation mean ±
standard deviation for F1-score and AUC, with best results
in bold.

Grad-CAM interpretability analysis was performed to
highlight the regions most influential in the model predic-
tions. Figure 14 presents the Grad-CAM visualizations of
representative scalogram images from the normal, suspi-
cious, and pathological classes using the complete scalo-
gram for each case. To provide a more detailed view, Fig-
ure 15 shows the Grad-CAM visualization of a representa-
tive suspicious case with separated FHR and UC channels,
enabling observation of class-specific attention patterns for
each signal type.
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Table 7: Mean ± std cross-validation performance of deep learning models

Model Accuracy Precision Recall F1-Score AUC
CNN 0.5418 ± 0.0478 0.5248 ± 0.1031 0.4881 ± 0.0673 0.4895 ± 0.0786 0.7026 ± 0.0449
EfficientNetB0 0.5472 ± 0.0202 0.5953 ± 0.0744 0.5155 ± 0.0354 0.5129 ± 0.0198 0.6880 ± 0.0638
MobileNetV2 0.6313 ± 0.0936 0.6509 ± 0.0660 0.5781 ± 0.0635 0.5933 ± 0.0623 0.7314 ± 0.1332
ResNet18 0.5800 ± 0.0274 0.5713 ± 0.1012 0.5607 ± 0.0943 0.5335 ± 0.0798 0.7347 ± 0.0497
ResNet50 0.6044 ± 0.0459 0.6405 ± 0.0704 0.5749 ± 0.0520 0.5913 ± 0.0576 0.7185 ± 0.0299
SE-ResNet50
(Proposed)

0.5888 ± 0.0511 0.6276 ± 0.0691 0.6040 ± 0.0847 0.6015 ± 0.0718 0.7530 ± 0.0423

Table 8: Comparison of hyperparameter tuning results (5-fold mean ± std) for F1-score and AUC

Learning Rate Batch Size Dropout F1-score AUC

0.001
32 0.6 0.6542 ± 0.0629 0.7366 ± 0.0769
32 0.5 0.6209 ± 0.0440 0.7251 ± 0.0834
32 0.3 0.5794 ± 0.0475 0.7116 ± 0.0930

0.0001 32 0.6 0.4605 ± 0.0774 0.6704 ± 0.0573

0.001 16 0.6 0.6360 ± 0.0523 0.7902 ± 0.0213
8 0.6 0.6177 ± 0.0252 0.7512 ± 0.0455

Figure 10: Confusion matrix

5 Discussion

This section discusses the experimental results, beginning
with an evaluation of annotation consistency through Pear-
son correlation and Fleiss’ kappa, followed by the per-
formance analysis of the proposed model across cross-
validation folds and the independent test set. The results
are further interpreted in comparison with baseline models,
along with per-class performance, to provide insights into
the strengths and limitations of the approach.
The quality of expert annotations was assessed using

both Pearson correlation and Fleiss’ kappa across three an-
notation steps. The average pairwise Pearson correlation

values were 0.62, 0.59, and 0.54 for Step 1, Step 2, and Step
3, respectively, indicating moderate similarity in scoring
trends among experts, with Step 1 showing the highest con-
sistency. However, Fleiss’ kappa values were considerably
lower. The scores were 0.3 (fair agreement), 0.22 (slight
agreement), and 0.185 (slight agreement), revealing that ex-
act label agreement, adjusted for chance, was limited, par-
ticularly in Step 2 and Step 3. This lower inter-rater relia-
bility is consistent with the model’s final test performance
(Figure 9) and the confusion matrix (Figure 10), where the
normal and suspicious classes achieved F1-scores of only
0.6087 and 0.5714, respectively. These results suggest that
the ambiguity in expert annotations for these categories
likely contributed to the model’s reduced classification per-
formance.

To assess the stability of performance metrics across
folds, we calculated the coefficient of variation (CV), de-
fined as the ratio of the standard deviation to the mean,
expressed as a percentage. Based on Table 5, AUC (CV
= 8.07%), precision (CV = 8.15%), and accuracy (CV =
8.79%) had low variation, indicating stable discriminative
capability and consistent predictive accuracy. In contrast,
F1-score (CV = 11.46%) and recall (CV = 14.79%) showed
moderate variation, with recall exhibiting the largest fluc-
tuation, particularly due to a notable drop in Fold 2. The
boxplot further illustrates this pattern: Precision and AUC
have compact distributions with minimal spread, while Re-
call and F1 display wider interquartile ranges and several
low outliers. This variability is likely linked to limited gen-
eralization on certain data subsets, potentially influenced
by label inconsistencies. Conducting an error analysis of
high-confidence misclassifications could help detect and
correct such labeling issues, while enhancing feature rep-
resentation or applying additional regularization may im-
prove robustness and stabilize recall and F1 performance
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Figure 11: Final test set performance comparison

Table 9: Ablation study results for focal loss and class weight configurations (5-fold mean ± std)

Model Focal Loss Class Weight Gamma Alpha F1-score AUC
1 False False – – 0.6542 ± 0.0629 0.7366 ± 0.0769
2 False True – – 0.6506 ± 0.0382 0.7909 ± 0.0197
3 True True 2 [1.0, 1.0, 1.0] 0.6015 ± 0.0718 0.7530 ± 0.0423
4 True False 2 [0.8, 2.2, 1.4] 0.5902 ± 0.0910 0.7281 ± 0.0343
5 True False 2 [0.8, 1.2, 2.0] 0.6296 ± 0.0638 0.7486 ± 0.0323
6 True False 1 [0.8, 1.0, 2.0] 0.6163 ± 0.0983 0.7669 ± 0.0691
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Figure 12: Parameter vs performance

across folds.
In the final test set, the model achieved perfect preci-

sion, recall, and F1-score for the pathological class, with-
out misclassifications. Performance was lower for normal
(precision 0.5833, recall 0.6364) and suspicious (precision
0.60, recall 0.5455), with most errors occurring between
these two classes. This pattern suggests overlapping fea-
tures or unclear decision boundaries, indicating the need for
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Figure 13: Inference time vs performance

improved feature representation or targeted data augmenta-
tion.
Compared to previous studies, the proposed model

achieved lower overall accuracy (0.6327) and macro-
average F1-score (0.7267) than high-performing methods
such as Liang et al. (accuracy= 0.9515, F1-score=0.9520)
[34] but was comparable to Ogasawara et al. (F1-
score=0.67) [35] and Saini et al. (accuracy 0.70) [36]. Al-
though prior work primarily addressed binary classification
(normal vs. abnormal), our model tackled a more challeng-
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Figure 14: Grad-CAMvisualizations of representative normal, suspicious, and pathological scalograms (complete images)
.

Figure 15: Grad-CAM visualizations for suspicious scalograms (separated channels: FHR and UC)

ing three-class problem (normal, suspicious, pathological)
and demonstrated a key strength by achieving perfect pre-
cision, recall, and F1 score for the pathological class, high-
lighting its robustness in identifying high-risk cases.
The proposed SE-ResNet50 outperformed all baseline

models in the final test set, achieving the highest F1-score

(0.727), recall (0.727), precision (0.728), and AUC (0.749),
demonstrating balanced performance across metrics. Al-
though its accuracy (0.633) was slightly lower than CNN
and MobileNetV2, it offered a better generalization for the
three-class classification problem. The complexity analysis
of the model showed that SE-ResNet50 delivered the best
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performance without significantly increasing the parameter
count compared to ResNet50. From the model complexity
vs. the the final test F1 score graph, SE-ResNet50 achieved
the highest F1-score (0.727) with ∼24 million parameters,
slightly higher than CNN (0.697) but significantly outper-
forming ResNet50 despite having the same complexity.
This indicates that the addition of Squeeze-and-Excitation
blocks effectively enhances feature representation without
substantially increasing the parameter load. Although it
recorded the longest inference time (15 ms/sample), this
trade-off is justified by its substantially higher classifica-
tion performance, making it suitable for applications prior-
itizing detection accuracy over speed.
We also conducted a statistical analysis to evaluate

whether the performance improvements of the proposed
SE-ResNet50 over baseline models were statistically sig-
nificant. The analysis used the F1-scores obtained from
each fold of the 5-fold cross-validation for SE-ResNet50
and each baseline model. Two tests were performed: the
paired t-test, which assumes normality in the differences
between paired samples, and theWilcoxon signed-rank test,
a non-parametric alternative that does not require the nor-
mality assumption. The results showed that SE-ResNet50
achieved the highest mean F1-score (0.6015) among all
models. The paired t-test indicated that the improvements
over CNN (mean F1 = 0.4895, p = 0.0036) and Effi-
cientNetB0 (mean F1 = 0.5129, p = 0.0428) were statis-
tically significant at the 0.05 level. However, the Wilcoxon
test did not confirm significance for these comparisons
(p > 0.05), suggesting that the differences may not be
robust under non-parametric assumptions. Comparisons
with MobileNetV2, ResNet18 and ResNet50 yielded p val-
ues greater than 0.05 in both tests, indicating that there
were no statistically significant differences in those cases.
These findings suggest that SE-ResNet50 offers a statis-
tically supported improvement over CNN and Efficient-
NetB0 in terms of F1-score, while its advantage over the
other per-class, although numerically higher, was not sta-
tistically significant given the current sample size.
The ablation study results in Table 9 indicate that the

use of focal loss and class weight yields varying effects
on model performance. Statistical analysis using one-way
ANOVA revealed no significant differences in F1-score
across all model configurations (p = 0.8496), indicating that
neither class weight nor focal loss consistently improved
the balance between precision and recall compared to the
baseline. In contrast, AUC differences were statistically
significant (p= 0.0389), and post-hoc pairwise comparisons
with Bonferroni correction identified a significant improve-
ment for the configuration without focal loss but with class
weight (Model 2) over the focal loss configuration with
gamma = 2, alpha = [0.8, 1.2, 2.0] (Model 5, p < 0.05).
This suggests that class weight is more effective in enhanc-
ing the model’s discriminative ability than focal loss in this
dataset.
Overall, the results indicate that class weight provides

a statistically supported benefit for improving AUC, while

focal loss alone can achieve competitive AUC with tuned
parameters but does not surpass the best class weight con-
figuration. For F1-score, neither method yields statistically
significant improvements, suggesting that alternative opti-
mization strategies may be required when this metric is the
primary objective.
In the complete RGB Grad-CAM visualizations, distinct

attention patterns were observed across the normal, suspi-
cious, and pathological classes. For the normal class, high
confidence predictions were associated with well-localized
warm regions concentrated in the lower central portion of
the scalogram. These hotspots likely represent stable seg-
ments of the fetal heart rate (FHR) signal and consistent
uterine contraction (UC) patterns without abnormal vari-
ability. The focused activation suggests that the model
identifies characteristic steady-state features that are typi-
cal of normal CTG recordings.
In the suspicious class, the activation maps showed

broader but still localized warm areas, particularly in tem-
poral regions where contraction peaks aligned with subtle
changes in the FHR baseline. These regions correspond to
clinical patterns such as mild or intermittent decelerations,
whichmay not meet the pathological threshold but still war-
rant closer monitoring. The model’s attention in this class
indicates recognition of moderate deviations from normal
patterns that can signal potential fetal distress. As an addi-
tional observation, visual inspection revealed that in some
cases, the suspicious class shared overlapping activation re-
gions with the normal class, particularly in the lower central
scalogram areas corresponding to steady FHR segments.
This overlap may contribute to the model’s misclassifica-
tion between these two classes, as mild deviations in sus-
picious cases can resemble normal patterns in both spatial
location and intensity of activations.
For the pathological class, the Grad-CAM heatmaps

displayed more diffuse and widespread activations across
the scalogram, with concentrated warm regions in the
lower central area overlapping contraction periods and pro-
nounced FHR fluctuations. Such activation patterns are
consistent with severe decelerations, abnormal variability,
or prolonged recovery times following contractions, which
align with clinical definitions of pathological CTG. The
broader distribution of activations suggests that the model
considers multiple abnormal signal segments when forming
its decision.
The single-channel Grad-CAM visualizations offer a

clearer interpretation of the model’s attention by isolating
the contribution of each physiological signal. This ap-
proach allows domain experts to verify whether the fea-
tures emphasized by the model align with established clin-
ical knowledge for each signal type. For the FHR channel,
the visualization reveals how the model responds to base-
line stability, variability, and decelerations without interfer-
ence from other signals. For the UC channel, it highlights
the timing, frequency, and intensity of contractions as per-
ceived by the model. By separating these channels, it be-
comes possible to determine whether the model’s decision
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is predominantly influenced by FHR patterns, UC activity,
or a combination of both.
In the suspicious case, the FHR channel Grad-CAM dis-

played concentrated warm regions on segments with subtle
baseline shifts and mild decelerations. These features are
consistent with early signs of potential fetal compromise,
even though they may not fulfill the criteria for pathologi-
cal classification. The UC channel Grad-CAM showed ac-
tivations primarily on contraction peaks, indicating that the
model incorporates the temporal context of uterine activity
when interpreting changes in FHR.
When compared to the complete RGB Grad-CAM for

the same case, the single-channel visualizations make the
source of the model’s attention more explicit. The RGB
visualization showed broader activation in regions where
contraction peaks coincided with mild FHR changes, sug-
gesting that the model leverages multi-signal interactions.
The single-channel analysis confirmed that each signal con-
tains distinct features relevant to the prediction, while the
combined RGB image captures their integration into a clin-
ically meaningful temporal relationship.
Grad-CAM visualizations showed that the model attends

to physiologically meaningful regions, with RGB maps
capturing multi-signal interactions and single-channel
maps revealing distinct contributions from each signal.
These results confirm that the model integrates relevant
temporal relationships for prediction. However, the clas-
sification of suspicious cases remains challenging due to
overlapping patterns with normal cases, which may limit
the separation of decision boundaries. The proposed SE-
ResNet-50, which already incorporates channel-wise atten-
tion through Squeeze-and-Excitation blocks, improved fea-
ture representation but did not fully resolve the overlap, in-
dicating that additional spatial or hybrid attention mecha-
nisms may be needed to better isolate features unique to
suspicious cases.
Although the model demonstrated strong performance,

particularly in detecting pathological cases, there are still
areas for improvement. First, the selection of Continu-
ous Wavelet Transform (CWT) parameters, was based on
literature rather than exhaustive empirical tuning, leaving
room for parameter optimization in future studies. Sec-
ond, label quality in CTG datasets can be inconsistent due
to subjective interpretation, which may contribute to mis-
classification. Addressing this issue could involve multi-
expert consensus labeling or incorporating external datasets
to enhance generalizability. Future work could also explore
semi-supervised learning or label-noise–robust learning ap-
proaches to better handle label variability, as well as in-
vestigate advanced feature representation methods to refine
classification boundaries and improve the model’s ability to
distinguish among all fetal state categories
From a clinical perspective, the model could support pre-

natal care workflows by providing real-time decision sup-
port in identifying suspicious or pathological patterns, en-
abling earlier and more targeted interventions. Such inte-
gration has the potential to improve decision-making effi-

ciency for obstetricians and midwives, ultimately enhanc-
ing maternal and fetal outcomes.

6 Conclusion
The proposed SE-ResNet-50 model applied to scalo-
gram representations of cardiotocographic signals achieved
strong performance in multiclass fetal state classification,
particularly in detecting pathological cases under imbal-
anced conditions. These results support the study’s hy-
pothesis that incorporating Squeeze-and-Excitation mech-
anisms improves classification performance by leveraging
channel interdependencies and time–frequency features.
The best configuration reached an F1-score of 0.7267 and
an AUC of 0.7489 on the independent test set.
Future work will focus on improving classification in

borderline suspicious cases, strengthening generalizability
through larger and more diverse datasets, and exploring in-
tegration into clinical workflows to provide real-time deci-
sion support for earlier and more targeted interventions.
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